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Reducing the impact of radioactivity on quantum
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As quantum coherence times of superconducting circuits have increased from nanoseconds

to hundreds of microseconds, they are currently one of the leading platforms for quantum

information processing. However, coherence needs to further improve by orders of magni-

tude to reduce the prohibitive hardware overhead of current error correction schemes.

Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasi-

particles. Here, we show that environmental radioactivity is a significant source of none-

quilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated

quasiparticle bursts in resonators on the same chip, further complicating quantum error

correction. Operating in a deep-underground lead-shielded cryostat decreases the quasi-

particle burst rate by a factor thirty and reduces dissipation up to a factor four, showcasing

the importance of radiation abatement in future solid-state quantum hardware.
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Quantum technologies based on solid-state devices are
attracting a growing interest in both academic and
industrial research communities, because they offer the

tantalizing prospect of engineering quantum mechanical effects
by using superconducting and semiconducting building blocks
reminiscent of classical integrated circuits1–3. Although a
daunting technological challenge, macroscopic components, such
as capacitors, inductors, and Josephson junctions can be inter-
connected and assembled in complex quantum circuits, as
recently proven by the operation of processors consisting of tens
of quantum bits (qubits)4–7. While these pioneering imple-
mentations showcase the advantages of solid-state platforms, one
of their main challenges for future development, increasing
quantum coherence, stems from the difficulty in decoupling from
various noisy environments2; be that dielectric defects, magnetic
moments, trapped charges and vortices, spurious electromagnetic
modes, or excess quasiparticles (QPs).

QPs, which can be viewed as broken Cooper pairs, degrade the
performance of superconducting circuits in two ways8: their
presence introduces dissipation, and fluctuations in their num-
bers give rise to noise. Although QPs are particularly damaging in
circuits employing the high kinetic inductance of Cooper
pairs9–11, often constituting the dominant source of decoherence,
we will argue below that QPs can be an indicator of a more
generally damaging pair-breaking mechanism for solid-state
hardware, namely radioactivity.

High-energy particles are a routinely observed source of noise
in low-temperature circuits, such as microcalorimeters12,13,
bolometers14, and MKIDs15. In particular, the latter ref. reports

time-correlated glitches in the resonant frequency of an array of
several hundreds same-chip resonators. Moreover, ref. 16 has also
provided a clear evidence that radioactivity induces errors cor-
related both in space and time in qubits, undermining many
algorithms for quantum error correction17, and ref. 18 has
recently shown that the coherence limit imposed by ionizing
radiation for transmon type qubits is in the millisecond range,
only one order of magnitude above the state-of-the-art. As
dielectric losses are steadily decreased19,20, further improving the
coherence of solid-state devices will soon hinge on the reduction
of QPs, and more generally on ionizing radiation abatement.
In thermal equilibrium, at typical operational temperatures
of 20–50 mK, QPs should be an extremely rare occurrence
in commonly used materials such as Al and Nb, with critical
temperatures well >1 K: e.g., one would need to wait a time
comparable to the age of the universe to observe a single thermal
QP in a 10 μm3 volume of Al at 100 mK. However, the detri-
mental effects of nonequilibrium QPs are routinely observed in a
variety of devices9,21–32, including the microwave resonators used
in this work (cf. Fig. 1). The multifarious QP sources include stray
infrared radiation24,32, high-power microwave drive33, and pair-
breaking phonons in the device substrate34,35, resulting from
environmental or cosmic radioactivity. The latter is potentially
damaging for any solid-state quantum hardware, not only
superconducting, as it can give rise to correlated energy bursts in
devices on the same chip. In the case of superconducting reso-
nators, for instance, phonons generated by particle impacts in the
device substrate produce correlated QP spikes orders of magni-
tude above the baseline36,37, visible as abrupt frequency drops

Fig. 1 Quasiparticle bursts and deposited energy in grAl resonators. a False-colored photograph of the central part of the sapphire chip, supporting three
20 nm thick grAl resonators, labeled A, B, and C. b Overlay of ten measured time traces for the resonant frequency shift δf0 of resonator A. Similarly to
refs. 10,21,36, quasiparticle (QP) bursts appear as sudden drops, given by the sharp rise in kinetic inductance, followed by a relaxation tail. The y-axis on the
right-hand side shows the corresponding fractional quasiparticle density shift δxQP=−4δf0/f0. We identify a QP burst by applying a derivative filter,
triggering only on sharp rises in the baseline. For clarity, the shown traces are selected to contain a QP burst; on average, only one trace in ten contains a
QP burst. To highlight the fact that QP bursts are correlated in time, in c, we plot the measured frequency shifts of resonator B (upward triangles) and C
(downward triangles) versus the frequency shift of resonator A. Colored markers correspond to values above threshold, with the threshold defined as two
standard deviations of the baseline fluctuations (cf. Supplementary Information). Therefore, each colored marker depicts a time-correlated QP burst
between resonators A–B (orange) and A–C (green). d Estimated distribution of the energy absorbed in the resonators δE= δxQPΔgrAlnCPV, calculated from
the measured δxQP shown in the inset, where ΔgrAl≃ 300 μeV is the grAl superconducting gap, and nCP= 4 × 106 μm−3 is the volume density of Cooper
pairs, and V is the volume of each resonator. For each burst, the energy deposited in the substrate is estimated to be 103–104 times greater than δE
(cf. Supplementary Information). The total QP burst rate ΓB is obtained by counting all bursts above the common threshold δxQP= 5 × 10−5.
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(see Fig. 1b, c). The correlation among events can be mitigated by
using so-called phonon traps15,35. On the contrary, their absolute
rate (today of the order of one every few seconds9,10,36) can only
be reduced by a careful selection of radio-pure materials and
shielding protocols. Without a mitigation strategy, the ensuing
relatively long-lasting38 and correlated36,37 effects of radioactive
interactions can hinder quantum error correction protocols.

Superconducting circuits can be sensitive to a variety of
radioactive sources, depending, among others, on the distance
from the device, penetrating power, spectral distribution, and
shielding. So-called far sources consist of cosmic rays, mainly sea-
level muons at a rate of ~1 cm−2 min−1 (refs. 39,40), as well as
decay products of location-specific contaminants. Even when far
sources can be shielded, using, e.g., Pb screens or underground
facilities, near sources, such as residues from handling and
machining, or radioactive isotopes in the sample holder and the
sample itself might need to be mitigated by material selection and
decontamination. In this work, we demonstrate that by reducing
radioactivity we lower the internal dissipation in superconducting
microwave resonators by factors two to four, and the QP burst
rate by a factor 30. This was achieved by a combination of
material selection and cleaning, and by shielding under the
1.4 km granite layer at the Gran Sasso National Laboratory
(L’Aquila, Italy), corresponding to a 3.6 km water equivalent.

Results and discussion
We use high kinetic inductance granular aluminum (grAl)
superconducting resonators (see Fig. 1a) as a sensitive QP probe,
following the principle of kinetic inductance detectors (KIDs)41.
Shifts in their resonant frequency f �1

0 ¼ 2π
ffiffiffiffiffiffi

LC
p

, where C is
the capacitance of the mode, directly reflect changes in the
inductance δL/L=−(2/α)δf0/f0, where α is the ratio of kinetic
inductance over the total inductance. In the case of high
kinetic inductance materials, such as grAl, where the geometric
inductance can be neglected10, the measured relative frequency
shift informs on the corresponding change in the number
of QPs with respect to the number of Cooper pairs:
δxQP= 2δL/L=−4δf0/f0. Both KIDs and qubits are sensitive to
pair-breaking phonons produced by radioactive deposits in the
chip. The major difference between these devices is the phonon
absorption probability in a region of the device susceptible to
QPs, which depends on the supercurrent mode volume. We
decided to rely on KIDs because, apart from the ease in
operation, they enable a real-time monitoring of the QPs bursts
due to phonon absorption, and they are sensitive over a much
wider energy range compared to qubits.

The resonators were fabricated using optical lithography on a
1.2 cm2 and 330 μm thick sapphire substrate, following the stri-
pline design of ref. 10. Their dimensions and corresponding
resonant frequencies f0 are listed in Fig. 1a. We performed quality
factor measurements in the range of �n ¼ 1 circulating photons,
which are the typical conditions for quantum circuits, and time
domain evolution measurements of the resonant frequency at the
highest available power before bifurcation. Furthermore, we used
a 3D waveguide sample holder42 in order to minimize the electric
field density at the interfaces and reduce coupling to dielectric
losses43. In this setup, losses in grAl resonators are dominated by
nonequilibrium QPs and dielectric losses contribute to up to
~20% (refs. 10,35). In Fig. 1b, we show typical time traces for the
frequency shift δf0 of resonator A, measured in a cryostat above
ground. We observe abrupt drops of f0, indicative of a QP burst in
the resonator film, followed by a relaxation tail, associated with
QP recombination and diffusion, similarly to refs. 10,21,36,37, one
every ~10 s. We interpret them as the aftermath of ionizing
events in the substrate, causing an energy release in the form of

pair-breaking phonons, which in turn produce QPs. Indeed, as
shown in Fig. 1c and in Supplementary Information, most QP
bursts in resonator A are correlated with those in resonators B
and C, proving the key role played by substrate phonons37. Notice
that although resonator C is twice as far from resonator A
compared to B, the correlation plot does not appear qualitatively
different, indicating that in our present geometry QP bursts are
time-correlated over at least 10 mm2 areas of the chip, similarly to
refs. 36,37. The histogram of the QP burst rate as a function of the
energy absorbed in the resonators is shown in Fig. 1d. We esti-
mate the efficiency of phonon absorption from the substrate into
the resonators to be 10−3–10−4, placing the energy deposited in
the substrate by each ionizing impact in the keV–MeV range
(cf. Supplementary Information).

In the following, we will use the QP burst rate as an indicator
of the ionizing radiation flux, while we perform various combi-
nations of material selection, cleaning, and shielding. The three
setups, located in Karlsruhe, Rome, and Gran Sasso, denoted by
K, R, and G, are schematized in Fig. 2, and the dates of the four
measurement runs are indicated by the top labels. The corre-
sponding measured QP burst rates and internal quality factors of
the resonators are listed in Fig. 3.

Both the K and R setups are located above ground. The K setup
is typical for superconducting circuit experiments and features
additional magnetic shielding compared to the G and R setup,
consisting of a superconducting and a μ-metal barrel encasing the
waveguide. In the K and R facilities we expect muons (and their
secondary products) to hit the substrate with a rate of ~0.6 mHz.
These interactions release an average energy of 0.8 MeV, with tails
extending up to few MeV. In the G setup, the 1.4 km of rock
overburden reduces the cosmic ray flux by six orders of magni-
tude and thus to a completely negligible rate in the chip.
However, according to our simulations (cf. Supplementary
Information), an important contribution to the measured rate
comes from radioactive contamination in the laboratory envir-
onment. According to measurements performed with a NaI
commercial spectrometer, we predict a rate of 16 mHz in K,
48 mHz in R, and 4 mHz in G. The average energy deposit due to
environmental radioactivity is 0.1 MeV.

The burst rate and the internal quality factors measured for all
resonators in the three sites are shown in Fig. 3. The first set of
data was collected in K, where we measured a burst rate (averaged
over the three resonators) of ~76 mHz. In the K setup, no specific
radio-purification measures have been taken. Therefore, the fac-
tor four larger burst rate compared to the expected value from the
NaI spectrometer is likely due to residual radioactive con-
tamination of the sample holder and its immediate environment.
For the next data sets, we cleaned the sample enclosure and its
mounting parts with citric acid and hydrogen peroxide to reduce
surface contamination, removed the potentially radioactive
indium wire used to seal the copper cap, substituted lead sol-
dering with araldite glue, and replaced silver paste with more
radio-pure44 cryogenic grease to attach the chip to the copper
holder. The sample placed in this radio-cleaned holder was
measured deep underground in a cryostat surrounded by a wall of
10 cm thick Pb bricks. The rate induced by muons in the
underground setup is very small compared to the one induced by
environmental radioactivity; however, the effectiveness of lead
shielding against the environmental radioactivity increases when
going underground. Cosmic rays, indeed, produce gamma
showers in the materials surrounding the sample (including the
lead shield itself) that are hard to suppress above ground. Thus,
the same lead shield offers a stronger reduction against gamma’s
when used deep underground. According to our simulations,
the lead shield suppresses the contribution of environmental
radioactivity to the counting rate down to 0.5 mHz.
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We measured an average QP burst rate of 2.6 mHz, pointing to
a small residual contribution due to contamination of the dilution
refrigerator, and of the materials of the sample holder and
assembly. The cleaning protocols and the cryostat shielding could
be largely improved; nevertheless, we observed a reduction in the
burst rate by a factor 30.

We performed two additional measurements by first removing
the bricks, and then exposing the cryostat to a 232Th source in the
form of ThO2. Removing the lead shielding increases the burst
rate by a factor two, and adding the ThO2 source increases the
rate beyond above ground levels, confirming the radioactive
origin of the bursts. The internal quality factors (cf. Fig. 3, bot-
tom) are anticorrelated with the burst rates between above and
underground measurements, achieving up to a fourfold increase
in the G setup. The measurement of single photon quality factors
consists of averaging multiple frequency domain traces over a
time span of tens of minutes, during which the resonator is
averaging over QP-induced losses.

To confirm that such improvement in the internal quality factor
was not due to the chip ageing, or to the electronics or magnetic
shielding used in the G site, we moved the “cleaned” assembly
with the entire readout and magnetic shield to the above ground
cryostat in R. As expected, we observed an increase in the burst
rate and a corresponding worsening in the quality factor. We also
investigated if using vacuum grease instead of silver paste to attach
the chip to the copper holder could affect the thermalization of the
substrate and thus the quality factor. We replaced the vacuum
grease with silver paste and repeated the measurements obtaining
consistent results; a small excess in the burst rate was observed,
probably related to contamination in the silver paste.

Notice that the burst rate is not simply a proxy for the quality
factor, as indicated by the fact that the quality factor in the G
setup only decreased by ~20% when the QP burst rate was
increased by two orders of magnitude by using the ThO2 source.
This is not surprising, given the fact that the ThO2 source alone is
not a good proxy for the radioactive contributions that we would
expect above ground, where we have to account for muons,
releasing an average energy seven to eight times larger than the
average energy released by the ThO2 source, and for neutrons.
Therefore, a survey of various sources is needed in order to
quantitatively understand the QP generation, and the influence
on the quality factors of superconducting devices. We would like
to mention that, during the editing stages of our work, in ref. 45

Fig. 3 Effect of ionizing radiation shielding on resonator performance.
a Quasiparticle burst rate ΓB and b internal quality factor at single photon
drive Qi for all resonators and setups. When the sample is cleaned and tested
in the R setup, the measured ΓB and Qi values are comparable to those
obtained in K. Measurements in the G setup show a reduction in QP burst
rate ΓB (factor 30) and dissipation (up to a factor 4). In G, removing the lead
shielding increases ΓB by a factor two. Adding a ThO2 radioactive source next
to the cryostat body yields a ΓB greater than the one measured above
ground, and decreases the internal quality factor Qi by 18 ± 3%. Error bars are
ffiffiffiffi

N
p

for ΓB (Poissonian error) and standard deviations of all data points in the
�n ¼ 0:1�10 range for Qi when available, and are not shown when smaller
than the marker size. The chronological order of measurements in the three
different setups is indicated by the dotted gray arrows.

Fig. 2 Three different setups with various degrees of shielding against ionizing radiation. Schematic half-sections of the setups, in Karlsruhe, Rome, and
Gran Sasso, denoted K, R, and G, respectively. The measurement dates for each setup are indicated in the top labels. The sapphire chip is glued to a copper
waveguide using either silver paste (K and R, magenta) or vacuum grease (G and R, blue). A circulator routes the attenuated input signal to the sample
holder, and the reflected output signal to an isolator and an amplification chain (cf. Supplementary Information). In the R and G setups, the waveguide is
etched with citric acid to remove possibly radioactive contaminants. The G setup, located under 1.4 km of granite (3.6 km water equivalent) is operated in
three configurations. First, the cryostat is surrounded by a 10 cm thick wall of lead bricks. Two days later, the bricks were removed. Finally, we added a
ThO2 radioactive source next to the cryostat body (cf. red arrow).
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the authors report QP bursts with orders of magnitude higher
rate, which decays over time scales of several weeks, and of
undetermined origin, showcasing the challenges that lie ahead for
the community.

In conclusion, we showed that the performance of super-
conducting circuits at the current level of coherence can be sig-
nificantly degraded by environmental radioactivity in a typical
above ground setting, in particular due to ionizing interactions in
the device substrate. We demonstrated that the rate of correlated
QP bursts is reduced by up to a factor 30 by shielding in a deep-
underground facility and by a radioactive decontamination in the
near environment of the sample. Furthermore, the quality factors
of high kinetic inductance superconducting resonators improved
up to a factor four with respect to above ground values.

These observations highlight the need for a systematic assess-
ment of radioactive sources, which can produce energy bursts in
solid-state quantum hardware, as well as for a better under-
standing of the relevant chains of mechanisms, such as the
creation of electron–hole pairs, and the excitation of high-energy
phonons, which potentially limit the performance of super-
conducting and semiconducting devices. The effectiveness of
radiation abatement and phonon damping solutions, such as
phonon traps15,35, will determine whether the next generation of
solid-state quantum processors will need to be operated in deep-
underground facilities.

Data availability
All relevant data are available from the authors upon request.
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