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The Brauer group of the universal moduli space of vector

bundles over smooth curves.

Roberto Fringuelli and Roberto Pirisi

Abstract

We compute the Brauer group of the universal moduli stack of vector bundles on (possibly
marked) smooth curves of genus at least three over the complex numbers. As consequence,
we obtain an explicit description of the Brauer group of the smooth locus of the associated
moduli space of semistable vector bundles, when the genus is at least four.
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Introduction

The Brauer group of a variety is an important invariant. When the variety is proper and normal,
the existence of non-trivial elements in the Brauer group is an obstruction to stable rationality,
and it has been used to construct examples of non-rational varieties by many, including Saltman,
Colliot-Thélène, Mumford, Peyre to cite a few. In the case of moduli space of sheaves is often
related to the existence of the universal family. Indeed, for the moduli space UC(r, L) of rank r
stable vector bundles with fixed determinant over a smooth complex curve C, the existence of
a universal vector bundle over UC(r, L)×C is equivalent to the Brauer group of UC(r, L) being
trivial, and in [BBGN07], Balaji, Biswas, Gabber and Nagaraj proved when the genus of C is at
least three the Brauer group of is isomorphic to Z/ gcd(r, d)Z. Furthermore, it is generated by
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the Brauer class of the projective bundle obtained by restricting the universal projective bundle
over UC(r, L)× C to UC(r, L)× {p}, for p point in C.

This work comes from the aim to solve the same problem in the case when the curve C is
free to move. More precisely, there exists a complex variety V d

r,g,n such that its points are in
bijection with the so-called aut-equivalence classes of objects (C, x1, . . . , xn, E), where C is a
smooth curve of genus g with x1, . . . , xn ∈ C distinct points and E a vector bundle of degree d
and rank r. It is an irreducible normal quasi-projective variety. We will call V d

r,g,n the universal
moduli space of semistable vector bundles over Mg,n.

(1) The open subset Ud
r,g,n of smooth points in V d

r,g,n parametrizes the isomorphism classes of
regularly stable objects (see Definition 2.7).

We explicitly compute the Brauer group of this variety.

Theorem A. Let d, r, g, n ∈ Z, such that r ≥ 1, g ≥ 4 and n ≥ 0. We have the following
isomorphism of groups

Br
(
Ud
r,g,n

)
=

{
Z/ gcd(d+ r(1 − g), r(d+ 1− g), r(2g − 2))Z, if n = 0,

Z/ gcd(r, d)Z, if n > 0.

Moreover, for k big enough the generator is given by the Brauer class of the projective bundle
P(k) → Ud

r,g,n, where the fibre over a point [(C, x1, . . . , xn, E)] ∈ Ud
r,g,n is canonically isomorphic

to P(H0(C,E ⊗ ωk
C)). If d ≥ 2r(g − 1), we can choose k = 0.

The description of the generator does not appear to be a priori compatible with the descrip-
tion given in [BBGN07]. We made this choice to have a uniform description of the generator,
independent from n. If n > 0, for any 1 ≤ i ≤ n, the generator can be given by the Brauer class
of the projective bundle Pi → Ud

r,g,n with fibre over [(C, x1, . . . , xn, E)] canonically isomorphic to
P(Exi

), where Exi
is the fibre of the vector bundle E → C over the point xi. This representative

is compatible with the one given in loc. cit.

The theorem is a consequence of a more general statement. Roughly speaking, our main
result describes the Brauer groups of the moduli stacks associated to V d

r,g,n. Before stating it,
we need to introduce the objects of our study.

(2) The universal moduli stack Vecdr,g,n of (not necessarily semistable) vector bundles of rank r
and degree d over Mg,n. It parametrizes the objects (C, x1, . . . , xn, E), where C is a smooth
complex curve of genus g with x1, . . . , xn distinct points and a vector bundle E of degree d
and rank r.

(3) The rigidified universal moduli stack Vd
r,g,n of vector bundles of rank r and degree d over

Mg,n. It can be obtained from Vecdr,g,n as it follows: the group Gm naturally injects into

the automorphism group of every object in Vecdr,g,n as multiplication by scalar on the vector
bundle. These automorphisms can be removed using a procedure called Gm-rigidification.
The output is the new stack Vd

r,g,n.

(4) The universal d-th symmetric product SymdCg,n. It parametrizes the objects (C, x1, . . . , xn, D),
where C is a smooth complex curve of genus g with x1, . . . , xn distinct points and an effective
divisor D of degree d.
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All the stacks above are algebraic, irreducible and smooth. There exists a canonical map
νdr,g,n : Vecdr,g,n → Vd

r,g,n, which is the identity along the objects. The stack Vecdr,g,n together with

νdr,g,n becomes a Gm-gerbe. In particular, the map νdr,g,n defines a class [νdr,g,n] in H
2(Vd

r,g,n,Gm).

Our main result is a description of the relationships between the Brauer groups of the moduli
spaces (1), (2), (3) and (4).

Theorem B. Let d, r, g, n ∈ Z, such that r ≥ 1, g ≥ 3 and n ≥ 0. We have the following

(i) The order of the Brauer class of the gerbe νdr,g,n : Vecdr,g,n → Vd
r,g,n is

{
gcd(d+ r(1 − g), r(d+ 1− g), r(2g − 2)), if n = 0,

gcd(r, d), if n > 0.

(ii) The Gm-gerbe νdr,g,n : Vecdr,g,n → Vd
r,g,n induces an exact sequence of groups

Z · [νdr,g,n] → Br(Vd
r,g,n) → Br(Vecdr,g,n).

(iii) There is a canonical isomorphism Br(Ud
r,g,n)

∼= Br(Vd
r,g,n) of Brauer groups.

(iv) For d big enough, there exists an inclusion Br(Vecdr,g,n) ⊂ Br(SymdCg,n) of Brauer groups.

(v) There is a canonical inclusion Br(SymdCg,n) ⊂ Br(Mg,n+d) of Brauer groups.

When g ≥ 4, the Brauer group of Mg,n vanishes (see Theorem 4.1(ii)). So, in this range, we
have a complete description of the Brauer groups.

Corollary C. Let d, r, g, n ∈ Z, such that r ≥ 1, g ≥ 4 and n ≥ 0. We have the following:

(i) The Brauer class [νdr,g,n] generates the Brauer group of the rigidification Vd
r,g,n and of Ud

r,g,n.
Furthermore:

Br
(
Ud
r,g,n

)
∼= Br(Vd

r,g,n) =

{
Z/ gcd(d+ r(1 − g), r(d + 1− g), r(2g − 2))Z, if n = 0,

Z/ gcd(r, d)Z, if n > 0.

(ii) Br(Vecdr,g,n) = Br(SymdCg,n) = 0.

When r = 1 and n = 0, Corollary C gives a positive answer to a question posed by M. Melo
and F. Viviani (see [MV14, Conjecture 6.9]), at least when g ≥ 4.

Theorems A and B are a collection of the major results of this work. We remark that the
theorems are stated in terms of the Brauer group Br(−). On the other hand, all the results of the
next sections are stated in terms of the cohomological Brauer group Br′(−) := H2(−,Gm)tors. In
our situation, the Brauer group would be a priori a subgroup of the cohomological one. However,
since the generators for Br′ come from Br, we have an equality Br′ = Br for our stacks.

With this in mind, we have that points B(i) and B(ii) are Theorem 2.4. Point B(iii) is
Theorem 2.10. Point B(iv) is the combination of Proposition 3.1 and Corollary 3.6. Point B(v)
is Theorem 3.7.
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On the other hand, the isomorphism of Theorem A is nothing but Corollary C(i). The part
about the generator is precisely the content of Proposition 2.11.

The paper is organized in the following way. In Section 1, we extend some well-known facts
about the Brauer group of schemes to the context of Artin stacks. In Section 2, we introduce the
three different incarnations of the universal moduli space of vector bundles on marked curves:
they are the spaces Ud

r,g,n, Vec
d
r,g,n, V

d
r,g,n announced at the points (1), (2), (3), respectively.

Furthermore, we will study the relationships between their Brauer groups. In Section 3, we
introduce the universal symmmetric product SymdCg,n of point (4) and complete the proof of
Theorem B. And in Section 4, we collect some auxiliary results about the moduli stack of marked
curves Mg,n and the relative product Cd

g,n of the universal curve over Mg,n.

Notation. All the schemes and stacks will be supposed to be over the complex numbers. With
commutative, resp. cartesian, diagrams of stacks, we will intend in the 2-categorical sense. The
sheaves and their cohomologies will be taken with respect to the Lisse-étale site, unless otherwise
stated.

Acknowledgements. The question was raised by Indranil Biswas to the first named author.
We would like to thank him for suggesting the problem and for many useful observations about
it. We would like to thank Ben Williams for helping us with a previous version of our main proof
(see remark 3.10), Angelo Vistoli and David Rydh for various helpful comments, and Eduardo
Esteves, Johan Martens and Filippo Viviani for interesting discussions related to this work. The
first named author was supported by EPSRC grant EP/N029828/1.

1 Preliminaries about the Brauer group of an Artin stack.

In this section we will introduce the different incarnations of the Brauer group, and establish
some basic result on the (cohomological) Brauer group of an Artin stack.

1.1 Brauer group, Cohomological Brauer group, Bigger Brauer group

In the classical setting, given a Noetherian scheme X , the Brauer Group Br(X) is the group
of Azumaya algebras over X , i.e. sheaves of algebras that are étale locally isomorphic to the
endomorphism group of a vector bundle, modulo the relation that E ∼ E ′ if there exist vector
bundles V, V ′ on X such that E ⊗ End(V ) ≃ E ′ ⊗ End(V ′).

Azumaya algebras of rank n2 are classified by PGLn-torsors, and the exact sequence

1 → Gm → GLn → PGLn → 1

induces a map H1(X,PGLn) → H2(X,Gm) sending an azumaya algebra E to an element αE ∈
H2(X,Gm), which is always of n-torsion. This map is injective [Mil80, IV, thm 2.5], su that we
have an inclusion Br(X) ⊆ H2(X,Gm)tors.

In the setting of schemes, it is known that under some very general hypotheses the inclusion
is an isomorphism. Gabber [GB68] proved it for affine schemes, and had an unpublished proof
for schemes carrying an ample line bundle. De Jong gave a new proof of the latter statement
[DJ] using twisted sheaves, which are some special sheaves on Gm-gerbes.

The definition of the Brauer group can be extended to an extremely general setting. In fact,
given a locally ringed topos (X ,O) (e.g. the category Xét of lisse-étale sheaves on an Artin stack
together with the structure sheaf OX ) one can define the Brauer group Br(X ,O) and it is in
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general true that it injects into H2(X ,Gm). Moreover, if X is connected of quasi-compact (i.e.
if the Artin stack X has one of these properties) then the image of Br(X ,O) is torsion and the
inclusion Br(X ,O) ⊆ H2(X ,Gm)tors holds [Gro66a]. A detailed explanation of this can be found
in the extended version of Antieau and Williams’ paper [AW15], which can be found on the
second author’s website.

In [Gro66b] Grothendieck introduced the cohomological Brauer group Br′(X ), which is just
the torsion part of H2(X ,Gm). As shown by the results above, under various hypotheses the
cohomological Brauer group and Brauer group are isomorphic, and in general for an Artin stack X
we have Br(X ) ⊆ Br′(X ) unless the stack X is badly disconnected. Computing the cohomological
Brauer group is vastly easier than computing the Brauer group in general, as the former allows
for much stronger tools, such as spectral sequences, and in the case regular schemes the whole
machinery of unramified cohomology.

Our computations in the following will always be on the cohomological Brauer group Br′. We
remark in each of the cases we consider our computation computes the ordinary Brauer group
as well as the generator we give for Br′(X ) comes from Br(X ).

We should also mention that one can construct a larger group, namely the Bigger Brauer
group B̃r(X ), defined by Taylor [Tay82] and adapted to the stack-theoretical setting by Heinloth
and Schroer [HS09], where the main difference is that the algebras are not required to have a
unit. In their article they prove that if X is a Noetherian Artin stack with quasi-affine diagonal,
the equality B̃r(X ) = H2(X ,Gm) holds (note that the group on the right need not be torsion).

1.2 Some invariance results

There are some well known invariance results for the cohomological Brauer group of a regular
Noetherian scheme, namely that the pullback through a vector bundle or an open immersion
whose complement has high codimension are isomorphisms and that in general the pullback
through an open immersion is injective. These hold for Noetherian regular Deligne Mumford
stacks as well, as proven in [AM, 2.5]. The rest of the section is dedicated to extending these
results to the context of Artin stacks.

For the first two properties, our strategy will be to prove the result for H2(X , µn) via local
arguments, then use the fact that it is additionally true for the Picard group and the Kummer
sequence

1 → µn → Gm
(−)n

−−−→ Gm → 1

to conclude.

Lemma 1.1. Let X be a scheme smooth over a field of characteristic zero, and let F be a torsion
sheaf. Then:

1. We have Hi(Ad
X , π

∗(F )) = Hi(X,F ) for all i ≥ 0.

2. Given an open subscheme U ⊂ X whose complement has codimension at least c, we have
Hi(X,F ) = Hi(U, F ) for any 0 ≤ i ≤ 2s− 1.

Proof. The first fact is a well known consequence of the smooth base change theorem. The
second fact is a consequence of cohomological purity for smooth couples, plus a stratification
argument.

Lemma 1.2. Let X be an algebraic stack smooth over a field of characteristic zero. Then:

1. Given a vector bundle E
π
−→ X , the pullback Pic(X )

π∗

−→ Pic(E) is an isomorphism.
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2. Given an open substack U ⊂ X whose complement has codimension at least 2, we have
Pic(X ) = Pic(U).

Proof. This is proven in [PTT15, 1.9].

Proposition 1.3. Let X be a smooth Artin stack and E
π
−→ X be a vector bundle over it. Then

the morphism of cohomological Brauer groups

Br′(X ) →֒ Br′(E)

is an isomorphism.

Proof. It is a well known fact that if k is a strictly Henselian local ring its étale cohomology
with torsion coefficients vanishes, so that Hi(Ad

k, µn) = 0 for all i > 0. Consequently the sheaves

Ri
π∗
(µn) are zero for all i > 0 as they are zero on the local rings in the Lissé-Étale site. The map

π induces a Leray spectral sequence

Hp(X , Rq
π∗
(µn)) ⇒ Hi(E , µn)

which colapses, so we see that Hi(E , µn) = Hi(X , µn) for all i. Moreover, we also know that
Pic(E) = Pic(X ). This gives rise to the following commutative diagram with exact rows

Pic(X )

��

·n
// Pic(X )

��

// H2(X , µn) //

��

Br′(X )n //

��

0

Pic(E)
·n

// Pic(E) // H2(E , µn) // Br′(E)n // 0

the first three arrow are isomorphisms, so the five lemma allows us to conclude.

Proposition 1.4. Let X be a smooth Artin stack and U ⊂ X be an open substack such that Uc

has codimension two or more in X . Then the morphism of cohomological Brauer groups

Br′(X ) →֒ Br′(U)

is an isomorphism.

Proof. Given a torsion sheaf F on X , consider the Leray spectral sequence

Hp(X , Rqi∗F ) ⇒ Hi(U , F )

induced by the inclusion of U in X . By Gabber’s absolute purity theorem, we know that given
a smooth scheme X and an open subset U ⊂ X whose complement has codimension at least
two, we have Hq(X,F ) = Hq(U, F ) for any torsion sheaf F and 0 ≤ q ≤ 3. This shows that
Rqi∗F = 0 for 0 ≤ q ≤ 3, which implies that H2(U , F ) = H2(X , F ).

Moreover the inclusion U in X induces an isomorphism of Picard groups. Thus, using the
kummer exact sequence we get the following commutative diagram with exact rows

Pic(X )

��

·n
// Pic(X )

��

// H2(X , µn) //

��

Br′(X )n //

��

0

Pic(U)
·n

// Pic(U) // H2(U , µn) // Br′(U)n // 0

and the fact that the first three vertical arrows are isomorphisms allows us to conclude as
above.
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The last statement can be extended directly from Deligne-Mumford stacks to Artin stacks.

Proposition 1.5. Let X be a regular Noetherian Artin stack, and let U ⊂ X be an open substack.
Then the morphism of cohomological Brauer groups

Br′(X ) →֒ Br′(U)

is injective.

Proof. In [AM, 2.5, iv] the property above is proven for Noetherian regular Deligne-Mumford
stacks. The same proof holds without change in the broader context of Artin stacks.

2 The moduli stacks Vecdr,g,n,V
d
r,g,n and the moduli space

V d
r,g,n.

In this section we will recall some facts about the universal moduli stack of vector bundles on
smooth curves Vecdr,g,n, its rigidified version Vd

r,g,n and its good moduli space V d
r,g,n, then we will

establish the relation between the respective cohomological Brauer groups. Through the section,
we will always assume d, r, g, n are integers such that r ≥ 1, g ≥ 3 and n ≥ 0.

2.1 The universal moduli stack Vecdr,g,n.

Recall that the moduli stack of smooth genus g curves Mg,n is defined as the category fibered
in groupoids over (Sch/C), which associates to any scheme S the groupoid of objects (C →
S, σ1, . . . , σn), where C → S is a family of smooth curves of genus g and σ1, . . . , σn are disjoint
sections of the family.
It is known that this category is an irreducible noetherian smooth Deligne-Mumford stack of
dimension 3g − 3 + n. Moreover, if n > 2g + 2 it is a quasi-projective variety.

It admits a universal curve π : Cg,n → Mg,n, i.e. a stack Cg,n and a representable morphism
π with the property that for any morphism from a scheme S to Mg,n associated to a pair
(C → S, σ1, . . . , σn), there exists a morphism C → Cg,n such that the diagram

C //

��

Cg,n

π

��

S // Mg,n

is cartesian. Moreover, the universal curve admits sections si for i = 0, . . . , n, such that the pull-
back of them, along the cartesian diagram above, coincides with the sections σi of the family
C → S.

Definition 2.1. We denote by Vecdr,g,n the category fibered over (Sch/k), which to any scheme
S associates the groupoid of objects (C → S, σ1, . . . , σn, E), where (C → S, σ1, . . . , σn) is a
family of smooth n-marked curves of genus g over S and E is an S-flat vector bundle over C of
degree d and rank r.

A morphism between two objects (C → S, σ1, . . . , σn, E), (C′ → S, σ′
1, . . . , σ

′
n, E

′) is a pair
(ϕ, ψ), where ϕ : C ∼= C′ is an isomorphism of curves preserving the markings, i.e. ϕ(σi) = σ′

i

for any i = 1, . . . , n, and ψ : ϕ∗E′ ∼= E is an isomorphism of vector bundles over C.
There is a natural projection Vecdr,g,n → Mg,n given by forgetting the vector bundle.
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We have the following:

Theorem 2.2. Vecdr,g,n is an irreducible smooth Artin stack of dimension (r2 + 3)(g − 1) + n.
Furthermore, the locus of (semi)stable vector bundles is a quotient stack of a smooth quasi-
projective variety by a suitable general linear group. Its complement in Vecdr,g,n has codimension
at least two.

Proof. We set Vecdr,g,n := Vecn. We will give a proof by induction on n. When n = 0, the first
part is a consequence of [Fri16, Theorem 1.2.2]. Furthermore, in loc. cit., it has been shown that
the stack Vec0 has an open covering

∪
k∈Z

Uk → Vec0,

where Uk ⊂ Vec0 is the subcategory of elements (p : C → S,E) such that

(i) E(k) := E ⊗ ωk
C is relatively generated by global sections, i.e. the canonical morphism

p∗p∗E(k) → E(k) is surjective, and the induced morphism to the Grassmannian C →
Gr(p∗E(k), r) is a closed embedding,

(ii) Rip∗E(k) = 0 for i > 0.

Each of the substacks Uk are quotient stacks of a smooth noetherian scheme by a suitable general
linear group. By [Sch01, Subsection 1.1], if d+kr > 2rg, then Uk contains all (semi)stable objects.
It is known that the (semi)stability is an open condition, so the (semi)stable objects describe an
open in Uk for some k. And the open of a quotient stack is still a quotient stack, then we have
the second assertion. Moreover, in the proof of [Fri16, Lemma 3.1.5], it is shown that the locus
of non (semi)stable bundles is a closed of codimension at least two in Vec0.

Assume now that the theorem holds for Vecdn−1. Let C be the category fibered in group-
oids parametrizing the objects (C, x1, . . . , xn−1, y, E), where (C, x1, . . . , xn−1, E) is an object of
Vecn−1 and y is any point in C. Adapting the proofs of [Fri16, Proposition 1.2.4] at the case
of smooth curves with marked points, we see that C is a stack and its diagonal is representable,
quasi-compact e separated. By definition, it has a natural map π : C → Vecn−1, which forgets
the n-th point. It can be shown that such map is a representable morphism, furthermore it is
smooth, proper, with geometrically integral fibres and of relative dimension 1. This makes C an
irreducible smooth Artin stack of dimension (r3 + 3)(g − 1) + n. Since Vecn can be identified
with the open subset of C of those objects where all the points are distinct, we have the first
assertion. The other assertions follow by the inductive hypothesis and the representability of the
forgetful map Vecn → Vecn−1.

Remark 2.3. In the case r = 1, Vecdr,g,n is quasi compact and it is the so-called universal Jacobian

over Mg,n. According to the notation of [MV14], we will set J acdg,n := Vecd1,g,n.

By pulling back the universal curve over Mg,n, we obtain a universal curve C → Vecdr,g,n
(it is the auxiliary stack introduced in the proof of Theorem 2.2). It comes equipped with the
universal sections s1, . . . , sn. Furthermore, the universal curve admits a universal vector bundle,
i.e. a coherent sheaf E over C, flat over Vecdr,g,n, such that for any morphism from a scheme S to

Vecdr,g,n associated to a pair (C → S, s1, . . . , sn, E), the restriction of E to C is isomorphic to E.

2.2 The rigidified moduli stack Vd
r,g,n.

The group Gm is contained in a natural way in the automorphism group of any object of Vecdr,g,n,
as multiplication by scalars on the vector bundle. There exists a procedure for removing these
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automorphisms, called Gm-rigidification (see [ACV03, Section 5]). We obtain an irreducible
smooth Artin stack Vd

r,g,n := Vecdr,g,n (Gm of dimension (r2 +3)(g− 1)+n+1, with a surjective

smooth morphism νdr,g,n : Vecdr,g,n → Vd
r,g,n.

Observe that the above map endows Vecdr,g,n with a Gm-gerbe structure over Vd
r,g,n. It is

well-known that to any Gm-gerbe g : Y → X over X , we can associate a class [g] in the cohomo-
logy group H2(X ,Gm) (see [Gir71, IV, §3.4-5]). So in particular, the map νdr,g,n defines a class

[νdr,g,n] in H
2(Vd

r,g,n,Gm).

The rest of the subsection is devoted to prove the following:

Theorem 2.4. The kernel of the pull-back map

Br′(νdr,g,n) : Br
′(Vd

r,g,n) → Br′(Vecdr,g,n),

induced by νdr,g,n : Vecdr,g,n → Vd
r,g,n, is generated by the Brauer class [νdr,g,n]. Furthermore, its

order is gcd(d+ r(1 − g), r(d + 1− g), r(2g − 2)) if n = 0 and gcd(r, d) if n > 0.

Proof. We remove temporarily r, d, g, n from the notation. The Leray spectral sequence

Hp(V , Rqν∗Gm) ⇒ Hp+q(Vec,Gm), (2.1)

induces an exact sequence in low degrees

0 → H1(V , ν∗Gm) → H1(Vec,Gm) → H0(V , R1ν∗Gm) → H2(V , ν∗Gm) → H2(Vec,Gm).

We observe that ν∗Gm = Gm and that the sheaf R1ν∗Gm is the constant sheaf H1(BGm,Gm) ∼=
Pic(BGm) ∼= Z. Via standard cocycle computation we see that exact sequence becomes

0 −→ Pic(V) −→ Pic(Vec)
res
−−→ Z

obs
−−→ H2(V ,Gm)

ν∗

−→ H2(Vec,Gm), (2.2)

where res is the restriction on the fibers (it coincides with the weight map defined in [Hof07,
Def. 4.1]), obs is the map which sends the identity to the Brauer class [ν] ∈ H2(V ,Gm). Observe
that the map in the statement is the restriction of ν∗ to the torsion elements.

When n = 0, the theorem follows from the computation of the image of res in [MV14,
Corollary 6.10(i)] when r = 1 and [Fri16, Corollary 3.3.1] when r > 1.

Assume now that n > 0. We are going to compute the image of res. First of all, we recall,
following [Hof07, Section 4], how this homomorphism is defined. Fix a line bundle L on Vecdr,g,n,

the automorphism group of an object η in Vecdr,g,n(C) acts on the fiber Lη. The group Gm is

contained in the automorphisms group of any object in Vecdr,g,n as multiplication by scalars on
the vector bundle. So, by restriction Gm acts on the line bundle L. By the representation theory
of the group scheme Gm (here we see Gm as scheme over Vecdr,g,n), we see that it acts on each

fiber by a cocharacter t → tk for k ∈ Z. The homomorphism res is defined by sending L to k.
We first prove that gcd(r, d) divides k. Let η := (C, x1, . . . , xn, F

⊕ gcd(r,d)) be a complex point
in Vecdr,g,n, where F is a stable (and then simple) vector bundle of rank r/ gcd(r, d) and degree
d/ gcd(r, d). In particular, we have an exact sequence of algebraic groups

1 → GLgcd(r,d) → Aut(η) → Aut(C)

Furthermore, the subgroup of multiplication by scalars is contained on the left-hand side as the
center Gm · Id. Observe that GLgcd(r,d) acts on Lη by the cocharacter A 7→ det(A)m for some

integer m. So, the induced action of Gm is t→ tgcd(r,d)m. Thus, k is a multiple of gcd(r, d).
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To conclude the proof, it is enough to exhibit a line bundle with weight gcd(r, d). Consider
the universal pair

(π : C → Vecdr,g,n, s1, . . . , sn, E).

Following [Fri16, Subsection 2.2], we denote by dπ(E), resp. dπ(E ⊗ σ1), the determinant of
cohomology of E , resp. E ⊗ σ1, with respect to the family π. They are line bundles on Vecdr,g,n
and by the same arguments of the proof of [loc. cit., Lemma 3.3.1]:

res(dπ(E)) = d+ r(1 − g) and res(dπ(E ⊗ σ1)) = d+ r(2 − g).

By the fact the gcd(d + r(1 − g), d+ r(2 − g)) = gcd(r, d), there exists an integral combination
of these two line bundles such that its weight is exactly gcd(r, d).

2.3 The good moduli space V d
r,g,n.

The rigidified stack Vd
r,g,n admits a good moduli space V d

r,g,n. Our aim is to show that the

cohomological Brauer groups of the rigidified stack Vd
r,g,n and of the smooth locus of the moduli

variety of semistable vector bundles are isomorphic. Before doing this, we collect some facts
about the moduli space and its smooth locus.

Definition 2.5. Let (C, x1, . . . , xn) be an n-marked smooth curve and E, F two semistable
vector bundles on C. We say that (C, x1, . . . , xn, E) and (C, x1, . . . , xn, F ) are aut-equivalent if
the Jordan-Holder factors of E and F differ by an automorphism of the marked curve.

We remark that when n > 2g + 2, the automorphisms group Aut(C, x1, . . . , xn) of a marked
curve is trivial. So, in this range the aut-equivalence relation coincide with the classical S-
equivalence relation.

Theorem 2.6. The open substack in Vd
r,g,n of semistable vector bundles admits an irreducible

normal quasi-projective variety V d
r,g,n as good moduli space. Points on this variety are in bijection

with aut-equivalence classes of objects (C, x1, . . . , xn, E).

Proof. When Mg,n is a variety (i.e. n > 2g + 2), it follows by a general result on existence
of relative moduli spaces (see [HL10, Theorem 4.3.7]). When n = 0, a proof can be found on
[Pan96]. The same strategy, with minor changes, give the result for 1 ≤ n ≤ 2g + 2.

We want to study the smooth locus of V d
r,g,n.

Definition 2.7. Let E be a vector bundle over a marked smooth curve (C, x1, . . . , xn). We say
that (C, x1, . . . , xn, E) is regularly stable if E is stable and Aut(C, x1, . . . , xn, E) = Gm.

If n > 2g + 2, a vector bundle is stable if and only if is regularly stable.

Lemma 2.8. The subset Sd
r,g,n ⊂ Vd

r,g,n of objects such that Aut(E) 6= Aut(C, x1, . . . , xn, E) is
a closed substack of codimension at least two.

Proof. We first show that Sd
r,g,n is closed. We have an exact sequence of groups over Vd

r,g,n:

1 → AutO
Vd
r,g,n

(E) → AutO
Vd
r,g,n

(C, σ1, . . . , σn, E) → G → 0,

where the first, resp. second, group is the group over Vd
r,g,n of the rigidified isomorphisms of the

universal vector bundle E , resp. the universal object (C, σ1, . . . , σn, E). Since the automorphism
group of marked smooth curve is finite, the map p : G → Vd

r,g,n is unramified. By definition, the

stack Sd
r,g,n is the locus in Vd

r,g,n where p is not isomorphism, then it is closed.
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For proving the fact about the codimension, it is enough to show the lemma when n = 0.
The case r = 1 has been proved in [Fri16, Lemma 3.2.2]. The higher rank case follows from
Sd
r,g,0 ⊆ det−1(Sd

1,g,0), where det : Vd
r,g,n → Vd

1,g,n is the determinant map.

Proposition 2.9. The smooth locus Ud
r,g,n of V d

r,g,n is the locus of regularly stable objects.

Proof. We remove the markings from the notation. Set S := Sing(V d
r,g,n). The variety V d

r,g,n

and the stack Vd
r,g,n are isomorphic along the locus of regularly stable objects. Since Vd

r,g,n is

smooth, if (C,E) is regularly stable, then V d
r,g,n is smooth at [(C,E)]. It remains to show the

following:

(i) if (C,E) is stable but non regularly stable, then [(C,E)] ∈ S,

(ii) if (C,E) is polystable, then [(C,E)] ∈ S.

We first prove (i). By openness of the stable locus, we can restrict to prove the assertion
along the open subset in V d

r,g,n of stable vector bundles. With abuse of notation, we denote this
open by V , the corresponding singular locus by S and the locus of non regularly stable objects
by N . So, proving (i) is equivalent to show S = N .
By the above discussions, we already know S ⊂ N . We will show the other inclusion. Let
(C, E) → B be the versal deformation of a stable but non-regularly stable object (C,E). Since
the stack Vd

r,g,n is smooth, also B is smooth. The group Aut := Aut(C,E) acts on B and it can
be shown that subgroup Gm ⊂ Aut acts trivially on B. Since the object is stable, the group
Aut is linearly reductive. By [Fri16, Lemma 1.4.4] (it is stated for n = 0, but it holds with
the same proof even if we consider the markings), the quotient B/Aut is isomorphic to an étale
neighbourhood of [(C,E)] in V . The result in loc.cit. is formulated stack-theoretically, the same
argument works for the schematic quotient. Furthermore, the schematic quotient map

B → B/Aut = B/ (Aut/Gm) ,

is a branched covering, because Aut/Gm ⊂ Aut(C) is a finite group. It is unramified outside
of the locus of objects with non-trivial automorphisms. By [NR69, Lemma 4.4], any component
of N of codimension at least two is contained in the singular locus of V . By Lemma 2.8,
cod(V,N) ≥ 2, thus N ⊂ S.

We now prove (ii). Let Ud
r,g,n := V d

r,g,n \ S be the smooth locus of V d
r,g,n. Consider the

forgetful functor p : Ud
r,g,n → Mg,n. By generic smoothness, there exists an open M0

g,n ⊂ Mg,n

such that p : p−1(M0
g,n) → M0

g,n is smooth. Without loss of generality, we can assume that if
[C] ∈M0

g,n, then C has no non-trivial automorphisms.
The locus Q of non-stable objects (C,E), such that [C] ∈ M0

g,n, is dense in the entire locus of

non-stable objects in V d
r,g,n. So, it is enough to show Q ⊂ S. The fibre of p over [C] ∈ M0

g,n is
isomorphic to the smooth locus of the moduli space of semistable vector bundles of rank r and
degree d over C. It is known that it coincides with the locus of stable bundles, so Q ∩ Ud

r,g,n

must be empty, i.e. Q ⊂ S.

Theorem 2.10. We have a canonical isomorphism

Br′(Vd
r,g,n)

∼= Br′(Ud
r,g,n)

of cohomological Brauer groups.
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Proof. The variety V d
r,g,n and the stack Vd

r,g,n are isomorphic along the locus of regularly stable

objects, which coincides with Ud
r,g,n, by Proposition 2.9. In particular, the restriction induces a

homomorphism of cohomological Brauer groups

Br′(Vd
r,g,n) → Br′(Ud

r,g,n).

If we show that the complement Vd
r,g,n \ Ud

r,g,n has codimension at least two, by Lemma 1.4, we

have the theorem. By Proposition 2.9, this stack is the union of two closed substacks in Vd
r,g,n:

(i) the stack Sd
r,g,n of objects such that Aut(E) 6= Aut(C, x1, . . . , xn, E),

(ii) the stack of non-stable vector bundles.

The first one has codimension 2 by Lemma 2.8 and the second one by Theorem 2.2.

The next result gives us a new representative for the Brauer class of the gerbe as a Brauer
class of a projective bundle over Ud

r,g,n.

Proposition 2.11. For k big enough, there exists a projective bundle P(k) over Ud
r,g,n satisfying

the following two properties

(i) the fibre over a point [(C, x1, . . . , xn, E)] ∈ Ud
r,g,n is canonically isomorphic to P(H0(C,E⊗

ωk
C)),

(ii) its Brauer class [P(k)] is equal to the Brauer class [νdr,g,n] of the gerbe restricted over Ud
r,g,n.

Moreover, if d ≥ r(2g − 1), we can choose k = 0.

Proof. Let Ud
r,g,n be the open substack in Vecdr,g,n of regularly stable objects. Consider the

universal curve π : C → Ud
r,g,n and the universal vector bundle E on it. Consider the coherent

sheaf π∗E(k) := π∗(E ⊗ ωk
π). The automorphism group of any object in Ud

r,g,n acts on the
corresponding fibre of π∗E(k). In particular, the group Gm acts on any fibre of the bundle with
weight 1. For k big enough, the above sheaf is locally free. We denote by P(k) the total space of
the above vector bundle without the zero section. Consider the composition P(k) → Ud

r,g,n with

the gerbe Ud
r,g,n → Ud

r,g,n. We claim that the resulting map

P(k) → Ud
r,g,n

is the projective bundle in the assertion. Indeed, if we take a fibre over a point (C,E) is isomorphic
to the quotient stack [(

H0(C,E(k)) \ {0}
)/

Gm

]
.

The groupGm acts freely (because we removed the zero section) with weight 1. Then the quotient
stack is isomorphic to the projective space P(H0(C,E(k))). The same argument works for an
étale open of Ud

r,g,n. So locally étale, P(k) is a projective space. For it to be a projective bundle,
the transition automorphisms between two trivializations must be linear. This can be proved by
using the fact that π∗E(k) is a vector bundle. Putting all together, P(k) is a projective bundle
over Ud

r,g,n satisfying (i). We now prove (ii). Consider the commutative diagram

Br′(P(k))

Br′(Ud
r,g,n) //

88
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

Br′(Ud
r,g,n).

OO
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The vertical map is an isomorphism by Lemma 1.2. The kernel of the diagonal map is generated
by Brauer class of the projective bundle P(k) by [Gab81, p. 193]. The kernel of the horizontal
map is generated by [νdr,g,n] by Theorem 2.4. So, we have (i). The last assertion comes from
the fact that if d ≥ r(2g − 1) the higher cohomology groups of any stable vector bundle vanish
(see [Sch01, Subsection 1.1]). Then, in this range, the pushforward π∗E of the universal vector
bundle is already a vector bundle, by [FGI+05, Remark 8.3.11.2].

Remark 2.12. We will see in Proposition 3.5 that when d > 2g − 2 and r = 1, P(0) is nothing
but (an open of) the universal symmetric product SymdCg,n.

Let Ud
r (C) be the moduli space of stable vector bundles over a fixed curve C. It is known

that a universal vector bundle over Ud
r (C) exists if and only if the Brauer class of P(E) of the

universal projective bundle is trivial in Br(C × Ud
r (C)).

This fact remains true in the universal setting with markings. With no markings it is false.
Indeed, by [Fri16, Proposition 3.3.4], there exists a universal vector bundle over Ud

r,g,0 if and only
if gcd(r(d+1− g), r(2g− 2), d+ r(1− g)) = 1. On the other hand, the Brauer class of P(E) lives
in the Brauer group of the universal curve C of Ud

r,g,0, which always exists because is an open
in the rigidified stack. Arguing as in the proof of Proposition 2.11, it can be shown the Brauer
class of P(E) restricted to the open Ud

r,g,1 ⊂ C is equal to [νdr,g,1]. By Theorems 2.4 and 2.10, it
is trivial if and only if gcd(r, d) = 1.

We thank Indranil Biswas for pointing out the following observation.

Remark 2.13. If n 6= 0, there exists a universal vector bundle over the universal curve C of Ud
r,g,n

if and only if the Brauer class [P(E)] ∈ Br′(C) of the universal projective bundle is trivial if and
only if r and d are coprime.

If n = 0, it can happen that the Brauer class of the universal projective bundle is trivial (⇔ r
and d are coprime), but the corresponding vector bundle does not satisfy the universal property
(it does ⇔, r(d + 1− g), r(2g − 2) and d+ r(1 − g) are coprime).

3 The Brauer group of the universal moduli stack Vecdr,g,n.

In this section we will compute Br′(Vecdr,g,n). We will first reduce the problem to computing it
in the case of r = 1, then to computing it for the symmetric product of d copies of the universal
curve over Mg,n, for d large enough. Unless otherwise stated, through the subsection, we assume
that r ≥ 2, g ≥ 3 and n ≥ 0.

3.1 Reduction steps

The aim of this subsection is to show the following

Proposition 3.1. The cohomological Brauer group of Vecdr,g,n injects into the cohomological

Brauer group of J acdg,n.

The strategy of the proof is to define an intermediary stack Ext, sitting in the following
diagram

Ext

j

��

v
// Vec

J ac

(3.1)

such that
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(i) the pull-back map Br′(Vec)
v∗

−→ Br′(Ext) is injective,

(ii) the map j makes Ext a vector bundle over J ac,

By (ii) the map j∗ : Br′(J ac) → Br′(Ext) is an isomorphism and 0∗j is the inverse. Using (i)
we immediately get the assertion. Up to twisting by a power of the canonical bundle, it will be
enough to show these facts for d big enough.

Let’s start with the definition of the auxiliary stack.

Definition 3.2. Let Extdr,g,n be the category fibered over (Sch/C), which associates to any
scheme S the groupoid of objects

(C → S, σ, 0 → Or−1
C → E → L→ 0).

Where the former is a family of smooth n-marked curves of genus g over S and the latter is a
short exact sequence of S-flat sheaves over C, such that E is a vector bundle of relative degree
d and relative rank r.

A morhism between two objects over S

(ϕ, f, g) : (C → S, σ, 0 → Or−1
C → E → L→ 0) −→ (C′ → S, σ′, 0 → Or−1

C′ → E′ → L′ → 0)

is a triple (ϕ, f, g), where ϕ : (C, σ) → (C′, σ′) is an isomorphism of families of marked curves
and f : ϕ∗L′ ∼= L, g : ϕ∗E′ ∼= E are isomorphism of sheaves over C′, such that the diagram

0 // Or−1
C

//

Id

��

ϕ∗E′ //

f

��

ϕ∗L′ //

g

��

0

0 // Or−1
C

// E // L // 0

commutes.

The map v in the diagram (3.1) maps an object

α = (C → S, σ1, . . . , σn, 0 → Or−1
C → E → L→ 0) ∈ Extdr,g,n(S)

to (C → S, σ1, . . . , σn, E) ∈ Vecdr,g,n(S).

Similarly, j maps α to (C → S, σ1, . . . , σn, L) ∈ J acdg,n(S). If d≫ 0, by [DN89, Lemma 7.1],
the map v is dominant.

The next lemma proves point (i).

Lemma 3.3. Assume d≫ 0. The map v : Extdr,g,n → Vecdr,g,n induces an inclusion of cohomo-
logical Brauer groups.

Proof. We will construct a vector bundle M over an open substack U ⊂ Vecdr,g,n, with a (non-
empty) open representable substack V ⊂ M sitting in the following commutative diagram

V

j

��

σ
// Extdr,g,n

v

��

M
p
// Vecdr,g,n,

(3.2)
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As pullbacks through vector bundles and open immersions are injective, both maps p∗, j∗ are
injective, and thus v∗ must be injective as well.

First, up to restricting to an open subset U ⊂ Vecdr,g,n and picking a sufficiently high degree,
we may assume that the higher cohomology groups of any fibre of the universal vector bundle
E along the universal curve π : C → U vanish. By [FGI+05, Remark 8.3.11.2], π∗(E) is a vector
bundle and commutes with base change. We remark that the result in loc. cit. is expressed in
terms of schemes, but the same holds in our situation, since the morphism π is representable.
Moreover we can suppose that the automorphisms group of any object in U is equal to Gm. Now
consider the vector bundle M = π∗(E)

r−1 over U . It represents triples

(C → S, E,Or−1
C → E)

where (C → S,E) is an object in U . Inside M, consider the open subset V of elements such that
the map Or−1

C → E is injective and its cokernel is locally free. By [DN89, Lemma 7.1] the image
of this subset in U is everywhere dense, so in particular V is non-empty. Additionally note that
the objects in V have trivial automorphisms, so V is representable, i.e. an algebraic space (one
can show that it is actually a scheme). By construction the universal curve CV over V comes
equipped with a short exact sequence

0 → Or−1
CV

→ ECV
→ L→ 0

where L is a line bundle. This induces the desired map σ.

We now prove the point (ii).

Lemma 3.4. Assume d ≫ 0. The morphism j : Extdr,g,n → J acdg,n endows the stack Extdr,g,n
with the structure of vector bundle over J acdg,n.

Proof. As in the proof of [Hof10, Proposition A.3(ii)], the fibre of j over a geometric point (C,L)
is the quotient stack of the affine space Ext1(L,Or−1

C ) modulo the trivial action of the group
Hom(L,Or−1

C ). Since d is positive, the latter group is trivial. Moreover, Ext1(L,Or−1
C ) is equal

to r − 1 copies of H1(C,L−1) = H0(C,L ⊗ ωC)
∨. The latter equality comes by Serre duality.

The same construction can be done in families: let π : C → J acdg,n be the universal curve and L
be the universal bundle over it. Assume that d is big enough such that H1(C,L ⊗ ωC) = 0 for
any geometric point (C,L) ∈ J acdg,n. Then we have a natural isomorphism of stacks

(π∗(L ⊗ ωπ)
∨
)r−1 ∼= Extdr,g,n, (3.3)

endowing Extdr,g,n with a vector bundle structure over J acdg,n.

3.2 The universal symmetric product SymdCg,n.

Consider the d-th symmetric product SymdCg,n of the universal curve Cg,n → Mg,n. We want
to show that

Br′(J acdg,n) = Br′(SymdCg,n).

Unless otherwise stated, through the subsection, we assume that g ≥ 3 and n ≥ 0.

The d-th symmetric product admits the following moduli interpretation: for each scheme S
it associates the groupoids of pairs (C → S,D), where the former is a family of smooth curves
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of genus g over S and D is an effective divisor D ⊂ C of relative degree d over S. Consider the
universal Abel-Jacobi morphism

Ad : SymdCg,n −→ J acdg,n
(C → S,D) 7→ (C → S,OC(D)).

It is well known that when d > 2g − 2, the map is surjective. We want to show that the Abel-
Jacobi map allows us to describe SymdCg,n as an open subset of a vector bundle over J acdg,n.

Proposition 3.5. Assume d > 2g − 2. We have an isomorphism of stacks

SymdCg,n ∼= π∗(L) \ {0Jacdg,n
},

where L is the universal line bundle over the universal curve π : C → J acdg,n and 0Jacdg,n
is the

zero section of the vector bundle π∗(L). In particular, SymdCg,n is an open subset of a vector
bundle over J acdg,n, whose complement is of codimension greater than 1.

Proof. We set T := π∗(L) \ {0Jacdg,n
} and remove the markings from the notation. Let (C,L)

be a point in J acdg,n, by Serre duality H1(C,L) ∼= H0(C,L−1 ⊗ ωC)
∗ and the latter is zero by

assumptions on d. Then, as in the proof of Lemma 3.3, the stack T represents triples

(C → S, E,OC → L),

where (C → S,E) is an object in J acdg,n and OC → L is injective (because we removed the zero
section). We want to define a morphism of stacks

A : SymdCg,n −→ T .

Let (C → T,D) be an object in SymdCg,n. Consider the exact sequence

0 → OC(−D)
s
−→ OC → OD → 0 (3.4)

of T -flat sheaves over C. We remark that OC(−D) is a line bundle, so we can consider the
morphism s∨ : OC → OC(D) dual to s. The functor A is defined as it follows: we send a pair

(C → S,D) to (C → S,OC
s∨
−→ OC(D)). Conversely, any object (C → S,OC

m
−→ L) in T defines

an exact sequence

0 → L−1 m∨

−−→ OC →M → 0, (3.5)

of S-flat sheaves over C. Let D(m) be the closed subscheme attached to it, it is a relative effective
divisor on C → S of degree d. So, we have defined a morphism

B : T → SymdCg,n,

which maps (C → S,OC
m
−→ L) to (C → S,D(m)). Checking that B is the inverse of A is a

straightforward computation.

By Lemma 1.3, 1.4, we have immediately

Corollary 3.6. Assume d > 2g − 2. The universal Abel-Jacobi map induces an isomorphism

Br′(SymdCg,n) ∼= Br′(J acdg,n)

of cohomological Brauer groups.
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3.3 The Brauer group of the universal symmetric product SymdCg,n.

Unless otherwise stated, through the subsection, we assume that g ≥ 3 and n ≥ 0. The aim of
this section is proving the following

Theorem 3.7. Assume d ≥ 2. We have an inclusion of cohomological Brauer groups

Br′(SymdCg,n) ⊂ Br′(Mg,d+n).

Before continuing, we fix some notations. Let T be an irreducible, noetherian and regular
Deligne-Mumford stack and C → T be a flat family of smooth curves over S. We denote by

Cd := C ×T . . .×T C︸ ︷︷ ︸
d times

the relative d-th fibred product. It comes equipped with a canonical map onto T , whose geometric
fibres over a point t ∈ T are the usual d-th product of the curve Ct. The symmetric group Sd

acts fiberwise on Cd → T by permuting the factors. There is a schematic quotient

SymdC := Cd/Sd

equipped with a representable map SymdC → T . It is an irreducible smooth Deligne-Mumford
stack. We will also consider the stacky quotient [Cd/Sd] which is again an irreducible smooth
Deligne-Mumford stack, but the map [Cd/Sd] → T is not representable.

Observe that SymdCg,n = Cd
g,n/Sd, where Cd

g,n is the relative d-th fibred product of the
universal curve Cg,n → Mg,n (see also Subsection 4.2).

With the first lemma, we give a description, under certain hypotheses, of the second cohomo-
logy group of the quotient stack.

Lemma 3.8. Let C → T be as above. If n is an integer such that H1(Cd, µn) = 0, then the
sequence

0 → H2(BSd, µn) → H2([Cd/Sd], µn) → H2(Cd, µn)
Sd (3.6)

is exact.

Proof. We set F := µn. Consider the natural map π : [Cd/Sd] → BSd and the spectral sequence

Hp(BSd, R
qπ∗F) → Hp+q([Cd/Sd],F)

attached to it. This induces a 7-term exact sequence in low-degrees

0 → H1(BSd,F) → H1([Cd/Sd],F) → H0(BSd, R
1π∗F) → H2(BSd,F) →

→ ker
{
H2([Cd/Sd],F) → H0(BSd, R

2π∗F)
}
→ H1(BSd, R

1π∗F).

Observe thatHi(BSd, R
1π∗F) = Hi(Sd, H

1(Cd,F)) = 0, by hypothesis. Then the lemma follows
from the fact that H0(BSd, R

2π∗F) = H2(Cd,F)Sd .

The next lemma describes the second cohomology group of the schematic quotient.

Lemma 3.9. Let C → T be as above. If n is an integer such that H1(Cd, µn) = 0, then we have
an inclusion of abelian groups

H2(SymdC, µn) ⊂ H2(Cd, µn)
Sd .
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Proof. Using the same sequence in the proof of Lemma 3.8 for the sheaf Gm, we get a short
exact sequence

0 → Hom(Sd,Gm(T )) → Pic([Cd/Sd]) → Pic(Cd)Sn = Pic(SymdC) → 0. (3.7)

The right exactness follows because the map π : [Cd/Sd] → BSd has a section. Furthermore,
the sequence splits canonically: the section Pic(SymdC) → Pic([Cd/Sd]) is given by identifying
Pic(SymdC) with the subgroup of line bundles of [Cd/Sd], where the stabilisers act trivially.
Using the Kummer sequence, we obtain a morphism of short exact sequences:

0 // Pic(SymdC)
nPic(SymdC)

//

��

H2(SymdC, µn) //

��

Br(SymdC)n

��

// 0

0 // Pic([Cd/Sd])
nPic([Cd/Sd])

// H2([Cd/Sd], µn) // Br([Cd/Sd])n // 0

The third vertical arrow is injective because the stacky quotient and the schematic one are
birationals. Observe that the first vertical arrow is a section of the exact sequence (3.7), tensored
by Z/nZ, which remains injective because the sequence splits. By the snake lemma the arrow in
the middle is also injective. By Lemma 3.8, to prove the lemma it is enough to show that the
image of the inclusion

i : H2(BSd, µn) → H2([Cd/Sd], µn)

does not meet H2(SymdC, µn). We will prove it by contradiction. Assume there exists 0 6=
α ∈ H2(BSd, µn) such that i(α) ∈ H2(SymdC, µn). Before we continue, we need the following
observation, whose proofs are straightforward.

(i) If X is any geometric fibre of the morphism C → T , then

H2(BSd, µn) ⊂ ker
{
H2([Xd/Sd], µn) → H2(Xd, µn)

Sd
}
.

(ii) The map above H2(BSd, µn) ⊂ H2([Xd/Sd], µn) factors through H
2([Cd/Sd], µn).

Consider the following commutative diagram

H2([Cd/Sd], µn) // H2([Xd/Sd], µn)

H2(SymdC, µn)
?�

OO

// H2(SymdX,µn)

OO

Since the first vertical map is an inclusion, point (ii) implies i(α)|SymdX 6= 0. By point (i), it
follows that the map

H2(SymdX,µn) → H2(Xd, µn) (3.8)

sends i(α)|SymdX to zero. In particular, after choosing of an isomorphism µn
∼= Z/nZ, by the

comparison theorem and the analogous map in the analytic setting

H2
an((Sym

dX)an,Z/nZ) → H2
an((X

d)an,Z/nZ) (3.9)

is not injective. We will show that this map must be injective, obtaining a contradiction and
concluding the proof. Consider the pull-back map of cohomologies with coefficients in a Z-module
M :

H2
an((Sym

dX)an,M) → H2
an((X

d)an,M). (3.10)
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In [Mac62], it has been proved that this map is an injective homomorphism of torsion-free groups,
when M = Z. Using the explicit description in [BDH15, Theorem 3.1], we can see that also the
cokernel is free. Indeed, following the notation of loc. cit., a free basis for H2

an((X
d)an,Z), resp.

H2
an((Sym

dX)an,Z), is given by

{
λji ∪ λ

j′

i′ , for i 6= i′ and 1 ≤ j < j′ ≤ d

ηj , for 1 ≤ j ≤ d
, resp.

{∑
j<j′ λ

j
i ∪ λ

j′

i′ − λji′ ∪ λ
j′

i , for i 6= i′,∑
j η

j .

By direct computation, the cokernel of (3.10) for M = Z is free with basis induced by

{
λji ∪ λ

j′

i′ , for i 6= i′ and 2 ≤ j < j′ ≤ d,

ηj , for 2 ≤ j ≤ d.

In particular, if we apply (−)∗ := HomZ(−,Z) to the map (3.10) when M = Z, it becomes
surjective. Then, by applying HomZ(−,Z/nZ), we obtain the injective homomorphism

HomZ

(
(H2

an(Sym
dX)an,Z)∗,Z/nZ

)
→ HomZ

(
H2
an((X

d)an,Z)∗,Z/nZ
)
. (3.11)

We will show that (3.11) is the same as the morphism (3.9). By the universal coefficient theorem,
there exists an exact sequence

0 → Ext1
Z
(Hi−1(V,Z),M) → Hi(V,M) → HomZ(Hi(V,Z),M) → 0, (3.12)

where M is a Z-module and V is either (SymdX)an or (Xd)an. In particular, when M = Z, the
torsion subgroup of Hi(V,Z) is equal to the torsion subgroup of Hi−1(V,Z). Since all the groups
Hi(V,Z) are free, all the homology groups Hi(V,Z) are free as well. Furthermore, the sequence
(3.12) gives

Hi(V,Z) ∼= Hi(V,Z)
∗, or equivalently Hi(V,Z)∗ ∼= Hi(V,Z). (3.13)

In particular, when M = Z/nZ, the first term of the sequence (3.12) vanishes and we have

Hi(V,Z/nZ) ∼= HomZ(Hi(V,Z),Z/nZ). (3.14)

We remark that these isomorphisms are all functorial in V . Putting together (3.13) and (3.14)
for i = 2, we obtain the identification between (3.11) and (3.9). Then the map in (3.9) not being
injective is a contradiction, which shows that α must be 0.

Now we can finally complete the proof of our theorem. We will use some results on Mg,n and
on the d-th product of the universal curve Cd

g,n → Mg,n which are proven in the next section.

Proof of Theorem 3.7. Let p : Cg,n → Mg,n be the universal curve over the moduli space of
n-marked curves. We have a natural morphism of exact sequences:

0 //
Pic(SymdCg,n)

kPic(SymdCg,n)
//

��

H2(SymdCg,n, µk) //

��

Br′(SymdCg,n)k //

��

0

0 //

(
Pic(Cd

g,n)

kPic(Cd
g,n)

)Sd

// H2(Cd
g,n, µk)

Sd //
(
Br′(Cd

g,n)k
)Sd

Observe first that, the dth-product Cd
g,n contains the moduli stack Mg,n+d (see Section 4.2).

In particular, Br′(Cd
g,n) ⊂ Br′(Mg,n+d). We remark that Pic(SymdCg,n) = Pic(Cd

g,n)
Sd . This
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implies that the cokernel of the first vertical map is a subgroup of H1(Sd,Pic(C
d
g,n)), which is

zero by Proposition 4.4. So the first vertical map is surjective.
By the snake lemma, to prove the Theorem it is enough to show that the arrow in the middle

is injective. By Lemma 3.9, we just need to check that the universal d-th product satisfies

H1(Cd
g,n, µk) = 0, (3.15)

for any k. The group above sits in the middle of the following exact sequence

0 → H1(Mg,n, µk) → H1(Cd
g,n, µk)

f
−→ H0(Mg,n, R

1q∗µk), (3.16)

where q : Cd
g,n → Mg,n is the canonical morphism. So, it is enough to check the vanishing of the

term on the left and of the image of f . The left-hand side group vanishes by Theorem 4.1(i),
when g ≥ 4 and Remark 4.2, when g = 3. Note that the Imf in H0(Mg,n, R

1p∗µk) is equal to
the k-torsion of relative Picard group Pic(Cd

g,n)/Pic(Mg,n). This is zero due to the description

of the the Picard group of Cd
g,n in Theorem 4.3. ✷

Remark 3.10. We would like to remark a possible different route to proving (most of) the theorem,
which the authors were following before coming up with the present argument. The objective is
to prove that Br′(J acdg,n) = 0.

In [ERW12] J. Erbert and O. Randall-Williams use topological methods to compute the
homology and cohomology of a class of homotopy spectra they denote as Sn

g (k), which classify
families of surfaces of genus g equipped with n sections and a line bundle of degree k. They
also show that when n = 0 the spectrum Sg(k) is homotopically equivalent to the topological
stack Holgk which classifies families of Riemann surfaces of genus g together with a line bundle of
degree k. In section [ERW12, 4.5] they state, without proof, that the analytic stack Holgk should
be isomorphic to the analyfication of J ackg .

We have not proven it, but we believe a stronger version of the statements above to be
true, i.e. that Sn

g (k) is homotopically equivalent to the topological stack Holgk,n, which classifies
families of Riemann surfaces of genus g together with n sections and a line bundle of degree k,
and that Holgk,n is isomorphic to the analyfication of J ackg,n.

Assuming this, we could proceed as follows. First, we pick an equivariant approximation X
of J ackg,n in such a way that all of the invariants we are interested in (i.e. Picard and Brauer
groups, étale and singular cohomology up to a sufficient degree) are maintained. Now on X , we
use the exact sequence

0 → H2
sing(X,Z)/Pic(X)⊗Q/Z → Br′(X) → H3

sing(X,Z)tors → 0

from [Sch05] to conclude that Br′(X) is a subgroup of the torsion of H3(X,Z), which is in turn
isomorphic to the torsion in H3(Sg,n(k),Z).

All that is left is to show that this group is trivial, which by the universal coefficient theorem
is implied by H2(Sg,n(k),Z) being free. We use [ERW12, Theorem C], or more specifically the
argument in its proof, to prove our main theorem when n = 0, g ≥ 5, and theorem 1.8 of R.
Cohen and I. Madsen’s paper [CM11], together with Hurewicz’s theorem to prove the theorem in
the case g ≥ 4, n > 0. Note that this approach does not produce any result for g ∈ {3, 4}, n = 0
and g = 3, n > 0, contrary to the more algebraic one we decided to follow.

4 Some results on Mg,n and Cdg,n.

In this section we prove some auxiliary results concerning Mg,n and Cd
g,n that were used in the

proof of our main theorem. Unless otherwise stated, through the section, we assume that g ≥ 3
and n ≥ 0.
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4.1 The groups H1(Mg,n, µk) and Br′(Mg,n).

We first prove some facts about the moduli stack of marked smooth curves Mg,n. The following
facts are probably well-known to experts, but no reference is known to the authors.

Theorem 4.1. Let g, n ∈ Z, such that g ≥ 4 and n ≥ 0. We have the following:

(i) H1(Mg,n, µk) = 0 for any k.

(ii) Br′(Mg,n) = 0.

Proof. (i). Since we are working over the complex numbers, there is a non-canonical isomorphism
H1(Mg,n, µk) = H1(Mg,n,Z/kZ). By the comparison theorem, the latter group is isomorphic
to the first cohomology group in the analytic category H1

an(M
an
g,n,Z/kZ), where Man

g,n is the
underlying analytic orbifold associated to Mg,n. By the universal coefficient theorem, we have
an exact sequence

0 → Ext1
Z
(H0(Mg,n,Z),Z/kZ) → H1

an(M
an
g,n,Z/kZ) → HomZ(H1(Mg,n,Z),Z/kZ) → 0. (4.1)

So the vanishing is due to H0(M
an
g,n,Z) = Z and H1(M

an
g,n,Z) = 0. The latter equality is a

consequence of [Har83, Lemma 1.1], see also [AC87, Appendix].
(ii). Using the Kummer sequence in the analytic and algebraic category, we obtain a natural
morphism of exact sequences

Pic(Mg,n)

��

·k
// Pic(Mg,n)

��

// H2(Mg,n, µk) //

��

Br′(Mg,n)k //

��

0

Pic(Man
g,n)

·k
// Pic(Man

g,n) // H2
an(M

an
g,n, µk) // Bran(M

an
g,n)k // 0

where Bran(M
an
g,n)k is the subgroup of k-torsion elements of H2

an(M
an
g,n,O

×
an). The Arbarello-

Cornalba computation of the Picard group [AC87] of the moduli space of marked curves works
either in the analytic category or in the algebraic one. In particular, it implies that the first two
vertical maps are isomorphisms. The third one is an isomorphism because of the comparison
theorem. By the snake lemma, we have

Br′(Mg,n) = Bran(M
an
g,n).

So, we need to show that the right-hand side vanishes. By [Sch05, Proposition 1.1], we have an
exact sequence of groups

0 →
H2(Man

g,n,Z)

Pic(Man
g,n)

⊗Q/Z → Bran(M
an
g,n) → H3

an(M
an
g,n,Z)tors → 0.

The vanishing of the first group is a consequence of [AC87]. By the universal coefficient theorem,

H3
an(M

an
g,n,Z)tors = H2(Mg,n,Z)tors,

and the latter group is 0 by [KS03, Theorem 1]. This concludes the proof.

Remark 4.2. The proof of point (i) works without any change when g = 3. Repeating the same
proof of point (ii), when g = 3, we can prove that Br′(M3,n) is contained in the the torsion
part of H3

an(M
an
3,n,Z), which is unknown at the moment. For partial results in this direction, see

[KS03].
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4.2 The Sd-action on Pic(Cd
g,n).

In this subsection, we prove some facts about the relative d-th product:

Cd
g,n := Cg,n ×Mg,n

. . .×Mg,n
Cg,n︸ ︷︷ ︸

d times

of the universal curve Cg,n → Mg,n of the moduli stack Mg,n.
The product Cd

g,n can be equivalently thought of as the moduli stack of objects (C, x1, . . . , xn+d),
where C is a smooth curve of genus g and x1, . . . , xn+d are points of C such that xi 6= xj for any
i and j bigger than d. We call such stack Universal d-th Product of the Universal Curve over
Mg,n.

It is an irreducible noetherian smooth Deligne-Mumford stack. It contains the moduli stack
Mg,n+d as the open substack of pointed curves where all the points are distinct. The complement
has codimension one and the irreducible components are the divisors

Di,j :=
{
(C, x1, . . . , xn+d) ∈ Cd

g,n|xi = xj
}
,

for 1 ≤ i ≤ d and i < j ≤ n + d. We denote by the same symbols the associated line bundles.
Now, since Cd

g,n is a moduli stack, it carries a universal object, i.e. it has a universal curve

π : X → Cd
g,n and n+ d sections, which we denote by si for 1 ≤ i ≤ n+ d. Using these data, we

define the following line bundles
Ψi := s∗iω,

where ω is the relative cotangent bundle of the universal curve X → Cd
g,n. We have the following

Theorem 4.3. Assume d ≥ 2. The Picard group of Cd
g,n is freely generated by Di,j for 1 ≤ i ≤ d

and i < j ≤ n+ d, Ψk for 1 ≤ k ≤ n+ d and the Hodge line bundle λ.

Proof. When n = 0, a proof can be found in [Kou91, pp. 843-844]. The case n > 0 follows from
the previous one, by identifying Cd

g,n as an open of Cd+n
g,0 and then using the restriction map for

Picard groups.

The symmetric group Sd acts fiberwise on Cd
g,n → Mg,n by permuting the factors. Using the

moduli interpretation above, it acts by permuting the first d points and fixing the others. This
induces an action on the Picard group of Cd

g,n. The rest of the subsection is devote to prove the
following.

Proposition 4.4. Assume d ≥ 2. The cohomology group H1(Sd,Pic(C
d
g,n)) is trivial.

We denote by Td the standard representation of Sd on Zd. The group Sd acts on the canonical
basis e1, . . . , ed as it follows: τ.ei = eτ(i) for any τ ∈ Sd.

The symmetric product Sym2Td has an Sd-action induced by the standard representation.
The canonical basis of Td induces a basis {ei,j := ei ⊗ ej + ej ⊗ ei}1≤i≤j≤d for Sym2Td. The
action on these elements is given by

τ.ei,j =

{
eτ(i),τ(j), if τ(i) ≤ τ(j),

eτ(j),τ(i), if τ(i) > τ(j),

for any τ ∈ Sd. By the fact that τ(i) = τ(j) if and only if i = j, we have a splitting of
representations:

Sym2Td ∼= Td ⊕ Ud,
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where Td is the standard representation generated by ei,i for 1 ≤ i ≤ d and Ud is the subrepres-
entation generated by ei,j for 1 ≤ i < j ≤ d.

Looking at the action of Sd on the Picard group of Cd
g,n, we see that

(i) Sd acts trivially on λ,

(ii) if i ≤ d then τ.Ψi = Ψτ(i), for any τ ∈ Sd,

(iii) if i > d then τ.Ψi = Ψi, for any τ ∈ Sd,

(iv) if j ≤ d then

τ.Di,j =

{
Dτ(i),τ(j), if τ(i) ≤ τ(j),

Dτ(j),τ(i), if τ(i) > τ(j),

for any τ ∈ Sd.

(v) if j > d then τ.Di,j = Dτ(i),j, for any τ ∈ Sd.

So, 〈λ〉 is the trivial representation ZTriv. By (ii), 〈Ψi|1 ≤ i ≤ d〉 is the standard representation
Td. By (iii), for any d < i ≤ n + d, the group 〈Ψi〉 is the trivial representation. By (iv),
〈Di,j |1 ≤ i < j ≤ d〉 is the representation Ud. By (v), for d < j ≤ n + d, the subgroup
〈Di,j |1 ≤ i ≤ d〉 is the standard representation. Putting all together, we have an isomorphism of
Sd-representations

Pic(Cd
g,n)

∼= Zn+1
Triv ⊕ Ud ⊕ T⊕n+1

d .

So, for proving the proposition 4.4, it is enough to show the following

Lemma 4.5. Assume d ≥ 2. The cohomology groups

(i)H1(Sd,ZTriv), (ii)H1(Sd, Td), (iii)H1(Sd, Ud)

are all trivial.

Proof. In general, given a Sd-representationM , the group H1(Sd,M) is the group of the crossed
homomorphisms modulo the subgroup of principal crossed homomorphisms. A crossed homo-
morphism is defined as a map f : Sd → M such that f(τσ) = f(τ) + τf(σ) for τ , σ ∈ Sd. A
principal crossed homomorphism is a crossed homomorphism such that exists an m ∈ M such
that f(τ) = τ.m−m for any τ ∈ Sd.

(i). The symmetric group Sd acts trivially on ZTriv, we have H1(Sd,ZTriv) = Hom(Sd,Z),
which is zero.

(ii). Let f be a crossed homomorphism. For 1 ≤ i ≤ d − 1, let σi be the permutation that
switches i and i + 1 and fixes the other coordinates. It is known that these generate the group
Sd. Since σ

2
i = Id, we see that

f(σi) = ai(ei − ei+1), ai ∈ Z, (4.2)

where e1, . . . , ed are the canonical generators of Td. Consider the element

m :=

d−1∑

j=1

(
j∑

k=1

ak

)
ej+1.

By direct computation, we have that pm(σi) = f(σi) for any i. Here pm is the principal crossed
homomorphism induced by m. Since σi are generators for Sd, this implies that pm = f and so is
zero in H1(Sd, Td).
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(iii). We will give a proof by induction on d. Case d = 2. Then U2 is the trivial representation.
So the result follows from (i). Now, assume that H1(Sd−1, Ud−1) is zero. We want to show that
the same happens to Sd. The group Sd−1 is contained in Sd as the subgroup of those elements
fixing e1 in the standard representation Td. In particular, σi for i 6= 1 generate Sd−1. Consider
the canonical restriction map

ϕ : H1(Sd, Ud) → H1(Sd−1, Ud).

We want to show that it is injective. Let f ∈ H1(Sd, Ud) such that ϕ(f) = 0. It means that
there exists m ∈ Ud such that f(σi) = σi.m −m, for i 6= 1. Without loss of generality, we can
assume that f(σi) = 0 for i 6= 1. Using again the relation σ2

1 = Id, we see that

f(σ1) =
d∑

j=3

aj(e1,j − e2,j), a3 . . . , ad ∈ Z.

Since σ1 commutes with σi for i 6= 2, by direct computation, we see that the coefficients aj must
be all equal to some integer c. So, if we take the element

m := −c

d∑

j=2

e1,j,

the associated principal crossed homomorphism pm satifies pm(σ1) = f(σ1) and pm(σi) = 0 if
i 6= 1. So, also f is zero in H1(Sd, Ud). Then ϕ is injective. In particular, for proving the lemma,
it is enough to show that H1(Sd−1, Ud) is trivial. As Sd−1-representation, Ud splits as direct sum
of the standard representation Td−1 (generated by e1,2, . . . , e1,d) and the representation Ud−1

(generated by ei,j , for 2 ≤ i < j ≤ d). Then its first cohomology vanishes because of (ii) and the
inductive assumption.
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