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Abstract

Understanding the processes that led Venus to its current state and will drive its future evolution is a major
objective of the next generation of orbiters. In this work we analyze the retrieval of the spin vector, the tidal
response, and the moment of inertia of Venus with VERITAS, a NASA Discovery-class mission. By simulating a
systematic joint analysis of Doppler tracking data and tie points provided by the onboard synthetic aperture radar,
we show that VERITAS will provide accuracies (3σ) in the estimates of the tidal Love number k2 to 4.6× 10−4, its
tidal phase lag to 0°.05, and the moment of inertia factor to 9.8× 10−4 (0.3% of the expected value). Applying
these results to recent models of the Venus interior, we show that VERITAS will provide much-improved
constraints on the interior structure of the planet.

Unified Astronomy Thesaurus concepts: Venus (1763); Solar system terrestrial planets (797); Orbit determination
(1175); Planetary interior (1248); Planetary structure (1256); Remote sensing (2191); Planetary science (1255)

1. Introduction

The most comprehensive mapping of Venus was done by the
Magellan mission in the early 1990s (Saunders et al. 1992).
Magellan employed a combination of data from Doppler tracking
and S-band Synthetic Aperture Radar (SAR), an altimeter and
radiometer to make nearly global observations of the surface of
Venus (Ford & Pettengill 1992). Magellan observations led to the
most accurate in situ estimate of the planet’s spin axis orientation,
sidereal rotation period (Davies et al. 1992; see also Campbell et al.
2019 for a summary of several other observation campaigns),
gravity field, and tidal response (Konopliv et al. 1999; Konopliv &
Yoder 1996). The Magellan estimates, however, proved not
sufficiently precise to constrain the structure of the mantle and
core. As shown in Dumoulin et al. (2017), current estimates of the
tidal response do not distinguish between a liquid and solid core,
and the absence of a measurement of the tidal phase lag prevents
us from inferring the viscous response of the interior. Until
recently, models of Venus’s interior relied solely on scaling Earth’s
interior structure to Venus’s radius (e.g., Yoder 1995; Aitta 2012).
A recent direct (ground-based) measurement of the moment of
inertia factor (MOIF=C/MR2, where C is the polar moment of
inertia and M and R are the planetary mass and radius,
respectively) yields 7% fractional uncertainty and provides weak
constraints on the internal density profile and core size (Margot
et al. 2021). Improved measurements are needed to quantify the
interior structure of Venus with precision.

The Venus Emissivity, Radio science, INSAR, Topography
And Spectroscopy (VERITAS) mission (Freeman & Smrekar
2015; Smrekar & the VERITAS science team 2021) is a
partnership led by NASA/JPL between US scientists and
engineers, with strong collaborations and contributions of the

German, Italian, and French Space Agencies. On 2021 June 2
NASA definitively selected VERITAS as one of the two winners
of the Discovery 2019 competition. The launch is expected in the
2028–2030 time frame.
A key scientific objective of VERITAS is understanding the

links between the interior, surface, and atmospheric evolution.
The determination of the tidal response, tidal phase lag, and
MOIF is specifically focused on pushing forward our under-
standing of the Venus interior. VERITAS will carry two
science instruments: VISAR (Venus Interferometric Synthetic
Aperture Radar), the X-band interferometric radar (Hensley
et al. 2020); and VEM (Venus Emissivity Mapper), an infrared
spectroscopic mapper (Helbert et al. 2020). Data from VISAR
will be combined with two-way dual X- and Ka-band Doppler
tracking data provided by the onboard telecom subsystem
collected for the gravity science investigation and used to
improve estimates of the Love number k2, the tidal phase lag
dk2

, and the MOIF in order to constrain the structure of the
Venus interior.
Arriving at Venus after a 6-month cruise, VERITAS will

begin an 11-month aerobraking phase, paused after 5 months
for 5 months of VEM science observations, before continuing
to its final nearly circular polar orbit (180× 255 km in altitude,
∼85°.4 inclination, period ∼1.5 hr). VERITAS plans to operate
for 4 Venus sidereal days (or four cycles, 243 Earth days each),
providing a nearly global coverage of the planet for all its
investigations (gravity science, VISAR, and VEM).
The goal of this work is to simulate the operational scenario

of VERITAS’s gravity experiment to assess the accuracy in the
estimate of k2, dk2, and MOIF. In our work, alongside a typical
orbit determination solution employing Earth Doppler tracking
data, we explore a novel approach based on the systematic
inclusion of VISAR landmark features observations, or tie
points, to tighten the determination of the rotational state of
the planet. The simulations presented here, moreover, represent
the first assessment of the impact of recent advancements in the
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understanding of Venus’s atmospheric dynamics, namely, the
gravitational signature of atmospheric tides (Bills et al. 2020)
and short-term sidereal period oscillations of the solid planet
due to the transfer of atmospheric angular momentum (Margot
et al. 2021).

In Section 2 we describe the concept and the assumptions
used in our simulations for both Doppler and radar measure-
ments (Sections 2.1 and 2.2, respectively) and their combina-
tion (Section 2.3). In Section 3 we discuss the simulation setup
and observational scenario. In Section 4 we present and discuss
the results of the simulations. Section 5 follows with
concluding remarks. This manuscript is complemented by six
appendices.

2. Data and Methods

It is well known that the sole knowledge of the gravitational
field is not enough to infer the moments of inertia of a planet,
which provide crucial constraints on its interior structure. To
constrain the inertia tensor of a body, the gravity field
information must be complemented by measurements of the
rotational state. Precise Doppler tracking data, the primary
observable quantity for gravity field recovery, are quite
sensitive to the rotational state of the planet, but the attainable
accuracy can be improved by augmenting the analysis with
surface feature tracking. The latter provides direct observations
of the rotational motion of the planet by measuring the inertial
displacement of physical features located on the planet’s
surface. In this work, we make use of a novel approach
(building on the technique proposed by Davies et al. 1992;
Chodas et al. 1992) to combine Earth-spacecraft Doppler
tracking data and repeated surface landmark observations (tie
points) provided by the onboard interferometric SAR.

2.1. Spacecraft Doppler Tracking

Doppler measurements are the primary observables for
reconstructing the orbit of the spacecraft and recovering the
gravity field of a planet. These measurements are collected by
recording the Doppler shift of a radio signal sent from the ground
station to the spacecraft, which then coherently retransmits it back
to Earth by means of an onboard transponder (two-way
configuration). VERITAS’s Doppler tracking system, with its
heritage from ESA’s BepiColombo (Iess et al. 2009, 2021), is able
to establish two simultaneous coherent radio links in the X
(7.1–8.5 GHz) and Ka (31.8–34.7 GHz) bands and to provide
measurements of the range rate of the probe with an average
accuracy of 0.01mm s−1 (Ka band, 60 s integration time) under
nominal operational conditions (Cappuccio et al. 2020). The dual-
link configuration can be used near superior solar conjunctions to
suppress about 75% of the noise due to charged particles in the
solar corona (Bertotti et al. 1993). In addition, the tracking system
is capable of range measurements at the level of 2–3 cm at Ka
band (Cappuccio et al. 2020).

The operational scenario of VERITAS consists of five to
seven Doppler tracking passes a week, collected by NASA’s
Deep Space Network (DSN) ground stations. The VERITAS
observation schedule entails approximately a daily contact to
ground for 8 hr, as well as 16 hr of VISAR observations. For
the gravity experiment we simulate 8 hr passes for 5 days a
week collected by DSN station DSS 25 (Goldstone, CA). The
integration time of the Doppler observables is set to 10 s,
corresponding to a displacement of the spacecraft of ∼70 km

on the surface, which is sufficient to resolve gravity field
features as small as 190 km after four cycles or l> 100 globally
(the high-resolution gravity mapping results are beyond the
scope of this work and will be published separately; for
preliminary results refer to Mazarico et al. 2019).

2.2. Radar Observations and Tie Points

VISAR is an X-band interferometric radar operating at
7.9 GHz (3.8 cm wavelength) and has a 20MHz bandwidth
from which radar imagery with 30 m ground resolution pixels
and topographic data with 250 m spatial resolution and 5 m
elevation accuracy is produced. The radar acquires data with a
look angle of 30° (angle between the antenna boresight and
spacecraft nadir) and images a swath width of 14.4 km (for the
VISAR flight configuration and observing geometry see Figure
1 in Hensley et al. 2020). After an orbital period, planetary
rotation shifts the VERITAS ground tracks by ∼10 km; thus,
the swath width provides more than 2 km of overlap between
swaths acquired on adjacent orbits, enabling coherent mapping
of Venus’s surface. Radar data are collected on 11 out of 16
orbits per day and downlinked to Earth on the remaining 5
orbits, when two-way X- and Ka-band tracking data are
acquired. Therefore, radar and Doppler data are not collected
simultaneously.
VISAR transmits pulses and records the received echoes to

generate images of the backscatter signal from the surface. To
achieve fine resolution in the radar along-track or azimuth
direction, SAR image formation combines echoes from multi-
ple pulses when a point is illuminated by the radar antenna
beam. The pixel location in a radar image is determined by
the range, i.e., distance from the platform to the pixel, and the
Doppler frequency, i.e., projection of spacecraft velocity on the
line of sight. For Venus, the range, derived from the delay
between pulse transmit time and echo return time, must be
corrected for the delay induced by the thick Venus atmosphere.
Atmospheric contribution amounts to 200–400 m of additional
range, depending on the pixel elevation and imaging geometry.
Since VISAR is an interferometer, it solves for the three-
dimensional position of each pixel using the range, Doppler,
and interferometric phase from two spatially separated
antennas.
Surface features (landmarks) imaged on multiple orbits can

be identified using automated matching software. The relative
range and Doppler measurement errors depend on how
accurately imagery acquired from different orbits can be
matched. SAR image matching is hindered by speckle that
results in a grainy appearance due to the coherent nature of
imaging and from differences in imaging geometry, either
incidence angle or look direction. Matching accuracy is a
function of the image signal-to-noise ratio, the number of looks
used to reduce both speckle and thermal noise, imaging
geometry differences, and the amount of scene contrast (see
Appendix A.1).
Identification of radar tie points will use an automated scene

matching algorithm. The automated matching algorithm
computes the cross-correlation for a search window that covers
the largest expected offset due to ephemeris errors. To account
for the spatially variable nature of the matching accuracy and
the consequent range and Doppler measurement error, we
adopt the match covariance matrix used in the automated
matching algorithm to estimate the matching accuracy (Frankot
et al. 1994). We tune the matching metric based on match
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accuracy statistics from Magellan stereo data that covered
approximately 20% of the surface (see Appendix A.1).

The average accuracy of the range and Doppler observations
of each radar tie point is 3 m and 10 Hz, respectively, derived
from an average 0.2 pixel matching accuracy using a 32× 32
matching window of 30 m resolution pixel imagery, where
each pixel corresponds to 15 m of range and 40 Hz of Doppler.

To include radar tie points in our simulations, we generated a
simulated data set of radar observations. Two types of radar tie
points were simulated. The first type (local tie points) is
observed in the swath overlap region of adjacent orbits. These
measurements permit better orbiter trajectory determination by
providing constraints between adjacent orbits when VERITAS
is not tracked by the DSN. The second type of radar tie points
are the so-called global tie points. A point on the surface can in
principle be imaged up to eight times (excluding swath
overlaps, i.e., local tie points) during the four-cycle mission:
one time each on the descending and ascending passes, for each
of the four cycles. Each observation is separated by half a
Venus sidereal period, thus enabling us to place tight
constraints on the inertial motion of surface features, directly
related to the rotational state of the planet. The landmarks are
defined in the Venus body fixed frame (see Appendix A.2).

For the simulation, we placed landmarks on a latitude/
longitude grid with approximately 150 km spacing separating
points in both directions. We exclude orbits that are used for
data downlink, in solar conjunction or in power-restricted orbits
where data are not collected. A total of 967,605 tie points could
be obtained from a set of 387,382 unique landmarks, but we
apply downsampling in the simulations (Section 3).

2.3. Joint Inversion

Our approach consists of a systematic joint inversion of both
Earth Doppler tracking and VISAR tie point data sets for the
simultaneous retrieval of gravity, rotation, tidal response of
Venus, and the location of the geodetic control network
composed by the tracked landmarks. The simultaneous solution
for the spacecraft orbit and the landmark positions allows us to
place tight constraints between the planetary body fixed frame
and the inertial frame, increasing by an order of magnitude the
sensitivity (as shown in Section 4) to the rotational state of the
planet. Differently from what was done for Magellan (e.g.,
Davies et al. 1992), in our work we do not solve separately for
the spacecraft ephemerides and the landmark positions, or
apply the joint inversion to only a limited subset of orbits. For
the first time, we implement the joint inversion of the two data
sets for the full gravity and rotation solution in a systema-
tic way.

A two-step solution (i.e., the preliminary inversion of the
tracking data and the subsequent inversion of the tie points)
suffers the unescapable problem of the propagation of the
orbital reconstruction errors in the geodetic control network
solution, causing systematic errors that are difficult to evaluate
and mitigate. The single-step solution adopted in this work,
where Doppler data and tie points are jointly processed,
overcomes this problem. An important aspect that needs to be
emphasized is that with this approach no a priori information
regarding the landmark registration accuracy is required. The
accuracy of landmark position recovery is directly estimated in
the inversion process.

The substantial increase in sensitivity becomes an efficient
way to overcome the limitations for future high-precision

gravity and rotation experiments at Venus due to atmospheric
tides (Bills et al. 2020) and high variability of the sidereal
period, recently observed by Margot et al. (2021). Both these
aspects require a precise tying of the spacecraft orbit to the
rotational motion of the planet. The tie point inclusion gives
robustness to the solution by providing a direct observation of
the rotational motion.

3. Numerical Simulations

To assess the capabilities of VERITAS to retrieve the
rotational state, Love numbers, and MOIF, we conducted an
extensive set of numerical simulations replicating the nominal
operational scenario of VERITAS.
We assessed the capabilities of VERITAS through a

covariance analysis. Using the JPL orbit determination soft-
ware MONTE (Evans et al. 2018), we integrate the trajectory of
the probe, generate synthetic Doppler and VISAR data
according to the assumptions outlined in Sections 2.1 and
2.2, and superimpose white Gaussian noise. To account for the
noise variability observed by Cappuccio et al. (2020), we draw
the noise level for each arc from a uniform distribution ranging
between 0.015 and 0.038 mm s−1 for Earth-spacecraft Doppler
tracking. The noise assigned to the radar tie points is 3 m and
10 Hz in range and Doppler, respectively. We then combine all
the data in a least-squares filter (ORACLE) developed at
Sapienza University and validated with several space missions
(e.g., Iess et al. 2018). The filter implements a multiarc
approach that is best suited for data analysis of long-duration
gravity experiments (e.g., Durante et al. 2020; Mazarico et al.
2014; Konopliv et al. 2013).
We randomly downsampled the full set of simulated

landmarks to ∼12,000 and constructed both global and local
tie points. The choice of simulating only a subset of landmarks
is supported by two arguments. First, observations of a
landmark-dense area might be highly correlated. Selecting
only well-spaced points supports the assumption that the
observations are statistically independent, therefore simplifying
the analysis. Second, the outcome of the simulation can be
considered a conservative estimate of what would be possible if
the entire data set is processed (for a discussion on the
influence of the number of measured landmarks, refer to
Appendix A.3).
The dynamical model used to propagate the spacecraft

trajectory includes the monopole gravitational acceleration of
all main solar system bodies, a degree and order 50 static
gravity field of Venus (derived from Konopliv et al. 1999, we
limit the spherical expansion to degree 50 since higher degrees
have negligible effects on the parameters of interest), the tidal
response to the Sun, the nongravitational accelerations due to
solar radiation pressure and atmospheric drag, and wheel
desaturation maneuvers. To account for possible mismodeling
of the nongravitational forces, we employ a large set of
empirical accelerations with conservative a priori uncertainties
(see Appendix A.4).
Our model also includes atmospheric tides, as the spacecraft

tracking system will be sensitive to their effect (Goossens et al.
2018; Bills et al. 2020). The numerical results we report in the
next paragraphs are based on the assumption of a knowledge of
the atmospheric tidal model with 10% accuracy. Atmospheric
tide modeling and the effect of the assumed a priori knowledge
on the final results are discussed in Appendix A.5.
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According to recent observation campaigns of the Venus
rotation rate (Margot et al. 2021), the complex coupling
between the atmosphere and the planet results in sidereal period
variations significantly larger than what was predicted by
general circulation models (GCMs; Lebonnois et al. 2010;
Cottereau et al. 2011), leading to variations of the sidereal
period up to ∼3 and ∼20 minutes over timescales of 1 Earth
day and 117 Earth days, respectively. If not correctly modeled,
these variations induce an error in the longitude positioning of
surface features that grows in time. We accounted for this
perturbation in our simulations by estimating a sidereal period
every 2.5 days, setting the conservative a priori uncertainty
value of 20 minutes over one arc. For the full set of estimated
parameters and the detailed filter setup and assumptions, refer
to Appendix A.4.

4. Results and Discussion

Table 1 reports the uncertainties (all results in tables and text
are given as three times the formal uncertainty, or 3σ)
attainable for the Venus rotational parameters, the Love
number, and the MOIF in the nominal VERITAS mission
configuration for two cases: Doppler tracking data only, and
Doppler tracking data combined with VISAR observations.
The inclusion of VISAR tie point measurements in the orbit
determination enables a large improvement in the determina-
tion of the rotational state of Venus, not attainable with
Doppler data alone. The tie points increase the accuracy in the
pole location and MOIF by about a factor of 10, while a smaller
improvement (∼3) is found on k2 and its tidal phase lag.

The current estimate of Venus Love number (0.295± 0.066,
2σ; Konopliv & Yoder 1996), coupled with the lack of a magnetic
field, does not resolve a liquid or solid core (Dumoulin et al. 2017;
see Figure 1). The analysis by Dumoulin et al. (2017) indicates that
the state of the core and its size, the mantle composition, and the
viscous response of the interior, or rather different classes of
interior conditions, can be well constrained with a knowledge of
k2 to an accuracy smaller than 3% (0.01, the 1σ VERITAS
requirement) and a precise measurement of the phase lag
(VERITAS has a 1σ requirement of s = d 0 .25k2 ). In this work
we assume the classical definition of the tidal potential phase lag
(Murray & Dermott 2000), adopted also in the models by
Dumoulin et al. (2017).

Thanks to the augmentation provided by VISAR tie points,
our simulations show that VERITAS will be able to determine
these tidal quantities with an accuracy substantially better than
these threshold values (see Table 1). With the joint processing
of radio tracking data and radar tie points, the right ascension
and declination of the pole (α0 and δ0) can be determined with
an accuracy increased by an average factor of 10, improving
the results obtained by Magellan by more than 100 times and
the ground-based observations (Margot et al. 2021) by more
than an order of magnitude. A comparable improvement is
found for the obliquity ò (σò= 0.12 arcsec). The considerable
improvement with respect to Magellan is mainly due to the
more favorable VERITAS orbital geometry, the longer time
span of the gravity observations, and the substantial improve-
ments in the end-to-end radio tracking performance (the use of
Ka-band, dedicated instrumentation for media calibration, for
both charged particles and tropospheric water vapor, and open
loop ground receivers). The use of radar tie points also leads to
substantial improvements in orbit determination, and hence in
the gravity and rotational state recovery (see Table 1).
VERITAS will also measure the pole precession rate Ω and
derive the MOIF. Assuming that the spin axis of Venus
precedes in a conical motion about the orbit normal (as detailed
in Appendix A.6), the precession rate can be determined to a
level of 3.6× 10−3 deg century−1. The corresponding relative
uncertainty in the MOIF is 0.3% of its predicted central value
(0.336; Cottereau & Souchay 2009). The accurate measurement
of the MOIF provides an additional, strong constraint to models
of the Venus interior, by reducing the uncertainty in the density
of the core and the mantle, considering the core size as
constrained by k2 (see discussion below). As is well known
(see, e.g., Bills & Rubincam 1995), MOIF alone cannot
uniquely determine the interior structure, even for a two-layer
model of the interior. Nonetheless, it is a crucial constraint to
every geophysical model of Venus interior.
Based on current models (Dumoulin et al. 2017), the constraints

on k2 and dk2
can determine the core state and distinguish different

classes of interior conditions. For example, if the core is fluid with
an Earth-like composition, the core size can be obtained to within
100 km and average mantle viscosity to within an order of
magnitude (see Figure 1). The latter value strongly depends on the
temperature distribution and the volatile content in the mantle and
therefore provides information about the heat and volatile loss of

Table 1
Results of the Numerical Simulations

Parameter
Current Uncertainty from

Observations Source Earth Doppler Only
Earth Doppler + Tie

Points
Tie Point Improvement

Factor

α0 (arcsec) 3 Margot et al. (2021) 2.7 0.26

δ0 (arcsec) 2.5 1.5 0.15

ò (arcsec) 3 1.2 0.12 ∼10

Ω (deg century−1) 9.2 × 10−2 3.8 × 10−2 3.6 × 10−3

MOIF 2.4 × 10−2 1.0 × 10−2 9.8 × 10−4

k2 6.6 × 10−2 Konopliv &
Yoder (1996)

1.3 × 10−3 4.6 × 10−4 ∼3

dk2 (deg) L L 1.20 × 10−1 4.5 × 10−2

Note. We report the uncertainties in the two cases of Doppler only and Doppler + tie point analyses (three times the formal uncertainty). The tie point improvement
factor is the ratio between the uncertainties obtained without and with the inclusion of VISAR data.
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the planet. For example, a warm and wet mantle, representative of
a planetary interior that has not cooled much and has lost little of
its original water, has a low viscosity, while a cold and dry mantle,
representative of an efficiently cooled and outgassed interior, has a
high viscosity. These two extreme models would differ in
viscosity by several orders of magnitude and could be
distinguished by the measurement of the phase lag.

Different formation scenarios lead to different compositional
models based on cosmochemical assumptions and trends
among Earth-like planets to model the interior of Venus. A
major difference in the models is the FeO content of the mantle,
which can vary between 0.42 and 18.7 wt.%. This results in
different values of MOIF ranging between 0.33 and 0.342
(∼3% variation), with otherwise the same assumption about the
thermal state and the core composition (Dumoulin et al. 2017).
In addition to k2, knowledge of the MOIF with an accuracy of
0.3% will therefore further help to distinguish the mantle
composition models.

The amount of light elements in the core, particularly
important for a better understanding of Venus’s magnetic field
evolution and also informative about Venus’s conditions
during core formation, is not known. The two parameters
together, k2 and MOIF, help to better distinguish the models as
has already been shown, for example, for Mars (Rivoldini et al.
2011; and recently confirmed with InSight seismic data by
Stähler et al. 2021), and thus better than in the models of

Dumoulin et al. (2017), for which MOIFs were assumed to be
unknown. The information about the density distribution from
the MOIF is not unique, i.e., for the same MOIF the core can be
small and dense or relatively larger and lighter. If the core of
Venus is liquid, the core size can be constrained independently
with k2 and core density can be constrained in combination
with the MOIF. The inverse problem of interior structure
determination is degenerate, and thus different models can lead
to the same values of MOIF, k2, and dk2

. Different models,
however, are not equally physically likely, and their selection
will rely on additional constraints arising from planetary
geology and geophysics as has been done, e.g., on Mars
(Rivoldini et al. 2011), Mercury (Genova et al. 2019), or the
Saturn satellites (Durante et al. 2019).
All these fundamental quantities, such as core state, size and

composition, and mantle composition and viscosity, are
necessary to understand the formation of Venus and its thermal
and magnetic evolution. They serve, for example, as inputs
(core radius and core and mantle composition) or constraints
(core state and present effective mantle viscosity) for modeling
core and mantle processes and the thermal and magnetic
evolution (e.g., O’Rourke et al. 2018).
Additional simulations (Appendix A.5) show that even under

the very conservative assumption of an atmospheric tidal model
with an uncertainty of 100%, the joint solution approach
guarantees the insensitivity of the rotational state solution (and

Figure 1. The required uncertainty on Love number k2 and the tidal phase lag to constrain core radius and mantle viscosity as defined by the VERITAS mission
requirements (right green box) is compared with the experiment capability (left green box, here shown at 3 times the formal uncertainty), showing the possibility to
constrain the interior structure of Venus in the particular case of a fluid core with Earth-like composition. The black lines represent the error bars of the models by
Dumoulin et al. (2017).
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thus the MOIF) to the atmospheric tide. The tidal quantities (k2,
dk2

) are still determined within the mission requirements with
significant margin (see Table A2).

Based on the recent findings of Margot et al. (2021), and
considering the high accuracy of the VERITAS tracking system, a
constant sidereal period over the mission duration can no longer
be assumed, as was done in the Magellan data analysis (Davies
et al. 1992). We tackle the problem of the irregular rotation rate by
estimating an average sidereal period every 2.5 days. The
uncertainty in the estimated rotation period by processing data
acquired in 2.5 days is approximately 9minutes. Although this
uncertainty is larger than the maximum observed variation over 1
Earth day by Margot et al. (2021; about 3 minutes), VERITAS
will be able to measure variations of the sidereal period over
longer timescales. Indeed, the uncertainty in the sidereal period is
with good approximation inversely proportional to the time span
of the observations. With the aforementioned retrieved uncer-
tainty, VERITAS would be able to distinguish 3-minute variations
over 8 days. Variations of 20minutes over 117 days (Margot et al.
2021) will be measured to good accuracy by VERITAS. The joint
inversion approach proves to be extremely valuable here as well:
with Doppler data only, the achievable accuracy of the 2.5-day-
averaged sidereal period increases to 43minutes. We point out
that although short-term variations of the sidereal period (length of
day) result in variations of the longitudinal position of the
landmarks, the spin axis solution is robust. If ri(t) is the position of
a landmark in the Venus-fixed, Venus-centered frame at time t,
then the spin axis w is determined by the orthogonality condition
w - =· ( ( ) ( )) r t r t 0i n i m . Any small error in the longitude of the
landmarks does not affect the orthogonality condition, in the
presence of a slow precession. Thus, it is only the latitudinal
position of the landmarks that affects the determination of the pole
position.

As a by-product of the estimation process, we can refine the
location of all observed landmarks and in particular the ones
contributing to the global tie points, thus providing the backbone
of an accurate geodetic control network. The median values of the
recovered global landmark position accuracy in altitude, latitude,
and longitude (mapped on the reference surface of Venus) are
Malt= 3m, Mlat= 7m, and Mlon= 6m, respectively. The deter-
mination of the landmark positions also enables the retrieval of the
radial displacement associated with the tidal forcing, parameter-
ized by the Love number h2. This tidal Love number has so far
only been measured from orbit only for the Moon (Mazarico et al.
2014) and Mercury (Bertone et al. 2021). The retrieved
uncertainty for VERITAS s =( 0.15h2 , equivalent to∼10 cm of
maximum radial displacement) corresponds to a relative uncer-
tainty on h2 (predicted value of 0.45–0.75; Dumoulin et al. 2017)
of 20%–33%. While the relative uncertainty is not sufficient to
constrain interior models, it will serve as an additional check.

The inclusion of tie points improves the orbital solution by
providing observability during periods in which the spacecraft
is not tracked from Earth. This aspect is particularly important
for providing a uniform positional coverage along the orbit and
giving robustness to the determination of physical effects such
as atmospheric drag, whose variability cannot be predicted with
enough accuracy by a deterministic a priori model. The denser
availability of orbit-related data is also the reason for a slight
improvement in the retrieval of the low-degree gravity field,
since the nearly continuous orbital coverage allows a better
resolution of the large spatial scales (i.e., low degree) of the
planetary gravitational field.

5. Conclusions

By simulating the nominal mission scenario, we show that
the VERITAS mission to Venus, planned for launch in
2027–2028, has the capability to determine crucial parameters
(tidal Love number k2 and MOIF) needed to substantially
improve models of the planet’s interior structure. The precise
characterization of the tidal response of Venus via the
measurement of its complex Love number will allow us to
place improved constraints on the state and size of the core and
on the viscous response of the planet to tidal stresses, such that
different classes of interior conditions can be obtained. We
show that our data analysis approach, where Doppler tracking
data and radar tie points are jointly processed, is extremely
effective in the determination of the rotational state of the
planet and the moment of inertia factor. It pushes further the
possibility of understanding of the dynamical evolution of
Earth’s neighboring planet. In particular, the determination of
k2 and MOIF together will help better constrain the core size, as
well as the core and mantle composition. These constraints are
the first-order information necessary to address the question of
why Venus lacks a dynamo. Models of interior structure,
temperature, and composition compatible with the measure-
ments (k2, dk2, and MOIF) would provide the present-day
boundary condition for thermal evolution models of Venus.
The current dearth of information on these fundamental
characteristics of Venus’s interior precludes meaningful
comparisons between the different evolutionary paths of Venus
and the other bodies of the inner solar system. Understanding
the present-day state of Venus’s interior and its past evolution
will offer valuable clues as to how and why Venus evolved into
an uninhabitable planet.
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Appendix

A.1. Tie Points Simulation

The match covariance matrix is given by

s s= +- -( ) ( )M k H H A I H2 , A1.1c n w ncov
1 2 1

2
4 1

where kc is an empirical constant inferred from Magellan match
statistics, I is the identity matrix, and H is the Hessian of the
match correlation function ( )c x y, . For a given image offset
( )x y, the Hessian is given by

=

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶
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Aw is the area in pixels of the matching window, and σn is a
measure of the backscatterer difference between the two images
in the matching window

ås =  - -  -  + 
Î

[ ( ) ( ) ( )]
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I x I I x o I o
1

2
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A1.3

n
w
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where ( )I x1 and ( )I x2 are the pixel intensities for the two
images at position x , o is the offset vector between the
images, and I1 and ( )I o2 are mean intensities in the match
window. We approximate the correlation function for a good
match by the product of sinc functions given by

p
s

p
s

= ⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )c x y

x y
, sinc

2
sinc

2
, A1.4

m mx y

where smx and smy are the matching accuracy in pixel in the x-
and y-directions. Differentiating Equation (A1.4) twice and
evaluating at the peak yields

=
-

-

p
s

p
s

⎡
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⎥
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0

0
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2
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where smx and smy are given by

s
s

s
= -

+

´

´ ( ) ( )
/

k
1

, A1.6m m

N

1

2
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10 10
1 1

S N

q q

L

where =q x y k, , mq are empirical parameters based on
Magellan match statistics, S/N is the signal-to-noise ratio, NL

are the number of looks (number of single look pixel intensities
averaged together in a 30 m multi-looked pixel to reduce
thermal and speckle noise), s ´10 10 and ss ´10 10 are the mean and
standard deviation of the backscatter in a 10 × 10 pixel
window centered at the match point obtained from Magellan
imagery, and

s
= ´ ( )/S N

NES0
, A1.710 10

where NES0 is the radar noise equivalent sigma naught
(backscatter value where the S/N equals 1). To obtain an
approximate value for sn

2, we use

s s
s

s
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where ks is an empirical value derived from Magellan match
statistics and sv is the mean X-band backscatter value for
Venus, roughly –10.5 dB.

A.2. Uncertainty on Venus’s MOIF from Pole Precession
Measurements

The torque of the Sun on Venus determines the precession of
its spin axis in a conical motion about the orbit normal. The
precession rate Ω is

w
W = ( )n J

k

3

2
cos , A2.1

2
2

where J2 is the unnormalized degree 2 zonal coefficient of the
gravity field of Venus, k is the MOIF, ω is the sidereal spin rate,
n is the mean motion, and ò is the obliquity (angle between spin
axis and orbit normal). If a measurement of the precession rate
of the spin axis is available, Equation (A2.1) can be used to
estimate the MOIF of the planet. The precession of Venus,
deduced from Equation (A2.1), has a period of ∼29,000 yr
(Cottereau & Souchay 2009) for reasonable ranges of MOIF

values. Although Ω is relatively large (during the four Venus
cycles spanned by VERITAS the angular displacement of the
pole is about 0.03°) compared to the small axial tilt of the
planet (2.64°), the angular displacement of the pole mapped on
Venus’s surface corresponds to only ∼150 m. Note that the
attainable accuracy on the MOIF primarily results from the
accuracy of the precession rate, since J2 and the other
quantities in Equation (A2.1) are much better known.
As the precession period is much longer than the VERITAS

observations, the precessional motion of Venus can be described by
three first-degree polynomials for the spin vector right ascension,
a a a= + -( ) ( )t t t0 0 , declination, d d d= + -( ) ( )t t t0 0 , and
prime meridian, = + p -( ) ( )w t w t t

T0
2 0

sid
, with t0 corresponding to

the J2000 epoch and Tsid being the sidereal period (see, e.g.,
Archinal et al. 2011). Due to the recent findings of Margot et al.
(2021), a constant Tsid cannot be employed, as its short-term
variations would induce significant latitudinal variations of the
position of the observed landmarks. Indeed, we estimate one Tsid
for each arc and compute ( )w t as follows:

p
= +

-
-( ) ( ) ( )

w t w t
t t

T

2
,i i

i
1

0

sid

i

where wi(t) is the prime meridian expression valid for the ith
arc, t0i is the starting epoch of the ith arc, and T isid is the sidereal
period estimated at the ith arc.
The precession constant Ω can be directly associated (under the

assumption that nutations are negligible and small deviation from
the reference position, as shown and justified in Appendix A.6)
with a and d as

a dW = = ( ) c c , A2.21 2

with the coefficients c1 and c2 determined by the orbital
inclination of Venus, the reference position of the pole (α0, δ0),
and the longitude of the orbital node at the reference epoch. In
our simulations we therefore estimate the pole polynomial
coefficients and exploit the aforementioned procedure to assess
the uncertainty on Ω and thus on the MOIF.

A.3. Effect of the Number of Landmarks

To explore the effectiveness of the inclusion of radar tie
points, we performed a sensitivity analysis of the results to the
number of included landmarks.
We analyzed the formal uncertainty improvement factor as a

function of the number of observed landmarks. We ran
simulations covering the range of 1000–8000 landmarks. Not
surprisingly, the improvement factor P depends on the number
of landmarks n as

~( )P n n ,
1
2

a consequence of the assumption that the measurements are
statistically independent. The results that we report can be
easily scaled to an arbitrarily higher number of landmarks.
The increase in the accuracy of the rotational parameters,

MOIF, and k2 shows that, while the bulk of the information
matrix comes from radio tracking data, tie points, being a
largely independent data set, increase the overall information
content by a quite significant amount.
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A.4. Filter Setup

We report here the detailed setup of the orbit determination
filter used in this work.

The complete list of parameters estimated in the filter
includes the following:

State of the orbiter (position and velocity), degree and order
50 gravity field spherical harmonics coefficients, complex Love
number k2, atmospheric tide parameters as described in
Appendix A.5, position (latitude, longitude, radius) of all
observed landmarks, Venus pole location (right ascension,
declination) and its precession rate, and Venus sidereal period.

Atmospheric density variations, depending on local time and
solar activity (Müller-Wodarg et al. 2016; Kliore et al. 1992),
induce accelerations on the spacecraft over typical timescales
ranging from half to a quarter of the orbital period T. We
account for this possible mismodeling by estimating cosinu-
soidal along-track accelerations with period T and T/2 and a
time update of 2h with an a priori uncertainty corresponding to
a 25% error on Cd. To account for possible misrepresentation
of the solar radiation pressure, we estimate one scale factor per
arc with an a priori uncertainty set to 25%. Moreover,
we include the estimation of daily momentum desaturation
maneuvers with an a priori uncertainty set to 6 mm s–1 in
compliance with navigation assumptions (Wallace et al. 2019).

We run the described filter solving for the set of parameters
of interest. In our multiarc approach, the tracking data are
subdivided into 2.5-day arcs and the parameters are divided
into two sets: local parameters (those affecting a single arc,
e.g., position and velocity of the orbiter) and global parameters
(parameters affecting all the arcs, e.g., the gravity field of the
planet). The total number of global parameters amounts to
27,320.

In Table A1 we report the a priori uncertainty assumptions of
the filter.

A.5. Atmospheric Tides Modeling

In the dynamical model used in our simulations we included
the effect of atmospheric tides. As shown by Bills et al. (2020),
the mass transport induced by solar heating of the atmosphere
is not a negligible factor for high-precision radio science
experiments at Venus. For a realistic assessment of the
attainable accuracies of VERITAS, we modeled the time-
variable gravity field induced by solar -heating-driven pressure
variations of the atmosphere.
The spherical harmonics expansion of the total (static plus

atmosphere) gravity field can be written as a function of time t
as

= + D( ) ( ) ( )C t C C t . A5.1lm lm
S

lm

Clm is the total C coefficient of degree l and order m of the
gravity field, CS

lm is the static coefficient, and D ( )C tlm is the
correction due to the time-variable mass transport (the same
formulation applies for Slm coefficients, here omitted for
brevity).
To determine the time-variable atmospheric contribution, we

employed the model developed by Garate-Lopez & Lebonnois
(2018) for retrieving surface pressure variations and then
converted these perturbations in the associated gravity field
coefficient with a technique that includes the atmospheric
loading contribution on the solid planet, originally developed
for Earth (Petrov 2004) and applied also on Mars (Genova et al.
2016). This procedure produces the time series of spherical
harmonics expansions of the atmospheric gravity field. The
gravity field perturbation induced by solar heating is a periodic
signal of fundamental frequency f1, equal to the main forcing

Table A1
Filter Assumptions

Parameter(s) A Priori Uncertainty Comment

Local Parameters

Orbiter position 0.1 km

Orbiter velocity 10−5 km s−1

Solar pressure scale factor 25% One per arc

Periodic accelerations 6 × 10−11 km s−2 Corresponding to 25% Cd (drag coefficient) uncertainty; time update: 2 hr

Sidereal period 20 minutes Corresponding to 15 yr maximum variability observed by Margot et al. (2021)

Wheel desaturation maneuvers 6 mm s−1

Local landmark positions Unconstrained

Global Parameters

Gravity field spherical harmonics coefficients Unconstrained

Gravity field correction coefficients for atmospheric tides 10/50/100% As detailed in Appendix A.5

Pole right ascension/declination Unconstrained

Pole right ascension/declination rate Unconstrained

Complex love number Unconstrained

Love number h2 Unconstrained

Global landmark positions Unconstrained
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effect (i.e., Venus solar day ∼117 days). We isolated the
contribution of the fundamental frequency and its three first
harmonics via a Fourier transform. Thus, we can expand
Equation (A5.1) as

å= + D( ) ( ) ( )C t C C t A5.2lm lm
S

n lm
n

p pD = +( ) ( ) ( )C A f t B f tcos 2 sin 2 , A5.3lm
n

C
n

n C
n

nlm lm

where fn= nf0 with n= 1, 2, 3, 4 and A, B are coefficients
derived from the Fourier analysis specific for each coefficient,
degree, and order.

In our simulations we assessed the necessity of including these
effects in the dynamical model of VERITAS, as its extremely
precise tracking system is sensitive to the main components of the
thermal tide perturbation. In particular, we assessed that if thermal
tides are not accounted for, significant biases might arise in the
gravity field and rotational state solution, in particular affecting the
Love number k2. The most recent analysis of the Venus gravity
field accounted for the atmospheric contribution by forward-
modeling its effect (Goossens et al. 2017, 2018). We have chosen
to adopt a conservative approach and account for the intrinsic
uncertainty of the atmospheric tide modeling. We model the
thermal tide field up to the degree and order that guarantees that
the higher degrees produce no residual signal in the Doppler
residuals (i.e., degree and order 18 for f1, 13 for f2, 7 for f3, and 10
for f4) and considered the uncertainty associated with the
correction coefficients A A B B, , ,C

f
S
f

C
f

S
f

lm lm lm lm
for the frequencies

f1 through f4.
We evaluated the effect of the assumed a priori knowledge of

the atmospheric tide model, without delving into a detailed
analysis of atmospheric-dynamics-related sources of uncer-
tainty. We have chosen, then, to assume a certain level of
uncertainty on the output of the model, i.e., the correction
coefficients. In particular, we explored three cases by setting
different a priori uncertainties. We considered an accurate
model (model uncertainty equal to 10%), a medium-accuracy
model (50% uncertainty), and a coarse-accuracy model (100%
uncertainty). In Table A2 we report the results relative to each
of the three assumptions. It is important to note how the results,
when combining Doppler data and tie points, become
significantly less sensitive to the accuracy of the model, for
all the parameters except k2 and dk2, which, not surprisingly,
have significant sensitivity to the atmospheric tides. This
indicates that even a coarse a priori knowledge of the model is
sufficient to meet the scientific objectives of VERITAS.

A.6. Relating Precession and Pole Coordinates

In this section we will obtain the equations to express the
motion of the pole as a function of the equatorial coordinates

and their time derivatives. This relation has been used in the
simulations as a constraint in the determination of the
precession rate and the MOIF. Finally, we will show that the
errors committed by neglecting the nutations of the pole have
negligible consequences in the determination of the preces-
sion rate.
The Venus ecliptic (VE) and the (usual) Earth ecliptic (EE)

reference frames are represented by the unit vectors {uV,x, uV,y,
uV,z} and {uE,x, uE,y, uE,z}, respectively. The equatorial frame is
represented by {ueq,x, ueq,y, ueq,z}.
We will use the following coordinates:

1. a( )t , d ( )t are the right ascension and declination
(equatorial J2000 coordinates);

2. l ( )t , b ( )t are ecliptic coordinates referred to the EE

reference frame at J2000.0;
3. l ( )tV , b ( )tV are ecliptic coordinates referred to the VE

reference frame at J2000.0

We define

1. the direction (as a unit vector) PV of Venus’s pole;
2. the direction (as a unit vector) P0V of the normal to the

Venus orbital plane (hereafter the “orbital pole”).

All coordinates above will be referred to the pole position.
b ( )tV is the nutation in obliquity, and l ( )tV is the sum of the
precession and the nutation in longitude.
The direction PV in the three reference frames is

d a
d a d

=
+ +

[ ( )] [ ( )]
[ ( )] [ ( )] [ ( )] ( )

u

u u
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t t t
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while the orbital pole direction in the EE frame is

W
W

=
- + ( )

u
u u

P i

i i

sin sin

sin cos cos , A6.4
E x

E y E z

V E0 , 0 0 ,

0 0 , 0 ,

E

where i0= 3.39466189° (inclination) and Ω0= 76.67992019°
(longitude of the ascending node), at J2000.0 (Simon et al.
1994).
The transformations of PV from equatorial to EE coordinates

(and vice versa) are

= =- ( )P R P P RPand , A6.5V E V V V E,
1

,eq ,eq ,E E

Table A2
Results Comparison (in Terms of Formal Uncertainties, 3σ) for Different Levels of A Priori Knowledge of the Atmospheric Thermal Tides Model Parameters

Parameter 10% 50% 100%

Earth Doppler Only Tie Points Earth Doppler Only Tie Points Earth Doppler Only Tie Points

α0 (arcsec) 2.7 0.26 3.0 0.27 3.2 0.27
δ0 (arcsec) 1.5 0.15 1.7 0.16 1.8 0.16
ò (arcsec) 1.2 0.12 1.3 0.12 1.4 0.12
Ω (deg century−1) 3.8 × 10−2 3.6 × 10−3 4.1 × 10−2 3.7 × 10−3 4.4 × 10−2 3.7 × 10−3

MOIF 1.0 × 10−2 9.8 × 10−4 1.1 × 10−2 1.0 × 10−3 1.2 × 10−2 1.0 × 10−3

k2 1.3 × 10−3 4.6 × 10−4 1.8 × 10−3 9.9 × 10−4 2.3 × 10−3 1.5 × 10−3

dk2 (deg) 1.20 × 10−1 4.5 × 10−2 1.9 × 10−1 1.4 × 10−1 2.9 × 10−1 2.5 × 10−1
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where

= -
⎛

⎝
⎜

⎞

⎠
⎟ ( ) 

 
R

1 0 0
0 cos sin
0 sin cos

A6.6

and ò= 23°.43662 is Earth’s obliquity.
Equation (A6.5) corresponds to

b l a d= ( )cos cos cos cos A6.7

b l d a d= + ( ) cos sin cos cos sin sin sin A6.8

b d d a= - ( ) sin cos sin sin cos sin . A6.9

At J2000.0 (t= 0) the equatorial coordinates of the pole of Venus
are a a= ( )00 272°.76 and d d= = ( )0 67 .160 (Archinal et al.
2011).

By solving Equations (A6.7)–(A6.9), we obtain the pole
position at the same epoch in EE coordinates:

l b=   ( )30.079869 , 88.762 332 . A6.100 0

The uV,x, uV,y, uV,z directions of the VE reference frame are as
follows:

1. The z-axis points toward the orbital pole uV,z= P0V.
2. The x-axis is the direction of the vernal equinox of

Venus: the vernal equinox of Venus coincides with the
coordinates of the ascending node of the orbit of Venus at
J2000.0 with respect to the equator of Venus at the same
date, so uV,x= P0V× PV.

From Equations (A6.2) and (A6.4) we obtain

= + + ( )u u u uu u u , A6.11V x V x E x V x E y V x E z, , , , , , ,1 2 3
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and finally, uV,y= uV,z× uV,x.
We define M (at J2000.0) as
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The a( )t and d ( )t coordinates as functions of b l( )t ,V V are
given by the following relations:

= = - -( ) ( ) ( ) ( ) ( )P t RMP t P t M R P t . A6.18V V V V V V,eq , ,
1 1

,eqE E

The pole motion around the orbit pole is (t= 0 corresponds to
J2000.0)

l l dl= + W +( ) ( ) ( ) ( )t t t0 A6.19V V V

b b db= +( ) ( ) ( ) ( )t t0 , A6.20V V V

where δβV, δλV are the nutations in obliquity and in longitude,
respectively, and Ω is the precession rate of the Venus
pole. The precession rate is the sum of the solar precession
(∼44 74 yr−1) and the planetary precession (−10″ yr−1; Simon
et al. 1994). By solving for βV in Equation (A6.18), we get

b l=  = ( ) ( ) ( )0 87 .3638 0 90 . A6.21V V

By differentiating Equation (A6.18) with respect to time and
neglecting the nutations, we get
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This quantity depends on the geometry of the orbit (i0, Ω0) and
on the pole position, but it is independent of Ω.
The link between ad

dt
and dd

dt
is a consequence of the circular

path of the pole. For t= 0 (i.e., at J2000.0) we obtain

a d=( ) ( ) ( ) 0 1.77694 0 . A6.23

From Equation (A6.18) we get
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b l b

b l
b l b

=

+ +
-
+ +

(
)

(
) ( )





u

u u

u

u u

cos sin cos
cos cos

cos sin sin

sin cos cos

cos sin sin A6.25

V x V V

V y V V V z V

V x V V

V y V V V z V

,

, ,

,

, ,

2

2 2

3

3 3

d b l

b l
b

=
+
+
+ + +

(
)

(
) ( ) ( )





  

u

u

u

u u u

sin cos cos sin

cos

cos sin sin

cos sin sin cos . A6.26

V V V x

V x

V V V y

Vy V V z V z

,

,

,

, ,

2

3

2

3 2 3

The functions a d( ) ( )t t, , obtained by solving Equations
(A6.24)–(A6.26), can be expanded to first order in Taylor
series around the pole position. We get (units are radians)

a db
dl W

» - +
- +
( ) ( )

( ( ) ) ( )
t t

t t
1.52263 2.11423

0.0672264 A6.27
V

V

d db
dl W

» -
- +
( ) ( )

( ( ) ) ( )
t t

t t
1.17216 0.568672

0.0378326 . A6.28
V

V

Finally, we obtain the components of the initial velocity of
the pole. The evolution of Venus’s orbital elements due to
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planetary effects is already included in our setup, so here we
will consider the solar precession rate only.

From Equations (A6.27) and (A6.28) one can see that while
the nutations in latitude (whose amplitudes are smaller than
0 1; Cottereau & Souchay 2009) when projected in α and δ
coordinates are about unchanged (rescaling factors are +2.11
and −0.57, respectively), the nutations in longitude (the largest
ones, smaller than 3″ in amplitude) are strongly reduced
(rescaled by factors 0.07 and 0.04).

The resulting short-term oscillations, projected on α and δ
coordinates, have amplitudes of about 0 2 (α) and 0 1 (δ),
compared with 40 times larger displacements of 8″ (α) and 4″
(δ) due to pure precession (see Figure A1).

For this reason, the short-term oscillations do not affect the
estimation of a and d .

Therefore, neglecting the nutations, the relations between
a d˙ ˙, and Ω are as follows:

a » - W = - ´ -˙ ( ) [ ]
( )
/0 0.0672264 4.62097 10 rad s

A6.29

13

d » - W = - ´ -˙ ( ) [ ]
( )
/0 0.0378326 2.60051 10 rad s .

A6.30

13

Finally, the ratio a d˙ ( ) ˙ ( )/0 0 (Equation (A6.22)) can be used as
an a priori constraint between the two quantities.
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