
Eur. Phys. J. Plus (2020) 135:43
https://doi.org/10.1140/epjp/s13360-019-00004-3

Regular Art icle

Thermodynamic geometry of Nambu–Jona Lasinio
model

P. Castorina2,4, D. Lanteri1,2,a , S. Mancani3

1 Dipartimento di Fisica, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
2 INFN, Sezione di Catania, 95123 Catania, Italy
3 Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 2, 00185 Rome, Italy
4 Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University,
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Abstract The formalism of Riemannian geometry is applied to study the phase transitions in
Nambu–Jona Lasinio (NJL) model. Thermodynamic geometry reliably describes the phase
diagram, both in the chiral limit and for finite quark masses. The different thermodynamic
geometrical behavior of NJL model and of (2+1) Quantum Chromodynamics at high temper-
ature and small baryon density gives some hints on the connection between chiral symmetry
restoration/breaking and deconfinement/confinement regimes.

1 Introduction

Geometry, and in particular differential geometry, is now considered a powerful tool to study
statistical systems.

Indeed, information geometry [1–3], which started with the seminal paper by Rao [4] has
emerged from studies of invariant geometrical structure involved in statistical inference. It
defines a Riemannian metric together with dually coupled affine connections in a manifold
of probability distributions.

These geometric structures play important roles not only in statistical inference but also
in wider areas of information sciences, such as machine learning, signal processing, opti-
mization, neuroscience, mathematics and, of course, physics [1–3].

Thermodynamic geometry (TG), a specific application of information geometry meth-
ods to equilibrium thermodynamics, started with an initial [4,5] definition of a metric for
statistical systems, i.e. a measure of the “distance” between different thermal equilibrium
configurations, later refined in Ref. [6] by determining the metric tensor, gμν , through the
Hessian of the entropy density.

This definition of gμν is crucial since the resulting distance is in inverse relation with the
fluctuation probability between equilibrium states and, moreover, it leads to the “interaction
hypothesis”, i.e. the correspondence between the absolute value of the scalar curvature R
(an intensive variable, with units of a volume, evaluated by the metric) and ξ3, the cube of
the correlation length, ξ , of the thermodynamic system. Indeed, a covariant and consistent
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thermodynamic fluctuation theory can be developed [7], which generalizes the classical
fluctuations theory and offers a theoretical justification to the physical meaning of R.

TG has been tested in many different systems: in phase coexistence for helium, hydrogen,
neon and argon [8], for the Lennard-Jones fluids [9,10], for ferromagnetic systems and liquid–
liquid phase transitions [11]; in the liquid–gas-like first-order phase transition in dyonic
charged AdS black hole [12]; in the Hawking-Page transitions in Gauss–Bonnet–AdS black
holes [13].

More recently [14,15], TD has been applied to field theories and, in particular, to quan-
tum chromodynamics (QCD) at large temperature and low baryon density, to evaluate the
(pseudo-) critical deconfinement temperature Tc and to compare the results with the Hadron
resonance gas models.

In this paper, a systematic application of TD to the Nambu–Jona-Lasinio (NJL) model
is carried out. This study is not only interesting per se since the NJL model gives clear
indications on some dynamical mechanism, as chiral symmetry, for low-energy QCD but
also because a QCD fundamental property, quark confinement, is missing in NJL model with
some interesting consequences on the geometrical description.

The TD approach is recalled in Sect. 2 and in Sect. 3 the phase diagram of the Nambu–Jona
Lasinio model is discussed. Section 4 is devoted to the thermodynamic geometry description
of chiral symmetry restoration in NJL model in the chiral limit and for finite fermion masses.
The geometrical difference in describing QCD and NJL phase transitions is considered in
Sects. 5 and 6 contains our comments and conclusions.

2 Thermodynamic geometry

In this section, the procedure to define the thermodynamic metric is briefly recalled (the
details are in Ref. [7,16]) and the description of phase transitions by the scalar curvature, R,
is discussed, making also use of the application to real fluids.

2.1 Thermodynamic metric

Let AU be a large thermodynamic system (universe) and let us consider an open subsys-
tem A with thermodynamic coordinates a0, the internal energy density, and ai , the number
densities of particles of different species. The probability density to find A in the “point”
a = (a0, a1, . . .) is given by

P(a, aU) dna = C eSU(a,aU) dna, (1)

being C a normalization constant, aU = (a0
U, aiU, . . .) denotes the state of the universe and

SU its total entropy, formally regarded as an exact function of the parameters of A and AU.
On the basis of the maximum entropy principle and in the framework of Consistent and

Covariant Fluctuation Theory (CCFT) [7], the thermodynamic properties of A can be studied
through the introduction of a quadratic form:

(Δ�)2 = gμν Δaμ Δaν, (2)

where Δaμ = aμ − aμ
U and

gμν = − ∂2s

∂aμ∂aν

∣
∣
∣
∣
a=aU

(3)
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defines a positive-definite Riemannian metric on the space of thermodynamic states as the
Hessian of the entropy density, s, with respect its natural variables aμ.

One can show [7] that previous formulas give the probability of the spontaneous fluc-
tuations between equilibrium states. Indeed, by expanding Eq. (1) up to second order for
a � aU, the maximum entropy state, one finds the classical gaussian normalized fluctuation
probability density:

P(a, aU) dna =
(

V

2 π

) n
2 √

gU exp

{

−V

2
gμν Δaμ Δaν

}

dna, (4)

g being the determinant of gμν and
√
g dnx the usual invariant volume on a Riemannian

manifold.
In the analysis of the phase transitions in NJL model by thermodynamic geometry, we

shall consider a two-dimensional manifold, where the intensive coordinates are β = 1/T
and γ = −μ/T , with μ chemical potential. Moreover, the metric (3) turns out to be related
to the derivatives of the potential φ = p/T , where p is the pressure [16]:

gμν =
(

φ,ββ φ,βγ

φ,βγ φ,γ γ

)

, (5)

with the usual comma notation for derivatives.
The scalar curvature R simply becomes

R = 1

2 g2

∣
∣
∣
∣
∣
∣

φ,ββ φ,βγ φ,γ γ

φ,βββ φ,ββγ φ,βγ γ

φ,ββγ φ,βγ γ φ,γ γ γ

∣
∣
∣
∣
∣
∣

. (6)

2.2 Phase transition in thermodynamic geometry

The main results of the thermodynamic geometry within Ruppeiner’s formulation [7] are
(1) the (inverse) relation between the line element and the fluctuation probability between
equilibrium states; (2) the, so-called, Interaction hypothesis: the absolute value of the scalar
curvature R is proportional to a power of the correlation length, i.e. |R| ∼ ξd , where d is the
effective spatial dimension of the underling thermodynamic system.

The meaning of the correlation length and of the scalar curvature can be represented as in
Fig. 1 (a schematic picture due to Widom [17]): the intricate line represents what the surface
of density ρ(r) = ρ0 might look at any instant. This surface separates two sides with local
mean densities ρ > ρ0 and ρ < ρ0. By tracing any straight line, the intersection points
with the surface ρ0 are separated by an average distance equal to ξ . Because such points are
separated by the same mean distance ξ , whatever the direction of the line, it is convenient to
think that regions as volume elements (“droplets”) of dimension R ∼ ξd . Figure 2 shows a
schematic summary of different configurations.

The interaction hypothesis has been confirmed by the study of the classical ideal gas
(R = 0 [6]) and of the van der Waals gas [7], for which, near the liquid–vapor critical point,
Tc, the curvature is R ∼ |(T − Tc) /Tc|−2.

Other confirmations come from the study of the Takahashi Gas [7], the Curie–Weiss
model [19], the ferromagnetic monodimensional Ising model [20]. For a more complete list
of applications see Tab. I of Ref. [21].

The relation between |R| and ξd is easy to verify for second-order phase transitions, since
R diverges, but the criterium to define a new phase in term of the curvature R for a first-order
phase transition or a crossover is less clear.
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Fig. 1 Schematic picture of the
meaning of ξ : the intricate line
represents the surface of
ρ(r) = ρ0, i.e., that separating
two sides with local mean
densities ρ > ρ0 and ρ < ρ0. By
tracing any straight line, the
intersection points are separated
by an average distance equal to ξ .
Figure from Ref. [18]

Fig. 2 Schematic pictures of different possible particle arrangements: a cluster of particles with volume |R|
pulled together by the attractive part of the interparticle interaction (R < 0); b a repulsive solid-like cluster
held up by hard-core particle repulsion (R > 0); c, d a fluid in two phases near the critical point: the bottom
half is a liquid phase containing vapor droplets with volume |Rl|. The top half is a coexisting vapor phase
containing liquid droplets with volume |Rv|. In c |Rv| = |Rl| and the droplets are commensurate, in d liquid
and vapor phases have incommensurate droplets; e liquid phase; f solid phase with R > 0. Figure from Ref.
[18]
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The approach called R-Crossing Method (RCM) [8] is often applied to define first-order
phase transitions. It is based on the continuity of the scalar curvature: knowing the ther-
modynamic quantities in the two phases, i.e. R, one can build up the transition curve by
imposing the continuity of R. The RCM, coherent with Widom’s microscopic description of
the liquid–gas coexistence region (i.e., with the idea that the correlation lengths of the two
phases must be the same at the transition) has been tested in systems with different features:
vapor-liquid coexistence line for the Lennard-Jones fluids [9,10], first- and second-order
phase transitions of mean-field Curie–Weiss model (ferromagnetic systems), liquid–liquid
phase transitions [11], phase transitions of cosmological interest as the liquid–gas-like first-
order phase transition in dyonic charged AdS black hole [12]. Another criterion applied in
the study of first-order phase transitions in real fluids [18] and Lennard-Jones systems [10]
is a first kind discontinuity in R.

Finally, two different phases can be linked by a crossover, as for the QCD deconfinement
transition. Also in this case, there is no definitive conclusion on the behavior of R, although
it has been recently shown [14] that the condition R = 0 predicts a temperature for the
transition from QCD to the Hadron resonance Gas at low baryon density in agreement with
freeze out curve [22–24] and (within 10%) with lattice data [25,26].

Another interesting aspect of the geometrical approach to phase transitions is that the
sign of the scalar curvature brings information on the microscopic interactions since R turns
out to be positive for fermi statistical interactions and negative in the bosonic case [27,28].
Therefore, a change in sign of R is an indication of the balance between effective interactions,
even when no transition occurs, and theoretical curves with R = 0 in pure fluids identify some
anomalous behaviors observed in the experimental data of several substances (in particular,
water) [18,29]. A transition from R > 0 to R < 0 has been also shown for the Lennard-
Jones system [9,10] and Anyon gas [30,31]. For black holes [32], the change in sign of the
curvature occurs at the Hawking–Page transition temperature, therefore, associated with the
condition R = 0.

In the next sections, we shall apply the thermodynamic geometry approach to NJL phase
diagram both in the chiral limit and for finite fermion mass. The behavior of the scalar
curvature in the quantitative description of the critical line in the T −μ plane will be pointed
out.

2.3 An example: real fluids

The geometrical study of fluids is based on the Helmholtz free energy per volume, f , in
terms of (T, ρ) coordinates (T is the temperature, ρ = N/V is the particle density) and the
corresponding thermodynamic line element is given by [18]

Δ�2 = − 1

T

(
∂2 f

∂T 2

)

ρ

ΔT 2 + 1

T

(
∂2 f

∂ρ2

)

T
Δρ2. (7)

The scalar curvature turns out to be

R = 1√
g

[
∂

∂T

(
1√
g

∂gρρ

∂T

)

+ ∂

∂ρ

(
1√
g

∂gTT
∂ρ

)]

(8)

with

gT T = − 1

T

(
∂2 f

∂T 2

)

ρ

, gρρ = 1

T

(
∂2 f

∂ρ2

)

T
(9)

and g = gTT gρρ .
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In Refs. [18,29,33], the real fluid free energy is modeled on the NIST Chemistry WebBook
and R is evaluated in the liquid and vapor phases and along the liquid–vapor coexistence
curve ending at the critical point Tc.

At the critical point R → −∞ with a power law behavior and in the asymptotic critical
region, i.e., very close to the critical temperature, the values of the scalar curvature evaluated
in the two phases coincide. However, in other regions of the thermodynamic parameter space,
the values of R in the liquid and the vapor phases [18] are quite different and mesoscopic
fluctuating structures of different sizes occur in the two phases (see Fig. 2d).

In the phase diagram of fluids, R is generally found to be negative since the average
molecular distances are such that the attractive part of the intermolecular potential dominates.
However, different anomalous regions, i.e., with R > 0, exist (see fig. 4 in Ref. [29]). They
are localized (a) in the supercritical liquid region, near the melting line; (b) in the liquid phase
near the triple point (for water); (c) in the vapor phase, in some regions called “repulsive
clusters” [29].

The thermodynamic states for cases (a) and (b), named solid-like liquid states, emerge
when the liquid organizes into solid-like structures at large densities, with a small intermolec-
ular average separation. The states in “repulsive cluster” areas (case c) are characterized by
values of R much larger than the volume of a single molecule and by low density and have
been observed in 97 different fluids (except those consisting of the simplest molecules) along
the saturated vapor phase curve.

3 Nambu–Jona Lasinio model

In Nambu–Jona Lasinio (NJL) model with two flavors ( f = u, d), the SU (2) Lagrangian
[34–36] is given by

LSU (2) = ψ f (i ∂/ − m) ψ f + G
[(

ψ f ψ f
)2 + (

ψ f iγ5
−→τ ψ f

)2
]

, (10)

being G a dimensionful coupling, m the current quark mass (m = 0 is the chiral limit) and−→τ the Pauli matrices. In mean-field approximation the thermodynamic potential, Ω , at finite
temperature and chemical potential turns out to be [36]

Ω(M f ) =
(

M f − m
)2

4G
+ Nf Ω f , (11)

with

Ω f = −2 Nc

∫
d3 p

(2 π)3 E f − 2 Nc T
∫

d3 p

(2 π)3 ln

[

1 + e− E f +μ f
T

]

−2 Nc T
∫

d3 p

(2 π)3

[

1 + e− E f −μ f
T

]

, (12)

where M f is the dynamically generated mass, E f =
√

p2 + M2
f , Nc and Nf are the number

of colors and flavors, respectively, μ f is the quark f chemical potential and the integrals
are regulated by a cutoff Λ. For mu = md , μ = μu = μd , the generated quark mass is
M = Mu = Md .

To evaluate the minimum of Ω by Eq. (11), one has to solve the self-consistent gap
equation

M = m − 2 G
〈

ψψ
〉

, (13)
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where
〈

ψψ
〉

is the quark–antiquark condensate:

〈

ψψ
〉 = −2 Nc Nf

∫
d3 p

(2 π)3

M

E
Ψ (T, μ) (14)

with

Ψ (T, μ) = 1 − n+(μ) − n−(μ) (15)

and

n±(μ) = 1

1 + exp
{
E±μ
T

} . (16)

For three flavors with mu = md = m, and ms �= m, one has Mu = Md �= Ms , and the
SU (3) Lagrangian is [36]

LSU (3) = ψ (i ∂/ − m̂) ψ + L4 + L6, (17)

where

L4 = G
∑

a

[(

ψλa ψ
)2 + (

ψiγ5λaψ
)2

]

(18)

and the ’t Hooft interaction, L6, is given by

L6 = −K
[

det ψ (1 + γ5) ψ + det ψ (1 − γ5) ψ
]

(19)

with ψ = (u, d, s)T , m̂ = diag (m,m,ms), λ0 = √
2/3 13×3, being 13×3 the 3 × 3 identity

matrix, and where λa (a = 1, . . . , 8) are the Gell–Mann matrices and K andG dimensionful
couplings.

The gap equations,

Mi = mi − 4G
〈

ψ iψi
〉 + 2 K

〈

ψ jψ j
〉 〈

ψkψk
〉

( j, k �= i), (20)

are coupled with the quark condensates

〈

ψ iψi
〉 = −2 Nc

∫
d3 p

(2 π)3

Mi

Ei
Ψi , (21)

where

Ψi = 1 − 1

1 + e
Ei+μi

T

− 1

1 + e
Ei−μi

T

, (22)

and the mean-field thermodynamic potential Ω turns out to be [36]

Ω =
∑

f =u,d,s

Ω f + 2 G
∑

f =u,d,s

〈

ψ f ψ f
〉2 − 4 K 〈uu〉 〈

dd
〉 〈ss〉 , (23)

with Ω f in Eq. (12).
Finally, the potential we need for the thermodynamic geometry calculations is

φ(β, γ ) = P

T
= −Ω(β, γ ) β, (24)

where P = −Ω is the pressure.

123



43 Page 8 of 22 Eur. Phys. J. Plus (2020) 135:43

(a)

(b)

Fig. 3 a The dynamically generated mass, M , in the NJL model with two flavors in the chiral limit (mu =
md = 0 MeV) and again the temperature. Black line is for μ = 0 MeV; the others are for growing μ, up to
μ = 300 MeV and with step of Δμ = 20 MeV. b M as a function of the chemical potential μ. Black line is
for T = 10 MeV; the others are for growing T , up to T = 170 MeV and with step of ΔT = 20 MeV

4 Thermodynamic geometry of chiral symmetry restoration in NJL model

4.1 Two flavors in the chiral limit

Let us first discuss the chiral limit (m = 0) for two flavors, starting from the breaking of
chiral symmetry at T = μ = 0, with the value of the dynamical mass M0(0, 0) = 300 MeV,
corresponding to Λ = 650 MeV and G = 5.01 × 10−6 MeV−2 [34,35].

The well-known solution M(T, μ) of the gap equation (13), for different values of the
temperature and of the quark chemical potential, is plotted in Fig. 3a, b. The restoration of the
chiral symmetry is a first-order phase transition at large chemical potential and a second-order
one at low μ.

The study of the critical line of the symmetry restoration, T (μ), by thermodynamic geom-
etry requires the, straightforward but laborious, calculation of the scalar curvature R, reported
in Appendix A.
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Fig. 4 R from μ = 0 MeV: second-order phase transition

It turns out that |R| diverges at the critical temperature, i.e., there is a second-order phase
transition, for μ < μ� � 290 MeV, as shown in Fig. 4 for μ = 0. For μ > μ� there is,
instead, a first-order phase transition. The dynamically generated mass, M , now takes the
characteristic behavior plotted in Fig. 5, where the black curves (both the continuous and the
dotted) are for T = 30 MeV and the two light-gray lines define the spinodal points. Between
the two spinodal (light-gray) lines one can evaluate three different scalar curvatures: the first
one for the higher mass branch (black curve in Fig. 5); the second one for M = 0 MeV
and the last one is related to the M-branch that interpolates between M = 0 and the upper
M-curve (dotted curve in Fig. 5). At fixed temperature and between the spinodal lines (see
Fig. 5), there is a discontinuity in |R| which identifies the two dashed curves in Fig. 6.

The crossing temperature from the first-order phase transition to the second-order turns
out to be about 58 MeV.

For small μ and near the transition, the curvature is negative, i.e., the interaction is mostly
attractive, suggesting that the chiral symmetry restoration is due to thermal fluctuations.

On the other hand, at large chemical potential, R turns out to be positive, indicating a
screening of the potential.

The complete critical line obtained by thermodynamic geometry is depicted in Fig. 6
where the continuous line shows the second-order phase transition and the dashed lines the
spinodal curves of the first-order one. The green band is the region of negative R.

4.2 Two flavors with chiral masses

With finite chiral quark masses, at high temperature and low chemical potential, there is a
smooth crossover rather than a second-order phase transition. Moreover, the first-order phase
boundary ends in a second-order endpoint [36].

The solution of the gap equation (13) (with Λ = 650 MeV and G = 5.01×10−6 MeV−2

and m0 = 5.5 MeV) as a function of T and μ is shown in Fig. 7a, b.
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Fig. 5 The dynamically generated mass M in the 2 flavors NJL chiral model and temperature T = 30 MeV

Fig. 6 The transition temperature: continuous line is for second-order phase transition and the dashed ones
for the first-order one. The transition point is at μ�

χ = 290 MeV and T �
χ = 58 MeV. The green band is the

region of R < 0
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(a)

(b)

Fig. 7 a The dynamical generated mass, M , in the NJL model with two flavors of identical mass (mu =
md = 5.5 MeV) and again the temperature. Black line is for μ = 0 MeV; the others are for growing μ, up to
μ = 340 MeV and with step of Δμ = 20 MeV. b M as a function of the chemical potential μ. Black line is
for T = 10 MeV; the others are for growing T , up to T = 400 MeV and with step of ΔT = 20 MeV

To clarify the effect of the chiral mass in the calculation of the scalar curvature, Fig. 8
shows that R diverges in the chiral limit but for m0 �= 0, near the transition temperature,
it has a minimum, corresponding to a maximum of |R|, i.e., to a finite correlation length.
Therefore, m0 �= 0 changes the behavior of R near the critical temperature: the divergence
of the second-order phase transition turns into a minimum in the negative R region and the
transition temperature evaluated by the maximum of |R| is completely in agreement with
that one obtained by chiral susceptibility (see Eq. (48) in Appendix A).

For low temperature and large chemical potential, the scalar curvature R has the same
behavior previously discussed in the chiral limit, i.e., a first-order phase transition.

The critical point, (T �, μ�) between the crossover and the first-order phase transition
depends onm0 and for (the generally accepted value)m0 = 5.5 MeV one has μ� � 329 MeV
and T � ∼ 32 MeV.

In Fig. 9 are shown the metric determinant at the transition temperature (evaluated as
the maximum of |R|) and as a function of μ, normalized to the value at μ = 0, |g0|, and
for two different mass m0 (i.e., for crossover): solid line is for m0 = 5.5 MeV, the dotted

123
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Fig. 8 R from μ = 0 MeV and different values of the bare mass m0: continuous line is from m0 = 0 MeV
(the chiral limit) and R shows a negative divergence. Dashed line is from m0 = 2.5 MeV and the dotted
from m0 = 5.5 MeV; both show a finite region with negative R around the transition temperature, which
corresponds to the local maximum of |R|

Fig. 9 Determinant of the metric at the transition temperature (evaluated as the maximum of |R|) and as a
function of μ, normalized to the value at μ = 0, |g0|. Solid line is for m0 = 5.5 MeV, the dotted one for
m0 = 2.5 MeV. |g0(m0 = 5.5)| = 2.0 1019 MeV8 and |g0(m0 = 2.5)| = 1.8 1019 MeV8

123



Eur. Phys. J. Plus (2020) 135:43 Page 13 of 22 43

Fig. 10 The transition temperature by the R conditions and from m0 = 5.5 MeV: continuous line is obtained
by the local maximum of |R|, the dashed ones indicate the spinodal lines. The circle is at μ� = 329 MeV and
T � = 32 MeV. The green band is the region of R < 0

one for m0 = 2.5 MeV. The values of g0 are |g0(m0 = 5.5)| = 2.0 1019 MeV8 and
|g0(m0 = 2.5)| = 1.8 1019 MeV8.

Figure 10 shows the critical line for m0 = 5.5 MeV: the continuous line is obtained by
the maximum of |R| and the dashed ones are the spinodal curves. The black circle is at
μ� = 329 MeV and T � = 32 MeV. The green band is the region of R < 0.

4.3 Three flavors

Three flavor NJL model is studied with the parameter values [37]

Λ = 631.4 MeV, G Λ2 = 1.835, K Λ5 = 9.29,

m = 5.5 MeV, ms = 135.7 MeV (25)

and only one chemical potential (μ = μd = μu , μs = 0). The dynamically generated masses
Mu = Md and Ms are now solutions of the system of Eqs. (20) and (21). Their behavior is
similar to that one depicted in Fig. 7, but with different values for light and strange quarks.
Also in this case there is a crossover at low chemical potential and large T and a first-order
phase transition at low temperature and large μ. The behavior of the scalar curvature is
essentially the same of the previous case with two flavors and physical masses.
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Fig. 11 The ratio χs/χsmax (dashed line), χu/χumax (dotted line) and |R|/|R|max (continuous line) at
μ = 0 MeV

In Fig. 11, the ratios χs/χsmax (dashed line), χu/χumax (dotted line) and |R|/|R|max

(continuous line) are depicted to visualize that the maximum in |R| corresponds to the peak
of chiral susceptibilities.

Figure 12 shows the transition temperature by the evaluation of R: the continuous line
is again obtained by the maximum of |R| and the dashed ones are the spinodal curves. The
black circle is at μ� ∼ 335 MeV and T � ∼ 35 MeV. The green band is the region of negative
R.

4.4 Thermal geometric definition of the phase transitions in NJL model: summary

It is useful to conclude this section by summarizing the geometrical definition of the phase
transitions:

– a second-order phase transition occurs for two flavors in the chiral limit (m = 0) at low
chemical potential. This transition is characterized by a divergent scalar curvature;

– for chiral masses, there is a crossover, both for two and three flavors, at low chemical
potential and large T . The transition temperature is defined as the maximum of |R| in
the negative-R region and it is in agreement with the chiral susceptibility analysis χ [38]
(Eqs. (48), (84) and (85) in Appendix);

– there exists a first-order phase transition at low temperature and large μ, both with two
and three flavors and both in the chiral limit or with chiral masses. This transition is
related with a discontinuity in R.

Finally, a comment on the sign of the scalar curvature is in order.
The scalar curvature brings information on the statistical natural of the particles and on

the dynamical interactions. The region with R < 0 in Figs. 6, 8, 10 and 12 indicates that
the balance between NJL attractive interactions and statistical effects is dominated by the
former. On the other hand, Fermi statistics is always part of the dynamics and, at large μ, the
statistical effects turn out to be more and more relevant, suggesting R > 0 as in a Fermi gas
in thermodynamic geometry.
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Fig. 12 The transition temperature by the R conditions: continuous line is obtained by the local maximum
of |R|, the dashed ones indicate the spinodal lines. The circle is at μ� ∼ 335 MeV and T � ∼ 35 MeV. The
green band is the region of R < 0

5 NJL model and QCD crossover

In Ref. [14], using the criterium R = 0, the QCD deconfinement temperature has been
predicted and turns out to be in agreement, within 10%, with lattice simulations. In Sect. 4,
the NJL crossover has been identified by a local maximum of |R| �= 0. On the other hand,
NJL model misses color confinement and, therefore, there is no a priori reason to apply the
same geometric criterium.

In the thermodynamic geometry description of QCD deconfinement transition, at low
baryon density [14], the criterium R = 0 indicates the transition from a mostly fermionic
system (as the quark–gluon plasma) to an essentially bosonic one (as the hadron resonance
gas) and, as shown in Fig. 13, it exactly corresponds to the maximum of chiral susceptibility.
On the other hand, in NJL model, where confinement is missing, the maximum of chiral
susceptibility is obtained for a non-zero scalar curvature. This different behavior translates,
in the thermodynamic geometrical description, the interplay between confinement and chiral
symmetry breaking in QCD [39–42].
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Fig. 13 The chiral susceptibility χ in QCD at μ = 0 MeV and as a function of the scalar curvature R for
physical value of the strange quark mass, ms , and ms/m� = 20 (dotted line) or ms/m� = 27 (continuous
line)

6 Comments and conclusions

For the first time thermodynamic geometry has been applied to a (although not renormal-
izable) field theory, with ab initio calculations. Indeed, in the previous analyses [14] for
the prediction of the deconfinement temperature, Lattice data for the QCD pressure and the
Hadron resonance gas models have been used.

The phase diagram in NJL model has been evaluated on the basis of the thermodynamic
metric and of the corresponding scalar curvature, R, which contains not only the second
derivatives but also higher order and mixed derivatives (up to third order). The “sensitivity”
to the phase transition, naturally contained in the cumulants, does not automatically imply
that the quantitative results are reliable: only after carrying out our specific calculations one
can state if the method of thermodynamic geometry could be a useful tool for future analyses
in field theory at finite temperature and density.

Our results show that thermodynamic geometry reliably describes the phase diagram of
NJL model, both in the chiral limit and for finite mass, and indicates a geometrical interplay
between chiral symmetry restoration/breaking and deconfinement/confinement regimes, as
discussed in Sect. 5.
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Moreover, in a very recent paper [43], the chiral phase transition temperature T 0
c , corre-

sponding to a “true” chiral transition in the limit ms/ml 
 1, turns out to be about 25 MeV
less than the pseudo-critical temperature.

Figure 13 suggests that a small variation from ms/ml = 20 to ms/ml = 27 changes the
maximum of chiral susceptibility from R = 0 to a finite value of |R|, as in NJL model. It
could be possible that considering the effective chiral limit, i.e., ms/ml 
 1 one recovers by
thermodynamic geometry a “true” chiral phase transition at lower temperature, with typical
scaling laws. The role of color confinement in QCD in terms of thermodynamic geometry
will be discussed in different models in a forthcoming paper.

A NJL model with two quarks

To evaluate the scalar curvature R, one needs the derivatives of the potential φ, up to third
order, which can be written in terms of the dynamical generated mass M . Therefore, the
solution of the GAP equation uniquely determines all those functions. Indeed, after a straight-
forward calculation, one gets (a comma indicates partial derivative)

M,β = b1 M

1 − f1 − f2 M2 , (26)

M,γ = g1 M

1 − f1 − f2 M2 , (27)

M,ββ = d
[

b3 M + (

b2 + f1,β

)

M,β + (b4 + 2 T f2) M
2 M,β + f3 M M2

,β

]

, (28)

M,γ γ = d
[

g3 M + (

g2 + f1,γ

)

M,γ + g4 M
2 M,γ + + f3 M M2

,γ

]

, (29)

M,βγ = d
[

g5 M + b2 M,γ + f1,γ M,β + g4 M
2 M,β + f2 T M2 M,γ + f3 M M,βM,γ

]

(30)

with

d = (

1 − f1 − f2 M2)−1
, (31)

f1 = κM

∫ Λ

0
dp

p4 Ψ

E3 , (32)

f2 = κM

∫ Λ

0
dp p2 n− (1 − n−) + n+ (1 − n+)

T E2 , (33)

f3 = κM

∫ Λ

0
dp p4 n− (1 − n−) + n+ (1 − n+)

T E4 , (34)

b1 = κM

∫ Λ

0
dp p2 [

n− (1 − n−) + n+ (1 − n+)
]

, (35)

b2 = κM

∫ Λ

0
dp p4 Ψβ

E3 , (36)

b3 = κM

∫ Λ

0
dpp2 [

n−,β (1 − 2n−) + n+,β (1 − 2n+)
]

, (37)

b4 = κM

∫ Λ

0
dpp2 n−,β (1 − 2n−) + n+,β (1 − 2n+)

T E2 , (38)
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g1 = κM

∫ Λ

0
dp p2 n− (1 − n−) − n+ (1 − n+)

E
, (39)

g2 = κM

∫ Λ

0
dp p4 Ψγ

E3 , (40)

g3 = κM

∫ Λ

0
dpp2 n−,γ (1 − 2n−) − n+,γ (1 − 2n+)

E
, (41)

g4 = κM

∫ Λ

0
dpp2 n−,γ (1 − 2n−) + n+,γ (1 − 2n+)

T E2 , (42)

g5 = κM

∫ Λ

0
dpp2 [

n−,γ (1 − 2n−) + n+,γ (1 − 2n+)
]

, (43)

κM = 2 G
Nc Nf

π2 (44)

and n± in Eq. (16).
By deriving Eqs. (24) and (11) and defining

κΩ = κM

2 G
, (45)

one gets

φ,β = κΩ

∫ Λ

0
dp p2 E Ψ − (M − m)2

4G
, (46)

φ,γ = κΩ

∫ Λ

0
dp p2 (n+ − n−) . (47)

The calculation of second- and third-order derivatives is straightforward.
Finally, the two-flavor chiral susceptibility, χ , is defined as [38]

χ2 f = ∂M

∂m
= 1

1 − f1 − f2 M2 = M,β

b1 M
= M,γ

g1 M
. (48)

B Three flavors

In three-flavor systems, the derivatives of the dynamically generated mass Mu = Md and
Ms are

⎧

⎪⎪⎨

⎪⎪⎩

Mu,β (δ − bu Mu ε) = au ε − Ms,β ζ

Ms,β = (as θ − au λ) (δ − bu Mu ε) − au ε bu λ Mu

( η − bs Ms θ) (δ − bu Mu ε) − bu λ Mu ζ

, (49)

⎧

⎪⎪⎨

⎪⎪⎩

Mu,γ (δ − bu Mu ε) = cu ε − Ms,γ ζ

Ms,γ = (cs θ − cu λ) (δ − bu Mu ε) − cu ε bu λ Mu

( η − bs Ms θ) (δ − bu Mu ε) − bu λ Mu ζ

, (50)
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⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mu,ββ (δ − bu Mu ε) = du ε + Au,β ε,β − (

Mu,β δ,β + Ms,β ζ,β + ε Du,β Mu Mu,β

) − Ms,ββ ζ

Ms,ββ =
(

ds θ − du λ + As,β θ,β − Au,β λ,β + λ Du,β Mu Mu,β − θ Ds,β Ms Ms,β
)

(δ − bu Mu ε)

(η − bs Ms θ) (δ − bu Mu ε) − ζ λ bu Mu

− λ bu Mu

[

du ε + Au,β ε,β − (

Mu,β δ,β + Ms,β ζ,β + ε Du,β Mu Mu,β

)]

(η − bs Ms θ) (δ − bu Mu ε) − ζ λ bu Mu

,

(51)
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mu,γ γ (δ − bu Mu ε) = eu ε + Au,γ ε,γ − (

Mu,γ δ,γ + Ms,γ ζ,γ + ε Du,γ Mu Mu,γ

) − Ms,γ γ ζ

Ms,γ γ =
(

es θ − eu λ + As,γ θ,γ − Au,γ λ,γ + λ Du,γ Mu Mu,γ − θ Ds,γ Ms Ms,γ
)

(δ − bu Mu ε)

(η − bs Ms θ) (δ − bu Mu ε) − ζ λ bu Mu

− λ bu Mu

[

eu ε + Au,γ ε,γ − (

Mu,γ δ,γ + Ms,γ ζ,γ + ε Du,γ Mu Mu,γ

)]

(η − bs Ms θ) (δ − bu Mu ε) − ζ λ bu Mu

(52)

and
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mu,βγ (δ − bu Mu ε) = fu ε + Au,β ε,γ − (

Mu,β δ,γ + Ms,β ζ,γ + ε Du,β Mu Mu,γ

) − Ms,βγ ζ

Ms,βγ =
(

fs θ − fu λ + As,β θ,γ − Au,β λ,γ + λ Du,β Mu Mu,γ − θ Ds,β Ms Ms,γ
)

(δ − bu Mu ε)

(η − bs Ms θ) (δ − bu Mu ε) − ζ λ bu Mu

− λ bu Mu

[

fu ε + Au,β ε,γ − (

Mu,β δ,γ + Ms,β ζ,γ + ε Du,β Mu Mu,γ

)]

(η − bs Ms θ) (δ − bu Mu ε) − ζ λ bu Mu

,

(53)

where

a f = Nc

π2

∫ Λ

0
dp p2 [

n− f
(

1 − n− f
) + n+ f

(

1 − n+ f
)]

, (54)

b f = Nc

π2

∫ Λ

0
dp p2 n− f

(

1 − n− f
) + n+ f

(

1 − n+ f
)

T E2
f

, (55)

c f = Nc

π2

∫ Λ

0
dp p2 n− f

(

1 − n− f
) − n+ f

(

1 − n+ f
)

E f
, (56)

d f = Nc

π2

∫ Λ

0
dp p2

{(

2 M M,β

E2 + p2
M2

,β

T E4

)

× [

n− f
(

1 − n− f
) + n+ f

(

1 − n+ f
)]

+
(

1 + M M,β

T E2

)
[(

1 − 2 n− f
)

n− f,β + (

1 − 2 n+ f
)

n+ f,β
]
}

, (57)

e f = Nc

π2

∫ Λ

0
dp p2

{

p2
M2

,γ

T E4

[

n− f
(

1 − n− f
) + n+ f

(

1 − n+ f
)]

+M M,γ

T E2

[(

1 − 2 n− f
)

n− f,γ + (

1 − 2 n+ f
)

n+ f,γ
]

+
(

1 − 2 n− f
)

n− f,γ − (

1 − 2 n+ f
)

n+ f,γ

E

}

, (58)

f f = Nc

π2

∫ Λ

0
dp p2

{(
M M,γ

E2 + p2 M,βM,γ

T E4

)

123



43 Page 20 of 22 Eur. Phys. J. Plus (2020) 135:43

× [

n− f
(

1 − n− f
) + n+ f

(

1 − n+ f
)]

+
(

1 + M M,β

T E2

)
[(

1 − 2 n− f
)

n− f,γ + (

1 − 2 n+ f
)

n+ f,γ
]}

, (59)

A f,β = a f + b f M f M f,β , (60)

A f,γ = c f + b f M f M f,γ , (61)

C f,ββ = d f + b f M f M f,ββ, (62)

C f,γ γ = e f + b f M f M f,γ γ , (63)

C f,βγ = f f + b f M f M f,βγ , (64)

B(Mu, Ms) = 4 G − 2
K 2

G
u2 − 2 K s, (65)

δ(Mu, Ms) = (1 − F1u B) , (66)

ζ(Mu, Ms) = 2 K u, (67)

ε(Mu, Ms) = B Mu, (68)

η(Mu, Ms) = (1 − 4GF1s) (1 − F1u B) − 8K 2u2F1u, (69)

θ(Mu, Ms) = 4G (1 − F1u B) Ms , (70)

λ(Mu, Ms) = 4 K u Mu, (71)

F1 f = Nc

π2

∫ Λ

0
dp p4 Ψ f

E3
f

, (72)

n f ± = 1

1 + exp

{√

p2+M2
f ±μ f

T

} (73)

and u ≡ 〈uu〉, s ≡ 〈ss〉.
About the thermodynamic potential φ = −Ω β, one has

φ,β =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 E f Ψ f + 2 G s2

+u (Mu − mu) + s (Ms − ms)

=
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 E f Ψ f + K u2 s

+u (Mu − mu) + s (Ms − ms)

2
, (74)

φ,γ =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 (

n+ f − n− f
)

(75)

φ,ββ = −
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2E f

(

n+ f,β + n− f,β
)

(76)

φ,βγ =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 (

n+ f,β − n− f,β
)

(77)

φ,γ γ =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 (

n+ f,γ − n− f,γ
)

(78)
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φ,ββγ =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 (

n+ f,ββ − n− f,ββ

)

(79)

φ,βγ γ =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 (

n+ f,βγ − n− f,βγ

)

(80)

φ,γ γ γ =
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2 (

n+ f,γ γ − n− f,γ γ

)

(81)

φ,βββ = −
∑

f =u,d,s

Nc

π2

∫ Λ

0
dp p2E f

(

n+ f,ββ + n− f,ββ

)

+
∑

f =u,d,s

(

a f + b f M f M f,β
)

M f M f,β . (82)

Finally, by defining

H f = F1 f + b f M2
f , (83)

the chiral susceptibilities are

χu = χd = ∂Mu

∂mu
= 1 − 4G Hs

1 − 4G(Hu + Hs) + 4 Hu Hs(4G2 − 2 K G s − K 2 u2) + 2 K s Hu

(84)

and

χs = ∂Ms

∂ms
== 1 − (4 G − 2 K s) Hu

1 − 4 G(Hu + Hs) + 4 Hu Hs(4G2 − 2 K G s − 2 K 2 u2) + 2 K s Hu
.

(85)
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