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Recognition capabilities of a Hopfield model with auxiliary hidden neurons
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We study the recognition capabilities of the Hopfield model with auxiliary hidden layers, which emerge
naturally upon a Hubbard-Stratonovich transformation. We show that the recognition capabilities of such a model
at zero temperature outperform those of the original Hopfield model, due to a substantial increase of the storage
capacity and the lack of a naturally defined basin of attraction. The modified model does not fall abruptly into the
regime of complete confusion when memory load exceeds a sharp threshold. This latter circumstance, together
with an increase of the storage capacity, renders such a modified Hopfield model a promising candidate for
further research, with possible diverse applications.
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I. INTRODUCTION

Starting from the seminal paper by Little [1], it was re-
alized that disordered spin systems can store information,
working as content-addressable memories. In this context, the
model proposed by Hopfield [2] (H model from now on) has
often served as a reference. Its phase diagram [3–5] contains
a retrieval phase, where one can use a system composed
of N neurons to “store” patterns containing N symbols. By
storage one means that patterns can be recovered: starting
from the exact pattern we have stored or from a damaged
pattern, where a fraction η of the spins do not coincide with
the configuration we want to retrieve, we end up close enough
to it. Despite being robust in many respects, this model has
one essential shortcoming: If α ≡ P/N is larger than a crit-
ical value αc ≈ 0.138, it is impossible to store more than P
different uncorrelated patterns. When α > αc, the network
enters a state of complete confusion, every memory is abruptly
forgotten and no pattern can be retrieved. This phenomenon
is known as blackout catastrophe. During previous decades,
several approaches have been proposed to remedy this and
other related issues (see, for example, [6–21]). In particular,
in Ref. [22] it was demonstrated that there is always a kind
of trade-off between an increase of the learning and retrieval
capacity and a certain deterioration of the functionality of a
learning algorithm. For example, αc can be made equal to 1
upon implementing a pseudoinverse rule, instead of the Hebb
training algorithm. A penalty one has to pay is that the former,
in contrast to the Hebb rule, is never incremental and local
only if not immediate. In Ref. [22] a novel local, incremental,
and immediate algorithm has been suggested, which permitted
one to increase αc by a factor of

√
2. In Ref. [23] a different

strategy has been employed in which the standard quadratic
function of the overlap between the patters and the spin con-
figuration is replaced by higher order polynomials. In doing

so, one increases quite substantially the value of αc but has to
keep track of the ensuing multispin interactions.

In this paper, we tackle the problems of a low storage
capacity and of an abrupt transition into a regime of complete
confusion using a different approach, based on a hidden-layer
representation of H. The paper is outlined as follows: In
Sec. II we introduce basic definitions and describe the dynam-
ical learning algorithm. In Sec. III we present our main results.
Lastly, in Sec. IV we conclude with a brief recapitulation of
our findings.

II. MODELS AND TECHNIQUES

The H model [2] describes a system of N binary neu-
rons σi = ±1, i ∈ {1, ..., N}, with a long-range spin-glass-like
Hamiltonian [24],

H[J, σ ] = −1/2
N∑

i, j=1

Ji jσiσ j , Ji j = 1

N

P∑
μ=1

ξ
μ
i ξ

μ
j .

The quenched coupling matrix Ji j is defined according to
Hebb’s learning rule [25], where ξ

μ
i = ±1, μ ∈ {1, ..., P},

i ∈ {1, ..., N} are the P configurations (patterns) that we want
to be able to retrieve. The partition function reads

Z =
∑
{σ }

exp

{
β

2N

N∑
i, j=1

P∑
μ=1

ξ
μ
i ξ

μ
j σiσ j

}
, (1)

where β is the inverse temperature of the system. Recently in
[26] it has been shown that H can be thought of as the result
of a Hubbard-Stratonovich transformation,

Z =
∫ +∞

−∞
. . .

∫ +∞

−∞

P∏
μ=1

dXμ

∑
σ

exp{−βH̃ [ξ, X, σ ]}, (2)
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where the Xμ are P Gaussian auxiliary variables and

H̃ [ξ, X, σ ] ≡ N/2
P∑

μ=1

X 2
μ +

P∑
μ=1

N∑
i=1

σi ξ
μ
i Xμ. (3)

Note that H̃ is extensive since the Xμ variables are typically
of order N− 1

2 (see [26]).
Integrating over the Xμ in Eq. (2) leads back to Eq. (1), and

corresponds to the assumption of complete thermalization of
the Xμ variables. In this work, we follow a different strategy:
We regard the model defined by Eq. (2) as fundamental (X
model from now on), considering the continuous auxiliary
variables as hidden neurons in our system. The hidden neu-
rons enter the learning dynamics on the same footing as the
two-state σ variables, which constitute the input layer of the
network. At T = 0 energy barriers can and do break the equiv-
alence among the two models, making joint thermalization
of the Xμ and σi variables impossible. Numerical simulations
convincingly demonstrate that this has drastic consequences
on the retrieval properties of the system.

At T = 0, the recognition process in the X model is led
by the steepest descent procedure, with sequential updating.
One sweep is composed of two steps. First one fixes all the
Xμ variables to minimize the energy given σi: The optimal
value is known analytically and it is X opt

μ = −(1/N )
∑

i σiξ
μ
i .

We fix all the Xμ to this value. Then one updates all the σi

for fixed {Xμ}. On each site σi is set to ±1, such to minimize
the energy. The two steps are repeated until a local energy
minimum is reached: This is signaled by the fact that no Xμ

and no σi change.
The biological interpretation of the X model differs

markedly from that of H: The structure of the interactions in X
is represented by a bipartite graph, since there is no direct in-
teraction between hidden neurons nor between two-state neu-
rons. Moreover, the strength of the synapses connecting the
two populations is not continuous, but can take only two val-
ues. It is indeed plausible that discreteness in synaptic strength
plays a role in biological systems, since quantized synapses
should be more stable against noise. Such discrete synaptic
strength has been experimentally measured [27] and explored
in many theoretical works (see, for example, [28–30]). An-
other crucial difference between X and H is that the number
of synaptic connections and neurons used in H is entirely
determined by the number N of bits of information contained
in each memory. On the other hand, in the X model the size
of the memories only determines the size of the input layer,
while the number of synaptic connections and the number of
hidden neurons needed to memorize P patterns depends on P.

In what follows we are going to compare the recognition
performance of the two models on the same task, namely
memorizing P = αN patterns, each composed of N bits. This
seems a natural choice, since the two models are identical
at T �= 0 under this condition. Since the two networks are
so different, one could in principle compare them on other
grounds, for example, demanding that they store the same
number of patterns per neuron. Even when we include in the
counting the Xμ degrees of freedom and we redefine α for the
X model accordingly, the comparison is still strongly in favor
of the X model for η = 0, although the advantage shrinks as η

is increased.

Hopfield

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

〈ω
〉

α

N = 8192

η = 0
η = 0.025
η = 0.05
η = 0.1
η = 0.15
η = 0.2
η = 0.25
η = 0.35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

〈ω
〉

α

η = 0

N=8192
N=4096
N=2048
N=1024
N=512
N=256
N=128

FIG. 1. (Left) The average overlap 〈ω〉 as a function of α for
different η values at N = 8192, for H. (Right) 〈ω〉 as a function of α

for different N values at η = 0, for H.

We study both the X model and H for different values of
α, η, and N , with α = 0.05, 0.08, 0.1–0.18 with increments of
0.01, 0.2, 0.22, 0.25, 0.3 (for the X model we have also added
simulations at higher α values, both below and above one).
We have used η = 0, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25,
and 0.35. For both systems we have studied 105 samples for
N = 128 and 256, 2104 samples for N = 512, 103 samples for
N = 1024, 102 samples for N = 2048, 20 samples for N =
4096, and a small variable number of samples (normally of
order 10) for N = 8192.

III. MAIN RESULTS

(a) Finite T Monte Carlo. We first analyzed the finite
temperature structure of both the H and the X model, and
verified that at T > 0 they give the same results. We have im-
plemented an annealing protocol to make this in an effective
and controlled way.

(b) The average overlap 〈ω〉. Next we work at T = 0,
with the steepest descent procedure described above. Here
the X model is allowed to behave differently from H. We be-
gin by measuring the average overlap 〈ω〉 := 〈N−1 ∑

i ξ
μ
i σi〉

between the memorized pattern ξμ in the neighbourhood of
which the recognition process starts and the stable spin config-
uration {σi}N

i=1 where energy minimization ends. The average
is taken over both the many samples collected and the P
memories within a sample.

Our results for H are shown in Fig. 1. On the left, we
use the largest available value of N and plot the values of
〈ω〉 for different values of η. On the right, we select η = 0
and show the N dependence of 〈ω〉. The H model behaves
as expected (see [3]): Increasing N at η = 0 the well-known
transition forms close to α ∼ 0.136, where a vertical dashed
line is drawn. Upon increasing η, the transition moves to lower
values of α, but stays very similar in nature and shape. Even
at our highest value of η = 0.35 (where the overlap of the
starting point with the original pattern is as low as 0.3), at low
α � 0.05 the system is still in the recognition phase. Having
accurate data for large systems, we are also able to use finite
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FIG. 2. As in Fig. 1, but for X.

size scaling for a quantitative analysis of these effects (these
precision measurements could not fit in this article, and will
be reported in a subsequent publication [31]).

As shown in Fig. 2, the behavior of the X model is very
different. In the η = 0 case the sharp transition of H contrasts
with a smooth, nonmonotonous behavior of the X model. At
low α we still get a recognition phase, which persists to higher
values of α than in H (and we will attribute to this effect
some importance). Increasing α we see that 〈ω〉 smoothly
decreases, and reaches a minimum close to α = 0.05. Here,
for N = 8192 we have 〈ω〉 ∼ 0.84, but finite size effects are
strong. Increasing α further, 〈ω〉 starts to grow.

This second, high-α, regime does not correspond to a
recognition phase. To gain some intuition of this, notice that
the number of hidden neurons Xμ in our model is equal to P.
Hence, it is clear that for very large α the Xμ are numerous
enough to satisfy, by themselves, all the constraints of the
problem. In turn, this implies that, as α → ∞, any configura-
tion σ can be accommodated in an energy minimum simply by
relaxing the hidden neurons to their optimal value, making the
dynamic ineffective. The behavior of the system when η > 0
is very telling. As in H, we still have a recognition region at
low α, which shrinks for increasing η. We still have a smooth
decrease of 〈ω〉 for increasing α, and an asymptotic slow
increase that slows down for increasing η. The asymptotic
value for α → ∞ is exactly the initial overlap 1 − 2η (inset
of Fig. 2). This clearly confirms that the large α regime is
not a recognition regime, but rather a regime of ineffective
dynamics. To get a deeper insight about this asymptotic be-
havior, we can use the same technique adopted in [32], and
look into what happens under a step of the steepest descent
dynamics. Consider any binary neuron configuration σ . By
plugging the expression for X opt

μ into the Hamiltonian Eq. (3),
one sees that the change in energy upon flipping σ j , after the
Xμ variables have thermalized to their optimal value given σ

and the patterns ξμ, is

� j H̃ = 2

N

P∑
μ=1

⎛
⎝1 + σ jξ

μ
j

∑
h �= j

σhξ
μ

h

⎞
⎠. (4)
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FIG. 3. The overlap probability distribution P(ω) for different α

values at η = 0 and N = 8192, for H.

The second contribution in the brackets is what one gets for
H (it shows that σ j is pulled by all the memories ξμ, with
a strength proportional to the overlap between the memory
ξμ and σ ), while the additional 1 comes because of the X
variable interaction. It is a memory independent constant price
that one has to pay, due to the fact that we are flipping a
spin “against the will” of the Xμ, which were optimal for σ .
This effectively introduces a threshold in the dynamics of σ ,
and a stabilizing effect for the configuration of the binary
neurons. This stabilizing effect dominates the dynamics in
the high α region, making every configuration stable, and the
network useless. On the contrary, and we take this as one
of our important findings, the presence of the Xμ degrees of
freedom helps the learning in the small α regime, enlarging
the recognition region as compared to H, and, what is maybe
even more important, eliminating complete confusion for α

larger than a sharp threshold.
(c) The probability distribution P(ω). Even if 〈ω〉 is giving

us a good amount of information, it is appropriate to ana-
lyze the behavior of the full probability distribution P(ω). In
Fig. 3 we show P(ω) at η = 0 for different values of α, for
H. From left to right and from top to bottom we plot P(ω)
for increasing values of α. The horizontal scales of the four
frames are very different. Plots are in the linear-log scale. We
first show (top left) results for the low values of α, where P(ω)
is concentrated close to ω = 1. Going right from there we plot
again α = 0.13, to show that, just below the critical point, a
few points are already at low overlap. The number of these
points decreases as N increases. In the bottom left frame we
have α = 0.14 where, as expected, we have a bi-modality. The
peak close to 1 is, at this value of N , still leading (remember
that the y scale is a log scale), but a peak at ω ∼ 0.30 has
appeared. On the right we have the high values of α. Now the
low ω peaks start to dominate. Their location is very stable,
and only shifts very lightly.

In Fig. 4 we analyze the case η = 0.25 for H. After a
rescaling of the value of α everything is analogous to η = 0.
The position of the low ω peak is again remarkably constant.
The only clear difference is that here at high-intermediate
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FIG. 4. As in Fig. 3, but for η = 0.25.

α value a three peaks structure is visible (there is a clear
peak at high ω < 1). All together, we find for the structure
of H exactly what we expected.

As we show in Fig. 5, things are again very different for the
X model. Here we only need two frames for each value of η to
clearly show our data. In the X model we do not see any trace
of bi-modality, but only a smooth behavior. For both η = 0
and η = 0.25 at low α we see that the mass of the distribution
is centered close to 1. When α increases the distribution first
shifts to lower α values, and eventually to larger ones, its N →
∞ limit developing a narrow peak and being centered at 1 −
2η.

(d) The recognition rate. In order to get further insight,
we define the recognition rate ρ as the probability that a
minimization run ends with ω � 0.967 [3]: The threshold for
recognition is ε = 1 − 0.967 = 0.033. In H, that undergoes a
sharp transition, selecting a different threshold would give the
same asymptotic result. We show in Fig. 6 ρ as a function of
α, both for the H and X model, for η = 0 in the left frame
and for η = 0.15 in the right one. Even if, as we have seen in
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FIG. 5. The probability distribution P(ω) for different α values
at η = 0 and η = 0.25, for X.
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FIG. 6. Comparison between the recognition rate ρ as a function
of α in H and X, for different N values, at η = 0 and η = 0.15. The
recognition threshold is ε = 0.033.

detail, the two models work very differently, the plots for the
H and X model are similar, both at η = 0 and at η > 0. The
X model has a wider learning phase. We can say that there is
a very low α regime where the new X variables are irrelevant
since they are not needed for recognition, and a very large
α regime where they fix the system on the observed pattern,
but cannot lead to recognition. Only in the region where α is
slightly larger than αc, they are put to good use, and help in
the memorizing. Also, when α increases, they avoid complete
confusion: The X memory becomes less efficient if too many
patterns are shown, but the blackout catastrophe is avoided.

(e) The dynamical exponent. We have also analyzed how
the computational cost of the recall process scales with N .
We assume that the number of sweeps S needed to reach the
stable state scales asymptotically as Nζ , plus N-dependent
subleading corrections [33–40]. In a sweep we include, for
the X model, both the cost of putting the Xμ in their optimal
position and the cost of updating every σi once. In the absence
of any slowing down we expect to find ζ = 0. We define an
effective exponent dependent on two values of N as

ζ (N1, N2) ≡ log(S (N1 )/S (N2 ) )/ log (N1/N2). (5)

The effective exponent ζ (N1, N2) is a finite size estimate of ζ

and asymptotically for large N1 and N2 one has ζ (N1, N2) −→
ζ . In Fig. 7 we show ζ (N1, N2) as a function of α for H. On the
right η = 0 and different couples of N are considered; on the
left we consider different η values, using N1 = 4096 and N2 =
8192. The effective exponent for η = 0 is small at small α, and
develops a narrow peak of value close to one at αc. The peak is
becoming narrower as the lattice size increases, and is already
very thin when we consider our largest systems, with N1 =
4096 and N2 = 8192, suggesting that its asymptotic width is
zero. For α > αc the exponent plateaus, at a value close to
0.6. As expected H is critically close to αc. The situation for
η > 0 is similar, but that at η = 0.35 where a sizable critical
peak cannot be detected anymore.

In Fig. 8 we have the same plot for the X model and,
again, here the situation is different. There is still a peak at
low α (although larger than αc), but the N dependence does
not suggest an asymptotically null width (even though one
would need very large values of N to make sharp claims about
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FIG. 7. (Left) The effective exponent ζ (4096, 8192) as a func-
tion of α for different η values, for H. (Right) The effective exponent
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η = 0, for H.

this). Also the peak at η > 0 is very different from H, and the
effective exponent has a smooth slow decay for large α.

IV. CONCLUSIONS

In this letter we have discussed how the introduction
of hidden layers in the Hopfield model leads to interesting
new features in the zero-temperature associative memory per-
formance. In our model, the probability distribution of the
overlap as well as its average value differ markedly from the
ones in the Hopfield model. As a consequence, the recogni-
tion performance is improved. What we find really crucial is
that the interaction between visible and hidden neurons has
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FIG. 8. As in Fig. 7, but for X.

a stabilizing effect on the zero-temperature dynamics, which
prevents the blackout catastrophe: The system does not forget
everything above a sharp threshold αc. This, together with the
smaller value of the dynamical scaling exponent, implying a
faster recognition process, suggests that our atypical hidden
layers may considerably improve the functioning of Hopfield-
like neural systems. This opens an interesting perspective for
further research in the field of associative memory.
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