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Abstract

We discuss the Bisognano-Wichmann property for local Poincaré covariant nets

of standard subspaces. We provide a sufficient algebraic condition on the covariant

representation ensuring the Bisognano-Wichmann and the Duality properties without

further assumptions on the net. We call it modularity condition. It holds for direct

integrals of scalar massive and massless representations. We present a class of massive

modular covariant nets not satisfying the Bisognano-Wichmann property. Further-

more, we give an outlook on the relation between the Bisognano-Wichmann property

and the Split property in the standard subspace setting.

1 Introduction

The Algebraic Quantum Field Theory (AQFT) is a very fruitful approach to study properties
of quantum fields by using operator algebras. Models of local quantum field theories are
described by nets of von Neumann algebras on a fixed spacetime, satisfying basic relativistic
and quantum assumptions. A local Poincaré covariant net of von Neumann algebras on a
fixed Hilbert space H is a local isotonic map K ∋ O 7→ A(O) ⊂ B(H) from the set K of
open, connected bounded regions of the 1+3 dimensional Minkowski spacetime R1+3 to von
Neumann algebras A(O) ⊂ B(H). It is assumed the existence of a unitary positive energy
Poincaré representation U on H acting covariantly on A and of a unique (up to a phase)
normalized U -invariant vector Ω ∈ H which is cyclic for all the local algebras, namely the
vacuum vector. The deep connection between the algebraic structure and the geometry of
the model is a very fascinating fact. In [2, 3] Bisognano and Wichmann showed that any
model coming from Wightman fields encloses within itself the information on its geometry.
The authors proved that the modular operators related to algebras associated with wedge-
shaped regions and the vacuum state have a geometrical meaning: they implement pure
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Lorentz transformations. This is expressed through the Bisognano-Wichmann property
(B-W):

U(ΛW (2πt)) = ∆−it
A(W ),Ω (1)

for any wedge region W , where t 7→ ΛW (t) is the one-parameter group of boosts associated
with the wedge W , and ∆it

A(W ),Ω is the modular group of the von Neumann algebra A(W )

generated by ∪O⊂WA(O) w.r.t. the vacuum vector Ω.
It can be stated something more. A von Neumann algebra net A is said to be modular

covariant if

∆it
A(W ),ΩA(O)∆−it

A(W ),Ω = A(ΛW (−2πt)O), for any O ∈ K (2)

i.e. the modular group associated with any wedge algebra implements the covariant action
of the associated one-parameter group of boosts on the local net. The modular covariance
property is introduced in [5], it is weaker than the B-W property and it ensures that there
exists a covariant unitary positive energy representation of the Poincaré group generated by
the modular theory of the net algebras [18]. This marked one of the successes of the Tomita-
Takesaki theory: once the algebra of the observables and the vacuum state are specified, the
modular structure is determined and it has a geometrical meaning. Sufficient conditions on
these properties are given in [6, 7, 8, 32].

The B-W property cares only about the modular theory of the algebraic model, which
is contained in the real structure of the net. This can be described by using real standard
subspaces of the Hilbert state space (cf. definition in Sect. 2.1). It is possible to characterize
the standard subspaces with an analogue of the Tomita-Takesaki modular theory which
coincides with the von Neumann algebra Tomita-Takesaki theory when one considers von
Neumann algebras A ⊂ B(H) with a cyclic and separating vector Ω ∈ H and the subspaces
H = AsaΩ ⊂ H.

At this point it is natural to consider analogous nets of standard subspaces, which provide
a very fruitful approach to QFT. For instance, they have a key role in finding localization
properties of Infinite Spin particles, cf. Ref. [24] or finding new models in low dimensional
quantum field theory [20, 25]. A geometrical approach to nets of standard subspaces is in
[28].

The B-W property is essential to give a canonical structure to the first quantization
nets, hence to the free fields (cf. [4]): given a particle, namely an irreducible, positive
energy, unitary representation of the Poincaré group, there is a canonical way to build up
the associated one-particle net of localized states and its second quantization free field. We
make an analysis in the converse sense. Are those nets in some sense unique? At this level,
the question is not well posed since there is some freeness in choosing the modular conjugation
implementing the position and time reflection. We can ask when a (unitary, positive energy)
Poincaré representation U is modular, i.e. any net of standard subspaces it acts
covariantly on satisfies the B-W property (cf. Definition 3.3). In particular U would
be implemented by the modular operators. This would give an answer to the necessity to
assume the B-W property instead of deducing it by the assumptions.

An approach to this problem is to show the B-W property by exploiting the analyticity
property of the wave functions as in [10, 26]. It is difficult to extend this analytic approach
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to more general representations as infinite direct sums, direct integrals or to the massless
case.

We are going to present a purely algebraic argument giving a sufficient condition for
the modularity of a large family of Poincaré representations as direct integrals of scalar
representations, including the massless case. The idea comes from the following facts: the
Lorentz group acts geometrically on the momentum space and one can check that on the mass
shell it is possible to pointwise reconstruct the action of a Lorentz transformation, sending a
wedgeW to its causal complement W ′ just consideringW -fixing transformations (see Remark
4.1). With this hint we introduce the following condition on a (unitary, positive energy)
representation U of the Poincaré group, called modularity condition (cf. Definition 3.3).
We ask that the von Neumann algebra, generated by translations and the Lorentz subgroup
of transformations fixing W is large enough to enclose the transformations sending W onto
W ′. In Theorem 3.4 we show that the modularity condition is sufficient to prove that U is
modular. In particular, for any U -covariant standard subspace net H the quotient between
the two sides of (1) is the identity. This condition does neither depend on the net nor on
multiplicity of the representation and passes to some direct integrals. Our analysis holds
for scalar Poincaré representations in any spacetime R1+s, with s ≥ 3, see Remark 4.6. A
comment on the massless finite helicity case is given in Remark 4.5. We rely on the idea
that the modular covariance has to be a natural assumption in every Quantum Field Theory
satisfying basic relativistic and quantum hypotheses.

Known counterexamples to modular covariance seem very artificial as they imply a break-
down of Poincaré covariance, see [34, 19]. In Sect. 5, we give an explicit example of a massive
Poincaré covariant standard subspace net, which is modular covariant not satisfying the B-W
property. The massless case was treated in [24]. These kinds of general counterexamples
clarify what kind of settings may prevent the identification of the covariant representation
with the modular symmetries.

The relation between the split and the modular covariance properties is an interesting
problem. In [14], Doplicher and Longo proved that if the dual net of local von Neumann
algebras associated with the scalar generalized free field with Källen-Lehmann measure µ
has the split property, then µ is purely atomic and concentrated on isolated points. In Sect.
6, we give an outlook in the standard subspace setting of the problem and of this result.

The paper is organized as follows. In Sect. 2 we introduce the one-particle setting and
we recall relevant results on the real subspace structure, on Poincaré representations and on
nets of standard subspaces. In Sect. 3 we present our algebraic condition and its properties.
We prove it for general scalar representations in Sect. 4. In Sect. 5 we show the massive
counterexample to the B-W property. In Sect.6 it is discussed the relation between the B-W
and the Split properties in this one-particle setting.

This paper was reviewed in [27].
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2 One-particle net

2.1 Standard subspaces

Firstly, we recall some definitions and basic results on standard subspaces and (generalized)
one-particle models. A linear, real, closed subspace H of a complex Hilbert space H is called
cyclic if H + iH is dense in H, separating if H ∩ iH = {0} and standard if it is cyclic
and separating.

Given a standard subspace H the associated Tomita operator SH is defined to be the
closed the anti-linear involution with domain H + iH , given by:

SH : H + iH ∋ ξ + iη 7→ ξ − iη ∈ H + iH, ξ, η ∈ H,

on the dense domain H + iH ⊂ H. The polar decomposition

SH = JH∆
1/2
H

defines the positive self-adjoint modular operator ∆H and the anti-unitary modular
conjugation JH . In particular, ∆H is invertible and

JH∆HJH = ∆−1
H .

If H is a real linear subspace of H, the symplectic complement of H is defined by

H ′ ≡ {ξ ∈ H ; ℑ(ξ, η) = 0, ∀η ∈ H} = (iH)⊥R ,

where ⊥R denotes the orthogonal in H viewed as a real Hilbert space with respect to the
real part of the scalar product on H. H ′ is a closed, real linear subspace of H. If H is
standard, then H = H ′′. It is a fact that H is cyclic (resp. separating) iff H ′ is separating
(resp. cyclic), thus H is standard iff H ′ is standard and we have

SH′ = S∗
H .

Fundamental properties of the modular operator and conjugation are

∆it
HH = H, JHH = H ′ , t ∈ R .

We shall call the one-parameter, strongly continuous group t 7→ ∆it
H , the modular group

of H (cf. [30]).
There is a 1-1 correspondence between Tomita operators and standard subspaces.

Proposition 2.1. [22, 23]. The map

H 7−→ SH (3)

is a bijection between the set of standard subspaces of H and the set of closed, densely defined,
anti-linear involutions on H. The inverse of the map (3) is

S 7−→ ker(1− S).

Furthermore, this map is order-preserving, namely

H1 ⊂ H2 ⇔ SH1
⊂ SH2

,

and we have S∗
H = SH′ .
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As a consequence,





Standard
subspaces
H ⊂ H





1:1←→





closed, dens. def.
anti-linear
involutions S





1:1←→





(J,∆) pairs of an
anti-unitary

involution and a
positive self-adjoint
operator onH s.t.

J∆J = ∆−1





Here is a basic result on the standard subspace modular theory.

Lemma 2.2. [22, 23]. Let H,K ⊂ H be standard subspaces and U ∈ U(H) be a unitary
operator on H such that UH = K. Then U∆HU

∗ = ∆K and UJHU
∗ = JK.

The following is the analogue of the Takesaki theorem for standard subspaces.

Lemma 2.3. [22, 23]. Let H ⊂ H be a standard subspace, and K ⊂ H be a closed, real
linear subspace of H.

If ∆it
HK = K, ∀t ∈ R, then K is a standard subspace of K ≡ K + iK and ∆H |K is the

modular operator of K on K. Moreover, if K is a cyclic subspace of H, then H = K.

The following is the Borchers theorem in the standard subspace setting.

Theorem 2.4. [22, 23]. Let H ⊂ H be a standard subspace, and U(t) = eitP be a one-
parameter unitary group on H with generator ±P > 0, such that U(t)H ⊂ H, ∀t ≥ 0.
Then, {

∆is
HU(t)∆−is

H = U(e∓2πst)
JHU(t)JH = U(−t) ∀t, s ∈ R. (4)

In other words, the last theorem claims that if there is a one-parameter unitary group
t 7→ U(t), with a positive generator, which properly translates a standard subspace, then (4)
establishes the unique (up to multiplicity), positive energy representation of the translation-
dilation group.

The converse of the Borchers theorem can be stated in the following way.

Theorem 2.5. [4]. Let H be a standard space in the Hilbert space H and U(t) = eitP a
one-parameter group of unitaries on H satisfying:

∆is
HU(t)∆−is

H = U(e∓2πst) and JHU(t)JH = U(−t), ∀t, s ∈ R

The following are equivalent:

1. U(t)H ⊂ H for t ≥ 0;

2. ±P is positive.
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2.2 The Minkowski space and the Poincaré group

Let R1+3 be the Minkowski space, i.e. a four-dimensional real manifold endowed with the
metric

(x, y) = x0y0 −
3∑

i=1

xiyi.

In a 4-vector x = (x0, x1, x2, x3) x0 and {xi}i=1,2,3 are the time and space coordinates,
respectively. The Minkowski space has a causal structure induced by the metric. The causal
complement of a region O is given by O′ = {x ∈ R1+3 : (x − y)2 < 0, ∀y ∈ O}, where
(x−y)2 = (x−y, x−y) refers to the norm induced by the metric. A causally closed region
is such that O = O′′.

We shall denote with P the Poincaré group, i.e the inhomogeneous symmetry group
of R1+3. It is the semidirect product of the Lorentz group L, the homogeneous Minkowski
symmetry group, and the R4-translation group , i.e. P = R4 ⋊ L. It has four connected
components, as L has four connected components, and we shall indicate with P↑

+ = R4 ⋊

L↑
+ the connected component of the identity. One usually refers to P↑

+ as the proper

ortochronous (connected component of the) Poincaré group. L↑
+ is not simply connected.

The L↑
+ universal covering L̃↑

+ is SL(2,C), thus the P↑
+-universal covering P̃↑

+ is isomorphic

to R4 ⋊ SL(2,C). Let Λ : R4 ⋊ SL(2,C) ∋ (a, A) 7−→ Λ(a, A) ∈ P↑
+ be the covering map.

Unitary positive energy representations of the (universal covering of the) Poincaré group
belong to three families: massive, massless finite helicity and massless infinite spin. Massive
representations are labelled by a mass parameter m ∈ (0,+∞) and a spin parameter s ∈ N

2
;

massless finite helicity and infinite spin representations have zero mass and are labelled by
an helicity parameter h ∈ Z

2
and a couple (κ, ǫ) where κ ∈ R+ is the radius and ǫ ∈ {0, 1

2
}

the bose/fermi alternative, respectively.
We shall indicate with P+ the subgroup of P generated by P↑

+ and the space and time
reflection θ. Consider the automorphism α of the Poincaré group θ generated by the adjoint
action of the θ-reflection. The proper Poincaré group P+ is generated as a semidirect
product

P↑
+ ⋊α Z2

through the α-action. It is well known (see for example [33]) that any irreducible repre-
sentation of the Poincaré group U , except for finite helicity, extends to an (anti-)unitary

representation of Ũ of P̃↑
+, i.e.

Ũ(g) is

{
is unitary g ∈ P̃↑

+

is anti-unitary g ∈ P̃↓
+˙ = θ · P↑

+

At this point it is necessary to fix some notations about regions and isometries of the
Minkowski spacetime. A wedge-shaped region W ⊂ R1+3 is an open region of the form
gW1 where g ∈ P↑

+ and W1 = {x ∈ R1+3 : |x0| < x1}. The set of wedges is denoted by W.

Let W0 ⊂ W be the subset of wedges the form gW1 where g ∈ L↑
+. Note that if W ∈ W (or

W ∈ W0), then W ′ ∈ W (resp. W ′ ∈ W0). For every wedge region W ∈ W there exists a
unique one-parameter group of Poincaré boosts t 7→ ΛW (t) preserving W , i.e. ΛW (t)W = W
for every t ∈ R. It is defined by the adjoint action of a g ∈ P↑

+ such that gW1 = W on ΛW1
,

6



where ΛW1
(t)x = (x0 cosh t + x1 sinh t, x0 sinh t + x1 cosh t, x2, x3). Let t 7→ λW (t) be the

(unique, one-parameter group) lift to the covering group. We shall denote with Wα ∈ W the
wedge along xα-axis, i.e. Wα = {x ∈ R1+3 : |x0| < xα} with α = 1, 2, 3. Let t 7→ Λα(t) and
θ 7→ Rα(θ) be respectively the boosts and the rotations of P↑

+ fixing Wα and t 7→ λj(t) and
θ 7→ rj(θ) be the corresponding lifts to SL(2,C). Note that λj(t) = eσjt/2 and rj(θ) = eiσjθ/2,
where {σi}i=1,2,3 are the Pauli matrices.

2.3 One-particle nets

Let U be a unitary positive energy representation of the Poincaré group P̃↑
+ on an Hilbert

space H. We shall call a U-covariant (or Poincaré covariant) net of standard sub-
spaces on wedges a map

H :W ∋ W 7−→ H(W ) ⊂ H,

associating to every wedge in R1+3 a closed real linear subspace of H, satisfying the following
properties:

1. Isotony: If W1,W2 ∈ W and W1 ⊂W2 then H(W1) ⊂ H(W2);

2. Poincaré Covariance: U(g)H(W ) = H(gW ), ∀g ∈ P̃↑
+, ∀W ∈ W;

3. Positivity of the energy: the joint spectrum of translations in U is contained in the
forward light cone V+ = {x ∈ R1+3 : x2 = (x, x) ≥ 0 and x0 ≥ 0}

4. Reeh-Schlieder property (R-S): if W ∈ W, then H(W ) is a cyclic subspace of H;

5. Twisted Locality: there exists a self-adjoint unitary operator Γ ∈ U(P̃↑
+)

′, s.t.
ΓH(W ) = H(W ) for any W ∈ W and if W1 ⊂W ′

2 then

BH(W1) ⊂ H(W2)
′,

with B =
1 + iΓ

1 + i
.

We shall indicate a U -covariant net of standard subspaces on wedges W 7→ H(W ) sat-
isfying 1.-5. with the couple (U,H). This is the setting we are going to study the following
two properties:

6. Bisognano-Wichmann property: if W ∈ W, then

U(λW (2πt)) = ∆−it
H(W ), ∀t ∈ R; (5)

7. Duality property: if W ∈ W, then H(W )′ = BH(W ′).

Clearly, if U factors through P↑
+ then the two expressions of the B-W property (1) and (5)

coincide.
The relations between the modular theory of the wedge subspaces and the twisted oper-

ator are expressed by the following proposition.
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Proposition 2.6. The following hold

[∆H(W ), B] = 0

JH(W )BJH(W ) = B∗

Proof. As ΓH(W ) = H(W ) then, by Lemma 2.2, Γ∆H(W )Γ
∗ = ∆H(W ) and ΓJH(W )Γ

∗ =
JH(W ). A straightforward computation concludes the argument. �

Proposition 2.7. Wedge duality is consequence of the B-W property.

Proof. By Proposition 2.6 ∆H(W ) = ∆BH(W ) and by covariance

H(W ′) = U(ΛW (−2πt))H(W ′) = ∆it
H(W )H(W ′).

By twisted locality BH(W ′) ⊂ H(W )′ and Lemma 2.3 we get the thesis. �

It is possible to define closed real linear subspaces associated with bounded causally
closed regions as follows

H(O)=̇
⋂

W∋W⊃O

H(W ). (6)

This defines a net of real subspaces on causally closed regions O 7→ H(O). Note that H(O)
is not necessarily cyclic. If H is a net satisfying 1.-7. assumptions and H(O) is cyclic, then

H(W ) =
∑

O⊂W

H(O)

by Lemma 2.3. If H(O) is cyclic for any double cone O, we say that the net O 7→ H(O)
satisfies the R-S property for double cones.

In [4], Brunetti, Guido and Longo showed that there is a 1-1 correspondence between
(anti-)unitary, positive energy representations of P+ and covariant nets of standard subspaces
satisfying the B-W property. For the sake of completeness, we recall their theorem and we
present the proof in the fermionic case which is not contained in the original paper.

Theorem 2.8. [4]. There is a 1-1 correspondence between:

a. (Anti-)unitary positive energy representations of P̃+.

b. Local nets of standard subspaces satisfying 1-7.

Proof. Consider the automorphism of the Poincaré group P̃+ generated by the adjoint
action of j3, one of the two P̃+ elements implementing the x0− x3 reflection. One can check
in P̃+ that

j3(a, A)j3 = (j3a, σ3Aσ3), ∀(a, A) ∈ R
4
⋊ SL(2,C) (7)
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and
r1(π)λ3(t)r1(π)

−1 = λ3(−t) and r1(π)j3r1(π)
−1 = −j3, (8)

(e.g. cf. Appendix in [26]). Consider an (irreducible) fermionic representation U of P̃+,

namely a P̃+-representation which does not factor through P+. In particular U(2π) = −1.
Since U lifts to a representation of the Lie algebra of P̃↑

+ on the Gärding domain and by
relations (7) and (8) we get

U(R1(π))K3U(R1(π))
∗ = −K3, (9)

U(R1(π))J3U(R1(π))
∗ = −J3, (10)

where U(λ3(t)) = eiK3t and J3 denotes U(j3) (choose one of the two possible choices for U(j3)

in P̃+). The anti-unitary operator J3 = U(j3) and the self-adjoint operator ∆W3
= e2πK3

satisfy J3∆W3
J3 = ∆−1

W3
. Hence, it is possible to define an anti-unitary involution SW3

=

J3∆
1/2
W3

, and, by Proposition 2.1, a subspace H(W3) associated with the W3 wedge. Clearly
SW3

is the Tomita operator SH(W3) of the subspace H(W3). By covariance, a map of standard
subspaces W ∋ W 7−→ H(W ) ⊂ H is well defined. Indeed, for any wedge W , SH(W ) is the

Tomita operator determining H(W ), defined as SH(W ) = U(g)SH(W3)U(g)∗, with g ∈ P↑
+

such that gW3 = W . Note that SH(W ) = SH(r(2π)W ) and SH(W ) is well defined. This clarify
the ambiguity in the choice of J3. Furthermore, by covariance and relations (9) and (10), as

SH(W ) = JW∆
1/2
W then SH(W ′) = −JW∆

−1/2
H(W ). It easily follows that H(W ′) = iH(W )′. This

ensures twisted locality and duality as we can define Γ=̇U(2π) ∈ U(P̃↑
+)

′ and B = 1−i
1+i
· 1 =

−i · 1 is the twist operator, i.e. H(W ′) = BH(W )′ where W ∈ W.
Positivity of the energy, Poincaré covariance, B-W and R-S properties are ensured by

construction. Isotony follows as in [4] by positivity of the energy and Theorem 2.5. �

3 A modularity condition for the Bisognano-Wichmann

property

We define the following subgroups of P̃↑
+:

• G0
W =̇{A ∈ SL(2,C) : Λ(A)W = W}, where W ∈ W0. It is the subgroup of L̃↑

+

elements fixing W through the covering homomorphism Λ.

• GW = 〈G0
W , T 〉, with W ∈ W0, where T is the R1+3-translation group. GW is the

group generated by G0
W and T .

• For a general wedge W ∈ W, G0
W and GW are defined by the transitive action of P↑

+

on wedges.

Let W ∈ W. Consider the strongly continuous map

ZH(W ) : R ∋ t 7→ ∆it
H(W )U(λW (2πt)). (11)

It has to be the identity map if the B-W property (5) holds.
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Proposition 3.1. Let (U,H) be a Poincaré covariant net of standard subspaces. Then, for
every W ∈ W, the map t 7→ ZH(W )(t) defines a one-parameter group and

ZH(W )(t) ∈ U(GW )′, ∀t ∈ R.

Proof. As P↑
+ acts transitively on wedges, there is no loss of generality if we fixW = W3 and

consider GW = G3 ⊂ P̃↑
+. As Λ3(t)W3 = W3 for any t ∈ R then U(λ3(t))H(W3) = H(W3)

and, by Lemma 2.2, ∆H(W3) commutes with U(λ3(t)). In particular, t 7→ ZH(W3)(t) defines a
unitary one-parameter group.

By positivity of the energy and Theorem 2.4, ∆−it
H(W3)

has the same commutation relations

as boosts U(λ3(2πt)) w.r.t. translations. Indeed, translations in x1 and x2 directions com-
mute with ∆it

H(W3)
since they fix H(W3), and with U(λ3(t)). Translations along directions

v+ = (1, 0, 0, 1) and v− = (−1, 0, 0, 1) have, respectively, positive and negative generators
and U(t)H(W3) ⊂ H(W3) for any t > 0. Then, by Theorem 2.4

∆is
H(W3)U±(t)∆

−is
H(W3)

= U±(e
∓2πst) s, t ∈ R,

as well as
U(λW3

(−2πt))U±(t)U(λW3
(2πt)) = U±(e

∓2πst), s, t ∈ R

where U±(t) = U(t · v±). Translations along x1, x2, v+ and v− generate R4 translations and
as a consequence ZH(W3) ∈ U(T )′.

Any element g ∈ G0
3 fixes the standard subspace H(W3), hence by Lemma 2.2, U(g)

commutes with the modular operator ∆H(W3). Furthermore, as g fixes W3, then U(g) also
commutes with U(λ3). We conclude that ZH(W3) ∈ U(G3)

′. �

Note that G0
3 = 〈r3, λ3, r(2π)〉, where r(2π) is the 2π rotation.

Proposition 3.2. Let (U,H) be a Poincaré covariant net of standard subspaces. LetW ∈ W,

and rW ∈ P̃↑
+ be such that Λ(rW )W = W ′. Assume that ZH(W ) commutes with U(rW ), then

the B-W and Duality properties hold.

Proof. The map
R ∋ t 7→ ZH(W )(t)

is a unitary, one-parameter, s.o.-continuous group by Proposition 3.1. Now by hypothesis
and covariance

ZH(W ′)(t) = U(rW )ZH(W )(t)U(rW )∗ = ZH(W )(t)

where
ZH(W ′)(t) = U(λW (−2πt))∆it

H(W ′).

We find that

ZH(W )(2t) = ZH(W )(t)ZH(W )(t) = ZH(W )(t)ZH(W ′)(t) = ∆it
H(W )∆

it
H(W ′)
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and since ZH(W )(2t) is an automorphism of H(W ) and

∆−it
H(W )ZH(W )(2t)H(W ) = ∆it

H(W ′)H(W )⇔
∆−it

H(W )H(W ) = ∆it
H(W ′)H(W )⇔

H(W ) = ∆it
H(W ′)H(W ) ∀t ∈ R.

By locality H(W ) ⊂ (BH(W ′))′, Lemma 2.2 and Proposition 2.6, we have

∆it
(BH(W ′))′H(W ) = ∆−it

BH(W ′)H(W ) = ∆−it
H(W ′)H(W ) = H(W )

and by Lemma 2.3 we conclude wedge duality,

H(W ) = (BH(W ′))′.

Furthermore, by the last condition for any W ∈ W then

∆H(W ) = ∆−1
H(W ′)

and the B-W property follows since

ZH(W )(t) = U(rW )ZH(W )(t)U(rW )∗

= U(λW (−2πt))∆−it
H(W ) = ZH(W )(−t)

hence ZH(W )(t) = 1. �

Now we state the properties we are interested in.

Definition 3.3. We shall say that a unitary, positive energy representation is modular if
for any U -covariant net of standard subspaces H , namely any couple (U,H), then the B-W
property holds.

Let W ∈ W. A unitary, positive energy P̃↑
+-representation U satisfies the modularity

condition if for an element rW ∈ P̃↑
+ such that Λ(rW )W = W ′ we have that

U(rW ) ∈ U(GW )′′. (MC)

Note that (MC) does neither depend on the choice of rW , nor of W . Indeed if r̃W ∈ P̃↑
+

is another element such that Λ(r̃W )W = W ′ then rW r̃W ∈ GW and if (MC) holds for U(rW ),
then it holds for U(r̃W ). We conclude (MC) for any other wedge by the transitivity of the
P↑

+-action on wedge regions.
Now, we prove that the representations satisfying (MC) are modular.

Theorem 3.4. Let U be a positive energy unitary representation of the Poincaré group P̃↑
+.

If the condition (MC) holds on U , then any local U-covariant net of standard subspaces,
namely any pair (U,H), satisfies the B-W and the Duality properties.
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Proof. Let (U,H) be a U -covariant net of standard subspaces, then ZH(W ) ∈ U(GW )′ by
Proposition 3.1. Then by assumptions ZH(W ) commutes with U(rW ) where Λ(rW )W = W ′,
then we conclude the thesis by Proposition 3.2 �

Let U be a representation of P̃↑
+ acting on a standard subspace net W ∋ W 7→ H(W ) ⊂

H. Assume that Jgeo,W is an anti-unitary operator extending U to a representation of P̃+

through W -reflection and assume that modular covariance holds. As in [18], the algebraic

JH(W ) implements the wedge W reflection and, up to a P̃↑
+ element, the PCT operator (the

proof in [18] can be straightforwardly adapted in the standard subspace net case). In this
setting, let KW be the W -boost generator on H, the following operators

Sgeo,W =̇Jgeo,We−πKW , Salg,W =̇JH(W )∆
1/2
H(W ), (12)

can be called geometric and algebraic Tomita operators.

Corollary 3.5. With the assumptions of Proposition 3.2,

Sgeo,W = CSalg,W , ∀W ∈ W

where C ∈ U(P̃↑
+)

′

Proof. By duality, Jgeo,W and JH(W ) both implement anti-unitarily U(jW ), then JgeoJH(W ) ∈
U(P↑

+)
′. By the B-W property, e−πKW = ∆

1/2
W , and we conclude. �

The B-W property and the P̃+ covariance do not imply that there is a unique net un-
dergoing the U -action. The conjugation operator can differ from the geometric conjugation
by a unitary in U(P↑

+)
′. For instance, given an irreducible, (anti-)unitary P+-representation

U where U(jW ) implements the W -reflection, we have two U -covariant nets, according to
the couples {(U(jW ), e−2πKW )}W∈W and {(−U(jW ), e−2πKW )}W∈W defining the wedge sub-

spaces. If we just require P̃↑
+-covariance through a representation U , then for any modulus

one complex number λ, the couples {(λU(jW ), e−2πKW )}W∈W define U -covariant standard
subspace nets.

Direct sums

The modularity property easily extends to direct integrals and multiples of representations
as the following proposition shows.

Proposition 3.6. Let U and {Ux}x∈X be unitary positive energy representations of P̃↑
+

satisfying (MC).
Let K be an Hilbert space, then (MC) holds for U ⊗ 1K ∈ B(H⊗K).
Let (X, µ) be a standard measure space. Assume that Ux|GW

and Uy|GW
are disjoint for

µ-a.e. x 6= y in X. Then U =
∫
X
Uxdµ(x) satisfies (MC).

12



Proof. We can assume W = W3. Let U=̇U ⊗ 1K , since U(G3)
′ = U(G3)

′⊗B(K) it follows
that U(r1(π)) = U(r1(π))⊗ 1 commutes with U(G3)

′, hence U(r1(π)) ∈ U(G3)
′′.

For the second statement, let

U(a,Λ) =

⊕
∫

X

Ux(a,Λ)dµ(x) acting on H =

⊕
∫

X

Hxdµ(x).

Then, by disjointness,

U(G3)
′′ =

∫ ⊕

X

Ux(G3)
′′dµ(x)

and U(r1) =
∫ ⊕

X
U(r1(π))dµ(x) we have that U(r1(π)) ∈ U(G3)

′′ �

4 The scalar case

In this section we are going to show that (MC) holds for scalar representations, namely
massive or massless 0-spin/helicity representations. The scalar representations have the
following form

(Um,0(a, A)φ)(p) = eiapφ(Λ(A)−1p), (a, A) ∈ R
1+3

⋊ L̃↑
+ = P̃↑

+,

where
φ ∈ Hm,0=̇L2(Ωm, δ(p

2 −m2)θ(p0)d
4p),

and Ωm = {p = (p0,p) ∈ R
1+3 : p2 = p20−p2 = m2} with m ≥ 0. We recall that Um,0 factors

through P↑
+.

Any momentum p ∈ Ωm is a point in the dual group of T i.e. a character. We recall that
P↑

+ acts on Ωm-characters as dual action of the adjoint action of P↑
+ on T . Clearly, T acts

trivially and L↑
+ acts geometrically on Ωm, i.e. (a,Λ)·p = Λ−1p with (a,Λ) ∈ R1+3⋊L↑

+ = P↑
+.

We start with the following remark.

Remark 4.1. Fix p = (p0, p1, p2, p3) ∈ Ωm, m > 0,

R1(π)p = (p0, p1,−p2,−p3)

can be obtained as a composition of a Λ3-boost of parameter tp and a R3-rotation of param-
eter θp as

Λ3(tp)R3(θp)(p0, p1, p2, p3) = Λ3(tp)(p0, p1,−p2, p3)
= (p0, p1,−p2,−p3).

(13)

Clearly tp and θp depend on p. By (13), we deduce that G0
3 orbits on Ωm are not changed by

R1(π). With m = 0 an analogue argument holds for all the orbits except {(p0, 0, 0, p0), p0 ≥
0} and {(p0, 0, 0,−p0), p0 ≥ 0}, i.e. there is no g ∈ G3, such that g(p0, 0, 0,−p0) =
(p0, 0, 0, p0). On the other hand these orbits have null measure with the restriction of the
Lebesgue measure to ∂V+. This remark holds in R1+s with s > 2.
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Lemma 4.2. Let f ∈ L∞(Ωm) such that for every g ∈ G0
3, f(p) = f(gp) for a.e. p ∈ Ωm.

Then f(p) = h(p) for a.e. p ∈ Ωm where h ∈ L∞(Ωm) is constant on any {g p}g∈G3
orbit.

Proof. Any point p = (p0, p1, p2, p3) ∈ Ωm (except the massless null measure sets {(p0, 0, 0, p0), p0 ≥
0} and {(p0, 0, 0,−p0), p0 ≥ 0}), can be identified with a radius r = p21 + p22, an an-
gle θ ∈ [0, 2π] such that (p1, p2) = r(cos θ, sin θ) and a parameter t ∈ R such that if
(p0, p3) =

√
r2 +m2(cosh t, sinh t). In particular G0

3 orbits σr are labelled by r ∈ R+. On
each orbit (with its invariant G0

3 measure) the only positive measure set which is preserved
by the G0

3 action is the full orbit (up to a set of measure zero). This fact ensures that G0
3

invariant functions have to be almost everywhere constant. Up to unitary equivalence, we
can decompose the Hilbert space as

∫
R+ L2(σr, dµr)dr where dµr is the G3 invariant measure

on σr. G3 representations on different orbits are inequivalent, then U(G3)
′ =

∫
R+(f(r) · 1)dr

and we conclude. �

Proposition 4.3. Let U be a unitary, positive energy, irreducible scalar representation of
the Poicaré group. Then U satisfies the modularity condition (MC).

Proof. It is enough to consider W3. Let Z ∈ U(G3)
′. Since U is a scalar representation

then the translation algebra T ′′ = {U(a) : a ∈ R4}′′ is a MASA and T ′′ = L∞(Ωm). Indeed,
the translation unitaries (U(a)φ)(p) = eiapφ(p) are multiplication operators and generate
L∞(Ωm) ultra-weakly. In particular Z ∈ T ′ = T ′′, hence it is a multiplication operator
Z = Mf by f ∈ L∞(Ω). Furthermore, Z has to commute with U(Λ3) and U(R3), hence
∀t ∈ R and ∀θ ∈ [0, 2π]

U(Λ3(t))ZU(Λ3(t))
∗ = Z ⇔ f(Λ3(t)

−1p) = f(p), a.e. p ∈ Ωm

and
U(R3(θ))ZU(R3(θ))

∗ = Z ⇔ f(R3(θ)
−1p) = f(p) a.e. p ∈ Ωm.

We can assume f(p) to be constant on any Λ3 and R3 orbit by Lemma 4.2.
Now observe that any momentum on the hyperboloid p = (p0, p1, p2, p3) can be connected

to the R1(π)p = (p0, p1,−p2,−p3) through a R3-rotation and a Λ3-boost as in Remark 4.1.
It follows that f(p) = f(R1(−π)p), for every p ∈ Ωm. As a consequence

U(R1(π))ZU(R1(π))
∗ = Z as f(R1(π)

−1p) = f(p), ∀p ∈ Ωm

and we conclude. �

Now, we can state the theorem.

Theorem 4.4. Let U =
∫
[0,+∞)

Umdµ(m) where {Um} are (finite or infinite) multiples of

the scalar representation of mass m, then U satisfies (MC). In particular if (U,H) is a
U-covariant net of standard subspaces, then the Duality and the B-W properties hold.
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Proof. Unitary representations of P↑
+ with different masses are disjoint, and they have

disjoint restrictions to G3 subgroup. The thesis becomes a consequence of Propositions 3.6,
4.3 and Theorem 3.4 . �

Remark 4.5. Proposition 4.3 straightforwardly holds also for irreducible massless finite he-
licity representations as they are induced from a one-dimensional representation of the little
group. As a consequence, an irreducible nonzero helicity representation U cannot act covari-
antly on a net of standard subspaces on wedges H . Indeed, the B-W property must hold
as in Proposition 4.3 and JW3

, the modular conjugation of H(W3), would implement the j3
reflection on U (cf. [18]). In particular, the PT operator defined by Θ = JW3

U(R3(π)) ex-

tends U to an (anti-)unitary representation Û of P̃+ and acts covariantly on H . On the other
hand nonzero helicity representations are not induced by a self-conjugate representation of
the little group and do not extend to anti-unitary representations of P̃+ [33]. This shows a
contradiction.

Remark 4.6. Consider the R1+s spacetime with s ≥ 3 and let U be a scalar (unitary, positive
energy) representation of P↑

+. The one-parameter group t 7→ ZH(W1)(t) given in (11), is
generated by the multiplication operator by a real function of the form f(p22 + ...+ p2s). For
each value of the radius r = p22 + ... + p2s there is a unique G1-orbit on Ωm which is fixed
by any transformation R ∈ P↑

+ such that RW1 = W ′
1, for instance R2(π). In particular, the

analysis of this section extends to any Minkowski spacetime R1+s with s ≥ 3. It fails in 2+1
spacetime dimensions as R2(π) does not preserve G1-orbits.

5 Massive counter-examples

Borchers, in [6], showed that a unitary, positive energy Poincaré representation acting co-
variantly on a modular covariant von Neumann algebra net A in the vacuum sector, can only
differ from the modular representation by a unitary representation of the Lorentz group.

Theorem 5.1. [6]. Let A be a local quantum field theory von Neumann algebra net in the
vacuum sector undergoing two different representations of the Poincaré group. Let U0 be the
representation implemented by wedge modular operators and U1 be the second representation.
Then there exists a unitary representation of the Lorentz Group G(Λ) defined

G(Λ) = U1(a,Λ)U0(a,Λ)
∗.

Furthermore, G(Λ) commutes with U0(a,Λ
′) for all a ∈ R1+3, Λ, Λ′ ∈ L↑

+ and the G(Λ)
adjoint action on A implements automorphisms of local algebras, i.e. maps any local algebra
into itself.

With this hint it is possible to build up Poincaré covariant nets picturing the above
situation: modular covariance without the B-W property. We are going to make explicit
computations on this kind of counterexamples in order to understand what may prevent the
B-W property. Here, we study the massive case. The massless case can be found in [24].
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Consider Um,s, the m-mass, s-spin, unitary, irreducible representation of the Poincaré

group P̃↑
+ and H : W 7→ H(W ) its canonical net of standard subspaces. Let p ∈ Ωm,

Ap=̇
√

p
∼
/m, where p

∼
= p0 · 1 +

∑3
i=1 piσi is the SL(2,C) element implementing the boost

sending the point qm = (m, 0, 0, 0) to p. An explicit form of Um,s is the following

(Um,s(a, A)φ)(p) = eiapDs(A−1
p AAΛ−1p)φ(Λ(A)

−1p),

where Ds is the s-spin representation of SU(2) on the 2s + 1 dimensional Hilbert space hs
and

φ ∈ Hm,s=̇hs ⊗ L2(Ωm, δ(p
2 −m2)θ(p0)d

4p)

= C
2s+1 ⊗ L2(Ωm, δ(p

2 −m2)θ(p0)d
4p).

Let V be a real unitary, nontrivial, SL(2,C)-representation on an Hilbert space K, i.e.
there exists an anti-unitary involution J on the Hilbert space K, commuting with V such
that the real vector space K ⊂ K of J-fixed vectors, is a standard subspace and

V (SL(2,C))K = K.

In particular JK = K and ∆K = 1.
We can define the following net of standard subspaces,

K ⊗H :W ∋ W → K ⊗H(W ) ⊂ K ⊗H.

We can see two Poincaré representations acting covariantly on K ⊗H :

UI(a, A) ≡ 1⊗ Um,s(a, A) A ∈ SL(2,C), a ∈ R
1+3

and
UV (a, A) ≡ V (A)⊗ Um,s(a, A) A ∈ SL(2,C), a ∈ R

1+3.

UI is implemented by K ⊗H modular operators and the B-W property holds w.r.t. UI (cf.
Lemma 2.6 in [24]). Note that for s = 0, UI satisfies the condition (MC), hence the B-W
property also by Theorem 3.4.

UV decomposes in a direct sum of infinitely many inequivalent representations of mass m,
i.e. infinitely many spins appear. Indeed, consider the Lorentz transformation Ap =

√
p
∼
/m

and the unitary operator on H⊗K

W : K ⊗H ∋ (p 7→ φ(p)) 7−→
(
p 7→ (V (A−1

p )⊗ 1C2s+1)φ(p)
)
∈ K ⊗H (14)

as K ⊗ H = L2(Ωm,K ⊗ C2s+1, δ(p2 − m2)θ(p0)d
4p). We can define a unitarily equivalent

representation U ′
V = WUVW

∗ as follows:

(U ′
V (a, A)φ)(p) = eia·p(V (A−1

p AAΛ(A)−1p)⊗Ds(A−1
p AAΛ(A)−1p))φ(Λ(A

−1p)).

It is easy to see that A−1
p AAΛ(A)−1p ∈ Stab(m, 0, 0, 0) = SU(2).

As we are interested in the disintegration of UV it is not restrictive to assume that V
is irreducible. Unitary irreducible representations of SL(2,C), denoted by Vρ,n, are labelled
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by pairs of numbers (ρ, n) such that ρ ∈ R and n ∈ Z+. The restriction of Vρ,n to SU(2)
decomposes in

⊕+∞
s=n/2Ds (see, for example, [31, 12]). Thus, if V = Vρ,n is an irreducible

SL(2,C) representation then

UV ≃
∞⊕

i=n
2

s+i⊕

j=|s−i|

Um,j (15)

since U ′
V , hence UV , decomposes according to the (V ⊗ Ds)|SU(2) decomposition into irre-

ducible representations.
Note that any representation class appears with finite multiplicity and UV does not satisfy

the condition (MC). Furthermore, we can conclude that having modular covariance without
the B-W property requires to the “wrong” representation the presence of an infinite family
of inequivalent Poincaré representations possibly with finite multiplicity.

UI cannot act covariantly on the UV -canonical net HV . We can see it explicitly. Let W1

be the wedge in x1 direction and W = gW1 where g ∈ L↑
+ and W1 6= W . If UI(g)HV (W1) =

HV (W ) then UI(g)∆
−it
HV (W1)

UI(g)
∗ = ∆−it

HV (W ) where ∆HV (W1) and ∆HV (W ) are the modular

operator of HV (W1) and HV (W ), respectively. As

UI(g)∆
−it
HV (W1)

UI(g)
∗ =

= (1⊗ Um,s(g))(V (ΛW1
(2πt))⊗ Um,s(ΛW1

(2πt)))(1⊗ Um,s(g))
∗

= V (ΛW1
(2πt))⊗ Um,s(gΛW1

(2πt))g−1)

but ∆−it
HV (W ) = V (gΛW1

(2πt)g−1) ⊗ Um,s(gΛW1
(2πt))g−1), we get the contradiction unless V

is trivial.
The modular covariance and the identification of the geometric and the algebraic PCT

operators imply the uniqueness of the covariant representation.

Proposition 5.2. With the assumptions of Theorem 5.1 assume that the algebraic PCT
operator defined in (12) implements the U1-PCT operator too. Then U1 = U0.

Proof. With the notations of Theorem 5.1, we consider the representation U1(a,Λ) =

G(Λ)U0(a,Λ) of P̃↑
+ on H. G fixes any subspace H(W ) = A(W )Ω and in particular

JH(W )G(Λ)JH(W ) = G(Λ), ∀Λ ∈ L↑
+. It follows that JH(W ) has the correct commutation

relations with U1 if and only if G = 1. �

We have seen that given a Poincaré covariant net with the B-W property (U,H) we

can find a second covariant Poincaré representation Ũ if the commutant U(P̃↑
+)

′ is large
enough, i.e. when the Poincaré representation implemented by the modular operators has
infinite multiplicity. Furthermore, there are no conditions on the spin of Ũ . In particular,
counterexamples can produce wrong relations between spin and statistics. For instance
assuming UI(r(2π)) = 1 and V (r(2π)) = −1 where r(2π) is the 2π-rotation. The (MC)
condition does not hold for UV and a wrong spin-statistics relation may arise whenever the
B-W property fails.

As we said in the introduction known counterexamples to modular covariance are very
artificial and not all the basic relativistic and quantum assumptions are respected. It is
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interesting to look for natural counterexamples to modular covariance, in the class of repre-
sentations excluded by this discussion, if they exist. In [15] it is shown that assuming finite
one-particle degeneracy, then the Spin-Statistics Theorem holds. This accords with the anal-
ysis obtained by Mund in [26]. We expect that an algebraic proof for the B-W property can
be established, without assuming finite multiplicity of sub-representations.

6 Outlook

Now we come to an outlook on the relation between the split and the B-W properties.

Definition 6.1. [14] Let (N ⊂ M,Ω) be a standard inclusion of von Neumann algebras,
i.e. Ω is a cyclic and separating vector for N, M and N ′ ∩M .

A standard inclusion (N ⊂ M,Ω) is split if there exists a type I factor F such that
N ⊂ F ⊂M.

A Poincaré covariant net (A, U,Ω) satisfies the split property if the von Neumann algebra
inclusion (A(O1) ⊂ A(O2),Ω) is split, for every compact inclusion of bounded causally closed
regions O1 ⋐ O2.

In a natural way one can define the split property for an inclusion of subspaces by second
quantization: let K ⊂ H ⊂ H be an inclusion of standard subspaces of an Hilbert space H
such that K ′ ∩ H is standard, then the inclusion K ⊂ H is split if its second quantization
inclusion R(K) ⊂ R(H) is standard split w.r.t. the vacuum vector Ω ∈ eH. The second
quantization respects the lattice structure (cf. [1]). Here, we just deal with the Bosonic
second quantization (see, for example, [21]).

We want a coherent first quantization version of the split property. We assume H and
K to be factor subspaces, i.e. H ∩H ′ = {0} = K ∩K ′. We need the following theorem.

Theorem 6.2. [16]. Let H be a standard subspace and R(H) be its second quantization.

• Second quantization factors are type I if and only if ∆H |[0,1] is a trace class operator
where ∆H |[0,1] is the restriction of the H-modular operator ∆H to the spectral subspace
relative to the interval [0, 1]

• Second quantization factors which are not type I are type III.

The canonical intermediate factor, for a standard split inclusion of von Neumann algebras
N ⊂M is

F = N ∨ JNJ = M ∩ JMJ

where J is the modular conjugation associated with the relative commutant algebra (N ′ ∩
M,Ω), cf. [14]. The standard inclusion (N ⊂ M,Ω) is split iff F is type I. A canonical
intermediate subspace can be analogously defined for standard split subspace inclusions
K ⊂ H :

F = K + JK = H ∩ JH.

Second quantization of modular operators were computed in [13, 21, 17].
Consider the following proposition:
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Proposition 6.3. Let K ⊂ H be an inclusion of standard subspaces, such that K ′ ∩ H is
standard. Let J be the modular conjugation of the symplectic relative complement K ′ ∩ H
and ∆ = ∆F be the modular operator of the intermediate subspace F = K + JK. Assume
that F is a factor. Then the following statements are equivalent.

1. R(K) ⊂ R(H) is a split inclusion.

2. the operator ∆|[0,1] is trace class.

Proof. (1. ⇒ 2.) If the inclusion is split, then the intermediate canonical factor R(K) ∨
R(JK) is the second quantization of K + JK. In particular by Theorem 6.2 the thesis holds.
(2.⇒ 1.) As ∆|[0,1] is trace class, then the second quantization of F is an intermediate type
I factor between R(K) and R(H) by Theorem 6.2. Then the split property holds for the
inclusion R(H) ⊂ R(K). �

Let U be an (anti-)unitary representation of P+. We shall say that U is split if the canonical
net associated with U satisfies the split property on bounded causally closed regions (defined
through equation (6)), i.e. the inclusion

H(O1) ⊂ H(O2)

is split for every O1 ⋐ O2 as above.
Scalar free fields satisfy Haag duality, thus (6) holds (see, for example, [29]). Furthermore,

any scalar irreducible representation is split (cf. [11, 9]). The following theorem is the first
quantization analogue of Theorem 10.2 in [14].

Theorem 6.4. Let U be an (anti-)unitary representation of P+, direct integral of scalar
representations. If U has the split property then U =

∫ +∞

0
Umdµ(m) where µ is purely

atomic on isolated points and for each mass there can only be a finite multiple of Um,0.

Proof. As the B-W property holds, the net disintegrates according to the representation:

H =

∫ +∞

0

Hmdµ(m)

where Hm is the canonical net associated with Um.
Fix a couple of bounded and causally closed regions O1 ⋐ O2 ⊂ R1+3. Irreducible components
satisfy the split property. In particular by Proposition 6.3, the restriction of the modular
operator of the intermediate standard subspace F , defined as

F = H(O1) + JH(O1) =

∫ +∞

0

Hm(O1) + JmHm(O1)mdµ(m)

=

∫ +∞

0

Fm dµ(m),

to the spectral subset [0, 1], has to be trace class. It follows that µ has to be purely atomic
and for each isolated mass (no finite accumulation point) there can only be a finite multiple
of the scalar representation. �
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Corollary 6.5. Let (U,H) be a Poincaré covariant net of standard subspaces and U be a
P↑

+-split representation. Assume that U is a direct integral of scalar representations. Then
the B-W and the duality properties hold.

Proof. By Theorem 6.4 the disintegration of the covariant Poincaré representation is purely
atomic on masses, concentrated on isolated points and for each mass there can only be a
finite multiple of the scalar representation. The disintegration satisfies the condition (MC)
and the thesis follows by Theorem 3.4. �

It remains an old interesting challenge to build up a more general bridge between the
Split and the B-W properties. We expect this analysis to be generalized to finite multiples
of spinorial representations.
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