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Abstract

This paper addresses the problem of star identification in the presence of high
slew rates, false objects and image deformations introduced by the rolling
shutter. These problems can affect the operating life of star trackers and
worsen the nominal performances. The proposed methodology relies on a
technique named Improved Multi-Poles Algorithm, especially designed for
robustness to false objects and slew rates. Angular velocities up to five
degrees per second are considered so that stars are seen no more as near-
circular spots but appear as streaks. The image deformation due to the
rolling shutter of modern active pixel sensor detectors is compensated by
means of a mathematical model based on a first order approximation of the
problem. A star tracker high fidelity simulator generates the input images
considering typical noises due to the electronics and space environment. The
reported results show that the proposed approach guarantees a reliable star
identification and attitude determination with angular velocity from zero to
five degrees per second.
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1. Introduction

Star trackers are accurate devices capable of determining the spacecraft’s
attitude within the magnitude of arc-seconds without any a priori information
[1]. Nowadays, star trackers are necessary instruments of the navigation
subsystem of a satellite, thanks to their measurement accuracy along with5

their more and more reduced dimensions with the technological advances of
the recent years [2]. In Lost In Space (LIS) mode, i.e. when the attitude is
unknown, the star tracker’s camera provides images of an unknown region
of the sky to the on-board processor. Here, a star identification algorithm
recognizes the visible stars in the images by using a star catalog stored on-10

board [3]. All the methods for the identification of detected stars are based
on the evaluation of some geometric patterns that are related to the relative
positions of the stars, e.g. triangles [1, 4, 5], polygons [6], pyramids [7] or
grids [8, 9, 10]. Some approaches identify the detected stars by evaluating
the angular distances of all the stars from a single selected one, defined as15

the pole of the image [11, 12, 13].
This paper deals with the star identification problem in LIS mode when

the star tracker is supposed to compensate for the combined presence of slew
rates and false objects.

Slew rates significantly decrease the signal-to-noise ratio (SNR) so that20

the accuracy of the centroids extracted from the detected image is reduced.
Pioneering studies are reported in [14], where the Liebe model of the signal
left by a star on the detector is presented as a function of the angular veloc-
ity. In [15] a comparison of the Liebe model and the Reed model is shown,
and simulated images are created taking into account the dispersion of the25

star signal over streaks due to the angular velocity. In fact, the signal left by
the stars over the single pixel diminishes, and faint stars disappear as they
can get confused with the surrounding noise [16]. Pre-processing and cen-
troiding operations under dynamic conditions are taken into account in [17].
Attitude accuracy depends on the number of detected stars and how pre-30

cisely the centroids of these stars are determined. Hence, even though star
trackers generally have arc-second accuracy in stationary conditions, their
performances usually degrade as slew rate increases.
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A further problem related to slew rates appears for those star trackers
that use a detector with rolling shutter, usually active pixel sensors (APS).35

In this case, it is well known that the detected image is deformed and it
does not appear as expected. The APS deformation affects the star tracker
operations since the centroids are not related to the same time instant. In
the frame of this paper, a deformation model based on preliminary analyses
reported in [16, 18] is presented. By using a first order approximation of the40

real motion of the stars across the detector, the proposed strategy is used to
set the centroids to the same time instant.

The use of star trackers in harsh environments, characterized by a great
number of Single Event Upset (SEU), is potentially limited due to the star
identification sensitivity to false objects [19]. Generally, the star identifica-45

tion algorithms are poorly robust to false spikes. In [20] a method is presented
to successfully manage a number of false objects up to 3 times the number
of the cataloged stars when the spacecraft is in a fixed attitude. In [21] a
three phases technique, the Multi-Poles Algorithm (MPA) is introduced. It is
demonstrated that correct identifications are evaluated for 100% of the sim-50

ulations, even when the number of false objects is up to 6 times the number
of the cataloged stars detected in the image.

A modified and improved version of the MPA has been developed to
participate at Kelvins ESA contest - Star Trackers: First Contact 4, where
the MPA has reported the second highest accuracy score and speed [22].55

An updated and more efficient version of the MPA is proposed in this pa-
per and referred to as the Improved MPA (IMPA). The identification feature
is the angular distance between two stars. Stars’ magnitudes are used as a
filtering feature to improve the searching strategy. Due to magnitude filter-
ing, stars may be identified using only two phases, therefore simplifying the60

algorithm architecture. The acceptance phase yields an initial set of stars,
followed by the check phase in order to avoid erroneous identifications. The
first phase uses a polar technique to provide a set of accepted stars (pole and
neighbor stars). Then, taking a previous neighbor star as the new pole, a
new accepted stars set is provided by a second run of the acceptance phase.65

Finally, the check phase checks the number of stars belonging to both the
two sets of accepted stars. When using a detector based on rolling shutter,

4http://kelvins.esa.int/star-trackers-first-contact (from the 1st September 2016 to the
1st September 2017)
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the robustness to slew rates has been increased by using the aforementioned
compensation model and setting all the stars’ centroids to the same time
instant. The algorithm is tested when the spacecraft experiences an angular70

velocity in the range of 0-5 deg/sec.
To sum up, the main contributions of this paper are:

• The development of a mathematical model to compensate for the rolling
shutter deformation.

• The development of the IMPA based on the introduction of a magnitude75

filtering.

• The numerical demonstration that reliable and accurate results are
obtained using state-of-the-art detectors and the rolling shutter com-
pensation combined with the IMPA.

The paper is organized as follows. In Sec. 2 some preliminary concepts80

related to the star tracker operations are described. In Sec. 3 the description
of the rolling shutter effects is given in the presence of angular rates and
in Sec. 4 the analyses of the stars distribution and detection as a function
of the angular velocity is reported. In Sec. 5 the proposed star recognition
algorithm is explained. In Sec. 6 the simulations results are showed and in85

Sec. 7 conclusions and final remarks are reported.

2. Preliminary processing of the image

In this section a description of the image processing is given. The follow-
ing details are given to fully understand the successive sections, where the
concepts and operations herein described will be considered as operational90

tools. The cluster fusion procedure is introduced for the compensation of the
rolling shutter deformation described in Sec. 3.2.

2.1. Preprocessing

The high-energy pixels belonging to the star signals must be distinguished
from the low-energy pixels where only noise is recorded. Accordingly, an95

image preprocessing selects the pixels whose signal-to-noise ratio (SNR) is
greater than a user-defined detection threshold and discards the other ones
[23]. This preliminary operation is referred to as segmentation and it is
usually performed using a run-length encoding algorithm [24].
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The segmentation algorithm can be implemented using a static (global) or100

a dynamic (local) approach [17]. The SNR is evaluated considering the same
background noise for the static approach and a specific background noise for
each pixel of the detector for the dynamic approach. A survey of different
techniques is reported in [25]. In this work, a zigzag local thresholding using
moving averages is used [26]. Hence, the only pixels that are considered for105

further investigations are those with values greater than the background level
(evaluated with moving average) plus a threshold τpre. It is noteworthy that
quantization errors can occur due to pixel discretization of the image.

The outputs of the preprocessing operation are the selected pixels’ coor-
dinates p = [py, pz]

T and their energy E(p), obtained subtracting the back-110

ground level to the entire signal intensity of the pixel.

2.2. Clustering

Because the energy of a detected object is spread out over several close
pixels, a clustering technique merges those pixels in a cluster C and removes
isolated pixels from the image. The centroid ci = [cy,i, cz,i]

T is the reference115

position of the ith cluster Ci and it is computed using coordinates and energies
of the pixels belonging to it, throughout an energy-weighted average, i.e.

ci =
1

ECi

∑
j|pj∈Ci

E(pj) · pj, (1)

where E(pj) is the (in electrons e−) of the pixel pj and

ECi
=
∑

j|pj∈Ci

E(pj) (2)

is the total energy of the ith cluster.

2.3. Cluster Fusion120

The cluster fusion is required to compare two successive images. For
detectors with rolling shutter, this operation evaluates some essential infor-
mation for the compensation of the induced deformation. Moreover, regard-
less of the detector’s technology, the fusion evaluates information generally
required for stars tracking once the lost in space phase is accomplished. In-125

deed, one output of the fusion is the velocity of the centroids’ focal plane, and
this information can be used to guess the position of the stars when operating
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in tracking mode. Clusters of fixed stars can appear as moving objects if the
satellite is rotating. Let two successive images be considered, respectively
with Nc,1 and Nc,2 detected clusters. In order to merge the clusters from two130

successive images, the following procedure is used:

1. The cluster ci is considered in the first image, with 1 ≤ i ≤ Nc,1.

2. The cluster cj, 1 ≤ j ≤ Nc,2, which has the minimum distance with
respect to ci is searched in the second image. This operation is carried
out looking at the pixel-to-pixel distance in order to be independent135

from the angular rate magnitude.

3. If the distance between ci and cj is less than a user-defined threshold
df , then the two clusters are merged. Using the centroids’ coordinates,
the sign of the velocity is evaluated as

sy = sign

(
cy,i − cy,j
Texp

)
, sz = sign

(
cz,i − cz,j
Texp

)
. (3)

4. All the clusters for which a feasible distance is not found are discarded.140

It is noteworthy that Eq. (3) estimates only the sign of the velocity compo-
nents in the focal plane {yF , zF} from a couple of successive images.

3. Rolling shutter and global shutter

In this section the global and the rolling shutter acquisition models are
compared. The deformation introduced by the rolling shutter is mathemati-145

cally modeled and a first-order compensation strategy is presented.

3.1. Acquisition models

Let the detector be composed by nrow rows and ncol columns. Fig. 1
reports the detection profile of two successive images using a sensor with
global shutter. The first image acquisition starts at time t0. For all the150

rows of the detector, the exposure begins at time t0 and finishes after a time
interval denoted as Texp. At time t1 = t0 + Texp the first image acquisition
ends and it can be read-out. Fig. 1 reports the case of an image read from the
sensor while the next one is being exposed. This is possible for many image
sensors with global shutter because they have extra storage for each pixel155

(each pixel can store its value on the previous image while the next one is
being exposed). At time t1 the second image acquisition starts. In accordance
with the first image, the second acquisition ends at time t2 = t1 + Texp.
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Figure 1: Acquisition architecture with global shutter.

For a detector with rolling shutter, the image is progressively acquired row
by row. The detection profile of a sensor with rolling shutter is represented160

in Fig. 2. The reset and read-out operation of each row requires an amount
of time equal to tl (line time). For star trackers, it is desirable to have
the highest frame rate as possible, in order to reduce latency in attitude
determination and motion blur (when the spacecraft is rotating). However,
the frame rate is limited by two factors: the minimum exposure time needed165

to detect a sufficient number of stars that provides a good sky coverage
(high probability of attitude acquisition, given an initial random attitude)
and the minimum time needed to read the image sensor (read-out time).
Assuming that the minimum exposure time needed for attitude acquisition
is shorter than the image read-out time (typically of the order of tens or170

hundreds of milliseconds), there is little benefit in setting the exposure time
to values shorter than the image read-out time, since the frame rate will
already be limited by the image read-out time. According to this observation,
the exposure time is defined as

Texp = tl · nrow. (4)

It should be noted that this equation is not always true, since the exposure175

time does not necessarily have to be defined as in the aforementioned equa-
tion. However, this equation could be considered valid in a simplified model
of a star tracker. Hence, the first image acquisition starts at time t0 (which
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Figure 2: Acquisition architecture with rolling shutter.

can be considered approximately in the middle of the time interval tl) and
finishes at time t1 = t0 + Texp. The exposure interval for the successive rows180

of the detector is given as

• [t0 + tl, t1 + tl] for the second row,

• [t0 + 2tl, t1 + 2tl] for the third row, and

• [t0 + (n− 1)tl, t1 + (n− 1)tl] for the nth row.

Therefore, the last row exposure ends at time t1 +(nrow−1)tl, and the whole185

detector image is available at time t2 = t1 + nrowtl = t0 + 2Texp. However,
when the first row has finished its exposure, the acquisition of the second
image can start. Following the same reasoning as before and referring to Fig.
2, the second image is available at time t3 = t0 + 3Texp.

3.2. Rolling shutter deformation compensation190

The rolling shutter is typical of many active pixel sensor (APS) detec-
tors and introduces a deformation in the detected image which can affect
the results of the star identification process. Some models of the deforma-
tion compensation have been proposed in literature. For instance, in [27]
a convolutional neural network architecture is used to automatically learn195

essential scene features from a single image. The rolling shutter distortions
are then compensated and the whole image is referred to the time of the
first-row exposure. In [28] a simple approach to the analysis of inter- and
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Figure 3: Definition of the streak length related to the star displacement.

intra-frame distortions is presented. The velocity estimates used for restoring
the image are obtained by global motion estimation, Bèzier curve fitting and200

local motion estimation without resorting to correspondence identification.
However, to the best of the authors’ knowledge, simple models developed for
star trackers have not yet been considered.

The method presented in this paper requires two successive images to
understand the direction of the velocity, as explained in Sec. 2.3. Neverthe-205

less, the estimate of the correction is independently evaluated for each streak
based on topological information gained from a single image. Accordingly, a
local and lightweight compensation is attained. The method is based on the
rolling shutter deformation analysis of [16, 18].

As a consequence of the spacecraft angular velocity ω, stars will be de-210

tected as moving objects on the detector and, eventually, they will appear as
streaks instead of circular spots.

Let vy and vz be the velocity components of the stars on the focal plane.
Moreover, let Ly and Lz be the projections along y and z of the star streak’s
length, which is related to the displacement of the star as shown in Fig.215

3. Hence, by considering a constant velocity during the exposure time, the
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following equations holds,

T =
Ly
vy

=
Lz
vz
. (5)

The mathematical model presented in this section is based on the schematic
representation reported in Fig. 4 and is valid for the star considered as a
single point. If the spot diameter is considered, the model becomes more220

complicated. However, the estimation of the spot diameter from the star
streak is quite complicated since it depends on the star’s magnitude and ve-
locity. Both in Fig. 3 and Fig. 4 it is assumed that the star is detected from
the center of the first row and arrives at the center of the last row. Moreover,
in Fig. 4 the time axis has been conveniently translated in order to simplify225

the figure and Trow is denoted as the time required to cross one single row,
i.e.

Trow =
p

vz
. (6)

In the following equations, k0 and kf will respectively denote the first and
the last row belonging to a star streak, where first and last are meant in the
direction of zF . Hence, the quantity ∆k is defined as the difference between230

first and last row, i.e
∆k = kf − k0. (7)

In Fig. 4, the vertical displacement dz (expressed in pixel) of the star within
each covered row is reported. As already stated, the star starts from 0.5 pixel
in the first row and arrives at 0.5 pixel in the last row.

Let a star moving in the direction of the rolling shutter be considered, as235

shown in Fig. 4a. When the star is in the last row, the following equation
holds,

∆k · tl + Texp = ∆k · Trow (8)

and the value of ∆k can be evaluated as

∆k =
Texp

Trow − tl
. (9)

Without loss of generality, let the detector be composed by square pixels
with side p. The length of the star streak produced by the star is given by240

Lz = p∆k. (10)

As can be seen, the value of ∆k from Eq. (9) is positive when Trow ∈ (tl, Texp].
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Figure 4: Displacement of a star moving in the direction of the rolling shutter (a) with
t′ = t−tlk0 and in the opposite direction of the rolling shutter (b) with t′ = t−tl(k0+∆k).

Indeed, if Trow ≥ Texp the star cannot produce a streak longer than p and can
be related at most to two rows (depending on the initial star’s position within
the first row). Applying Eq. (5), (6) and (10) for the effective exposure time
Teff , vz can be computed as245

vz = v+z =
p∆k

Trow∆k
=

Lz
Texp + ∆T

(11)
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where Trow∆k can be evaluated from Eq. (8) and consequently

∆T = ∆ktl. (12)

The notation v+z is used to emphasize that the star is moving in the direction
of the rolling shutter. It is noteworthy that in this model the value of vz
represents the mean value of velocity during the whole exposure. If the star
is moving along the yF direction, the norm of the velocity vy is evaluated as250

v+y =
Ly

Texp + ∆T
(13)

since the time on the detector is the same as for Eq. (11). Depending on the
direction of the star along the yF direction, vy = ±v+y .

Following the same reasoning as before and referring to Fig. 4b, it can
be shown that the velocities v−y and v−z for a star moving in the opposite
direction of the rolling shutter are computed as

v−z =
Lz

Texp −∆T
, (14)

v−y =
Ly

Texp −∆T
, (15)

where ∆T is defined as in Eq. (12). In this case, vz = −v−z and vy = ±v−y
depending on the direction of the star along the yF direction.

Using Eq. (3), the sign of the star velocity with respect to {yF , zF} can255

be introduced in the previous formulation and a more compact form of vy
and vz is obtained as

vz =
Lz

Texp + sz∆T
, (16)

vy =
syLy

Texp + sz∆T
. (17)

When ∆k = 0, the minimum value of vz is attained, i.e. vz,min = 0. The
proposed compensation scheme is accurate when the length of the star streak
is long enough to make the star’s spot dimension negligible. Considering a260

real star tracker, both the preprocessing segmentation and the instrumental
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noises make the compensation reliable as long as vy and vz are greater than
a user-defined threshold v∗ which depends on the hardware characteristics.

The problem related to attitude determination algorithms when using
APS with rolling shutter is the following: each streak is related to different
time intervals depending on their position on the detector. Indeed, each
streak is detected in the time interval

t ∈ [t0, t0 + Texp + ∆T ] with t0 = k0tl, if vz ≥ 0, or (18)

t ∈ [t0, t0 + Texp −∆T ] with t0 = (k0 + ∆k)tl, if vz < 0. (19)

Accordingly, the centroids of the streaks cannot be used unless a correction
is performed to set the centroids to the same time instant. Let c and c̃ be265

the centroid position before and after the correction, respectively. A linear
model can be developed on the basis of the previous estimates of vy and vz
such that

c̃y = cy + εy(vy), c̃z = cz + εz(vz) . (20)

To minimize the errors, the reference time instant for each image is chosen
as the time instant corresponding to half of the total detector exposure. In270

this way, the maximum error will be proportional to 0.5Texp. In fact, the
time distance between two centroids is proportional to their vertical distance
counted as number of rows. The linear expressions for εy and εz are

εy = vy∆T
∗, εz = vz∆T

∗, (21)

where
∆T ∗ = tl

(nrow
2
− c̃z

)
. (22)

4. Stars distribution and detection275

This section analyses the availability of stars as the angular velocity in-
creases. First, the review of the stars distribution over the celestial sphere
is presented considering modern star catalogs. Then, the theoretical calcu-
lation of the expected number of stars as a function of the angular velocity
is discussed.280

4.1. Stars distribution in the on-board catalog

IMPA requires an on-board catalog based on the Hipparcos identifier and
the magnitude of two stars. These information have been collected from the
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Hipparcos stars catalog provided by ESA5 and they have been also adopted
to simulate stars’ positions on the celestial sphere. The full catalog contains285

118,218 stars with several information for each celestial body. The required
values for the simulations are:

• Hipparcos identifier h

• Right Ascension α

• Declination δ290

• Magnitude m

The identifier is an integer number ranging from 1 to 120416. Right
ascension and declination are expressed in degrees for epoch J1991.25 in the
International Celestial Reference System (ICRS). The cataloged magnitude
is in the interval [−1.44, 14.1].295

To limit the memory requirement and increase the research efficiency,
the stars within the on-board catalog must satisfy two requirements: the
angle between every couple of stars must be less than a maximum angle θM
depending on the field of view’s (FOV) dimension, and the stars’ magnitudes
must be less than the maximum detectable magnitude mM .300

The mM value depends on the segmentation detection threshold τpre (see
Sec. 2.1) and the noise contributions. Hence, a proper choice of mM depends
on the specific technological device taken into account. In this paper, mM

is considered equal to 5.5, in accordance with the optical characteristics of
commercial star trackers. Stars with magnitudes greater than mM are not305

included in the on-board catalog. Nonetheless, they are considered for the
sky simulation as they can eventually appear as false objects. Indeed, a faint
star can be detectable if the noise signal increases the energy value of the
pixels belonging to the star.

Let hl1 and hl2 be the indexes of a couple of stars with magnitude ml1 and310

ml2, and θl ≥ 0 be the angular distance between the two stars. The on-board
catalog F is an ordered set composed by four-elements sets {hl1, hl2,ml1,ml2},
satisfying the requirements θl ≤ θM , ml1 ≤ mM , ml2 ≤ mM i.e.

F = {fl={hlk,mlk} : θl≤θl+1≤θM ,mlk<mM , k=1, 2, 1 ≤ l ≤ NF} , (23)

5http://www.cosmos.esa.int/web/hipparcos
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Figure 5: On-board catalog distribution with respect to cataloged magnitude (a) and in
the plane Right Ascension and Declination (b).

where NF is the number of stars couples satisfying the constraints. Note
that the angle θl is not explicitly included in the on-board catalog F as it315

is recovered by means of the K-vector searching technique employed by the
stars recognition algorithm (see Sec. 5.2).

Fig. 5a reports the distribution of magnitudes of the stars in the on-board
catalog. The number of stars is reduced with respect to the full catalog (from
118,218 stars in the full catalog to 3,349 stars in the on-board catalog). Fig.320

5b shows the stars’ positions expressed as Right Ascension and Declination.
As can be seen, the sky is not covered in an isotropic way due to the presence
of very bright stars in the Milky Way.

4.2. Star detection in dynamic conditions

When the stars move in the focal plane due to non-negligible angular325

velocities, the star’s signal is spread over more pixels with respect to the
stationary case. As a consequence, the number of photoelectrons associated
to the single pixel of a streak in dynamic conditions is smaller than the
number of photoelectrons associated to the pixel of a spot in stationary case.
When the number of photoelectrons is too small, the star signal can be too330
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low to pass the threshold τpre of the preprocessing (see Sec. 2.1). Hence, with
increasing angular velocities, the number of detected stars usually decreases.
This problem has been already investigated in different works, e.g. [14, 15].

With reference to Fig. 6, the nominal arc-length l of a star in the focal
plane is expressed as335

l = sin (α)ω∆t, (24)

where ∆t = Texp for a global shutter detector and ∆t = Texp + sz∆T for a
rolling shutter detector. The angle between the angular velocity vector and
the star in the FOV is denoted as α. If α = 0 then the star appears as a
spot regardless of the angular velocity’s magnitude and the value taken on
by β. Eq. (24) is valid as long as the angular acceleration is negligible. The340

arc-length is maximum when α = 90 deg, and the arc becomes a straight line
of length l = ω∆t.

In this section, a model which is very close to the one presented in [14] is
considered, as well as already done in [16]. In stationary conditions, a star
with magnitude zero is associated to a signal flux intensity denoted as G0,345

measured in e−/s, which represents the number of photoelectrons emitted by
a star of magnitude 0 during an exposure time of one second. If a square
detector with npixel per side is considered, and the instantaneous field of view
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(IFOV) is defined as

IFOV =
FOV

npixel
, (25)

the number of covered pixels in dynamic conditions is given by350

ncov =
rpsf l

IFOV
. (26)

In Eq. (26), rpsf is a constant parameter related to the point spread function
(PSF) of the detector. The PSF describes the response of the detector to the
star signal, i.e. the spread of the star signal over several pixels.

Finally, the number of photoelectrons associated to a zero magnitude star
in dynamic conditions is given by355

I0 =
G0∆t

ncov
, (27)

and considering Eq. (26) and l as given by Eq. (24),

I0 = IFOV
G0

rpsf sin (α)ω
. (28)

The threshold condition for a star to be detected is that its signal Ith is
equal to τpre. Hence, using the Pogson’s formula

m0 −mth = −2.5 log10

(
I0
Ith

)
, (29)

the reference threshold magnitude can be evaluated as

mth = 2.5 log10

(
I0
Ith

)
(30)

since m0 = 0. The results of this analytical model are reported in Sec. 6,360

where the specific features and noises of the sensor considered in this work are
used, and they are compared with the results from the numerical simulator.
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5. Star Identification Algorithm

The star identification approach proposed in this work is the Improved
Multi-Poles Algorithm (Improved MPA, or IMPA), a method based on po-365

lar techniques features and internal verification phases guaranteeing good
reliability in the presence of false objects.

The original version of MPA [21] was based on three phases: acceptance,
verification and confirmation. The algorithm was validated considering sta-
ble attitudes and very slow angular rates up to 0.15 deg/s. In stable attitude370

the results have shown a success rate of 100 %, when considering sets of input
objects with up to 185 false objects and 33 cataloged stars. The success rate
decreased at 66 % in the simulated worst case with 486 false objects and 31
cataloged stars.

A revised version of the MPA has been proposed to participate at the375

European Space Agency (ESA) competition “Star Trackers: First Contact”.
The introduction of a magnitude filtering is the principal improvement with
respect to the original method, leading to a simplification of the algorithm
architecture since the confirmation phase is not required anymore. Results
of the revised MPA are reported in [22], where the high efficiency, reliability380

and small computational effort are proven to be core characteristics of the
algorithm.

The IMPA is an approach based on the features of the two former al-
gorithm versions, with a simplified check phase in comparison to the one
reported in [22]. Furthermore, an enhanced robustness to angular rates385

has been accomplished by adopting a greater searching tolerance (feasible
thanks to the introduction of magnitude filtering). Finally, when using de-
tectors based on rolling shutter, the compensation of rolling shutter effects
is required. The most important characteristics of the proposed method are
described in the following paragraphs.390

5.1. Improved Multi-Poles Algorithm

The IMPA input is the list of clusters that can represent either true
stars or artifacts. Each cluster is characterized by the centroid coordinates
c = [cy, cz]

T and a detected signal intensity value EC . Centroids are two-
dimensional vectors associated to dense sets of pixels, recognized from the395

clustering operation as potential signals associated to stars (refer to Sec.
2.2). In the following description, the tilde (∼) symbol above a letter will be
used to distinguish a quantity measured using the image information from
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Figure 7: Sensor and focal plane reference frames.

the same reference catalogued quantity, which has a different value from the
measured one.400

First of all, the unit vector u in the sensor’s reference frame S ⊂ R3 is
evaluated according to Eq. (31) for each cluster. With reference to Fig. 7,
the unit vector u points to a star within the field of view of the star tracker.
Its coordinates are related to the projected coordinates in the focal reference
frame F ⊂ R2 of the centroid c = [cy, cz]

T by405

u =
1√

c2y + c2z + f 2

 f
−cy
−cz

 . (31)

There are other more sophisticated models different from the simple pinhole
camera one, given in Eq. (31) [29]. However, as long as the image from a
star tracker is properly modeled and calibrated, the camera model does not
strongly affect the star recognition algorithm performances.

To estimate the magnitude value from the detected signal intensity, the410

adopted model is derived from the Pogson’s formula already used in Eqs.
(29) and (30). i.e.

m̃i = −2.5 · log10

(
ECi

G0 · Texp

)
. (32)

The magnitude value will be different from the cataloged one, since the signal
intensity value is affected by the noise sources’ contributions.

19



Each cluster in the image is associated to a 4 dimensional vector s named415

spike collecting the unit three-dimensional vector u and the estimated mag-
nitude value m̃, i.e.

s = [u, m̃]. (33)

It is noteworthy that for APS sensors with rolling shutter, u is evaluated
with Eq. (31) after the compensation given by Eq. (21) is applied. The
list containing all the spikes sorted by ascending magnitude is defined as the420

following ordered set

S = {si = [ui, m̃i] ∈ R4, with m̃i < m̃i+1 for i = 1, ..., Ns} (34)

where Ns is the number of spikes in the image.
The IMPA identifies the stars using two phases: the acceptance phase

and the check phase. The acceptance phase exploits the approach of a polar
technique to yield a set of elements, named accepted stars, which are selected425

among the objects in the image. In an ideal case, with no noises and false
objects, the set of accepted stars is the set of the recognized stars. In the real
case, especially in a harsh environment, some false objects can be accepted
as stars. For this reason, the check phase performs a cross-check between
two sets of accepted stars to control which elements have been detected in430

both sets.
Consequently, at the initial step of the IMPA, the acceptance phase has

to run at least twice. If a set of accepted stars is returned, the next pole
is selected within the previous accepted neighbor stars, since the magnitude
filtering drastically reduces false object acceptation. The cross-check is based435

on a check on the number of stars belonging to both the sets. If this number
is less than a desired number of recognized stars, the algorithm goes back
to the acceptance phase in order to yield a new independent accepted stars
set. On the contrary, the stars belonging to both sets are returned by the
algorithm as recognized stars.440

For the sake of clarity, in the following explanation the two phases are
described using illustrative figures with a set S of eight elements (see Fig.
8). The figures depict only the mechanism of how the algorithm works, while
the results with the real number of objects are presented in Sec. 6. Spikes
are represented as circles with the radius related to the magnitude, i.e. the445

brightest object is the one with the greatest diameter.
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Figure 8: Set S with eight elements.

5.2. Acceptance phase

At the ith run, the acceptance phase selects in S the pole p(i) and the
neighbors n

(i)
j as

p(i) = si, i ∈ {1, ..., Ns},
n

(i)
j = sj, ∀j ∈ {1, ..., Ns}, j 6= i.

(35)

Recalling the spikes definition in Eq. (33), the angular distances θ̃ij between450

the pole, with direction ui, and the jth neighbor, with direction uj, is com-
puted as

θ̃ij = arccos(ui · uj). (36)

The first pole is chosen as s1, i.e. the spike with minimum magnitude as de-
picted in Fig. 9, where the dotted lines represent the angular distances from
the pole to the neighbors. This criterion reduces the risk of false matching455

and recognition, since cataloged stars with magnitude in the neighborhood
of m1 are generally far less than the cataloged stars with magnitude in the
neighborhood of m2 if m1 < m2 (see Fig. 5a).

For each computed angular distance θ̃ij, the specific features fl are searched
in F with values θl such that |θl − θ̃ij| ≤ εθ, where εθ is a user-defined toler-460

ance. This is a range searching problem solved using the K-Vector technique
[30]. The selection of the suitable value of εθ is strongly affected by the
sensor’s operative conditions and by the environmental noises. Recalling the
definition of the catalog given in Eq. (23), the result of the search leads to
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Figure 9: First Pole selection

identify the subset F
(i,j)
K ⊂ F given as465

F
(i,j)
K = {fl ∈ F : |θl − θ̃ij| ≤ εθ}. (37)

The superscript (i, j) denotes that the ith spike is the pole while the jth spike
is the neighbor. To make the searching algorithm more efficient, the magni-
tude information is used to restrict the number of cataloged stars associated
with the elements in F

(i,j)
K . Indeed, only the stars with cataloged magnitude

similar to the estimated magnitude m̃ of the image spikes are considered.470

The magnitude feasibility is evaluated through a threshold εm by means of
two inequalities, i.e.

|ml1 − m̃i| < εm ∧ |ml2 − m̃j| < εm

or

|ml2 − m̃i| < εm ∧ |ml1 − m̃j| < εm

(38)

where the symbol ∧ is the logical “and” operator. The candidate stars are
now contained in the subset F

(i,j)
Km ⊂ F

(i,j)
K ⊂ F defined as

F
(i,j)
Km = {fl ∈ FK : Eq. (38) is satisfied}. (39)

The identifiers of stars pairs contained in F
(i,j)
Km are then stored in the set475

defined as
Π(i,j) = {π(i,j)

l = {hl1, hl2}, l : fl ∈ F (i,j)
Km }. (40)
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Applying the described procedure to all the neighbors of the ith spike, we
obtain (Ns − 1) subsets Π(i,j). The set Π(i) with elements π

(i)
l is defined as

the union of the subsets Π(i,j), i.e.

Π(i) =
Ns⋃
j |j 6=i

Π(i,j). (41)

The star identifier which has the maximum occurrence within the elements480

of Π(i) is selected as the pole identifier p∗(i). If p∗(i) is a unique value, then
it may be associated to the pole star p(i) and the pole is accepted. On the
contrary, the pole is not accepted if more than one identifier has the maximum
number of appearances. Accordingly, when there are only 2 actual stars in
the image, the algorithm cannot identify them. In fact, the occurrence of485

Hipparcos identifier for the actual star is 1 even if it is selected as a pole.
Once the pole star is accepted, p∗(i) does actually represent either hl1

or hl2 for n different elements π
(i)
l in Π(i), where n ≤ (Ns − 1). That is,

p∗(i) has been found in one element of n different sets Π(i,j). For the couples
{n(i)

j ,p
(i)}, such that an element {hβ, p∗(i)} is found in Π(i,j) (hβ = hl1 or490

hβ = hl2), the neighbor stars identifier is defined as n
∗(i)
j = hβ. For the

neighbor stars where the coupling with p∗(i) is not found, the identifiers are
marked as false (identifier equal to -1). Summing up,

n
∗(i)
j =

{
hβ if {hβ, p∗(i)} ∈ Π(i,j),

−1 otherwise.
(42)

As a result, the set of the accepted stars A∗(i) can be defined as

A∗(i) = {p∗(i), n∗(i)j , j = 1, ..., Ns with j 6= i}. (43)

When the pole star is identified, the Ns-long set A∗(i) contains the hipparcos495

identifiers of the accepted stars and the false marker for the others (see Fig.
10). In such a case, the acceptance phase runs a second time with a different
selection criterion for the new pole. Indeed, new poles are selected within
the spikes previously accepted as neighbor stars. The process ends as soon
as two accepted stars sets A∗(i) and A∗(j) are obtained.500

On the contrary, if the first pole cannot be identified, the set A∗(i) contains
Ns elements equals to −1, i.e. no star identifiers. In this case, the selection
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Figure 10: Next pole selection when an accepted stars set has been returned.

criterion for the successive pole remains the magnitude of the spikes. Thus,
the spike si+1 is selected as pole p(i+1) (see Fig. 11).

 

-1 

-1 

-1 

-1 -1 

-1 
-1 

-1 

(a)

 

𝑝(2) 

𝑛4
(2)

 

𝑛5
(2)

 

𝑛3
(2)

 

𝑛6
(2)

 

𝑛8
(2)

 

𝑛7
(2)

 

𝑛1
(2)

 

(b)

Figure 11: Next pole selection when an accepted stars set has not been returned.

5.3. Check phase505

The check phase verifies if the number of accepted stars belonging to the
intersection of two sets A∗(i) and A∗(j) is greater than a user-defined threshold
value t∗. This number corresponds to the minimum number of required stars
and it must be greater than 2 since
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• at least 3 stars are required to perform a reliable attitude determina-510

tion, and

• the pole identification may be achieved only if the pole is coupled with
at least 2 neighbors.

Let two sets A∗(i) and A∗(j) be considered. The check phase is based on the
evaluation of the boolean variable ζ515

ζ =

{
1 if #

(
{A∗(i) ∩ A∗(j)}+

)
≥ t∗,

0 otherwise,
(44)

where # (X) stands for the cardinality of the set X, i.e. the number of
elements belonging to X. Moreover, X+ is the subset containing only the
positive elements of X and it is used for the definition of ζ so that the
intersection does not consider the presence of the false markers. The value of
the threshold t∗ is related to the on-board catalog, sensor noises and sensor520

FOV.
The recognized stars set R∗ is obtained as

R∗ =

{
A∗(i) ∩ A∗(j) if ζ = 1

−1, ...,−1 ∀si otherwise.
(45)

The elements of R∗ can either be the stars indices of the on-board catalog in
the case of true stars, or the identifier “-1” in the case of false stars. If the
boolean variable ζ is never true, all the spikes in the image are marked as525

false stars. In this case, all the Ns elements within the returned R∗ set are
“-1”.

A noteworthy comment about the value of t∗ is in order. The spacecraft
angular motion affects the acquisition of the sky image so that faint stars are
more difficult to be detected with respect to the stationary attitude. Indeed,530

the angular velocity affects the distribution of a star’s energy on the detector
reducing the value of the signal on the single pixels. As a result, the image
preprocessing can discard some of the real stars because of the low signal
to noise ratio. This issue must be considered when setting the minimum
number of stars t∗ required for passing the check phase of the IMPA. Indeed,535

too low values of t∗ reduce the robustness to false objects whereas too high
values of t∗ are not suitable with high slew rates.
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6. Test Definition and Results

A reliable simulator is required in order to obtain accurate numerical
results while testing the rolling shutter compensation strategy and the IMPA.540

To this end, the high fidelity simulator and noise sources described in [21]
have been adopted in this work. The main characteristics of the simulator
and noises are summarized in Table 1 and Table 2 respectively.

Table 1: Main characteristics of the Simulator.

Sensor characteristic Adopted value

Detector 1024 × 1024 Active Pixel Sensor (APS)
Field of View (FOV) 20 × 20 deg
Focal length f 52 mm
Exposure time Texp 0.2 s
Pixel dimensions 18 × 18 µm
Simulated stars magnitude MS MS ≤ 6.5
On-board catalog Hipparcos stars with MC ≤ 5.5
G0 7300000 e−/s
τpre 500 e−

df 2 pixel

Table 2: Main characteristics of noise sources.

Noise sources Adopted model

Dark current Normal distribution: 100 e− mean and 5 e− std [31].
Stray-light Uniform value of 6000 e− over the whole detector.
Shot noise Poisson probability distribution proportional to the square

root of the detected signal[32].
Read-out noise Normal distribution: 0 mean and 50 e− std [33].

6.1. Detection analysis

The results of the detection analysis described in Sec. 4.2 are here re-545

ported. The value of rpsf has been set equal to 3 to be consistent with the
mean value of the PSF used in the high fidelity simulator. In Fig. 12 the
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(a) (b)

Figure 12: Maximum detected magnitude from Liebe model (a) and from simulation
campaigns (b) as a function of the angular velocity magnitude and direction.

expected results from the mathematical model are compared with the results
from the simulator. As can be seen, there is a good matching between the
two families of curves. It is to be noted that the results are reported as550

a function of the angle β, as this angle can be easily set in the simulator.
The analytical results are obtained considering α = β − 0.5 FOV, as this is
the kinematic geometry ensuring the best detection conditions. The analyti-
cal results have been reported considering a maximum detectable magnitude
equal to 6 (indeed, the analytical model does diverge near ω = 0). These555

results justify the maximum magnitude considered in the on-board catalog
reported in Table 1. In fact, this value is a good trade-off between having
a reduced catalog in terms of required allocation memory, and having the
minimum number of stars both in stationary and dynamic conditions.

It is noteworthy that, at low angular rates, stars with magnitude higher560

than 5.5 are detected. Since these stars are not reported in the on-board
catalog, they are treated as false objects which are taken into account without
problems by the IMPA.

6.2. IMPA setting and test campaigns definition

The purpose of the performed tests has been to verify that the proposed565

algorithm can give reasonable results in the range of angular velocities be-
tween 1 deg/s and 5 deg/s, and in the presence of a high number of false
objects. The test campaigns have been carried out considering:
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1. Nω = 5 constant angular rates, with ω = 1, ..., 5 deg/s.

2. Natt = 200 different attitudes obtained sampling uniformly the whole570

celestial sphere considering the celestial sphere approximated by a geodesic
polyhedron.

3. Ndir = 26 different relative orientations between the angular velocity
vector and the sensor’s boresight. The directions of the angular ve-
locity have been obtained as the combination of −1, 0, 1 along each575

coordinate of the angular velocity vector expressed in S, with succes-
sive normalization.

Considering the different rates, attitudes and angular velocity directions,
a total of 26,000 simulations have been run. Moreover, additional 200 simu-
lations have been considered for the reference test case with ω = 0 deg/s.580

Global and rolling shutter acquisition architectures have been considered
for testing the IMPA. Two test campaigns have been performed for both
types of detector:

Best-case condition: The star-tracker is tested for increasing angular rates
in the presence of a low number of false objects identified as the uncat-585

alogued stars in each images.

Worst-case condition: The star-tracker is tested for increasing angular
rates in the presence of a high number of false objects, including un-
catalogued stars, spots from SEUs and other noise sources.

The simulation ends when the attitude is returned reporting the number590

of required images. The following hypotheses have been considered:

• The maximum number of consecutive images is set to Nim = 60. When
the simulation ends after the 60th image has been processed, the atti-
tude is considered as not returned.

• The minimum number of required images is 2, since the lost in space595

problem is generally required to give at least a rough estimation of the
angular velocity. When considering rolling shutter effects, moreover,
two images are required to perform the compensation.

The attitude determination is performed applying the q-method [34] to the
recognized stars. Results are obtained defining a tolerance on the maximum600

absolute error of pitch and yaw angles, since this condition ensures the capa-
bility to switch to the tracking mode. Accordingly, a simulation is successful
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if the IMPA and q-method give errors within 360 arcsec. In the opposite case,
the result is considered not successful. Numerical tests have shown that the
occurrence of no success never happens, demonstrating that 1) the rolling605

shutter compensation works properly and 2) the check phase blocks wrong
matchings.

The searching tolerance value considered for the simulations is set to 100
arcsec, equals to 3 times the standard deviation value after rolling shutter
compensation for ω = 5 deg/s (see Table 4). This value will guarantee the610

availability of star identification also in the presence of high slew rates. As a
trade-off between robustness to angular rates and robustness to false objects,
the t∗ value has been set to 5 stars.

6.3. Compensation results

The position error due to the rolling shutter is denoted as εRS and it is615

evaluated along the horizontal and vertical directions as

εRSy = c̃y − c∗y, εRSz = c̃z − c∗z, (46)

where {c∗y, c∗z} is the real position of the star centroid (not affected by noise,
quantization, segmentation, etc.). The symbols ε̃RSy and ε̃RSz will be adopted
when the compensated centroids {c̃y, c̃z} are used. In an analogues way, the
position errors using global shutter architecture is denoted as εGS.620

Fig. 13 reports the position errors’ distributions with global shutter, and
the results of the rolling shutter compensation with angular velocity equal
to 5 deg/s. Fig. 13a and 13b show the distribution of the centroids’ posi-
tion errors using global shutter. In Fig. 13c and 13d the components of the
centroids’ position errors with compensation are shown. The maximum er-625

rors with rolling shutter compensation can be compared with the maximum
errors found with global shutter,even though the distributions are very dif-
ferent. The centroids position’s errors without rolling shutter compensation
are reported in Fig. 13e and 13f. As can be seen, the compensation reduces
the dispersion of the errors by about one order of magnitude, concentrating630

almost all the results below an absolute error of 2 pixels. On the other hand,
errors without compensation can reach values close to 20 pixels.

Similar results are obtained for intermediate angular rates. Table 3 re-
ports the mean value, standard deviation, skewness and kurtosis of the cen-
troids errors’ distributions with global shutter. Table 4 and 5 report the635

characteristics of the centroids errors’ distributions with and without the
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Figure 13: Centroid errors at ω = 5 deg/s with global shutter (a-b) and rolling shutter
with compensation (c-d) and without compensation (e-f).
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Table 3: Centroid displacement errors with global shutter.

Angular rate mean value stand. dev. skewness kurtosis
(deg/s) (pixel) (pixel) (pixel) (pixel)

Horizontal displacement error, εGSy

1 −1.34× 10−4 1.65× 10−1 3.13× 10−4 5.83
2 −1.61× 10−3 2.13× 10−1 −2.97× 10−2 6.56
3 −2.88× 10−4 2.60× 10−1 −1.28× 10−2 7.85
4 1.58× 10−3 2.97× 10−1 3.23× 10−2 8.83
5 −1.30× 10−3 3.28× 10−1 −4.31× 10−2 9.15

Vertical displacement error, εGSz

1 3.90× 10−4 1.76× 10−1 7.15× 10−3 5.22
2 1.22× 10−3 2.13× 10−1 3.34× 10−2 5.86
3 −4.98× 10−4 2.54× 10−1 −5.63× 10−2 6.78
4 5.98× 10−4 2.88× 10−1 −5.36× 10−3 7.38
5 2.87× 10−3 3.23× 10−1 1.06× 10−1 7.84

Table 4: Centroid displacement errors with rolling shutter compensation.

Angular rate mean value stand. dev. skewness kurtosis
(deg/s) (pixel) (pixel) (pixel) (pixel)

Horizontal displacement error, ε̃RSy

1 1.73× 10−4 3.77× 10−1 4.38× 10−3 4.25
2 1.44× 10−3 4.29× 10−1 5.49× 10−3 3.57
3 −9.30× 10−4 4.41× 10−1 −8.36× 10−3 3.83
4 −2.13× 10−4 4.58× 10−1 3.80× 10−3 4.39
5 −7.33× 10−4 4.61× 10−1 −1.97× 10−2 4.51

Vertical displacement error, ε̃RSz

1 −1.14× 10−3 3.44× 10−1 −3.64× 10−3 4.15
2 1.61× 10−4 3.85× 10−1 −1.74× 10−3 3.82
3 −8.40× 10−4 4.04× 10−1 2.19× 10−3 3.91
4 −2.99× 10−3 4.29× 10−1 −1.42× 10−2 4.30
5 2.85× 10−3 4.40× 10−1 2.19× 10−3 4.34

31



Table 5: Centroid displacement errors without rolling shutter compensation.

Angular rate mean value stand. dev. skewness kurtosis
(deg/s) (pixel) (pixel) (pixel) (pixel)

Horizontal displacement error, εRSy

1 6.07× 10−4 1.52 −2.57× 10−4 3.04
2 4.01× 10−3 2.61 −2.26× 10−3 3.66
3 −3.97× 10−3 3.39 4.86× 10−3 4.26
4 1.57× 10−2 4.11 2.66× 10−4 4.85
5 −1.25× 10−2 4.87 −1.01× 10−3 5.05

Vertical displacement error, εRSz

1 1.38× 10−3 1.54 −7.48× 10−5 2.99
2 1.43× 10−2 2.71 7.73× 10−3 3.54
3 1.19× 10−3 3.61 −2.85× 10−3 4.16
4 −7.85× 10−3 4.41 1.13× 10−2 4.71
5 −1.68× 10−2 5.25 −1.50× 10−2 4.93

rolling shutter compensation, respectively. The different distributions be-
tween global and compensated rolling shutter are confirmed by the kurtosis
value, which in the former case is about two times the value of the latter.
The standard deviation of the results after compensation is always below 0.5640

pixel for each tested angular rate, which is below 35 arcsec considering the
detector characteristics in Table 1. On the contrary, the standard deviation
of the centroids’ errors without compensation reaches 5 pixels, which is more
than 350 arcsec, i.e. one order of magnitude higher than the compensated
case. It can be noted that the proposed compensation strategy can slightly645

reduce also the mean values of the centroids’ errors.
The centroids’ errors values are also shown in Fig. 14, where the results

using global shutter (Fig. 14a and 14b) can be compared with the results
using rolling shutter with compensation (Fig. 14c and 14d) and without
compensation (Fig. 14e and 14f). The improvements already shown for 5650

deg/s are confirmed for all the tested rates.

6.4. Best-case IMPA results

The aim of these simulations is to evaluate the IMPA robustness to slew
rates. The uncatalogued stars in each image represent the simulated false
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Figure 14: Errorbar plots showing centroids mean and standard deviation (1-σ) for global
shutter (a-b), rolling shutter with compensation (c-d) and without compensation (e-f).

objects for this test campaign. All the rolling shutter results are considered655

after the deformation’s compensation.
Figure 15 reports the distributions of the errors of roll, pitch and yaw

angles for ω = 5 deg/sec and considering global and compensated rolling
shutter. It can be seen that the errors are very small and their distributions
are well-fitted by Gaussian curves. Similar error distributions are obtained660

for the other simulations with mean and standard deviation as reported in
Table 6 and Table 7.
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(a) Global shutter (b) Rolling shutter

(c) Global shutter (d) Rolling shutter

(e) Global shutter (f) Rolling shutter

Figure 15: Best-case roll (a,b), pitch (c,d) and yaw (e,f) angle attitude errors with 5 deg/s
rate

As can be seen, the standard deviation for errors’ distributions depends
on the rate condition. Making a comparison between the different acqui-
sition architectures, the standard deviations are more or less the same for665

the test case in statical conditions. On the contrary, in the case of dynamic
conditions, standard deviations with rolling shutter are of the order of two
times the standard deviations obtained with global shutter. This result is
consistent with the results showed in Section 6.3.
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Table 6: Mean and standard deviations of attitude errors in best-case with global shutter.

Angular Attitude Errors (arcsec)
rate Roll Angle Pitch Angle Yaw Angle
(deg/s) Mean Std Mean Std Mean Std

0 0.50 13.44 0.27 2.03 0.10 1.83
1 0.79 42.93 -0.01 5.50 -0.04 5.27
2 2.50 70.97 -0.05 8.14 -0.02 8.38
3 0.31 80.52 0.00 9.78 0.11 9.65
4 1.40 94.11 -0.15 11.53 0.09 12.13
5 -0.11 108.99 0.21 13.41 0.09 13.29

Table 7: Mean and standard deviations of attitude errors in best-case with rolling shutter.

Angular Attitude Errors (arcsec)
rate Roll Angle Pitch Angle Yaw Angle
(deg/s) Mean Std Mean Std Mean Std

0 0.60 15.13 0.23 2.04 -0.07 1.87
1 3.99 153.35 -0.38 15.27 0.10 12.67
2 -5.50 176.36 1.37 17.98 -0.14 19.37
3 4.96 172.27 3.06 17.66 -0.22 21.29
4 -1.64 169.35 4.03 18.75 0.24 23.10
5 -1.10 184.89 4.62 20.30 -0.02 24.30

The percentage of successful simulations with reference to the number of670

required images is reported in Table 8 and Table 9. The number of required
images to perform star identification increases in the presence of angular
rate. The reason is related to the SNR reduction for increasing angular rate,
leading to a reduction of the number of detected stars per image. As can be
seen, the results are very similar for the different detector’s architectures:675

• The totality of the simulations has provided the attitude for the test
cases with 0 and 1 deg/sec rates.

• About 3% of the simulations with 2 deg/sec requires more than 60
images to perform attitude determination.

• About 15% of the simulations with 3 deg/sec requires more than 60680
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images to perform attitude determination.

• About 30% of the simulations with 4 deg/sec requires more than 60
images to perform attitude determination.

• About 40% of the simulations with 5 deg/sec requires more than 60
images to perform attitude determination.685

Table 8: Required images for attitude determination in best-case results with global shut-
ter.

Percentage of successful simulations [%]
Required Angular rate (deg/s)
images 0 1 2 3 4 5

2 99.50 97.69 67.38 38.67 25.71 17.79
10 100.00 99.56 84.13 56.75 37.90 27.77
20 100.00 99.79 89.60 67.35 48.54 36.29
30 100.00 99.88 92.85 73.65 56.46 44.13
40 100.00 100.00 94.67 79.02 64.23 51.71
50 100.00 100.00 96.10 83.63 70.79 58.46
60 100.00 100.00 97.27 87.29 75.87 64.10

Table 9: Required images for attitude determination in best-case results with rolling
shutter.

Percentage of successful simulations [%]
Required Angular rate (deg/s)
images 0 1 2 3 4 5

2 98.50 98.23 63.96 34.85 22.58 16.12
10 100.00 99.73 82.29 52.75 34.00 25.02
20 100.00 99.88 88.58 62.77 43.17 33.23
30 100.00 99.94 91.94 69.67 52.12 39.79
40 100.00 100.00 93.96 75.27 58.63 46.46
50 100.00 100.00 95.58 80.02 65.40 53.10
60 100.00 100.00 96.71 84.73 70.33 58.58
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6.5. Worst-case results

The aim of these simulations is to test the presented algorithm’s robust-
ness to both slew rate and the presence of false objects. The false objects
have been added after the cluster fusion as objects that cannot be filtered
in addition to the simulated uncatalogued stars. The added false objects are690

50 for each image. Furthermore, as in the previous section, all the rolling
shutter results are considered after the deformation’s compensation.

As for the best-case results, errors are very small and their distributions
are well-fitted by Gaussian curves. These results are reported in Table 10
and Table 11.

Table 10: Mean and standard deviations of attitude errors in worst-case with global shut-
ter.

Angular Attitude Errors (arcsec)
rate Roll Angle Pitch Angle Yaw Angle
(deg/s) Mean Std Mean Std Mean Std

0 -0.24 16.37 0.09 1.88 0.19 2.08
1 -1.78 58.44 0.03 6.48 0.01 6.81
2 1.65 58.58 -0.08 7.40 -0.12 7.04
3 -0.87 62.11 0.10 7.60 0.14 7.71
4 0.97 75.08 0.26 8.82 -0.37 9.20
5 -2.96 102.27 0.45 11.27 -0.31 12.60

695

Table 11: Mean and standard deviations of attitude errors in worst-case with rolling
shutter.

Angular Attitude Errors (arcsec)
rate Roll Angle Pitch Angle Yaw Angle
(deg/s) Mean Std Mean Std Mean Std

0 0.86 22.63 0.30 2.31 0.07 2.13
1 1.94 171.52 -0.09 15.53 0.03 13.64
2 -2.00 188.98 2.53 18.94 0.62 21.15
3 1.56 168.00 3.86 17.44 0.19 21.84
4 -4.44 166.59 3.22 17.56 -0.41 22.05
5 0.50 173.88 4.71 18.46 0.21 22.82
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The number of required images increases in the presence of angular rate.
The percentage of successful simulations with reference to the number of
required images is reported in Table 12 and Table 13.

Table 12: Required images for attitude determination in worst-case results with global
shutter.

Percentage of successful simulations [%]
Required Angular rate (deg/s)
images 0 1 2 3 4 5

2 91.00 79.44 23.79 14.73 10.67 9.06
10 97.50 92.62 35.23 21.00 16.40 13.23
20 98.00 94.98 40.35 24.96 19.87 16.27
30 98.50 96.13 44.63 28.50 24.04 19.37
40 98.50 96.87 48.56 31.73 27.02 22.40
50 98.50 97.42 52.02 34.71 30.12 25.54
60 98.50 98.13 55.52 37.42 32.60 28.62

Table 13: Required images for attitude determination in worst-case results with rolling
shutter.

Percentage of successful simulations [%]
Required Angular rate (deg/s)
images 0 1 2 3 4 5

2 91.50 77.46 23.12 13.08 10.21 8.25
10 97.50 92.27 32.98 20.17 14.69 12.21
20 97.50 94.94 37.77 23.54 17.71 14.87
30 97.50 96.10 41.58 27.35 21.44 17.69
40 98.00 96.88 45.65 30.54 24.46 20.35
50 98.00 97.50 48.79 33.58 26.94 22.94
60 98.00 97.92 51.85 36.77 29.54 25.90

As can be seen, the results are very similar for the different detector’s
architectures:700

• About 2% of the simulations with 0 and 1 deg/sec requires more than
60 images to perform attitude determination.
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• About 45-48% of the simulations with 2 deg/sec requires more than 60
images to perform attitude determination.

• About 63% of the simulations with 3 deg/sec requires more than 60705

images to perform attitude determination.

• About 70% of the simulations with 4 deg/sec requires more than 60
images to perform attitude determination.

• About 74% of the simulations with 5 deg/sec requires more than 60
images to perform attitude determination.710

With reference to Table 8 and Table 9, the presence of false objects drasti-
cally affects the performances in terms of number of required images, reducing
the performance of more than 50% at a rate of five degrees per second.

(a) Global shutter (b) Rolling shutter

Figure 16: Best-Worst cases comparison success percentage with 3 deg/sec

Figure 16 reports the trend of successful simulations versus the number
of required images for the test case with 3 deg/sec, making a comparison715

between best and worst case. Figure 16a shows the results for global shutter
architecture, while Figure 16b shows the same results for the rolling shutter
case. The results are not affected by the choice between a global shutter
or a rolling shutter detector. On the contrary, the performance reduction is
evident between the best case and the worst case.720

Figure 17 reports the trend of the successful simulations versus the an-
gular rate in 60 images making a comparison between best and worst cases.
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(a) Global shutter (b) Rolling shutter

Figure 17: Best-Worst cases comparison success percentage in 60 images

Figure 17a shows the results for global shutter architecture while Figure 17b
shows the same results for the rolling shutter case. As for the previous re-
sults, the algorithm performances are not affected by the adopted detector725

but by the addition of false objects.

7. Conclusion

Through theoretical and numerical investigations, this paper has demon-
strated the opportunity to use modern star tracker technology to perform
accurate attitude measurements up to five degrees per second.730

For detectors with rolling shutter as active pixel sensors, the deformation
introduced by the read-out mode is drastically reduced by a first-order com-
pensation model. In this way, centroiding errors with non-negligible angular
rates are comparable with global and compensated rolling shutter.

The Improved Multi-Poles Algorithm has been used to take into account735

false objects due to electronic noises, harsh environment and non-cataloged
stars. Using the proposed star recognition algorithm along with the rolling
shutter compensation method, accurate and reliable attitude measurements
are obtained with both global and rolling shutter detectors. Indeed, standard
deviations are comparable for the test case in static conditions, whereas in740

dynamic conditions standard deviations with rolling shutter are of the order
of two times the standard deviations obtained with global shutter. In pitch
and yaw angles, standard deviations below 30 arcsec are noticed up to 5
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degrees per second, whereas for the roll angle the maximum detected error
is below 200 arcsec.745

False objects do not significantly affect the attitude determination results.
On the contrary, the number of required images for attitude determination
highly depends on the number of false objects in the detected image. In fact
the presence of 50 false objects drastically affects the performances in terms
of number of required images, reducing the performance of more than 50%750

at a rate of five degrees per second. However, the IMPA is robust to false
objects so that only reliable measurements are returned, since erroneous stars
matching are autonomously recognized.
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