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A promising new therapeutic approach for pancreatic cancer is Proton Boron Fu-
sion Therapy (PBFT) which produces a highly localized damaging action through
nuclear reactions of the incoming proton beam and boron atoms, conveniently ad-
ministered to the patient before the treatment. Starting from this recent proposal
to use boron (and possibly fluorine) as chemical radiosensitizing agents in proton
therapy, a new interest has arisen for the study of borate compounds.

To evaluate the effectiveness of these compounds it is necessary to measure the
bio-distribution of tracers accumulated in the tissues before the irradiation on a pa-
tient by patient basis . It’s safe to assume that fluorine/boron mediated sensitization
will depend critically from compound concentration that can be achieved in the tar-
get nuclei which means that the clinical application of the treatment will need the de-
velopment of a reliable quantification technique optimized for the tracer of interest.
The first Chapter will report our study of the intracellular internalization of fluoro-
boron-phenylalanine (F-BPA) ,one of the most promising candidate to be adopted in
PBFT as boron carrier, in a cellular model of the pancreatic cancer (PANC-1 cell line)
using fluorine magnetic resonance spectroscopy (19F-MRS). The main advantage of
F-BPA over the standard molecule adopted in the field, the boron-phenylalanine
(BPA), is the addition of the fluorine atom that allows its quantification with mag-
netic resonance and it may also be used as a tracer for magnetic resonance imaging
(MRI).

This is the first step to validate a boron carrier as a proton therapy enhancer
since PBFT damage is highly localized and its effects depend on the intracellular
concentration of boron.

In the second Chapter, I will discuss the possibility of measuring fluorine accu-
mulation in tissues using 19F-MRS ex vivo in an animal model of pancreatic adeno-
carcinoma. This experiment will help define the sensitivity that has to be reached to
perform an in vivo experiment of localized 19F-MRS and 19F MRI and will provide
the data for the validation of these in vivo techniques.

We also believe that this method of quantification ex vivo may be of general
interest to screen for fluorine tagged compounds for the utilization in PBFT.

The isotope 19F is characterized by 100% natural abundance, high relative sen-
sitivity, it displays an intense nuclear magnetic resonance signal and it is almost
nonexistent in the human body. In contrast to NMR techniques based on proton
resonance all the signal detected can be attributed to the tracer introduced and the
signal that can be obtained is limited by the tracer concentration in tissues that in
turn is constrained by the safety of the dosage administered and the method used
for drug delivery.

So, in the context of 19F-MRI, in presence of low signal and no fluorine induced
background, it is extremely important to develop tools to remove noise (denoising).

Thus, the third Chapter is a preliminary work on the application of a deep learn-
ing convolutional neural network (CNN) to the task of noise reduction in magnetic
resonance imaging (MRI). MRI acquisition is performed in the frequency domain, I
will show how a newly proposed CNN trained on raw frequency data may outper-
form a network of the same complexity that is trained in a more conventional way
on the reconstructed magnitude images.

The last Chapter consists in an application of this proposed method to a denois-
ing task of a large dataset of parallel imaging to show how the method can be easily
transferred to many other acquisition modalities.
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Chapter 1

Introduction

In this document I will report my activity within the NEPTUNE (Nuclear process
driven Enhancement of Proton Therapy UNravEled) collaboration where I conducted
my PhD project.

My contribution is divided into two parts. The first part concentrates on the
quantification of cellular internalization and biodistribution of compounds tagged
with fluorine trough fluorine magnetic resonance (19F-NMR) and the second part
on a solution to reduce the effect of noise in Magnetic Resonance Imaging (MRI) in
acquisition where the low concentration of resonant molecules produce a low signal
as in the case of 19F-MRI.

The final aim of the NEPTUNE collaboration is to study the impact of fluoride
and borate (possibly tagged with fluorine) compounds as chemical radio-sensitizing
agents in proton therapy.

To evaluate the effectiveness of these compounds it is necessary to measure the
bio-distribution of tracers accumulated in the tissues before the irradiation on a pa-
tient by patient basis.

It’s safe to assume that fluorine/boron mediated sensitization will depend criti-
cally from com- pound concentration that can be achieved in the target nuclei which
means that the clinical application of the treatment will need the development of a
reliable imaging technique optimized for the tracer of interest.

MRI is a non-invasive and non-ionizing radiation diagnostic tool that can be used
to directly quantify 19F compounds during the treatment.

The isotope 19F is characterized by 100% natural abundance, high relative sensi-
tivity, it displays an intense nuclear magnetic resonance signal and it is almost non-
existent in the human body so its target-non-target signal ratio is intrinsically very
large given that endogenous 19F-derived background noise should be very low. Fur-
thermore, fluorine nuclear magnetic resonance differs only by 6% from that of 1H,
potentially allowing one to conduct 19F-MRI on existing 1H imaging hardware with
little modification.

The validation of a tracer molecule as a PBFT carrier development of a reliable
MRI measure to quantify it in in vivo studies has involved the achievement of some
important intermediate steps that will be the main topics of this document.

My work concentrated on one particular boron carrier, borono-phenylalanine
(BPA), and its fluorine tagged analogue fluoro-boron-phenylalanine (F-BPA) but the
methodologies employed are general and, when other tracer candidates will be pro-
posed, the experimental pipeline developed can be easily transferred to their analy-
sis.

The first step in the validation of F-BPA as a proton therapy enhancer is the quan-
tification of boron that is transported inside the cells. The proposed technique, Pro-
ton Boron Fusion Therapy (PBFT), produces a highly localized damaging action to
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the DNA through nuclear reactions of the incoming proton beam and boron atoms.
Due to the short range of the produced particles, to maximize this effect the target
boron has to be inside the cell membrane.

In Chapter 4 I will report the results of our studies on cellular accumulation of the
F-BPA and I will discuss in more detail the application of PBFT and the motivation
for which cellular internalization is critical to its success.

In this section I will also introduce the cancer model that will be the case study
of this work, that is the human pancreatic cell line (PANC1), and I will discuss why
pancreatic cancer was chosen to be a good candidate to be treated with PBFT.

Although the experiments are conducted on the PANC1 cell line, the methodol-
ogy developed is general and it could be applied to other cancer models as well.

Also, in this chapter our attempt to propose an alternative boron carrier, that
had many promising characteristics but failed in the biological application, will be
briefly presented.

The second step of this work is centered on the experiment on the animal model.
The distribution of the drug is not uniform in the body of the patient and for

the therapy to be successful, a suitable concentration of boron has to be built in the
organ of interest.

Thus, the administration of the drug has to be monitored and the concentration
reached in the organ that needs the treatment has to be carefully quantified.

In Chapter 5 our experimental protocol, our somministration system and our
measurement strategy will be discussed and analyzed in respect to previous re-
ported attempts.

In particular, the dosage and the administration time of the drug has a great
impact on the final concentration in tissues. So we will need a complete pipeline
to measure all possible sources of variability in the experiment to find the best ap-
proach in order to obtain the best concentration for the therapy to be effective, i.e.
the maximum concentration of boron targets in the tumor mass to be treated and the
lowest concentration in the surrounding organs to avoid damaging healthy tissues.

The results of this experiment are valuable both because they help improve our
experimental protocol and because they help design the image acquisition so that
the parameters are tuned on the expected signal and on the desired resolution.

Furthermore, this experiment provides the validation data on the expected con-
centration in tissues with which we can compare the results in in-vivo quantification.

From general considerations and from the results of our ex-vivo experiment it
seems obvious that in a 19F MRI in our experimental conditions the main limitation
will be the low signal caused by the low concentration of fluorine inside the tissues
and this will result in a noisy image which will compromise the quantification.

This is true in general, 19F-NMR has profoundly different characteristics from
1H-NMR since there are no endogenous sources of 19F. Therefore, while 1H-NMR
studies the properties of water within tissues, 19F-NMR looks for signals (even small
ones) in a low-background context. It completely changes the focus of research in a
framework where noise is the dominant factor.

Thus, in the context of 19F-MRI, in presence of low signal and no fluorine in-
duced background, it is extremely important to develop tools to remove noise (de-
noising).

In Chapter 6 we implemented two solutions: A novel approach based on the raw
frequency data and a more traditional one that works on the already reconstructed
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image. In particular, the advantage of working with the frequency based raw-data
instead of the images already reconstructed will be discussed and the issues in the
application to our use case will be analyzed.

The denoiser will be first tested on simulated data and then in Chapter 7 it will
be applied in the task of denoising a large dataset of morphological MRI images. The
possibility to rapidly transfer the application of our method to different acquisition
modality derives from the fact that it exploits a fundamental property in the noise
model common to many different MRI acquisition modality.

The most important results of this section is the possibility to train the denoiser
in an unsupervised fashion that means that a ground truth, so the noise free version
of the image, is not needed to perform the learning. This perk is directly derived
from our strategy of working with raw-data instead of images.

The potential of this technique is not limited to the acquisitions in 19F MRI and
it is a topic that should be deepened independently from it since even in traditional
images with high signal the noise reduction is important if they are used to extract
quantitative information.

In Figure 1.1 is reported the outline of this document. Our prospective work
(highlighted in red) is based on the availability of a fluorine tracer with good inter-
nalization property and a suitable biodistribution in tissue. Thus our experimental
pipeline (on the left) is shaped to select these properties:

• The in-vitro experiment allows us to measure the internalization in cells and
to select tracers with good NMR properties that are suitable for imaging.

• The preliminary experiments on the animal model are needed to tune our pro-
tocol to reach the best desired concentration in tissues.

These methods are general and can be applied to any proposed tracer. So an-
other molecule that can increase the boron concentration and the fluorine signal
since it has multiple atoms of both is tested and then discarded since it has great
NMR properties but low biological utility.

On the right, the development of the proposed method is outlined

• The denoising approach that will be applied to the low signal 19F-MRI is first
developed on simulated data and then the method proposed is validated on
an external dataset composed by examples of another acquisition modality.

• The experience gained working with real data, that is usually more challenging
than simulated one, is used to improve our proposed denoiser. In particular,
the data required to reach reasonable performance can be evaluated with better
accuracy on a real task.

This strategy is applied to improve PBFT, specifically in the treatment of pan-
creatic cancer, but it is generalizable to any tracer/task selection that involves the
pianification of an imaging experiment with low signal where a data driven deep
learning denoising can be used.

In the next Chapters, the basic concepts needed to put into context the work are
reviewed. In Section 3.1 we will address the topic of NMR spectroscopy while imag-
ing will be treated in Section 3.2. Neural networks, with a particular interest in
convolutional neural networks, will be discussed in Chapter 2 .

In the final section instead we will discuss the challenges of the prospective work
in the light of the results achieved. In the conclusions, the experiments planned for



4 Chapter 1. Introduction

the in vivo transfer of the developed techniques and a possible extension of what
has been done for the denoising method are reported.

FIGURE 1.1: The structure of the document. The figure outlines the
two main parts of my work in relation with the prospective work
towards NEPTUNE project aims (center, in Red). On the left, we have
the experiments needed for the validation of a proposed molecule
as a boron carrier for the PBFT applied to pancreatic cancer. These
experiment are needed to select and characterize the tracer to be used

in the imaging quantification.
On the right, the proposal of a deep learning based solution first de-
veloped on simulated data and then tested in a real task is schema-

tized.
The denoiser will be applied to the intrinsically low signal acquisition

of 19-MRI.
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Chapter 2

Introduction to Deep Learning

In this Chapter we will review the basic concept of Deep Learning with a particular
attention to Convolution Neural Networks (CNN).

CNNs are machine learning models that have immense capacity to create hierar-
chical representation and have been successfully applied to computer vision prob-
lems including object localisation, classification and super-resolution.

Following the breakthrough in image classification with a deep architecture in
the ImageNet LSVRC-2010 classification challenge (Krizhevsky, Sutskever, and Hin-
ton, 2012), CNN are now successfully implemented in numerous task in the com-
puter vision domain.

In the medical field, CNNs are nowadays routinely applied to diagnostic imag-
ing (at least at research level) and they are one of the most used model in computer
aided diagnosis (CAD) in many application from pathology classification to anatom-
ical segmentation segmentation.

The field is in continuous development as the best model for a given task changes
every few months, as can be seen in the leaderboard of any challenge dataset (Grand
Challenge Biomedical challenge database), that are open competitions to compare solu-
tions on the same ground. For this reason it is not useful to discuss the best approach
to every problem so we will concentrate on the fundamentals and on good practices.

A good overview of the widespread application of CNNs in the medical imaging
field can be found in this book by Lu et al. (Lu et al., 2017).

The considerable success of CNNs can be attributed to two main reasons that
makes them superior to traditional machine learning algorithms and that have driven
to a wide adoption of CNNs in the medical image analysis domain:

First, its scalable feature learning architecture that optimize model parameters
for a given task and that relies very little on feature-engineering or prior knowledge
and secondly, the end-to-end model training strategy which allows to process im-
age data from the raw sources to the task end, even in a complex pipeline, with an
automated methodology.

A particular example of CNN models, known as fully convolutional network
(FCN), has been shown to offer improved computational efficiency and representa-
tion learning capabilities due to simpler model parametrisation and lower compu-
tational cost when applied to large images.

This section will introduce the technical details needed to understand the imple-
mentation of the CNN based denoiser that we are proposing in Chapter 6.

2.1 Neural networks

The modern standard deep neural network model for machine learning applications
is the feedforward network.
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This section aims to introduce all the definition needed to explain this sentence.
First, these are models in the sense that their goals is to approximate a (possibly un-
known) function f ∗. The simplest example is a classifier that maps an element x to
its category y. It can be described as a function y = f ∗(x). A feedforward network
define a mapping between the set of examples and categories {x, y} y = f (x; W)
that models the original function f ∗ and learns the parameters W that give the best
function approximation.

In these models, the information flows from the input x, to some intermediate
computations, to the output y without feedback between steps. For this reason they
are called feedforward.

Feedforward networks are called networks because they are a composition of sim-
ple functions built in a chain structure. For example, lets have N function f n with
n = 1, ..., N, these functions are subsequently applied to the input x and they are
chained together to y = f N( f N−1(... f 2( f 1(x)))...)).

This chain structure is the most used as building block of neural networks and it
can be represented as a directed acyclic graph (i.e a graph with no loop, or feedfor-
ward).

We will call f 1 the first layer of the network, f 2 the second layer, and so on. The
last layer f N is called the output layer. The length of the chain is called the depth of
the model. Since a network can be composed of hundreds of layers, modern neural
networks are usually referred to as deep networks.

During the network training, we aim to match our function f to the original f ∗.
The training data {x, y} (i.e pairs of input and output elements) provide a noisy
approximation of y ∼ f ∗(x) and it is used to force the output of the last layer of the
network to reproduce the expected function behaviour (i.e f (x) should be close to
y).

Only the last layer is conditioned directly by the training examples so all the
other layers can be shaped freely to better approximate f ∗: The role of the training
algorithm is selecting the best parameter for these layers.

Since these layer are "hidden" during training (i.e their output is not directly
influenced from the data), they are called the hidden layers of the network. Each
hidden layer is composed by elements called hidden units that perform the basic
computations in the neural network. The number of the hidden units of a layer is
called the width of the layer.

One way to build an intuition of how a neural network works is to imagine that
the final layer is a simple linear model that operate not on the input itself x but on
a transformation of it φ(x) that is created trough the other layers. We can describe
the action of the hidden layers as the formation of a synthetic description of the
input that is shaped by the training algorithm to be useful to correctly represent
it. For this reason, these structured intermediate descriptions of the data are called
representations or (complex) features.

From a biological point of view, the structure of these networks resembles a bi-
ological neural network: The elements of the layers can be seen as neurons and the
parameters of the chained functions as the synapses. As a biological neuron, which
activity is modulated by a large amount of signals coming from synapses with other
neurons, the value of an element of a layer is given by the many inputs that it re-
ceives from the previous layer. Also, the modularity and the hierarchical structure is
loosely inspired by the brain but the similarity is only superficial since feedforward
neural networks do not aim to directly model brain functions.
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In Figure 2.1 there is a schematic representation of a network with two hidden
layers: An input layer x of width 12 is connected to the first hidden layer of width
8 that is connected to the second layer of width 6 that, finally, is connected to the
output layer. The direction of the connections is always from input (top) to output
(bottom) without loops between elements: Connection came only from the previous
layer and elements in the same layer are not directly connected. This architecture
is called a multilayer fully connected neural network since it is formed by multiple
layers in which every element is connected to all the elements of the previous one
so that the connectivity (i.e the ratio between the actual connections and the total
connections) between the two layers is 1. This is the most basic example of a neu-
ral network but it still finds applications and it will be our case study for the next
paragraphs.

Input Layer ¹²

Hidden Layer

Hidden Layer

Output Layer ¹

FIGURE 2.1: Schematic representation of a fully connected neural net-
work with two hidden layers. The first layer (top) is the input layer.
Arrow represent the weights (parameters) of layer and circles their

hidden units. Connections go forward from input to output.

2.1.1 Activation functions and hidden units

To finish our description of the network architecture (i.e the overall structure of the
network) in the hidden layers we need to introduce the concept of activation function
of the hidden unit. Hidden units can be described as the computing elements of
an affine transformation of an input vector x (that can be the input layer or another
hidden layer ) to which is subsequently applied a non-liner function g that is called
the activation function. So, for a vector of hidden units on a generic n layer xn its
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value is computed from the previous n− 1 layer with the following relation

xn = g(Wn−1,nxn−1 + hn) (2.1)

Where Wn−1,n is the matrix of the weights of the connections between the ele-
ments of the layer and the previous layer, hn is a bias vector and xn−1 is the vector
of the activation of the previous layer. The choice of the activation function g is tied
to the task that the network has to perform and the data that is applied to, and there
is no definitive answer.

One of the most commonly used activation function is the Rectified Linear Unit
(ReLU) that is valued 0 if its input is negative or it is linear if the input is positive.

relu(x) = max(x, 0) (2.2)

The motivations behind the widespread use of the ReLU activation function are that
it is cheap to compute, it is easy to optimize and more importantly it helps reducing
the number of active neurons since the activity is zero for negative inputs, but there
are many alternative that may perform better or that can have different applications.

An example of activation function that can be used is hidden layers or can have
a specialized role as output unit for tasks that require predicting a binary value is
the logistic sigmoid σ(x) defined as:

σ(x) =
1

1 + exp(−x)
(2.3)

There is no straightforward methods to determine which different activation func-
tion will be more beneficial to implement for a chosen application so we will use the
ReLU function as an example in all the following sections.

The only important comment to make is that two layers with different activation
functions will be parametrized differently so the training behaviour and the final
function learned may be different if a different activation is used. ReLU has also
been implemented in the proposed neural network application in Chapter 6.

The book by Goodfellow et al. (Goodfellow, Bengio, and Courville, 2016) in
Chapter 6 gives a more extensive review of possible choices for activation functions
that is a topic outside the scope of this introduction. We will discuss briefly the
advantages and disadvantages of different activation functions when we will talk
about neural networks training is Section 2.3.

2.2 Learning from examples

Machine learning algorithms differ from traditional programming because they con-
sist in instructions on how to learn a task from a set of examples instead of instruc-
tions on how to perform the task itself. Thus, in this definition, learning means
improving, in respect to some performance metric, the outcome of a task gaining
experience from a set of collected examples.

The application of such algorithms may allow computers to tackle problems for
which it is difficult to define a sequence of intermediate steps needed to reach the
solution.

First, we have to define what learning from experience means: A set of examples
is represented as a collection of features that describe quantitatively or qualitatively
the objects that we are analyzing; we will refer to this collection of features as the
dataset and to the single feature as a data point. For examples, in image recognition
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tasks, a set of examples is a collection of images that are represented as a matrix of
pixel intensity values so the dataset will be the N images each formed by matrix of
data points.

For a ML model, gaining experience from data can be described as modifying
their output based on the processing of the dataset: Machine learning algorithms
can be divided in two classes, supervised and unsupervised, based on the type of
information that can be used in this process.

Unsupervised algorithms learn the structure of the dataset to perform task like
clustering (i.e. dividing the data points into groups with similar properties) or den-
sity estimations (i.e learning the probability distribution of the features). That can be
seen as observing several examples of a vector of features x extracted from a proba-
bility distribution p(x) and learn some interesting properties of that distribution.

Supervised algorithms, on the other hand, process examples x that are associated
with a target or label y and learn the relations between data points and targets aim-
ing to predict y from x, usually trough the estimation of the conditional probability
p(y|x). The labels that are provided in supervised learning need to be collected from
an "instructor" who is able to perform the task that the algorithm is learning. Thus,
one major constrain in this strategy is the scarceness of labelled examples especially
in fields where the data labeling is a time consuming process and needs a skilled,
human operator to be performed.

Last, we need a metric to evaluate how well the task is performed by our algo-
rithm. This choice is critical since it will drive both the learning phase and measure
the ability to generalize the task to other data that will be unlabelled in the super-
vised learning scenario. So the performance metric has to be general enough to be
well defined for all the examples in our data yet precise enough to be a straightfor-
ward criteria to check if our objectives are reached: if the performance level that we
seek is reached then we expect that the task is solved with a reasonable outcome.

Since we are usually interested in the application of our model to data that are
not directly included in our training dataset, performance must also be evaluated on
examples that our model do not directly use during learning. Thus, a different data
set, the test set, will be used to this purpose and the performance measured on this
set will be our estimate on well the model will works on the task when is applied in
the real world.

In conclusion, to learn from data we sample the training set to adjust the behavior
of the model to maximize our performance metric and then we test the performance
on the test set. A machine learning methods will be evaluated by its ability to:

• Reach an high performance level on the training examples.

• Make the gap in performance between the training and test set as small as
possible.

These two points are the main goals of machine learning and are related to the
concepts of ovefitting and underfittig.

Underfitting is the inability to reach satisfying performance in the given task
and can be caused by the wrong formulation of the performance metric or by the
limitation of the training set, both in quantity and in quality, if, for example, noisy
or missing labels are present. Also, it can be related to the low capacity of the model
(i.e the length, or deepness, of the chain that we saw in Section 2.1 ) that is unable to
correctly reproduce the relation between labels and data.
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Overfitting instead occurs when the model performs much better on training
data than testing data. This means that the model is unable to generalize the learned
rule to new examples. Overfitting is linked to the capacity of the model in the op-
posite way respect to underfitting: the model can learn the noise of the dataset in
addition (or in place of) the data structure both because the examples are scarce or
because the structure of data is simple.

Machine learning model perform better when their capacity is appropriate for
the task they are trained for and for the amount of data they are training with. The
capacity of the model is usually controlled by the number of the internal parameters
used (i.e the weights of the hidden layers we saw in 2.1) and it is linked to its depth
(i.e the number of layers). Deep models have high capacity but are prone to overfit
when data is limited, while shallow models may struggle to fit the training set.

We will conclude this section with a few examples of application since the exact
definition of task, performance and data depends on the particular domain we are
interested in.

One of most common task for machine learning is classification: In this task the
program has to link an example to the category the example belongs to. The solution
to this problem involves the creation of a function that links a feature vector x to a
numeric code y that represent an element of a finite set of possibilities. Usually the
performance that we are interest in for classification is accuracy (i.e the ratio between
correctly classified items and total items). As we will see in Section 2.3, the accuracy
metric is ill defined to be optimized during learning since the object association to
a class function is difficult to differenziate. In this case the usual metric used is the
cross-entropy (but many other choices are available):

CE(y, ŷ) = −
M

∑
c=1

yc,o log ŷc,o (2.4)

Where M is the number of classes, ŷc,o is the network output in the form of proba-
bility for the input to belongs to the class c and yc,o is the label. A low cross entropy
score will guarantee an high accuracy.

A few examples of classification task are image recognition, where the picture on
an object has to be linked to category of the object it contains, segmentation, where
a pixel of an image has to be linked to the object or region it is part of, and topics
classification for text documents where a piece of text has to be linked to the topics
it talks about.

Another interesting task that can be solved with machine learning is denoising.
In this type of problems the algorithm is given as input a corrupted example x ob-
tained with an unknown transformation from a clean version y. The model will
learn to restore the original object y from the corrupted one x. In this case the per-
formance metric we may use is less straightforward since it may be impossible to
perfectly restore the corrupted object. We will need to define a distance metric in the
feature space between the two objects: for images it is usually the distance between
pair of pixels.

In general, we may be interested to remove the effect of the noise instead of the
noise itself, for example by making the accuracy in classification for the denoised
objects close to the accuracy of the original objects (if noise affects our hypothetical
classification task) and we are not guarantee that trying to minimize the distance
between the objects will be an efficient way to reach our goal while, using directly
our desired metric in learning may be unpractical.
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2.3 loss function and training

We discussed how the process of learning involves the improvement of a perfor-
mance score. This process can be seen as an optimization (i.e. maximizing or min-
imizing a function ) problem. The function that we want to optimize is called the
objective function. In the machine learning community it is preferred to reason in
terms of minimization thus the objective function is usually called the Error func-
tion, the Energy function or simply the Loss function. The performance score and
the loss function are usually directly tied but it is possible that the performance is
not directly computable (such as the "visually pleasant" concept we saw in the image
denoising example) so it can be optimized only indirectly. thus, we reduce another
loss function that, when minimized, we hope will also induce an improvement in
performance.

In this introduction, when we discuss to the optimization of an algorithm we
will refer to finding the argument x that minimize the Loss function L(x). To be
minimized L(x) needs to be a scalar function while its argument x in general will be
high dimensional: L : <n −→ <. As usual, the exact form of L(x) will be problem
dependent but in general a low value of L(x) will translate to an high performance
score for our algorithm. The argument that minimize a function (i.e the solution of
our optimization problem) will be indicated as x∗:

x∗ = argmin L(x) (2.5)

For neural networks model solving the equation directly ∇xL(x) = 0 for x,
where ∇x : { ∂

∂x1
, ∂

∂x1
, ..., ∂

∂xi
, ...} is the gradient in the multidimensional input space,

is usually impossible thus the method of gradient descend (or steepest descend) is
generally adopted. Gradient methods are treated in details in this recent book by
Chong (Chong and Zak, 2001).

The steepest descent is an iterative methods in with at each step a new point is
proposed by moving in direction of negative gradient

x′ = x− ε∇xL(x) (2.6)

where ε is called the learning rate, a positive constant that determine the size of the
step. The method of choosing the best learning rate is an open problem but for now
we will assume that ε is a small constant.

The steepest descent converges when all the component of the gradient are zeros
or reasonably close to zero.

When we train neural networks we are interested in the gradient of the loss func-
tion respect to the parameters of the model. Lets write the chain operations defined
in 2.1 that act on the input x as ŷ = NNW(x). Where W indicates generically the set
of parameters of all the hidden layers and ŷ is the output of the network. The loss
function will depends on the output of the network ŷ and, trough it, on the set of
parameters W. The gradient that needs to be computed is ∇WL(ŷ(W)).

As we can see in Eq. 2.2 our neural network may contain instructions that are not
differentiable in all points making them not suitable for gradient optimization. In
practice, gradient descend can still be used and since, in most application, reducing
the loss function to a small value that may not be a minimum is an acceptable results
we do not expect to reach a point where the gradient is zero in all direction.

Many elements contribute in the learning phase and in the gradient computa-
tion. In particular, ReLU units have a large derivative in every points they are active



12 Chapter 2. Introduction to Deep Learning

making easy for them to contribute to the gradient direction that is most useful for
learning. Together with the cheap computation cost of both the their activation and
derivative this is the reason for the widespread use of ReLU activation.

On the other hand, activation function as the sigmoid σ(z) defined in Eq. 2.3
will saturate across most of their domain (when |z| is very large) making gradients
very small and learning difficult thus their use is usually avoided in hidden layers
of deep networks.

For most application, computing the analytical expression for the gradient is pos-
sible but its numerical evaluation is computationally expensive. To solve this prob-
lem, the most common employed solution is the back propagation algorithm (Rumel-
hart, Hinton, and Williams, 1986). The Back Propagation algorithm (BP) computes
the chain derivative needed to evaluate the gradient with a specific order of opera-
tion that is highly efficient.

2.4 Convolutional Neural Networks

In this section we will examine Convolutional Neural Networks (CNNs) that are
network specialized to work with input that are organized in grid-like structures.
The typical example of this kind of data is images which can easily be represented
as a 2D matrix of pixel intensities.

The name convolutional refer to a particular layer used in this network architec-
ture but it is not the only relevant modification respect to the standard fully con-
nected layer: In this section we will review the principal solutions developed to
analyze images with CNNs but the results are easily applied to other matrix like
data such as computed tomography volumes or, as we will see in Chapter 6, raw
data MRI acquisition in the frequency domain.

In neural networks with fully connected layers like the ones described in Section
2.1 every input is connected to every output unit. So, for each pair of layers the
connection matrix Wn,n−1 will have Ln× Ln−1 parameters where Ln is the number of
hidden units in the n layer. For very deep networks with this architecture the total
number of parameters will be unfeasibly high even for input of modest dimensions.

The solution of specific problems regarding data with grid structure required the
development of networks with specialized architectures where the number of pa-
rameters is more limited thanks to the definition of specific prior on the distribution
of information in the type of data analyzed.

The main idea in the development of specialized architecture is that, leveraging
our additional knowledge about the input and the task, we can find strategies that
work better for our specific application domain.

2.4.1 Convolutional operation

Given an input function x(t) and a weighting function w(t), also know as the kernel,
the convolution between x and w can be defined as

s(t) =
∫

x(a)w(t− a)da (2.7)

Where the output function s(t) is usually called a feature map of x respect to the
kernel w. We will denote the convolution operation with an asterisk

s(t) = (x ∗ w)(t) (2.8)
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When the convolution operator is applied to grid like data, where functions are
indexed by their position on the grid, we will use the discrete convolution operator

s(t) = (x ∗ w)(t) = ∑
a

x(a)w(t− a) (2.9)

The sum goes over all element for which the kernel differs from zero. Images
have usually two axis so we can generalize the discrete convolution operator to more
than one direction and for practical purposes we can use the commutative property
on the convolution operator to write the general convolution for an image.

S(i, j) = (K ∗ I)(i, j)∑
m

∑
n

I(i + m, j + n)K(m, n) (2.10)

Where the indexes i, j go over the rows and columns of the image.
The convolutional operator can be seen as a matrix operation between the kernel

and a small portion of a larger image. Usually, the kernels adopted for image pro-
cessing in CNNs are significantly smaller than the image they are applied to because
we assume that in images the information is local, so an object (or a part of an object)
will be made of spatially close pixels. In a convolutional layer the same kernel will
be applied to all elements of the input, meaning that the same operation is repeated
in the image space connecting groups of close hidden units.

In Figure 2.2 we can see the effect of a linear kernel applied to an image: A kernel
K with 2x2 pixel size is applied to an image I, the kernel slides on the image with
a S pixels step. The length of the step is called the stride of the kernel. Modifying
the stride we can choose the number of output units of the convolutional operation:
a stride equal to 1 will produce a convolution output for each element of the input
(How to deal with border pixel will be treated later when we will discuss the net-
work architecture) while a larger stride will subsample the input proportionally to
its length. The output of the convolution will usually be a linear combination of in-
put elements, the coefficients of this combination (i.e the kernel operation elements)
are learned by the network exactly in the same way the weights of the affine trans-
formation in fully connected layers (see Section 2.1) is learnt during training.

The application of convolutional layers allow us to leverage the structure of in-
formation in an image: The convolutional operation with small kernel has four im-
portant properties that are extremely efficient when working with grid-like data.

• Parameters sharing.

• Sparse weights.

• Equivariance to translation.

• Input size invariance.

Parameters sharing means that the same operation, thus the same kernel param-
eters, are applied to every portion of the image. This is useful for manly two reasons:
First, we expect that a stimulus (i.e a detail in the image that rise the activity in the
convolution) may appear everywhere in the image, so the same kernel can be ap-
plied to scan the whole input.

Second, sharing the kernel weights means that only K × K, with K the linear
size of the kernel, parameters have to be learned by the network reducing both the
capacity and the computational cost. Thus, convolution is an efficient method to
apply the same local transformation to each region of an input.
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The weights are sparse since the convolution is a local operation that works on
spatially close pixels. Connections to the next layer comes from groups of units
that are close: if an important detail of a image is composed by close pixels, this
information can be captured by a local kernel, this is in direct opposition to fully
connected layers where every unit is connected to the input. As we will see, this
doesn’t mean that convolutional architecture can not use information that comes
from distant part of the input together, since usually CNNs are composed by many
convolutional operation in sequence. Still, the local sparseness of the weights allows
to reduce the computational cost and memory requirement of a CNN.

Since the same kernel is applied on all the image, the effect of the same pattern
in different location will rise the same output. Together with the pooling operation
(see Section 2.4.2), this property makes CNNs able to correctly consider translation
as an identity function to its input. Which is that the same pattern translated a few
pixel carries the same information. For images, this definitely is a desired property.

Kernels are learned to respond to to specific pattern of pixels that are useful to
perform a task, for example the edges of objects in image segmentation tasks, since
edges can appear everywhere in the image they may be recognized with the same
operation whenever they are present.

Finally, since the shape of the kernel is fixed and the parameters are shared so it
can be applied on inputs of different dimensions (with a bit of attention for border
pixels) with the same effect.

After a convolution operation, for each unit associated with a kernel, a non linear
activation function (see Section 2.1.1) is applied. This stage is usually called the
detector stage. For the ReLU operation (Eq. 2.2) this passage can be interpreted as
follows: The convolution kernel recognize a pattern of interest and raises its output,
positive output are transmitted to the next layer by the ReLU operation.

Convolution operation is only one of the building blocks of a CNN, we will now
review the other basic components and then we will analyze how the complete net-
work architecture is composed.

2.4.2 Pooling operation

The convolution operation identifies a pattern of pixels in a small local region in the
input. If we are more interested in the presence in an area of this pattern instead of
its precise position (at the scale of the kernel size level, so a few pixels), it may be
useful to extract a summary statistic of the input over a region.

Pooling operation reaches this scope by replacing the output of the net in a cer-
tain location with aggregate information over all the nearby input units. The most
used pooling operation is probably the max pooling (Zhou and Chellappa, 24-2) so
we will use it as reference example.

Max pooling extract the maximum activation of a kernel over a neighborhood:
it aggregates information on a range equal to its linear size. On top of an convo-
lutional layer with a ReLU activation the pooling operation force an invariance to
small translation since the resulting activity is the same regardless of which unit in
the neighborhood is actually active.

Since the output of a pooling operation is effectively a compression of its input
there is the possibility of subsampling the pooling operation without loosing much
information. This reduction in the number of active units will help both the creation
on a high level representation of the input , since at the next operation more informa-
tion will be processed with the same kernel size, and the reduction of computational
and memory cost. In Figure 2.3 we can see an example of the action of a max pooling
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FIGURE 2.2: Example of the application of a convolutional filter that
perform an affine transformation. The kernel is applied on the input
image and a linear combination of the input elements with the coeffi-
cients given by the Kernel parameters is stored in the corresponding
output matrix. The kernel is applied at all the position translated by
1 in each direction. This is a schematic illustration of the weights
sharing property: the same kernel is applied to all the input image

regardless the position

operation on 1D data with and without the subsampling of the output. Max pooling
is one of the possible choices of pooling operation, other common alternative are
taking the average over a region or the squared sum of the elements of the region.
In every case the important concept behind the pooling operation is that in an image
(or any grid shaped data) the important information is the presence of one or more
patterns and not their position at pixel or unit level accuracy.

Pooling are also useful to create compressed feature representation of the original
input by decreasing its dimensionality. In the next section we will see how this
behavior is at the base of automated feature extraction of CNNs.

2.4.3 A typical CNN architecture

CNNs have been applied to a multitude of tasks so it is difficult to define a standard
architecture that is valid for every implementation. However, when they are used to
process images there are some consideration that will be valid most of the time.

As an example we will describe the implementation of the VGG (Simonyan and
Zisserman, 2015) architecture that was a popular solution for image classification
and many successive approaches to this task took inspiration from it. Besides the
particular structure, this network was one of the first to introduce the idea of multi-
ple scalable blocks to develop very deep architecture with many convolutional op-
erations with small kernels that is the base idea of most modern implementations.
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FIGURE 2.3: Example of max pooling operation on a 1D input. The
pooling operator select the maximum element in its input. a) Pooling
without subsampling: the size of the input is maintained (with the

exception of border pixels). b) Pooling with subsampling.

A convolutional layer is usually composed by a set of M convolution operators
that perform a linear combination of the KxK (K is the size of the kernel) elements of
the input. The number of kernels used controls the number of transformation that a
network can learn, the size on the kernel K instead controls how many element are
combined together. At this stage the number of parameters PW of the layer will be
(we are not considering the bias. )

PW = N ∗M ∗ K ∗ K (2.11)

Where N is the size of the input. We can see how the weight sharing dramatically
reduce the number of parameters that the network has to learn: In a fully connected
architecture the parameters in a layer is the product of the two layers width NxN′

that are usually much larger than M.

After the convolutional operations, an activation function is applied to each out-
put element. This is called the detector stage and it is used to introduce the non
linearity in the learned transformations.

After the detector stage a pooling operation with downsampling is performed.
As we already mentioned, at this stage we reduce the layer size to a factor of the size
of the pooling operator to both force invariance to translation and to reduce memory
requirements.

This combination of convolutions, activations and poolings is a basic example of
a convolutional block.

The CNN is then composed by multiple blocks like the one described above, each
of them has a reduced input size due to the pooling stage. This structure is called
the contractive or subsampling path. In a subsampling path the input dimension is
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continuously reduced allowing move convolutional layers to fit in the same amount
of memory. The main reason behind this strategy is to help creating more complex
representation using a more compressed version of the input at each step.

At each stage the kernel will have the same size but, since it will process input
already processed by convolutional and pooling operation, its output will depend on
a large number of pixels. The area of the input that directly influences the output of
a unit in a convolutional layer is called its receptive field. The name is inspired from
biological networks as we will explain below. The receptive field grows with the
depth of the network giving the network the possibility to process more contextual
information since the value of a units is directly function of a larger area of the input.

After one or more convolutional blocks the output of the network is then flattened
(i.e. all the elements are represented as a vector regardless the original shape) and
after one or more fully connected layers this output is passed to a classifier. The
flattened vector of the last convolutional block is usually called the feature vector
because it will be the high level descriptor (so a vector of feature) of the original
input and that will be the input to the classification task. The name came from the
standard machine learning algorithm for image processing where the input for the
classification are feature of the image extracted by hand crafted filters.

In Figure 2.4 is reported an example of a CNN architecture with the same basic
structure described. The network operations are computed from left to right: First,
the input a matrix of 128 by 128 units, that can be the data analyzed or the out-
put of the previous convolutional block, is processed by a series of 8 convolutional
operators. These convolutional maps are pooled with a subsampling of 2 so their
dimensions is reduced to 64 by 64. Then, another convolutional stage with 24 filters
is a applied with a kernel with stride 2 and, after the pooling operation, the output
is reshaped as a vector (the feature vector) and used as input for a two layer fully
connected classifier.

This architecture may not work well in practice but it is a good exemplification
on how the goal of classification of images using information from a large patch (or
with a large receptive field) is reached by stacking convolutional blocks with small
and simple kernels instead of developing large and complex kernels.

Modern versions of the CNN have moved away from this linear form with a
single subsampling path and often exhibit more than one convolutional path that
process the details of the input with a different level of sampling. These paths are
called branches. One of the best examples is the U-net (Ronneberger, Fischer, and
Brox, 2015) that combine together multiple branches at different level of details.

Probably the best way to build an intuition an how a CNN works is to make a
parallel with the brain visual cortex. This is not a rigorous comparison, but at least
in the early development stages, CNNs were inspired by the mammal vision system.

Modern neural networks for computer vision application differ profoundly from
the computational model of brain function they derive from, but we can still gain
some insights of the their general structure in terms of biological networks.

The first layers of a CNN can be thought to play the role of the primary visual
cortex (V1) that is the first step of the visual input processing in the brain. The image
is first collected on the retina and then transported trough the optical nerve and the
Lateral geniculate nucleus to the visual cortex. Here the V1 process the signal and
passes it to the other areas of the visual system. V1 is a two dimensional structure
that map the activation of the retina (i.e visual stimuli captured in the same area of
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the retina will be collected in the same area of V1). This is our first similarity with the
convolutional operation: the activation of the convolutional operation, that produce
the image feature, captures local properties of the input.

Then in V1, specialized cells called simple cells, that are neurons that respond
to stimuli with particular orientations to objects within their receptive field, process
the signal. Their action is similar to the detector stage in the CNN.

In V1 are also present complex cells that will respond primarily to oriented edges
and gratings, similarly to simple cells but their function has a degree of spatial in-
variance like the pooling stage that we defined for the artificial network.

The visual cortex presents a hierarchical structure, the V1 area is strongly linked
trough feedforward connection to a second area, the secondary visual cortex (V2),
also called prestriate cortex, where cells are tuned to simple properties such as orien-
tation, spatial frequency, and color. The function of V2 is close to V1 but the neuron
response in V2 modulate more complex properties of the stimulus such as contours,
shapes and and whether the stimulus is part of the figure or the background. We
can think of the connection between V1 and V2 as the successive stacking of convo-
lutional blocks where at each step the input is processed with larger receptive field
that produce more complex representations.

V2 sends strong connections to the successive steps of the visual processing path-
way that we will simply indicate as V3, V4, and V5 but it also sends strong feedback
connections to V1.

As we already discussed, in feedforward artificial neural network, the feedback
connection are not implemented. This is the most crucial difference in our parallel
that invalidates any serious relationship between the two processes.

In any case, we will go a bit further in the analogy to compare the feature vector
of the last stage of a CNN to a brain area called the inferotemporal cortex (IT). The IT,
that can be taken as one of the last steps of the visual processing, is associated with
the representation of objects, places, faces, and colors. It may also be involved in
face perception and in the recognition of numbers and symbols. We can say that the
activation of its neurons respond to complex information and not just geometrical
or statistical ones.

The features extracted by deep CNNs may have the same role: They encodes the
content of an image instead of just its description in terms of simple properties.

Even if, as we have seen, the analogy between brain and artificial networks is at
least naive, it is still useful to report it both because it helps in the understanding of
artificial neural networks and because the study of biological networks can lead to
the introduction of useful solutions in the development of computer vision.

The CNN described here is one of the most basic implementation of the concept
and it is probably not used anymore in real applications. This is not a problem
since our objective is not making a survey of CNN architectures but to highlight the
motivation behind their success.

CNNs architecture perform extremely well in their field of application because
they are specialized architectures that exploit our prior knowledge on the data we
are applying them to. They are useful to recognize spatial patters in the input re-
gardless of their exact position and to integrate information from a local area while
retaining the ability to process together the information extracted in different parts
of their inputs.

We can apply the same architecture where the same properties of the input are
valid regardless of the nature of the input. For this reason, convolutional network
are also employed in time series analysis, in sound processing or in video processing
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that are data that share the possibility to be well represented by locally extracted high
level features.

FIGURE 2.4: Schematic description of a convolutional network with
convolutional and pooling operations. After the second pooling op-
eration the output is flatten to a an array that is passed to fully con-

nected network.

2.4.4 The fully convolutional architecture

We will now discuss a particular class of CNNs where the output is structured as a
map that has the same shape as the input. This architecture is called Fully Convo-
lutional Neural Network (FCNN) and it was first introduced for the task of image
segmentation (Long, Shelhamer, and Darrell, 2015). The segmentation task can be
described as the assignment of each pixel of the input to the class of the object it is
a part of. So we can say that he FCNN uses convolutional operations to transform
image pixels to pixel categories.

A simple example can be the separation of white matter zone from gray matter
in a brain image.

Unlike the convolutional neural networks previously introduced, a FCNN trans-
forms the height and width of the intermediate layer feature map in the subsamplig
path back to the size of input image through the transposed convolution operation
(i.e when a unit is mapped to a larger patch trough a kernel operation), so that the
predictions have a one-to-one correspondence in shape with input image. Thus each
pixel in the original input will be associated to one output unit.

As opposed to CNN with a full contractive path, in FCNN is possible that each
output unit depends only on a part of the input. This area is called, as is the case
of intermediate layers of a CNN, the receptive field or the effective patch size of
the network. Every pixel outside this area will not contribute to determine the unit
output.

The receptive field width is particularly interesting in case there are no pooling
operations. In this case the ability to process larger area depends only by the deep-
ness of the network. The receptive field, from the initial size of the kernel K grows
by the stride S of the operator in each direction for each consecutive layer. Thus after
D layer the effective patch size is

Ps = K + 2S(D− 1) (2.12)

In Figure 2.6 we can see an example for a network with a kernel of size 3 by 3 with a
stride 1 and depth d that will have an effective patch width of 2d + 1.
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This kind of architecture has a relative small receptive field but it retains the
spatial information at the same level of detail that is present in the input. This is
possible because of the lack of pooling operation which helps to improve translation
invariance but at the same time makes the output less dependent on the exact spatial
position. For task in which the definition and sharpness of the output is an important
quality, this network will perform extremely well even with small details at the cost
of loosing the general context of the image.

Thus, when a greater area is needed two or more branches with different level of
pooling are combined to increase the effective patch size of the output layer without
disregarding the spatial information of the input. The more used solution of this type
is the U-net (Ronneberger, Fischer, and Brox, 2015) that find numerous application
in segmentation tasks where small details in the border between two areas need to
be maintained.

FIGURE 2.5: Example of a fully convolutional architecture with a
symmetric downsampling and upsamplig path.

FIGURE 2.6: Receptive field in a CNN without pooling operation with
a kernel size of 3 and stride 1. The layer operations are performed left
to rigth. A unit in the output layer (Right) will depend on 7 by 7 pixel
in the first layer. The size of the receptive field is given by 2D + 1

where D is the deepness of the network.



2.4. Convolutional Neural Networks 21

2.4.5 Batch Normalization

The efficient use of parameters in CNNs allows the development of very deep archi-
tecture with a relatively low number of parameters respect to other solutions.

While this strategy helps deriving high level representations it also introduce
problems in the application of gradient learning techniques. As we saw in Section
2.3 the gradient descend algorithm compute the forward pass sequentially, the out-
put of each layer, given an input, is computed in series feeding to each layer the
input on the precedent one. The learning step, instead, is computed and the gra-
dient applied to all the parameters at the same time (Eq. 2.5) so that all the layers
are updated concurrently. This situation may generate a strange behaviour since
we update layers under the assumption that all the other layer in the chain remain
constant and often it is not the case.

To study this effect we can build a toy network of the type examined in Section
2.1 but with only linear operation, with one unit per layer (so one parameter) and no
bias. The chain function, of length L, that this toy network computes can be written
explicitly as:

NNW(x) = ŷ = x ∗ w1 ∗ w2 ∗ w3 ∗ w4 ∗ ... ∗ wL (2.13)

Where ŷ is the network output and ∗ denote a multiplication between scalar since
layers, in this example, have only one value. When the network compute the for-
ward pass, each layer hidden unit activation hi is computed in sequence: In this
example we have that hi = hi−1wi.

In the toy example layer operations commute but this is not true in general. The
network function is linear NNW(x) in the output x but it is not linear in the elements
of the weight vector W (if we change more than one element). After we compute our
Loss function (an identity function for our toy model) we can use the BP algorithm
to compute the gradient and then apply it. As usual ε denote the learning rate.

g = ∇W ŷ (2.14)

ŷ′ = ŷ− εg (2.15)

ŷ′ = x(w1 − εg1)(w2 − εg2)...(wL − εgL) (2.16)

In this simple example we can see how a learning step can be influenced by
higher order terms such as ε2g1g2 ∏L

l=3 wl that can be extremely large, depending on
how the weights are distributed, thus making difficult to move in small steps.

In this simple model we can explicitly compute the second and higher order ef-
fects in the step computation and modify the learning accordingly but in general
is more straightforward to add an explicit normalization for the activity in the net-
work operation so when we backpropagate trough them they will compensate the
increasing in mean and variance of the hidden layers given by the gradient.

This is the basic idea of Batch Normalization (BN) (Ioffe and Szegedy, 2015) that
reparametrize the activity of each unit in a layer with its z-scored value computed
over a batch of examples. The reparametrization is performed by computing the
average activation and its standard deviation of a hidden layer H over a batch of b
examples

µ =
1
b ∑

i
Hi (2.17)
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σ =

√
1
b ∑

i
(Hi − µ) (2.18)

And then the normalization is applied at units level

H′ =
H− µ

σ
(2.19)

In this way BN assure that units are always standardized by definition reducing
the effect of large, unbalanced weighing in the gradient step. Usually BN is applied
after a series of convolutional block to keep the block activation under control. In
Chapter 6 we will implement batch normalization to stabilize the learning in a deep
fully convolutional architecture to help convergence during training.

2.5 Practical remarks and training strategy

We have reviewed the main ideas behind deep learning as a powerful framework
for supervised learning. In contrast to traditional machine learning in which sim-
ple parametric models are implemented, we saw how deep learning is used to ap-
proximate functions of increasing complexity by adding more units and layers to
networks.

This strategy allows the construction of machines that can learn very complex
tasks from example with data that is extremely complex to represent in terms of
simple features.

Most tasks that we overview consisted in mapping an input vector or multidi-
mensional matrix to another one and this is where these methods produce the best
results, given that sufficiently large capacity and a sufficiently large dataset of la-
beled examples are provided.

This introduction had focused on the approaches that are already applied at indus-
trial level and are essentially working technologies, even if there is yet open research
in the field, that are now being implemented outside their usual scope on problems
that can be addressed with the same strategies such as automated analysis on clinical
images in the medical field.

Still, the difficulty of the application of a deep learning model should not be
underestimated since a lot of work has to be devoted to the preparation of the dataset
and to studying the performance that the method obtains, in particular compared to
the alternatives that are normally used and are not based on machine learning.

Even if the main perk of deep learning is the automated extraction of features
that allow the processing of raw data in many applications we must not think that
this means that a profound knowledge of the data is not necessary to build a reliable
machine learning application.

The success of convolutional networks is a clear example of how building data
driven models with the correct prior will produce better architecture that needs less
data to be trained and can better generalize the learned task.

Also, even if we have available a clever strategy to train a model with a large
number of parameters with a few standard approaches that may work in most of
the cases, there is still a large number of hyperparameters, that are every parameters
that is not in the weight matrix such as the learning rate, and many arbitrary choices
that have to be made , and that need extensive testing and fine tuning.

Finally, reaching a good level of performance is critically dependent on the amount
and quality of the data available. A deep learning solution can be easily applied
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when a large dataset of correctly labeled examples is already organized but when
data is lacking or worse it is conflicting, the implementation of DL may be an impos-
sible task.

Often the large part of the effort in the development phase is absorbed in curat-
ing the dataset and this aspect must be considered when weighing the benefits of
applying a machine learning method in substitution of a different approach.

After the development phase we usually aim to deploy our solution to the task,
thus we want our deep learning methods to be general enough to be applied outside
the research facility. This needs lots of fine tuning to assure it will maintain stable
performance in situations where the input may deviate a bit from the curated data
used for training and testing.

This is particularly true in tasks where critical decisions are made based on a
machine learning model prediction or when the operator is not able to check and
eventually refuse the predictor output. Unfortunately, this is exactly the case of the
medical field so particular attention at the output stability should be made.

All these considerations must be made before deciding to solve a problem with
deep learning. In particular proposing a machine learning solution for a specific
problem where data are scarce or they are not easily obtained, can deeply impact the
chances of success and can ruin the credibility of the proposer and the mental well
being of the developer.

For these reasons, we will first test the performance of our new proposed de-
noiser methods on simulated data that is easily accessible and then we will try to
validate it on already collected data from an open dataset.

If these tests will be considered passed we may obtain an estimate of the data
needed to train our methods in real conditions and we will decide if the deep learn-
ing approach is reasonable in denoising magnetic resonance imaging of eterenuclei
acquisitions or not.
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Chapter 3

Introduction to Magnetic resonance

3.1 NRM Spectroscopy for biological samples

The use of NMR to analyze the content of a biological sample was first used in 1977
by Brown et al. (Brown, Campbell, and Kuchel, 1977) that shown that 1 H signals
could be observed from a range of compounds in a suspension of red blood cells.
A great deal of metabolic information can be derived from such metabolic studies
and it was soon recognized that 1H-MRS has a considerable role to play in areas of
pharmacology, toxicology and drug discovery (Ross et al., 2007). More recently, the
presence of fluorine in a significant part of newly approved drugs made 19F-MRS an
important analysis and quantification tool for both in vitro and in vivo application
to biological samples (Mattes et al., 2016).

3.1.1 NMR principles

We will present a phenomenological description of magnetic resonance needed to
understand the MRS quantification in cells and tissues that are reported in Chapter
4 and 5.

This section is meant to be an overview on the application of NMR to metabolic
profiling of biological samples. It is not meant to be a theoretical treatment of the
matter so not only a semi-classical description on NRM will provided but also a few
detail on data acquisition and processing in an experimental setting.

To this end, the physical phenomena, the hardware needed, the acquisition pro-
tocol and the preprocessing of the signals will be briefly treated.

While in this section the discussion of the phenomena will be general and we
will often refer to proton spectroscopy (1H), our main interest is in fluorine (19F)
spectroscopy for which both the challenges and the application are different. Thus,
in section 3.1.2 we will analyze in more details those differences.

A first-principle formulation based on quantum mechanics is available but it is
beyond the scopes of this introduction and can be found, for example, in (Goldman
and Webb, 1989; Ziessow, 1988).

Semi-classical NMR

When atomic nuclei are immersed in an external magnetic field and when an elec-
tromagnetic radiation with specific frequency is applied, a resonance transition be-
tween magnetic energy levels can be observed. NMR is based on this physical phe-
nomenon. By detecting the absorption signals, one can acquire an NMR spectrum.
According to the positions, intensities and fine structure of resonance peaks, people
can study the structures of molecules quantitatively. In NMR spectroscopy (MRS)
molecules under investigation are exposed to an external magnetic field B0 that is
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also called the longitudinal field. We will assume that the direction of this field is
along the z axis. At equilibrium, the magnetic moments of the molecules in the sam-
ple align along B0 accordingly to a Boltzmann distribution.

To produce the NMR signal, the total magnetization is flipped orthogonal to B0
using an high frequency magnetic field B1 orthogonal to B0 applied for a fixed time
interval. This is called the radio-frequency pulse (RF-pulse) or the B1 pulse. The
total magnetization ~M now is orthogonal to B0 and will precess with a frequency f0
know as its resonance given by:

f0 =
γX

2π
B0 (3.1)

It is important to notice that the resonance frequency depends on the gyromagnetic
ratio, that is a property of the molecule, and on the external field, that is under
experimental control.

Thus, NMR spectrometers are usually indicated almost interchangeably with
their magnetic field strength in Tesla (T) or with the resonance frequency of the
hydrogen atom (1H) at the provided field strength. For example, given the gyro-
magmetic ratio of the hydrogen:

γ1H = 42.58
MHz

T
(3.2)

A spectrometer operating at 9.4 Tesla will be called a 400 MHz and one operating
at 14.1 T will be called a 600 MHz. Other nuclei will rotate in the same field at other
frequency depending on their gyromagnetic ratio. The fluorine atom gyromagmetic
ratio is γ19F = 40.05 M Hz

T so it will resonate at 376 MHz in the 400 MHz (or 9.4 T)
spectrometer.

Detection of signal

Following the schematic representation in Figure 3.1 a sample (i.e a glass vials with
a resonant molecule in solution) is inserted in a detection coil and it is immersed in
the static magnetic field B0. The processing magnetization produced by the B1 field
(the RF pulse) will induce a voltage Uind modulated with the molecule resonance
frequency f0. The amplitude of Uind is directly proportional to the magnetic moment
~M and thus with the number of spins rotating with the same resonance frequency f0
located inside the coil volume. This signal is called "Free Induction Decay" (FID).

In a molecule, the local magnetic field, that influences a spin, deviate slightly from
the external field B0 due to the effects of its electron clouds. Thus the differences in
frequency measured between the spin fi and the reference spin f0 is an indication of
the electronic and chemical neighborhood of the nucleolus observed. This relative
difference measured in parts per million (ppm) respect to B0 is defined as the chem-
ical shift of the spin. Spectral distances (i.e differences in frequency) measured in
ppm are independent from B0 and can be compared between different acquisitions
at different field strength while spectral distances measured in Hz will depends on
B0. Different spins species of the same atom have different ranges of chemical shift:
1H spins resonate within 15 ppm while 19F has a larger chemical shift range of 700
ppm. Usually the reference frequency f0 is derived from the frequency of a reference
compound that contain the atom of interest. The choice of this reference compound
is linked to experimental necessity and may vary but for each application of MRS it
is limited to a small number of standard molecules (Rosenau et al., 2018).
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FIGURE 3.1: Detection of NMR signal: (left) a sample with many
spins is immersed in an external field B0 oriented along the z-axis.
At equilibrium the total magnetization (Orange arrow) is parallel to
this static field. The sample is enclosed in a detection coil (Black). Af-
ter the application of a RF pulse (center), the total magnetization is
now parallel to the x,y-plane and it starts to precess around B0. The
NMR signal is the voltage induced Uind in the coil by the varying

magnetization.

Relaxation

At the thermodynamic equilibrium, the the total magnetization is parallel to the ex-
ternal field so that ~M = M0ẑ. The effect of a resonance RF pulse (or B1 pulse) is
to disturb the spin system out of its equilibrium. When the perturbation stops, in
time, the equilibrium will be restored by a process known as the spin-lattice relax-
ation. This process involves an energy exchange between the spin system and the
surrounding thermal reservoir (the lattice). Since this process restore the state of the
magnetization that is parallel to the longitudinal field, it is also called longitudinal
relaxation. The equation that describes this longitudinal relaxation is:

dMz

dt
= −Mz −M0

T1
(3.3)

With solution:
Mz(t) = Mz(0)e−t/T1 + M0(1− e−t/T1) (3.4)

The time constant of this process T1 is known as the spin-lattice or longitudinal re-
laxation time. At room temperature for a biological sample it is in the range of 0.1 to
10 seconds.

Spins also interact between themselves giving rise another relaxation process
that controls the lifetime of the transverse magnetization. This process is known as
the spin-spin or transverse relaxation. Phenomenologically the equation for trans-
verse relaxation is written as:

dMx,y

dt
= −

Mx,y

T2
(3.5)

With solution:
Mx,y(t) = Mx,y(0)e−t/T2 (3.6)
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The time constant of this process T2 is known as the spin-spin or transverse re-
laxation time. In biological samples usually T2 << T1 and it is in the range 10 µs to 1
s. This exponential description applies only when the interaction terms responsible
for transverse relaxation are weak. This regime is called Bloembergen, Purcell, and
Pound (BPP) and it is valid for spins residing in liquid state molecules (Callaghan,
1991). For our NMR applications we will always assume to observe slowly relaxing
spins for which the this phenomenological approach is appropriate.

Bloch equation

If we combine Eq. 3.3 and Eq.3.5 in the rotating frame we obtain a set of relationships
known as the Bloch equations.

These equations provide a valuable reference for the phenomenological descrip-
tion of NMR.

∂

∂t

Mx
My
Mz

 = γX

Mx
My
Mz

×
Bx

By
Bz

− 1
T2

Mx
My
0

− 1
T1

 0
0

Mz −M0

 (3.7)

Suppose that a coil is placed around the sample as in figure 3.1 transverse to the
static field B0. In the laboratory frame any transverse magnetization precessing at
the larmor frequency will produce an induced voltage oscillating at ω0 frequency.

The amplitude of the signal is in the order of µV and it will be proportional to
the transverse magnetization vector present inside the coil.

The RF receiver works by mixing the induced signal with the output from a ref-
erence radio frequency oscillator. This process is called heterodyning and it is used
to obtain a phase sensitive measure with a single receiver.

Thus, by separately mixing the signal with two heterodyne oscillator each out
of phase π/2 we obtain two output signals that are proportional to the orthogonal
phases of the magnetization so in practice we are measuring Mx and My.

When the mixing reference is oscillating at ωr any the output signal will oscillate
at the offset frequency ∆ω = ω0 −ωr.

Conventionally the output signal is represented as a complex number in which
the real part is Mx and the imaginary part is My.

Consider an experiment in which a RF pulse that flips of π/2 the spin magnetiza-
tion is applied to a system in equilibrium with the field in which the magnetization
M0 is along the z-axis. In this case the total magnetization in function of time can be
written following Eq. 3.7 as

M(t) = [M0 cos (ω0ti) + M0 sin (ω0tj)] exp{(−t/T2)} (3.8)

In the complex notation it becomes

M(t) = M0 exp{(iω0t)} exp{(−t/T2)} (3.9)

So the output signal at the offset frequency simply is

S(t) = S0exp(iφ) exp{(i∆ω0t)} exp{(−t/T2)} (3.10)

Where φ is the absolute phase of the detector and S0 is the initial amplitude which
is proportional to M0.

This time domain oscillating signal induced by a free precession is the FID.
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Limit of detection and noise

The detected current in the coil is proportional to the total magnetic moment of the
sample.

Thus, the signal depends linearly on the number of atoms N in the sample and
the difference in population between spins aligned parallel with the B0 field and
those aligned anti-parallel. According to the high-temperature approximation of
Boltzmann’s law this difference increases linearly with B0.

In the signal term, there is an additional B0 dependence in the detection process
itself (the energy provided by any spin flip, so the difference in energy).

Other important factors influencing the sensitivity of the measurement are the
gyromagnetic ratio γx, the sensitivity of the detector and the noise created by the
sample and the electric resistance , the latter summarized in SD.

The sensitivity defined as the signal-to noise ratio (SNR) of a single repetition of
the acquisition is given by:

SensitivityScan ∼ γ3
x · N · B2

0 · SD (3.11)

There exist two approaches to increase SD: First, we can reduce the contribution
of the circuit and losses. Noise in electric circuits is caused by thermal motion of
electrons in wires (Edelstein et al., 1986).

Consequently it is proportional to the temperature and it can be reduced by cool-
ing the wires of the detection coil and the preamplifier down to cryogenic temper-
atures of a few K. Such probeheads are called cryogenic or cold-probes. They are
unfortunately expensive and specialized hardware.

In addition SD can be increased by reducing the size of the detection coil since
Jonson noise is also linearly dependent on the resistance it is clear that shorter wires
and smaller coils create less noise.

In biological samples usually the concentration is given by the biology of the
system and it can be extremely low so using a small volume may be disadvantageous
since less resonant atoms will contribute to the magnetization.

In this case usually the strategy is to concentrate the metabolites in smaller vol-
umes during sample preparation for example by the lyophilization and reconstitu-
tion of the sample. A specialized guide for biological sample preparation can be
found in (Kostidis et al., 2017).

Also, A sample of high conductivity in which many solutes are present reduces
the sensitivity of the detection by induced eddy-currents. This situation is often
encountered for biological samples having high ionic strength like blood or urine.

From Equation 3.11 it is also clear that a higher static magnetic field does increase
the sensitivity of the NMR detection. This is one reason why magnets with higher
B0 fields are attractive.

If the same experiment is repeated by averaging the detected signal, it is impor-
tant to realize that the signal sums coherently (proportional to the number of rep-
etitions called scans (NSA) ). While statistic averaging leads to a decrease of noise
linear in the root of NSA.

Thus increasing the SNR by two enforces a fourfold increase in experimental
time. Another important factor influencing the outcome is the rate of repetition of
scans (TR).

A slow rate, that is long inter-scan delays, allows for full relaxation of the magne-
tization. This ensures that the area of the resonance peaks is perfectly linear respect
to the concentration of the analytes. The trade-off in this regime is a long experimen-
tal time for a given number of repetitions.
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This aspect is important when we are interested in the quantification of a molecule
in the sample and will be discussed in Section 3.1.2.

Since biological concentration of many analytes of interest may be low, easily
in the order of 10−8 Molar, many strategies to improve the SNR and detection for
metabolomic analysis have been developed in NMR. This topic is discussed in depth
in chapter 3 of the book by Ross et al. (Ross et al., 2007).

Elements of signal processing

The spectrometer coil detects magnetization along the x-direction and the y-direction
over time.

The detection is done by a measurement of induced voltages with a single coil
using two-channel phase-shifted high-frequency mixing.

For any time-point, two values Mx and My are recorded, this technique is called
phase-sensitive detection.

The NMR signal is a complex valued time domain signal constructed as Mx(t) +
iMy(t) that is transformed to the frequency domain through a fourier transform (FT).

The fourier transform of the FID signal will show individual lines with positions
given by the chemical shifts. The width of the lines is characterized by 1/T2 and
shows a so-called absorptive lorentzian line-shape.

This relation holds if all magnetization flipped in the x-y plane is perfectly aligned
along the x-axis at the beginning of the acquisition. Because of the imperfect strength
calibration of the RF pulse and due to limitations of spectrometer electronics this is
not true in practice and the spins are not perfectly flipped so resonances are not
perfect lorentzian.

Initial magnetization is oriented under a small initial and frequency-dependent
phase with respect to the x-axis.

As a consequence, the real part of the FT will also contain a frequency-dependent
contribution of the imaginary part of a perfect signal. This imperfection can be re-
moved after FT by a process called phasing.

Thus, the phase shift also varies with frequency and, in FT NMR spectroscopy,
the real output of the FT is taken as the frequency domain spectrum so the NMR
spectra require both constant and linear corrections to the phasing of the Fourier
transformed signal.

φ′ = m · φ + b (3.12)

Constant phase corrections, b, arise from the inability of the spectrometer to de-
tect the exact Mx and My. Linear phase corrections, m, arise from the inability of the
spectrometer to detect transverse magnetization starting immediately after the RF
pulse.

A magnitude spectrum might occasionally be used in some applications. The
magnitude signal is equal to the square root of the sum of the squares of My and
Mx. Magnitude spectra can be useful when phasing correction is difficult since it
discards the phase completely.

Another problem that can appear in NMR spectra is a distortion of the baseline
due to imperfections and non-linearities of the electronic detection process.

This non flat baseline can be corrected by the subtraction of a polynomial func-
tion from the raw spectrum obtained. This correction can be obtained automatically
by a fitting procedure of the spectra after the removal of the points relative to the
resonances.
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Phasing and baseline correction can be performed automatically but in some oc-
casions a manual procedure can be advantageous. Thus, Visual inspection of pro-
cessed spectra for artifacts is important before the analysis of the data is performed.

The signal to noise and line-shape of spectra can be adjusted by an apodization
(i.e. the time-domain signal is multiplied with a window function) prior to FT.

In metabolomics, the window function used for this purpose is typically the so-
called exponential-window given by exp{−LB · t} employed with a line broadening
factor LB of 1 - 3 Hz. Since the first point of the FID is not modified the integral areas
of the peaks of the spectra do not change after this filtering is applied.

The LB weighs the points in the FID prior to the FT. An exponential weight makes
more important the first points recorded, limiting the effect of the noise at the ex-
pense of spectral resolution.

An LB of 1 - 3 Hz offers an acceptable compromise between signal-to-noise and
spectral resolution.

Since the integral of an NMR signal in the spectrum (not its amplitude) is linear
in the number of NMR active nuclei present in the sensible volume of the coil, the
concentration of this molecule can be determined from this integral.

Comparison of integral values with a reference compound allows an absolute
value determination of concentration of the selected molecules in the sample.

Quantification will be discussed more in detail in the next Section.

3.1.2 19F MRS quantification

Magnetic resonance spectroscopy (MRS) can be used for quantification purposes
such as the determination of the content of a drug and its impurities when. This
technique has many applications in pharmaceutical R&D and it is also used for
metabolites quantification and profiling in plasma and excreta (Holzgrabe, 2010).
In particular 19F-MRS can be used to track fluorine labeled compound and it has
been proposed as an alternative to radiolabeling in mass balance studies (James et
al., 2017; Athersuch et al., 2010). Also, it has been used to quantify fluorine labeled
T-cells in tissues samples in ex vivo experiments (Chapelin et al., 2017). Those ap-
plication are possible because, with the correct experimental setup, the area of a
resonance peak in the 1-dimensional spectrum is proportional to the number of nu-
clei giving rise to it .
To be used in a quantification experiment, the acquisition and processing param-
eters have to be set carefully. The first concern is to obtain complete longitudinal
(T1) relaxation: The repetition time (TR, the time interval at which the pulse is
repeated) has to be set taking into account the longitudinal relaxation time T1 of
the signal used for quantification. Relaxation in T1 can be described as : Mz =
M0(1− exp{−TR/T1}) with M0 and Mz are respectively the magnetization along
the z-axis at equilibrium and after the repetition time. To obtain a signal that is pro-
portional to the equilibrium magnetization, one should set TR >> T1. When in the
tested sample there are multiple sources of signal, in theory one for each atoms in
each molecule, T1 should be measured for all of them and TR should be set accord-
ingly.

Usually to determine T1 an inversion recovery pulse sequence is used (see Sec-
tion 5.2.5) and when the tested samples are in solutions with different solvents, a
measure should be repeated for each solvent since T1 can be different in different
solvents.
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Quantification can be achieved by means of relative or absolute methods, using
either internal or external standards: a reference signal given by a know source can
be used to normalize all other unknown signals.

For the purpose of this experiment the choice of this standard reference should
follows a few considerations(Giraudeau et al., 2014; Cullen, Ray, and Szabo, 2013)
: First, the reference peak should not overlap any those of the injected fluoridated
compound and any of its metabolites. Second, the signal of the reference should not
be exceedingly larger than the expected signal of the unknown molecules to avoid
the modification of the receiver gain for lower and higher concentration samples that
might influence the stability of the measure . Third, the reference should be in the
same chemical shift region of the tested molecules to avoid off resonance effect and
the pulse excitation should be uniform in the spectral width of interest. This is par-
ticularly important for the fluorine spectra because of its wide chemical shift range.
Finally, the reference should be chemically stable for the duration of the experiment
and should tested for impurities to check its stability.

3.2 NMR imaging

We saw how the NMR signal is detected by the receiver, and it is simply a voltage
induced in the coil. In this Section we will discuss how spatial information needed
to form an image is encoded in this signal.

The NMR signal is centred at a resonance frequency that is given by the strength
of the static field , but it contains a range of different frequencies that encode infor-
mation about the location in the scanned volume.

This centre RF frequency is removed digitally from the signal leaving data orga-
nized in a bandwidth, which is typically several kilo hertz (kHz) wide.

This signal is acquired in frequency so most of the signal-to-noise and contrast
information is in the low frequencies, while the higher frequencies contain informa-
tion about resolution in the image.

Electronic noise can be thought as distributed evenly across the whole band-
width so High receive bandwidths have a worse signal-to-noise ratio than low re-
ceive bandwidths simply because they include more noise.

This data is usually called the k-space acquisition of the MRI. From this matrix
the final image is reconstructed through a fourier transform.

3.2.1 Gradients and sequences

In MRI the static magnetic field B0 is constantly present. The gradients are applied
in a controlled fashion to form a pulse sequence.

In MRI the term gradient means a spatially dependent additional component to
the magnetic field in the z direction, i.e. along B0.

For example an x gradient (Gx) will add to the static field another contribution
to the total field intensity at different points along the x axis.

We saw how the resonance frequency depends on the magnetic field so when
all the protons (spins) experience the same field and have the same frequency but
when a a gradient is added to the magnetic field produced by the gradient then spin
resonance frequency became spatially dependent

Faster or slower precession is detected as higher or lower frequencies in the NMR
signal, and so frequency measurements may be used to distinguish between NMR
signals at different positions in space.
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FIGURE 3.2: Basic gradient-echo MR imaging sequence. Amplitude is
shown vertically, time horizontally. GSS is the slice-selective gradient,
GPE the phase-encoding gradient and GFE the frequency-encoding

gradient

Gradients can be applied in any direction or orientation. Usually in a NMR sys-
tem there are three main direction axes Gx, Gy and Gz and they are combined to
produce gradients in any desired direction. Gradients are normally applied only
for a short time so they are called pulses as pulses and they are used to produce
sequences.

An NMR pulse sequence diagram is a simple means of showing how the RF and
gradients are applied.

The basic gradient-echo MR imaging sequence that will be used to illustrate the
image-formation process is shown in Figure 3.2 . The vertical axis represents pulse
amplitude and the horizontal axis is time.

First, an RF pulse is applied simultaneously with a slice-selective gradient GSS
. The RF pulse stimulates the NMR interactions in tissue which lead to the NMR
signal.

By combining the RF excitation with a gradient the MR interactions are restricted
to a two-dimensional plane, the slice. Any physical gradient Gx, Gy or Gz or combi-
nations of these can be used for this purpose, allowing us to produce axial, sagittal
or coronal slices.

Then, gradients are applied in the directions orthogonal to the slice selection to
produce the localization in the plane with phase and frequency encoding.

This encodes the NMR signal in the phase-encode direction and the frequency-
encode direction. The signal is acquired after the application of the gradient. Note
that this is during the frequency-encode gradient but after the phase encoding.
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This sequence has to be repeated for every line of data, corresponding to a differ-
ent value of phase-encoded gradient thus a time period, TR, needed to let the system
relax, occurs between the application of one RF excitation and the next.

Once all the data are acquired, a two dimensional Fourier transform is applied.
This converts the data, already encoded as spatial frequencies, into an image.

3.2.2 Pixels in images and k-space

The pixels in NMR images are organized into rows and columns in a matrix. Each
pixel in the reconstructed image can be thought of as a number which represents the
signal Intensity in a given small volume that is indicated by its spatial coordinates
and its elements are real values or integers.

The raw data ( k-space) instead is conventionally organized in the following or-
der: frequency-encode dimension, phase-encode dimension, number of slices. As
opposed to images, k-space elements are complex valued.

Each time the sequence is repeated a full line of data in the frequency-encoded
direction is acquired. The phase-encode gradient is changed for each repetition and
each line has a different position in the phase-encoded direction. Thus, as the se-
quence is acquired, k-space is filled row by row in the raw data matrix.

When the number of phase-encoded elements (the rows in k-space) is defined
it sets the number of times the acquisition sequence must be repeated. Each time a
TR (see 3.1.1) has to be waited to allow the system relaxation so this setting strongly
influences how long the scan will take.

On the other hand, the frequency-encode matrix has only a negligible effect on
the scan time in the order of ms, which is why we often have a larger matrix in the
FE direction.

Conventionally we show the FE direction as columns in k-space, and the PE di-
rection as rows. So if you choose 256 for frequency encoding, each MR echo will
have 256 sample points, thus requiring 256 columns in the k-space matrix.

When the PE matrix is set, it is defined how many echoes have to be acquired
(the rows in k-space), so every digitized sample point of the echo is stored in the
k-space.

Another important difference is in how information from the volume is stored
in the data. Pixels in images are close if they are geometrically close in the volume
while in k-space pixels are close if they are close in frequency or in phase.

Thus while pixels in the images encode local information in a portion of the
scanned volume, in the k-space instead all points encode information about all the
volume but at a different frequency. Thus, data in the middle of k-space contain all
the signal-to-noise and contrast information for the image, and data around the out-
side contain all the information about the image resolution (edges and boundaries).

Pixel (and voxel) size is an important parameter in the acquisition since it con-
trols the resolution of an image and its SNR.

We can define the voxel size in all three dimensions, usually one dimension is
the slice thickness and the other two spatial dimensions of the field of view (FOV)
are relative to the single slice.

We have to calculate the size in the frequency - and phase-encode directions sep-
arately, because they can have different matrix sizes. For example

FE pixel size =
FE FOV

NFE
(3.13)
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Where NFE is the number of elements in the k-space in the frequency encoded
dimension. Images and k-space data will be the again discussed in Chapter 6 when
a neural network will be applied to both representations of the signal.

3.2.3 Resolution and signal

Generally MRI resolution is pixel limited. That means that the smallest object or
detail you can visualize in the image has the dimensions of a single pixel.

The dimension of a pixel is set by the length of the FOV and the number of pixels
acquired. So for a 256 matrix and a 25 cm FOV details of the order of 1 mm should
be visible.

Contrast, resolution and signal to noise ratio (SNR, see Section 6.3.1) are the three
most important factors that determine if a detail is visible in an MRI acquisition.

First, The contrast is the intensity difference with the surrounding tissues. If the
contrast is too low the area of the object can be confused with adjacent areas. In
general the contrast is modulated by leveraging differences in T1 and T2 relaxation
times modulating the time parameters of the acquisition sequence.

Second, the resolution should be sufficient to clearly identify the object. If reso-
lution is too low, the signal of the object will be mixed in the same voxels with the
signal on the surrounding tissues. Third, if the SNR is too low, the details of the
borders may be confused by image noise.

3.2.4 Resolution and scanning time

Increasing spatial resolution will both increase the scan time and reduce the SNR.
Spatial resolution in the frequency-encoding (FE) direction will contribute only

marginally on the scan time (but not in terms of SNR) if the matrix is increased while
keeping the FOV constant but changing the phase-encoding (PE) matrix, means ac-
quiring more lines of data, which takes time.

Scan time = NSA× TR× NPE (3.14)

Where NSA is the number of averages of the signal and NPE is the number of
lines acquired.

The signal on the other hand is proportional to the number of atoms in a region of
space so it will increase if slice thickness and pixel size are increased at the expense
of resolution if the FOV is kept constant.

Another important acquisition parameter is the signal averaging (NSA) that does
not affect resolution and reduces the noise by averaging the signal over multiple
acquisitions. Acquiring more scans increases linearly the acquisition times but only
increases SNR as the square root of the number of signal averages. Also, in the
case of living subjects there may be other motivations to keep the scan time low, for
example the discomfort of the patient or to limit the effect of movement when it can
not be controlled (i.e fetal MRI).

Also changing NFE can affect the noise, but the effect depends on what happens
to the bandwidth and FOV. If FOV is kept constant, the bandwidth increases and
noise is proportional to the square root of total bandwidth.

In general, the best set of acquisition parameters and sequence is defined by the
imaging task. Each application has its own constrains and its impossible to give
indication to which is the best imaging configuration.
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In Chapter 7 a particular acquisition modality where multiple coils are used at
the same time. At first approximation we can think that all the topics discussed
remain valid at single coil level.

Actually, the reason the data used in that chapter are acquired in that way, accel-
erated imaging, should be discussed separately and a nice introduction can be found
in the book by McRobbie et al. (McRobbie et al., 2017).
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Chapter 4

Evaluation of F-BPA
internalization for Proton Boron
Fusion Therapy applications in
pancreatic cancer cells

Chapter Abstract
A promising new therapeutic approach for pancreatic cancer is Proton Boron Fusion Ther-
apy (PBFT) which produces a highly localized damaging action through nuclear reactions
of the incoming proton beam and 11B, conveniently administered to the patient before the
treatment. In this Chapter we report our evaluation of the internalization of fluorinated-
boronphenilalanina (F-BPA) in the PANC-1 cellular line. The internalization of the boron is
vital for this technique to be adopted for the treatment of a particular tumor since its effect
depends on the concentration of target boron inside the cell membrane.
Compared to the most used boronophenylalanine (BPA), F-BPA has the advantage that its
bio-distribution may be in principle monitored in vivo using 19F- Magnetic Resonance (MR)
so its adoption for PBFT may be advantageous since the possibility to track the drug biodis-
tribution in vivo can greatly help the application in clinical practice of this therapy.
Thus, to further strengthen our results The F-BPA internalization in PANC-1 cells was
evaluated with three independent techniques: neutro autoradiography, which is sensitive
to boron, liquid chromatography, and 19F-MR Spectroscopy, which is sensitive to fluorine
atoms.
Since the internalization is confirmed, we propose to further investigate F-BPA as a boron
carrier for BPFT for the therapy of pancreatic cancer and we will adopt it in our experiment
on the animal model.
Together with these positive results, we will also present the measure performed on a pro-
posed alternative tracer that was promising because it has a large number of fluorine and
boron atoms but it is not internalized so its application is not advantageous in this particu-
lar case.

4.1 Introduction

In this Chapter we will introduce our case study that is developed within the NEP-
TUNE collaboration that is the treatment of pancreatic cancer. The newly proposed
technique, the Proton Boron Fusion Therapy (PBFT), will be briefly described and
we will discuss why it is important to research new therapeutic approaches for this
tumoral pathology and how the PBFT can be a valuable tool in its treatment.
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applications in pancreatic cancer cells

The Chapter is centered on the importance to measure the internalization of the
boron inside cells since it is a necessary condition for applicability of PBFT.

In particular, we will draw a parallel with a related technique that involves a
similar nuclear reaction, the Neutron Boron Capture Therapy (BNCT), that has the
same constraint to reach a high concentration of boron inside the tumoral area but
to which we believe that PBFT may be superior in this specific use case.

Then we will discuss how to measure the intracellular internalization of the boron
carrier and we will apply the technique to the study of F-BPA that we would like to
adopt as a dual purpose boron carrier and magnetic resonance tracer.

The techniques presented are general and can be applied to any problem that
need the quantification of cellular uptake of molecules tagged with fluorine and is
not limited to the application in PBFT.

In addition, we will also present the tentative proposal of a new boron carrier that
has great magnetic resonance properties but unfortunately can not be applied to
pancreatic cancer with this treatment since it does not reliably internalize into cells.

4.1.1 Application to pancreatic cancer

Pancreatic cancer is an aggressive and highly lethal disease. Optimal treatment is
a multimodal approach that combines surgical resection, chemotherapy and/or ra-
diation therapy (Sereti et al., 2018) but, despite the improvements in the therapeu-
tic strategies over the last 30 years, the 5-year survival rate remains at 9% (Rawla,
Sunkara, and Gaduputi, 2019), indicating that the overall management of the disease
is still insufficient. For this type of cancer, chemotherapeutic approaches are limited
by the reduced stroma permeability and heterogeneous blood supply, while the ef-
fectiveness of radiation therapy is reduced by hypoxia (Seshacharyulu et al., 2017)
. As the relative biological effectiveness (RBE) of proton therapy (PT) is only 10%
higher than photon radiation therapy (XRT), PT alone is not expected to guarantee a
better outcome than XRT for this type of cancer. Carbon-ion therapy, which utilizes
heavier particles inducing more severe DNA damages compared to PT and XRT, is
providing hopeful results, while alternative pathways to fight radiation resistance
are also being investigated, including the introduction of hypoxia activated drugs
(Dell’Oro et al., 2020).

Given the characteristic of pancreatic tumour, a possible therapeutic approach for
pancreatic tumour could be the Boron Neutron Capture Therapy (BNCT), a binary
therapy approach (Barth et al., 2014; Moss, 2014) which exploits thermal capture of
10B, suitably accumulated inside the tumor before thermal or epithermal neutron
(n) irradiation. The n+10B reaction is able to generate short range high-LET parti-
cles (alpha particles), causing a highly localized damaging action. The drawback of
BNCT for pancreatic cancer is that it may be difficult to obtain a sufficient thermal
neutron fluence at the tumour site to ensure a therapeutic effect without exceeding
the tolerance dose of surrounding tissues/organs.

Another crucial event for the success of BNCT concerns the 10B tumor / healthy(normal)
tissue concentration ratio (T/N) which has a minimum threshold of 2 in current
clinical applications (Barth, Mi, and Yang, 2018). The most commonly used boron
carriers used in BNCT are 10B enriched sodium borocaptate (BSH) and borono-
phenylalanine (BPA, currently the gold standard) (Barth, Mi, and Yang, 2018); In this
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contest, tumour to normal tissue (T/N) boron concentration ratio may not be opti-
mal for pancreatic this cancer as BPA is taken up in healthy pancreas with higher
concentration than other normal tissues: See Section 5.1.1 for a short review on the
subject.

The idea to exploit nuclear reactions to produce short-range high LET particles
has been revived in a recently proposed approach, the Proton Boron Fusion Therapy
(PBFT), which goal is to enhance the biological effectiveness of proton (p) therapy
inducing p-11B nuclear reactions ( p-11B -> 3 alpha).

Promising results for BPFT have been obtained in (Cirrone et al., 2018), where,
using BSH, an increase in DU-145 cell killing and DNA damage was measured at the
mid-SOBP (Spread Out Bragg Peak) of a clinical proton beam.

It has been suggested that this increase is due to the high-LET alpha particles
produced in the p-11B reaction, whose maximum cross section is at low proton en-
ergy, corresponding to the Bragg peak localized in the tumor region. The constraint
of a differential uptake of the carrier between normal and cancer cells as needed in
the BNCT is thus eliminated and BPA remains a suitable carrier.

Given that PBFT, as BNCT, needs carriers to be administered to the patients be-
fore irradiation and internalized by cancer cells, it is necessary to check that suitable
concentrations are achieved inside the tumors. The use of F-BPA has been suggested
in BNCT to estimate the boron concentration in the tumor before the neutron irra-
diation via PET scan or Magnetic Resonance Imaging (19F-MRI) (Ishiwata, 2019a).
PET is used to evaluate the eligibility of a patient for BNCT, by measuring with a
scan taken days before the treatment the T/N ratio. This is because the tracer used
for PET, 18F-BPA for example, cannot be used as boron carrier during the therapy,
given that the quantity needed for the treatment would expose the patient to a very
high dose.

Moreover, using different molecules (18F-BPA vs BPA) at different times, can
introduce biases in the measurement of the bio-distribution of 10B inside the patient,
due to effects like different pharmacokinetics, non linear uptakes etc.).

19F-MR Imaging or Spectroscopy, on the other hand, exploits a non radioactive
fluorine isotope (19F), thus a molecule like 19F-BPA can be in principle used simul-
taneously as tracer for T/N quantification imaging and as boron carrier in BNCT.

In BPFT, as recently pointed out, fluorine can also contribute to the enhancement
of the radiobiological effectiveness of the therapy since the nuclear reaction p+19F
has similar properties, producing a single alpha of O(10) MeV energy, with a cross
section peak in the tumor region. The use of 19F-MRI is currently limited by a low
signal to noise ratio (SNR) (Tirotta et al., 2015) but some promising results have been
obtained in in-vivo on animal model imaging with 19F-BPA (Porcari et al., 2009;
Porcari et al., 2008).

Our main goal is to to investigate the feasibility of the usage of 19F-BPA as a car-
rier and as tracer in BPFT for the treatment of pancreatic cancer. To this purpose, as
a first step, we present an in-vitro measurement of the internalization of 19F-BPA in
the PANC-1 cellular line with a multimodal approach. We concentrated on 11B be-
cause BPFT seems more promising as a therapy for pancreatic cancer. We employed
neutron autoradiography, nowadays one of the entrusted techniques suitable for the
quantification of boron in cellular and tissue systems (Wittig et al., 2008), to quantify
boron taken up by PANC-1 cells and also to obtain imaging of boron distribution in
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the cell samples, allowing to verify if 19F-BPA administration protocol had guaran-
teed a uniform availability of boron to all cells. The needing to develop protocols,
to detect and quantify boron-based carriers at cellular level, based on experimen-
tal approaches and advanced analytical techniques (e.g. UHPLC-HR-MS; UHPLC-
UV-DAD), allowed us to hypothesize the use of cellular metabolomics as a useful
tool. In fact, metabolomics offers the advantage of exploring the biological system’s
response to an external chemical insult and how this, eventually, changes from a
structural point of view. For this purpose, ultra-high-pressure liquid chromatogra-
phy electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-
ESI-QqTOF-MS) , through the measurement of accurate mass and isotope patterns,
provides a reliable contribution following a protocol of quenching/extraction that
takes into account the chemical-physical properties of the carrier.

The presence of the fluorine atoms allows us to considered another technique,
Magnetic Resonance Spectroscopy (19F-MRS) to qualitatively evaluate the internal-
ization with a completely independent approach (measuring fluorine instead of boron)
with the perspective to set-up an imaging protocol (19F-MRI).

In particular we will be able to validate the 19F-MRS results against the two
other techniques that are more established in the field. Thus, we performed a multi-
modal approach using three different techniques to evaluate the in-vitro internaliza-
tion of 19F-BPA in PANC-1 cells: neutron autoradiography, liquid chromatography
and magnetic resonance spectroscopy.

In this Chapter I will report our experiment aimed to verify the internalization
of fluorine tagged version of borono-phenylalanine (F-BPA) in a human pancreatic
(PANC-1) cell line. Together with the experiment that I performed with fluorine
magnetic resonance spectroscopy, I will report also results from experiments per-
formed by our collegues and members of the Neptune collaboration, Silva Bortolussi
and Ian Postuma from the BNCT lab in Pavia and Severina Pacifico and collabora-
tors at University of Campania "Luigi Van-vitelli". Tables and Figures that reports
results that I did not personally obtain are credited in the caption.

4.2 Methods and Materials

4.2.1 Cell line and protocol (19F-MRS)

Human pancreatic cancer cell line (PANC-1) was purchased from ATCC (American
Type Culture Collection). Cells were grown in DMEM medium supplemented with
10% Fetal Bovine Serum, 50.0 U/mL penicillin, and 100.0 mg/mL streptomycin, at 37
°C in a humidified atmosphere containing 5% CO2. 2-Fluoro-4-boronophenylalanine
(19F-BPA) has been prepared following a previously reported procedure (Kabalka et
al., 2000a).

Cells were grown in 10 ml DMEM medium supplemented with 10% FBS, 1%
penicillin/streptomycin and 2mM glutammina. Cells were seeded at a density of
3.0 · 106 in 2 T75 flasks with 48 hours incubation time. Cells were treated with
120 ppm (13.6 mM) 19F-BPA with 4 hours exposure time, dissolved directly in cell
medium. At the end of the exposure period the cell medium was removed and 3
washes with PBS were performed (2 ml/each). The liquid of the 3rd wash is pre-
served and used as “negative control” sample for the analysis. Adherent cells were
detached using Trypsin-EDTA solution (trypsin, 0,25%, EDTA 0,02%), collected and
centrifuged to obtain the “pellet” sample. Another sample (“lysate” sample) is ob-
tained with the same procedure but cells were lysed in a 400 µL lysis buffer (TRIS
50mM, Triton 1%, SDS 0,1%, NaCl 150 mM, EDTA 5 mM). The “lysate” sample is
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created because the MRS measure is simpler on an homogeneous sample whose vol-
ume is comparable with the active volume of the spectrometer and because we aim
to avoid short T2 relaxation time of intracellular 19F-BPA that may damp the NMR
signal. In order to evaluate the fraction of 19F-BPA internalized by the cells (inter-
nalization fraction), a “positive control” sample is built with the same number of
fluorine atoms that is expected if the concentration inside the cells were the same of
the external medium (i.e the internalized fraction is equal to 1). The same number
of cells as in the “pellet” (and thus the “lysate”) sample is considered and added
to a 400 µL lysis buffer. The 19F-BPA is then added in a quantity obtained by the
initial medium concentration (13.6 mM) and the total cellular volume, computed as
the measured number of cells times the cellular volume estimated from microscopy
imaging (2.25 10−5L). The corresponding 19F-BPA is 3.8 µ moles.

Neutron autoradiography and UHPLC-ESI-QqTOF-MS analysis

The same cell line and cellular medium used in Section 4.2.1. For neutron autoradio-
graphy cells were seeded at a density of 2 · 106 in 100 mm Petri dishes and treated
with 19F-BPA (120 ppm; 4 h), after 24. At the end of the exposure period, cell pellets
were obtained in the following way: the borated medium was removed, cells were
washed three times with PBS, harvested by trypsinization, counted, centrifuged and
deposited on Mylar support. Cell pellets thus obtained were let drying. Dry pellets
were then irradiated in contact with the CR-39 track detectors for boron quantifi-
cation and imaging (see below). For liquid chromatography, cells were seeded at a
density of 2 · 106 in 100 mm Petri dishes and treated with 19F-BPA (80, 100, and 120
ppm; 4 h), after 24. The cell culture medium was instead collected in Falcon and
lyophilized using the FTS-System Flex-dry instrument (SP Scientific, Stone Ridge,
NY, USA). Cells were first quenched by addition of 1 mL of MeOH:H2O (4:1, v:v),
and, after collection by physical scraping, extracted using a solution MeOH:H2O
(1:1, v:v). The extraction was carried out dipping the tubes with the samples into
liquid N2 for 30 s to snap-freeze the cells and then allow them to thaw on dry ice
(Bi et al., 2013; Luo, Gu, and Li, 2018). Sample tubes underwent sonication for 5 min
in an ultrasound bath. After centrifugation at 3500 rpm and 0 °C for 10 minutes,
the supernatant was recovered and lyophilized. The lyophilized supernatants were
reconstituted in methanol and subjected to analysis.

4.2.2 19F-MRS

19F-MRNMR spectra were collected on each sample in 5mm glass capillary using a
9.4T vertical bore high field spectrometer (Bruker Avance-400). We performed two
independent experiments (experiment n.1 and experiment n.2), to check for exper-
iment repeatability. For the first experiment, the 19F-MRS protocol was organized
with a first acquisition on the “pellet” sample followed by a second acquisition on
the “lysate” sample, the “positive control” sample and the “negative control” sam-
ple. The 19F-MR spectra were acquired using 18 µs pulse for the 90 flip-angle ra-
diofrequency pulse, 8192 free induction decay (FID) points, 180 ppm spectral width,
repetition time (TR)=3s and number of signal averages (NSA) = 4096 with the ex-
ception of pellet sample in experiment 2 where NSA was 1024. Experiment n.1 and
experiment n.2 were conducted with (12± 2) · 106 and (10± 2) · 106 cells, respec-
tively and “positive control” sample was prepared with (10± 2)106. Results were
consequently normalized respect to the cells number. Cells count was performed
with Burker’s chamber.
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After phase and baseline corrections spectral quantification was achieved by
peak-resonance integration. Raw data was imported in MATLAB (The MathWorks
Inc,2018b) baseline noise level was subtracted and spectral data was filtered with
a mean filter of (10 point) Hz length. Numeric integration of peak areas was per-
formed. The area of the 19F-BPA resonances in the “lysate” sample is proportional
to the quantity of 19F-BPA internalized by the cells. This has to be divided by the
area of the peak of the “positive control” sample which is proportional to the signal
expected if the 19F-BPA concentration inside the cells were the same as the external
medium concentration (internalization fraction equal to one). This ratio is an esti-
mate of the internalized fraction. The “pellet” sample is used as a cross-check while
the “negative” control sample is used to check that non internalized 19F-BPA has
been correctly washed out.

Neutron autoradiography

The neutron autoradiography technique used in this work is based on the irradiation
of samples enriched with 10B in direct contact with a passive detector that is only
sensitive to charged particles. The charged particles coming from neutron capture
in 10B, create latent tracks in the detector which can be made visible by chemical
etching. Depending on the calibration of the technique (neutron fluence, etching
parameters), it can be employed to obtain quantitative information on boron con-
centration or qualitative imaging of boron spatial distribution. For boron quantifica-
tion, samples in contact with the detectors are irradiated with a neutron fluence of
(1.97± 0.01)1010cm−2 and etched for 10 minutes in PEW solution at 70°C. The track
density is measured in 40 sequential pictures taken with a light microscope. Each
image has an area of about 0.3 mm2 (0.632 mm x 0.474 mm): the total measured area
is about 12 mm2. The 10B concentration is obtained by counting the tracks over the
entire measured area, the associated error is the square root of the counted tracks.

This value is then converted in boron concentration through an appropriate cal-
ibration curve as reported in (Postuma et al., 2016). 11B concentration is inferred by
multiplying isotopic natural abundance (1:4). With this technique another variable
can be measured, by computing the standard deviation of the track density over all
the images obtained in one sample, we are able to distinguish homogeneous from
heterogeneous boron uptake. Dosimetry due to proton irradiation is calculated with
an average boron concentration in cells, thus the standard deviation of the concen-
tration is a representative uncertainty to propagate in dose calculation if boron con-
centration is heterogeneous. Qualitative analysis is obtained by irradiating samples
with higher neutron fluence and by etching for longer time, thus causing the tracks
to overlap forming a map of gray levels, representing areas of the sample taking up
higher boron concentration (Bortolussi et al., 2011). This technique and its variants
have been set-up and validated for BNCT, where the relevant isotope is 10B (Portu
et al., 2015). 11B uptake experiments have been carried out with 19F-BPA.

Liquid Chromatography

UHPLC-ESI-QqTOF-HR MS/MS analysis

The chromatographic analyses were carried out using the Shimadzu NEXERA UH-
PLC system and the Omega Luna C18 column (1.6 µm, 50 × 2.1 mm i.d.; Phe-
nomenex, Torrace, CA, USA). The mobile phase consisted of a binary solution A:
0.1% HCOOH in H2O, B: 0.1% HCOOH in CH3CN. A linear gradient was started at
2% B, held for 1 min, and linearly ramping to 98% B in 2.50 min. The mobile phase
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composition was maintained at 98% B for further 50 seconds, then returned to the
starting conditions and allowed to re-equilibrate for 2 min. The total analysis time
was 5.0 min, the flow rate was 0.5 mL/min, and the injection volume was 2.0 µL.

MS analysis was performed using a hybrid Q-TOF MS instrument, the AB SCIEX
Triple TOF® 4600 (AB Sciex, Concord, ON, Canada), equipped with a DuoSprayTM
ion source (consisting of both electrospray ionization (ESI) and atmospheric pressure
chemical ionization (APCI) probes), which was operated in the positive ESI mode.
The APCI probe was used for automated mass calibration using the Calibrant De-
livery System (CDS). The CDS injects a calibration solution matching the polarity of
ionization and calibrates the mass axis of the TripleTOF® system in all scan func-
tions used (MS and/or MS/MS). The Q-TOF HRMS method combined TOF-MS and
MS/MS with Information Dependent Acquisition (IDA) and consisted of a full scan
TOF survey and a maximum number of eight IDA MS/MS scans. The MS param-
eters were as follows: curtain gas (CUR) 35 psi, declustering potential (DP) 70 V,
collision Energy (CE) applied was 30 V with a collision energy spread (CES) of 20
V, ion-spray voltage, 5500 V; ion source heater, 500 °C. The instrument was con-
trolled by Analyst® TF 1.7 software, while data processing was carried out using
PeakView® software version 2.2.

HPLC-UV-DAD analysis

To quantify the phenylalanine-derived carrier, HPLC-UV-DAD analyses were per-
formed using the HPLC 1260 INFINITY II system (Agilent, Santa Clara, CA, USA),
equipped with an Agilent G7129A autosampler, an Agilent GY115A DAD-UV-visible
detector, and a Quaternary pump Agilent G711A. The separation was accomplished
on Luna® Phenyl-Hexyl column (150 × 2 mm i.d.; 3.0 µm). Mobile phases were wa-
ter (A) and acetonitrile (B), both with 0.1% formic acid and the gradient condition
was: 0–3.50 min, 2 → 98% B; 3.50–4.0 min, 98% B. Finally, starting conditions were
restored and the system re-equilibrated for other 1 min. The total analysis time was
5.0 min, the flow rate was 0.5 mL/min Injection volume was 5.0 µL. The diode array
UV-Vis detector was set at 230 and 270 nm.

4.2.3 Statistical analysis

The internalization fractions are expressed as averages over different experiments/samples
± standard error. In the case of neutron autoradiography errors are propagated from
the square root of the counted tracks. Errors for the MRS signal area are derived
from the noise level of the acquisition and the peak width, errors reported in the
internalized fraction are propagated from them.

4.3 Results

4.3.1 19F-MRS

Figure 4.1, panel a) shows the obtained 19F MR spectra for the “negative control”
(dottet black line), the “positive control” ( dotted red line) and the “lysate” (yellow
line, purple line) samples while panel b) shows a comparison between the spectra of
the “pellet” and “lysate” samples. In cell cultures 19F-BPA exhibits two resonances.
The result suggests that 19F BPA is found in two main compartments characterized
by a different chemical environment.The absence of signal in the negative control
confirms the absence of fluorine that was not internalized by the cells. Table 4.1
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TABLE 4.1: Position, area of the two resonances peaks of the 19F-MRS
spectra, total area in the various samples. Error on the resonance peak
position is half of the size of the smoothing filter. Errors on the reso-
nance peak area are estimated from the noise level of the acquisition

and the resonance peak width.

Peak 1 (ppm) Area 1 (σ ppm) Peak 2 (ppm) Area 2 (σ ppm)
Total Area

(σ ppm)

"Lysate"
sample
exp. 1

107± 0.1 10± 1 105.7± 0.1 12± 1 21± 2

"Lysate"
sample
exp. 2

106.8± 0.1 5± 1 105.7± 0.1 9± 1 14± 2

positive
control

106.9± 0.1 24± 1 105.5± 0.1 16± 1 40± 2

shows the position and the area of the two peak-resonances, and the total area for
the various samples.

For each experiment the measured internalization fraction is obtained as the ra-
tio of the total area in the positive control sample normalized in respect to the total
number of cells in the sample. We obtained 0.5± 0.1 and 0.4± 0.1 for the two exper-
iments. Given the biological variability of the samples we believe the two measures
are compatible.

(a) (b)

FIGURE 4.1: (a) NMR spectra for the “negative control”, the “positive
control” and the “lysate” samples in experiment n.1. and n.2 (b) “pel-
let sample” and “lisate sample” for experiment n.1 and n.2. Spectra
are normalized so that noise, signal far from the peak, has mean 0 and

std 1. Signal is smoothed with a linear filter of 0.2 ppm.

Neutron autoradiography

A first set of measurements highlighted a poor solubility of the fluorinated BPA: Fig-
ure 4.2 (a) Left panel shows qualitative neutron autoradiography where the white
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TABLE 4.2: 11B concentration and internalization fraction obtained
by quantitative neutron autoradiography in samples treated with
19F-BPA (120 ppm, 4 hours). The results have been obtained by mea-
suring track density in a central area of the sample as explained in
the text. Boron uptake was homogeneous in all samples. The error

reported is statistical only.
Courtesy of Silva Bortolussi and Ian Postuma from the BNCT lab in

Pavia.

Experiment Sample
Inside

11B ppm
from F-BPA

Internalized fraction

1 1 63± 2 0.52± 0.03
1 2 66± 2 0.55± 0.03
1 3 68± 2 0.56± 0.03
2 1 56± 2 0.47± 0.04
2 2 54± 2 0.45± 0.04
2 3 55± 2 0.46± 0.04

spots (corresponding to the yellow areas on the right) indicate a high boron concen-
tration. A quantitative map of 10B distribution in a portion of the sample, showing
spots where concentration is up to 5 times higher, is presented in panel (a) on the
right. In this case, 19F-BPA was dissolved in culture medium as normal BPA, requir-
ing the use of fructose at Ph 9.5-10 and then the use of HCL to readjust Ph to 7.4
(Coderre et al., 1997). This prompted a revision of the protocol of 19F-BPA solution
in the culture medium, which consists in the simpler procedure described in without
the formation of the complex with fructose.

The following experiments have been performed with an improved protocol to
dissolve the formulation in the medium. PANC-1 cells have been cultured and ex-
posed to 120 ppm of 11B for 4 hours. This time neutron autoradiography proved
a very uniform boron uptake (Figure 4.2, left panel) as also demonstrated by the
values of boron concentration, showing a very low variability in the track density
over the area sampled in the image (panel d). The results are shown in Table1. Cells
were treated with BPA in natural isotopic composition, thus images of 10B were less
contrasted because the overall concentration is only 1

5 of the total. 11B concentration
was inferred by quantitative neutron autoradiography pointing out 10B, which con-
centration was multiplied by 4. It should be noted that a significant difference in the
internalization fraction between the two experiments is observed, to be attributed to
the known biological variability in cell growing process.

Liquid Chromatography

Behaviour of 19F-BPA on the mass spectrometer

19F-BPA was dissolved in water and analysed by tandem mass spectrometry in pos-
itive ion mode (Figure 4.3, panels A and B). The proposed carrier’s fragmentation
pathway is reported in Figure 4.3, panel C. The ion [M + H]+ at m/z 228.0838
provided, by loss of a residue of HCOOH or CO+H2O, the ion TOF-MS2 at m/z
182.0783, which can undergo a loss of metaboric acid, providing the ion at m/z
138.0716, or to dehydration to give the less abundant ion at m/z 164.0679. The ion
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(a)

(b)

FIGURE 4.2: (a) The figure on the left shows the qualitative neutron
autoradiography of cells treated with 19F-BPA, showing a map of
boron distribution in the cell pellet. White areas represent part of
the sample taking up high boron concentration. This imaging shows
poor uniformity and different availability of the compound to differ-
ent cell populations. On the right, quantitative map of 10B distribu-
tion in a portion of the sample shows spots where concentration is up
to 5 times higher; (b) “The figure on the left shows a qualitative neu-
tron autoradiography of cells treated with 19F-BPA, showing a map
of boron distribution in the cell pellet. White areas represent parts of
the sample taking up high boron concentration. In this case the white
area covers the entire sample region. Consequently the B distribution
is well homogeneous. The image on the right shows the B quantita-
tive map on a representative portion of the sample. Also this analysis

shows an homogeneous B uptake.
Courtesy of Silva Bortolussi and Ian Postuma from the BNCT lab in

Pavia.
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TABLE 4.3: Concentration of 11B in PANC-1 cells after treatment with
19F-BPA. The values are reported as the mean ± SD of the measure-

ments carried out on 3 samples, analysed 2 times.
Results from Severina Pacifico, University of Campania "Luigi Van-

vitelli"

Treatment dose (11B ppm)
Inside

11B ppm
from F-BPA

Internalized fraction

80 40± 2.9 0.50± 0.04
100 54± 2.3 0.54± 0.02
120 63± 1.0 0.52± 0.01

at m/z 182.0788, the base peak of the spectrum, could also be generated as a result
of fluorine protonation, with following formation of the enaminium residue and
loss, favoured by the intramolecular hydrogen bond, of the CO+H2O units (Figure
4.3, panel C). The ion at m/z 138.0716 by deamination provided the ion with m/z
121.0456 or more favourably by loss of HF the fragment ion at m/z 118.0654, from
which the formation of the tropilium ion is favoured (m/z 91.0549).

Following 19F-BPA treatment, PANC-1 cells appeared to assume a mesenchymal
phenotype (See Figure 4.4 for a discussion)

4.4 Discussion

Pancreatic cancer, one of the most lethal types of cancer, still lacks an effective ther-
apeutic approach. Among the possible therapies currently under study, PBFT is a
promising method which exploits nuclear reactions that produce high-LET alpha
particles, triggered by a proton beam on boron atoms, conveniently introduced in
the tumor by borated carriers. However, for the therapy to be successful is nec-
essary to accumulate a suitable quantity of 11B and 19F carrier in the tumors and
to be able to reliability quantify it before the irradiation. As opposed to BNCT, a
high T/N ratio is not necessary, given that PBFT concentrates the dose release in the
Bragg peak, where the proton energy is suitable to trigger the nuclear reaction with
the 11B. Standard carriers used in BNCT are BSH and BPA that have been studied
both in vitro and in vivo on various cellular lines.

In this Chapter, we characterized the internalization of F-BPA in PANC-1 cellular
line with a multimodal approach.

We propose F-BPA since it presents some advantages with respect to BPA. First,
F-BPA could be directly imaged via 19F-MRI, during the treatment. Second, in PBFT,
fluorine can also trigger nuclear reactions with high-LET particles in the final state.
Other advantages are related to the higher solubility of F-BPA that makes the ad-
ministration easier. Due to the possible translation of 19F MR in in vivo studies, we
used 19F MRS to investigate F-BPA accumulation in PANC-1 cells validated by mul-
timodal evaluation with well established techniques such as autoradiography and
liquid chromatography.

Autoradiography exploits the same nuclear reaction used in BNCT showing that
at 120 ppm in the medium F-BPA is significantly internalized in PANC-1 cells, with



48
Chapter 4. Evaluation of F-BPA internalization for Proton Boron Fusion Therapy

applications in pancreatic cancer cells

FIGURE 4.3: a) TOF/MS; b) TOF-MS/MS spectra of 19F-BPA in pos-
itive ion mode; c) proposed fragmentation pathway of 2F-BPA. Mea-
sured exact mass of each fragment ion was at m/z to within 5 ppm
vs. its relative theoretical m/z value. This latter is reported below

each structure.
Results from Severina Pacifico, University of Campania "Luigi Van-

vitelli"

a fraction which is experiment dependent. In fact, treating cells in different experi-
ments, may result in different boron uptake depending on the proliferation state of
the cells, on environmental conditions and on confluence. In this sense, the recom-
mendation for radiobiological experiments, which aims to measure the biological
damage on cells derived from radiation exposure (Cirrone et al., 2018), is to measure
boron uptake each time it is necessary to evaluate the effective radiation dose differ-
ence between boron enriched and control samples due actual boron concentration in-
ternalized and to the nuclear interaction with protons. Experiments with F-BPA with
neutron autoradiography allowed individuating the best protocol of compound ad-
ministration, because this technique points out the uniformity of boron distribution
in cells, which may depend on the level of solubility of the borated formulation
in the culture medium. After the optimization of the administration protocol, we
found that the increase in the solubility of F-BPA gives a is better internalizationed
in PANC-1 cells, and that a uniform distribution can be obtained as shown in Figure
5.4b.

We applied, as an alternative technique, also cellular metabolomics techniques
that allows us to determine, together with the internalization fraction, also possi-
ble cellular changes from a structural point of view. During this experiment we
found that treated cells appeared to assume a mesenchymal phenotype. This finding
is in line with pleomorphic pancreatic cells with epithelial-mesenchimal transition
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(EMT) phenotype characterized by the functional loss of E-cadherin (Gradiz et al.,
2016). However, optical microscopy analysis made during the 19F-MRS experiment
in Rome seems to exclude this phenomenon in the sample analyzed with 19F-MRS
(see Figure 4.4). We are investigating if this difference had an impact on our results.

PANC-1 cells show increased levels of cholesterol, polyunsaturated fatty acids
and octanoic acids with following increased membrane fluidity (Watanabe et al.,
2012) which favoured F-BPA intracellular accumulation. Comparably to natural
amino acids and borophenylalanine, commonly used in BNCT, F-BPA can diffuse
into cells.

We found a dose dependent internalization fraction in agreement, at 120 ppm,
with the fraction obtained with the neutron autoradiography technique. We can
conclude that we intervalidated the two methods: this allows using one or the other
depending on the needs.

In agreement with the autoradiography and liquid cromatography, 19F-MRS
showed that F-BPA is internalized at 120 ppm of medium concentration. 19F-MRS
can be used to quantitatively measure fluorine concentration in samples through
the introduction of a reference sample and is infact often adopted in pharmaceuti-
cal application (Holzgrabe, 2010; Holzgrabe, 2015) however its limited sensitivity
compared to the other proposed techniques convinced us to test only a qualitative
agreement.

The results obtained in the different experiments and measured with different
techniques, conclude that the boron internalization fraction in PANC-1 is about 50%,
which allows sufficient intracellular boron concentration for radiobiological mea-
surements.

In BNCT experiments, this means that it is possible to deliver representative radi-
ation dose by neutron capture reactions in short irradiation times provided a thermal
neutron beam of at least 109 neutrons per square centimeter per second. For PBCT,
the discussion on the boron concentration needed to obtain a therapeutic change in
tumour control is still underway.

We envisage to move to ex-vivo cell on mice models, to check that enough F-BPA
can reach the pancreas, once administered in-vivo. To this end, neutron autoradiog-
raphy will be also useful to obtain maps of boron distribution in thin tissue sections,
to be compared with contiguous histological preparation. Results will be again inter-
validated among different and complementary techniques.

In Chapter 5 we will provide a first estimation of boron concentration in an or-
thotopic model of pancreatic adenocarcinoma after the administration of F-BPA. In
particular, 19F-MRS will be used to quantitatively estimate fluorine concentrations
in tissues.

4.5 Additional internalization experiments

The adoption of F-BPA as a boron carrier has great benefits: It is a well known and
highly tested drug that is well tolerated both at cellular level and at systemic level
in the animal model. In particular, its high tolerance allows the administration of a
high dosage in the animal model as we will see in Chapter 5. One of its weaknesses
is having a single atom of fluorine and a single atom of boron that makes it harder
to reach higher concentration of both the tracer atom for NMR and the target atom
for the therapy. If a molecule has a greater abundance of fluorine we can reach a N
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FIGURE 4.4: (A) Cells before and (B) after the treatment with F-BPA
used for the 19F-MRS experiment. (C)Example of mesenchymal phe-

notype
After the administration of F-BPA S. Pacifico from University of Cam-
pania "Luigi Vanvitelli" reports that cells seem to assume a mesenchy-
mal phenotype. We do not find this happening in our sample and we

are verifying any differences in cellular sample preparation.

(number of identical fluorine atoms) fold increase in signal and concentration at the
same drug concentration.

To overcome this weakness we started testing alternative boron carriers that also
contain fluorine: one promising candidate was a compound of the family of the
dodecaborate that exhibits great NMR properties and it may have application also in
NMR imaging. Unfortunately, we found that it is not suitable for in vivo application
in PANC1 cells but we report our initial tests since it is of interest to discuss the
generalizability of this method of analysis.

Dodecaborate dianios was recently proposed by Warneke et al. (Warneke et al.,
2016) as a possible carrier for BNCT. We performed some preliminary experiments to
assess their uptake in PANC cells. In particular we used dodecafluoro dodecaborate
(B12F12) a molecule with 12 identical fluorine atoms to allow the tracking through
NMR spectroscopy.

These molecules can form a complex with beta cyclodextrins (β CD) that can im-
prove their affinity for the tumor cells (Uekama, Hirayama, and Irie, 1998; Warneke
et al., 2016).

We first confirm the formation of the complex in our cellular growth medium
through a measure of chemical shift with 19F-MRS and we found that this value is
comparable to what is reported in the original paper. Figure 4.6 shows the spectra
and the chemical shift for the B12F12 in the cellular growing medium describet in
Section 4.2.1 .

Then we qualitatively assess the internalization in PANC1 cells employing the
19F-MRS methodology that was presented in this Chapter.
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The cell culture for the MRS was prepared as reported in Section 4.2.1 with the
following modifications:

The incubation medium was prepared with 1.2 mM di F12B12 + 1.4 nM of be-
taCD, since B12F12 has 12 fluorine atoms this concentration gives the same fluo-
rine concentration of F-BPA. To favor the formation of the complex the medium was
heated to 45 degrees and sonicated for 10 minutes.

The incubation time was 22 hours instead of 4 hours for the F-BPA as reported in
the original paper.

To have a benchmark we first test the internalization in fibroblast L929 cell line
and we qualitatively confirm the results of Werneke: a rough estimate of the inter-
nalization fraction can be made from the SNR ratio between the positive control, de-
fined as the quantity of B12F12 expected if the internalization fraction was 1 (See the
F-BPA experiment for the details), thus we can indicate a 5% internalized in L929. In
PANC1 cells we found a much lower signal and compatible with a crude estimate of
an internalization factor < 1%. Table 4.4 summarizes these results while the spectra
are reported in Figure 4.5.

These were only a preliminary measure but we decided to put aside for the mo-
ment any additional test in vivo with this molecule:

We verified the internalization but the results were not encouraging since with
this experimental setup there may not be an advantage in the use of B12F12 over
F-BPA.

First, the low solubility didn’t allow us to reach higher fluorine concentration
with respect to F-BPA in the cellular growing medium. Also, our colleagues report
that B12F12 used at the same concentration of F-BPA (13.6 mM) impairs cellular
growth and cells appear to be different in form so a toxicity test should be performed.
This quite invalidates the advantage of B12F12 that is the abundance of fluorine
atoms since the actual fluorine concentration is the same reached with F-BPA

Second, the internalization fraction was at least an order of magnitude lower
than the one of F-BPA. The problem is that for the PBFT the only relevant concentra-
tion is the boron concentration inside the cell. Also the internalization was at least
5 times lower in PANC1 cells in respect to fibroblast and this may mean that there
may not be an affinity for PANC1 cells.

One possible explanation is the difference in the mechanism of internalization
between the two molecules B12F12 enters the cells through diffusion through the
cell walls while F-BPA is transported by a membrane protein:

Amino acid (AA) transporters are proteins in the cellular membrane that actively
carry AAs in and out the cell. The amino acid transporter family has many trans-
porters and they are assembled based on the specificity of the amino acid molecule
being transported as well as dependence on sodium ion for transport activity: They
accept groups of AAs rather than individual AAs, such as small neutral AAs, large
neutral AAs, anionic AAs, and cationic AAs. Some transporters are Na+ dependent
while others are Na+ independent.

AA transporters can be classified as “systems”. The system that is responsible
for the transport of BPA and F-BPA is the L system:

This transporter is responsible for the inward flux of several essential amino
acids such as phenylalanine, leucine, isoleu-cine, tryptophan, histidine, tyrosine in
antiport with histidine,tyrosine and a non-essential amino acid glutamine (Puris et
al., 2020).

Thus, if PANC1 cells express this transporter more than healthy cells this may be
the motivation for the high internalization fraction observed.
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TABLE 4.4: Internalization B12F12 in PANC1 cells and in fibroblast
L929 cells. Cells were incubated for 22 hours with 1.2 mM and b12F12
+ 1.4 mM β CD. In the positive control sample 0.17 µg of B12F12 and
0.36 µg of β CD was added to an untagged cellular sample to have
the resonance area of a sample with internalization factor equal to 1.
The L929 measure is performed with 1024 NSA so a factor 2 should

be used to compare its SNR to the other measures.
TR is the repetition time, NSA is the number of signal averages and

SNR is the signal to noise ration.

Experiment Peak (ppm) TR NSA SNR

PANC1 -41.76 3 s 4096 4.8
L929 -41.53 3 s 1024 11.1

Positive
control

-41.88 3 s 4096 448.2
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(a)

(b)

(c)

FIGURE 4.5: 19F-MRS spectrum of a) lysate sample of PANC1 cells
incubated with B12f12 in complex with beta CD. b) lysate sample of
L929 cells incubated with B12f12 in complex with beta CD. c) Positive
control: lysate sample of L929 cells incubated with normal medium
to which is added a quantity of B12F12 in complex compatible with

an internalization factor equal to one.
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(a) (b)

FIGURE 4.6: 19F spectra of a) B12F12 1.2 mM in complete medium
and b) B12F12 1.2 mM + 1.4 mM βCD after heating to 45 and sonica-
tion. Resonance peak of B12F12 alone is - 42.34 ppm and -41.88 for

the complex.
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Chapter 5

The feasibility of F-BPA
quantification in tissue trough
19F-MRS

Chapter Abstract
Boron quantification in tissue is essential for BNCT/PNCT treatments. Direct quantification
of boron is usually made with mass spectroscopy or boron neutron autoradiography. BPA
is one of the gold standard drugs in BNCT application and its biodistribution is usually
indirectly monitored in vivo with a PET scan using 18F tagged F-BPA. In this Chapter we
aim to develop a methodology to directly monitor the non radioactive isotope 19F-BPA trough
19F-MRS.

We tested the technique on an animal model ex-vivo on tissue and blood samples and we
performed the fluorine quantification with 19F-MRS and the results are compared with the
quantification obtained with neutron autoradiography.
19F-MRS may have the sensitivity to detect fluorine when F-BPA is used at BNCT treat-
ment concentration. Unfortunately, tissue samples showed less fluorine accumulation than
expected but our result may be affected by human error.

Still, 19F-MRS can be useful in Fluorine quantification in tissues when FBPA is ad-
ministered at high dosage. Furthermore this technique is interesting since it can be used
to screen for molecules with in-vivo imaging properties and can be transposed to in-vivo
localized spectroscopy.

5.1 Introduction

In this Chapter we will report our first test to develop a 19F-NMR based methodol-
ogy to asses the uptake of F-BPA in a orthotopic model of pancreatic cancer.

An accurate calculation of boron concentration (BC) in tumoral and normal tis-
sues is necessary to determine the feasibility of a BNCT or PNCT treatment. One
of the main limitation on BNCT is the risk of radiation damage in normal tissues
localized near the treated tumoral site. To be more specific, BNCT is conditional to
a suitable BC reached in tumoral tissue while a much lower concentration is present
in surrounding healthy tissues. This quantity is referred as T/N (the ratio of BC in
Tumor and healthy (Normal) tissue) and its determination prior to treatment is one
of the main concern in the research aimed to improve this treatment. Direct quan-
tification of BC is difficult in-vivo in a clinical setting so its often derived from boron
concentration in blood or trough a PET scan of radio marked molecule.

The newly proposed PNCT, described briefly in Chapter 4, should mitigate this
limitation.
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In the context of this new treatment possibility we are investigating into the bene-
fits of adopting 19F-BPA (instead of BPA) as a boron source in the treatment of pan-
creatic adenocarcinoma. Boronophenylalanine (BPA) is one of the gold standards in
BNCT application : it is proposed as the boron carrier of choice in multiple tumoral
site and it is used as a reference when other borated compound is proposed. Ad-
ditionally the fluorine labelled analogous 18F-BPA is commonly used as an image-
probe for PET applications and many studies support the possibility to derive BC
after BPA administration trough 18F-BPA PET imaging. PET imaging can be used
to estimate the BC of tissues before irradiation to calculate the radiation dose due to
the nuclear reaction with boron and to confirm the safety of healthy tissues and the
efficacy of the treatment.

While the usefulness of 18F-BPA PET for BNCT therapy with BPA is a well re-
searched topic and its potential as tumor-imaging tool was demonstrated in various
application (Ishiwata, 2019b), chemical differences between the two molecules and
the difference in the administration protocol of the two compounds suggest that the
reliability of BC estimate in tumor from PET scan should be examined on a case by
case basis. The main differences between BPA and 18F-BPA can be summarized as
follows (Watanabe et al., 2016): From a chemical prospective the different chemical
structure caused by the addition of the fluorine atom gives rise to a change in the
chemical properties: F-BPA is more soluble in water and in lipids than BPA and this
difference in solubility has an impact in both the formulation adopted for the clinical
use and more importantly the lipophilicity of F-BPA that may affect, in theory, the
bio-distribution in tissues.

From an operative point of view, in BNCT BPA is administered at high dosage
to help increase the BC in tissues since, to obtain the desired radiobiological effect,
BC in the target tumor must be over a minimal threshold. Therapeutic dosage of
BPA in BNCT is 250-900 mg/kg of body weight and, to obtain a suitable pharma-
ceutical preparation to reach this dosage, BPA is usually formulated as the fructose
complex to increase solubility. This is also true when 19F-BPA is used instead as
reported in (Porcari et al., 2006; Capuani et al., 2008). On the other hand, the radio-
pharmaceutical analogue 18F-BPA is used at tracer dose without the formulation of
the fructose complex. Moreover, especially in human clinical application, BPA is
administered with a continuous infusion due to the large volume of the prepara-
tion while 18F-BPA is administered in a single shot. Significant variation in boron
bio-distribution in tissues, when the same dose is administered in different ways, is
reported for both BPA (Garabalino et al., 2011) and F-BPA (Watanabe et al., 2016).

The last note is on the detection modalities of the two compounds: boron ac-
cumulated in tissues after BPA administration is usually measured trough induc-
tively coupled plasma atomic emission (ICP-AES) or boron neutron autoradiogra-
phy while boron accumulation reached with 18F-BPA at tracer dose can’t be reliabil-
ity detected by those technique so 18F is manly measured by PET imaging instead.

These differences suggest caution into the assessment of the predictive value of
F-BPA PET for BPA accumulation in the tumor and normal tissues: The research on
the spread between the distributions of 18F-BPA and BPA is still an open problem
and often consist in a difficult calibration between the two techniques and it may
introduce constrains on the administration and treatment protocols for the BNCT
(Lin et al., 2020).
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As already discussed in Section 4.1 our case study is the pancreatic adenocarci-
noma for which we are evaluating the applicability of PNCT. Unfortunately the pan-
creas is a well-known site of boron accumulation when BPA and F-BPA are used: the
risk of damaging healthy tissue with neutron irradiation during the BNCT excludes
this technique for pancreas cancer treatment and in any tumor near the pancreas
(Hanaoka et al., 2014; Chou et al., 2009).

In particular, the need to safeguard healthy tissues has led to the proposal of in-
vasive treatments such as liver autotrasplant following an extracorporeal irradiation
(Pinelli, 1996) that may not be indicated for other organs that can be transplanted
but for which this procedure is even riskier than for the liver.

We believe that PNCT may ease those constrain and its application may be promis-
ing: It has been suggested that the increase in radiobiological effectiveness due to the
high-LET alpha particles produced in the p-11B reaction, whose maximum cross sec-
tion is at low proton energy, corresponding to the Bragg peak can be localized in the
tumor region with a precision of few milliliters.

To further strengthen this claim, we will review the past literature in Section 5.1.1
and argue that is reasonable to assume that the pancreas will have a selective uptake
of F-BPA. The boron concentration will be high immediately after the administration
of the drug and after there will be a rapid washout but also a long retention of boron.
Our working assumption is that, as suggested in our in-vitro experiment described
in Chapter 4, also the pancreatic adenocarcinoma will significantly internalize the
F-BPA but the washout will be slower since tumoral tissues often exhibit an higher
retention level. In addition, the administration of a large dose of F-BPA instead
of BPA may open the possibility of a direct quantification of the target compound
trough 19F-NMR. Our hope is that the difference in concentration combined with the
precision of proton therapy and the possibility to have a direct method to quantify
the BC in the target will be sufficient to lay the foundation of a boron enhanced radio
therapy for the pancreatic adenocarcinoma.

5.1.1 Quantification of Boron for BNCT/PNCT for FBPA in pancreas

The quantification of BC in the pancreas is essential to test the feasibility of BNCT in
the neighbor organs. For this reason quantification of BPA is available from the lit-
erature even if this molecule is not usually proposed in the BNCT treatment of pan-
creatic cancer. Often, also data regarding F-BPA used for PET application, so when
it is administered in tracer dose, and the possibility of using PET signal to correctly
estimate pancreas BC, are reported. On the contrary, we didn’t find any previous
work that quantify directly F-BPA administered at high dosage in the Pancreas to be
used for treatment purposes.

Nevertheless it seems that both BPA at therapeutic dosage and F-BPA at tracer
dosage are selectively accumulated in the pancreas. Also, it seems that a consensus
has been reached on the relation between BC level in pancreas and in blood. The
BC in pancreas is higher than the BC in blood and other tissues, with the probable
exception of the kidneys but it may depend on the administration protocol, up to 3
h after BPA administration.

The first concern in the application of BNCT is radiation dose damage to healthy
tissues. In this context Chou and collaborators (Chou et al., 2009) point out that
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in rats the pancreas has higher BC than other organs and blood: “The pancreas
had a higher boron concentration than blood; the accumulation ratios of boron in
liver,pancreas and kidney to boron in blood were 0.83, 4.16 and 2.47, respectively, in
BPA-treated rats” and they clearly warn that: “ BPA may not be a suitable agent for
the BNCT of hepatoma because of the high uptake and retention of BPA in the pan-
creas.” The reason is easily understood since any treatment attempt with BNCT may
result in a higher radiation dose inside the healthy pancreas. Also in mice, pancreas
uptake of BPA is higher than other tissues. In a related work, Lin and collaborators
(LIN et al., 2012) measure pancreas boron uptake at 15, 30, 45 and 60 minutes after
BPA injection and say that “the BC was mainly accumulated in the pancreas, and
secondly in the kidney” at all measured times. He also shows that BC in pancreas
increases rapidly after the administration of the drug reaching a maximum at 15
minutes and then it decreases rapidly in the following hour but it remains always
higher than the BC in blood.

The same warning on the dangerous level of BPA accumulation in the pancreas is
issued by Hanaoka and collaborators (Hanaoka et al., 2014) that specify how: “The
highest concentration was found in the kidney, followed by that in the pancreas
and the glioma1 tumor tissue.” and argue that: “The accumulation levels of both
BPA and FBPA in the pancreas were remarkably high, ..., This finding suggests that
radiation injury of the pancreas should be anticipated when BNCT is employed for
abdominal cancers.” In this study they also found a significant correlation between
BC in healthy organs and the accumulation of F-BPA used for PET scans despite the
difference in dose administered and in the chemical structure of the two drugs.

At the same time they also suggest that it is important to check whenever the
administration protocol can affect the correlation between BC and PET signals:

“Further studies are required to estimate the 10B concentrations in tissues fol-
lowing BPA-fr[BPA in complex with fructose to help solubility -Ed.] administration
according to a clinical protocol, such as slow infusion and drip infusion of BPA dur-
ing neutron irradiation”.

Most importantly, in order to motivate our suggestion to directly use F-BPA as a
boron carrier, they noted how in their results the correlation between BPA and F-BPA
concentrations and the subsequent opportunity to estimate BC from it, may not hold
on human since the level of the enzymes responsible for the active cellular uptake
in the pancreas are not the same in the two species: “Especially in the pancreas, the
expression levels of LAT1 between rats and humans are different. The accumulation
levels of F-BPA and BPA determined in this research may therefore not be applicable
to clinical cases. Further clinical F-BPA PET study is required to determine BPA-fr
distribution in the cancer patients.”.

In a recent article, Grunewald and collaborators (Grunewald et al., 2017) confirm
the higher BC of pancreas after BPA administration:

“At 110 min p.i.[past injection -Ed.] the order of accumulation starting with the
highest was as follows for all study groups: pancreas, kidneys, bone, tumor, liver,
heart, stomach and brain.”

They also explore the possibility of determine BC from a PET exam and they are
confident that this estimation method may hold:

“The major finding of our study is a significant correlation between F-BPA and
BPA uptake in tumors and various organs. For both compounds high accumulation
levels in pancreas and kidneys.”.

1In their works,the authors studied a xenograft model of glioma implanted subcutaneously in the
back of the rats
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In table 5.1 we summarize some recent works that directly measure BC of pancreas
when BPA is administered in small rodents detailing the dosage used, the adminis-
tration method and how the measurement was performed.

Recent works that directly study the accumulation of boron in tissues from the
administration of F-BPA at BNCT therapeutic dosage don’t report the boron concen-
tration reached in the pancreas (Capuani et al., 2008; Watanabe et al., 2017) but at
least in the case of the work of Watanabe and collaborators (Watanabe et al., 2017)
they found that, for the examined tissues, there is no significant difference between
BPA and F-BPA pharmacokinetics when they are administered with the same dose,
modality and in the same formulation. They found instead some differences in BC of
tissues between different administration protocols that should be taken into account
in dose calculation from 18F-BPA PET for BNCT.

While not extensive or exhaustive, previous literature clearly state that the pan-
creas selectively accumulate F-BPA, that the main limitation of 18F-BPA-PET is that
it can not be performed at the same time of irradiation and that the possibility to
estimate BC from PET scans have to be tested in each application. In any case, the
possibility to detect F-BPA directly at therapeutic concentration may overcome those
problems. This solution, obtained trough 19F-NMR imaging, has already been pro-
posed for the glioma in rats (Capuani et al., 2008) but there is no developments of
this modality for the pancreas.

This experiment may also contribute to transfer 19F-NMR imaging in this organ
by giving the exact sensitivity constrain that have to be reached to quantitatively
image properly in this context.

Thus, Magnetic resonance of fluorine has been already used to visualize F-BPA
biodistribution in vivo (Porcari et al., 2006; Capuani et al., 2008) in tumoral tissue
but there is no other attempt to direct quantification on fluorine in tissues.

The main goal of this experiment is to quantify the fluorine content in tissue
(and particularly in the pancreas) after the intravenous administration of F-BPA. We
aim to give a lower bound to the fluorine that can be reliably detected and find the
optimal measurement modality to screen fluorinated compounds accumulation in
tissue with this technique. The results of our measures of fluorine content in tissue
samples will be cross-validated by a neutron autoradiography measure: The simul-
taneous use of those two techniques is significant since they are based of different
physical properties and the quantification of boron and fluorine at the same time
are useful to check for the stability of the tagged boron carrier that is important if
an indirect estimate of BC is used since a modification in the molecular composition
will make invalid any indirect quantification. This especially need attention if the
nuclear reaction that exploits the presence of fluorine analog to the reaction with
protons (described in Chapter 4) is used.

5.2 Materials and methods

5.2.1 chemicals and standards used

2-Fluoro-4-boronophenylalanine (19F-BPA) was synthesized as reported in (Kabalka
et al., 2000b). PFTP-DOPA is an analogue of of the non-proteinogenic aminoacid 3,4-
dihydroxy-L-phenylalanine (L-DOPA) tagged with perfluoro-tert-butoxy (Orlandi
et al., 2020) and it was kindly supplied by the authors of the original paper. It is
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used as the external standard in the quantification experiment. To shorten its T1
relaxation time, it was prepared in a solution of 0.026 mM CuSO4. Isoflurane was in
the wrong place at the wrong time. The structure of chemicals used is reported in
Table 5.2.

Name Abbreviation Structure

2-Fluoro-4-
boronophenylalanine

F-BPA

perfluoro-tert-butoxy
3,4-dihydroxy-L-
phenylalanine

PFTP-DOPA

Isoflurane Isoflurane

TABLE 5.2: Details of the chemical and the internal standards used
for 19F-MRS quantification.

5.2.2 Animal model

Three male NOD Scid rats (4 weeks; 27.8 g, 22.0 g, 27.1 g) obtained from Charles
River Laboratories, were used for this study. Mice were keep in a cage for a week
before the experiment and had access to unlimited food and water. Human pancre-
atic cancer cell line (PANC-1) was purchased from ATCC (American Type Culture
Collection) and grown as described in Chapter 4.

PANC-1 cells (1.5 · 106) were implanted orthotopically as a cell/Matrigel mixture
into the pancreas of two of the mice (mouse 1 and 2). The other mouse was left
as control (mouse CTR). After three weeks 200 µL of F-BPA-fructose solution (see
Section 5.2.3) was administered intravenously (i.v.) trough the tail vein. After 45 -50
minutes the mice were sacrificed and blood and tissue sample collected. Details can
be found in Table 5.3.

This study was autorized from "Ministero della salute" (italian Ministery of Health)
n°732/2019-PR released in 4 November 2019 ai sensi dell’art.31 del D.lgs. 26/2014.

5.2.3 Preparation of F-BPA-fructose solution

Solubility in water of F-BPA is low (2.6 mg/ml) so it is prepared as a complex with
fructose to increase solubility.
There is a constrain (in terms of animal welfare) on the volume that can be admin-
istered in a single shot in mice and it is recommended to . Thus, the solution was
prepared to deliver a dose of at least 200 mg/kg of F-BPA, that is in line with reported
treatment dosage in BNCT (see Table 5.1), while keeping the volume under 10 µL/g
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TABLE 5.3: Mice body weights (bw), F-BPA-f(ructose) solution dose
at concentration 30 mg/ml administered in mice and time of sacrifice

(Tos) after injection.

Mouse CRT Mouse 1 Mouse 2

bw (g) 27.8 22.0 27.1
F-BPA-f (vol.)(µL) 200 200 200
F-BPA (m.)(mg) 6 6 6
dose/bw (mg/kg) 216 272 221
Tos (min.) 50 45 45

of body weight. F-BPA-fructose solution has been prepared following a previously
reported procedure in (Watanabe et al., 2017):

19F-BPA and fructose were dissolved in distilled water at a molar ratio of 1:1.5,
and then a 1.15 M ratio of 1 N NaOH was added. The mixture was stirred until F-
BPA had completely dissolved, and the pH value was titrated to 7.6 with 1 N HCl.
Before the administration the solution was filtered through a 0.22-µm pore syringe
filter for sterilization. The final concentration of F-BPA was set to 30 mg/ml. (For
example, a mouse of 25 g of body weight that is administered with 200 µL of prepa-
ration with a concentration of 30 mg/ml, receives 6 mg of F-BPA that correspond to
240 mg/kg ) Delivered dose is reported in Table 5.3.

5.2.4 Sample preparation

Blood samples were collected trough cardiac puncture in anesthetized (with 2− 3%
isofluorane2) mice and refrigerated with heparin to avoid coagulation. Animals
were euthanized via cervical dislocation under deep anesthesia, and intact tissues
of interest (liver, spleen, kidney, pancreas, fat, skin, lungs, hearth, stomach, gen-
itourinary system ) were harvested. Blood and organs were weighted and tissue
samples were stored in nunc vials and frozen in liquid nitrogen.

For 19F-MRS analysis each tissue sample was thawed at room temperature and
afterwards they were mechanically homogenized.

Tissue and Blood samples were prepared for 19F-MRS in 10 mm vials with a
sealed glass vial containing 300µL of 0.29 mM solution of PFTP-DOPA, prepared
with CuSO4 to shorten its 19F T1 (see Section 5.2.1 ), was inserted inside the sam-
ples to be used as reference peak (rif.). The sample size/volume fit the whole re-
ceptive field of the NMR detector coil to assure that all 19F nuclei can be detected.
Also, blood samples were diluted with PBS to mach the reference level to avoid dis-
continuity between the level of the reference and the level of the sample if needed,
while lysis buffer (TRIS 50mM, Triton 1%, SDS 0,1%, NaCl 150mM, EDTA 5mM) was
added in tissue samples.

Volume of blood collected and tissues weight is reported in table 5.4.
Tissue samples that were not analysed with MRS will be measured trough neu-

tron autoradiography at Pavia.

2This detail was discovered at a later time
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TABLE 5.4: Weight of the tissue samples collected after F-BPA injec-
tion and sacrifice. Blood samples were taken pre-mortem in anaes-
thetized mice. In red: Samples that were analyzed with 19F-MRS.
All other sample are being analyzed with neutron autoradigraphy

@Pavia

Sample Mouse CRT Mouse 1 Mouse 2

Blood (µL) 650 550 530
Liver (g) 1.45 1.06 1.36
Spleen (mg) 52 18 38
Kidney (mg) 393 364 464
Pancreas (mg) 130 88 149
Fat (mg) 162 104 187
Skin (mg) 78 128 186
Lungs (mg) 180 132 185
Heart (mg) 156 143 132
Stomach (mg) 290 248 365
Genitourinary sys. (mg) 219 266 323

5.2.5 19F measure

One-dimensional 19F spectra were acquired at a temperature of 296 K using a Bruker
400 MHz Avance NMR spectrometer equipped with a 10 mm 1H/19F-Probe with a
(x,y,z)-gradient system to optimize the magnetic field homogeneity.
Acquisition parameters for each sample are reported in Table 5.6 and in Table 5.7.
Data were zero-filled to 65,536 complex points prior to Fourier transformation, and
an exponential window function was applied with a line-broadening factor of 5.0
Hz. The spectra were manually phase and baseline corrected and referenced to the
PFTP-DOPA standard. The pulse repetition time was (TR=9s); Based on the param-
eters in Table 5.6 and in Table 5.7 the total acquisition time was approximately 10 h
per sample.
The 19F signal of each tissue sample was determined by calculating the ratio of the F-
BPA resonance peak (1.5 ppm) integrated area to the PFTP-DOPA reference (50 ppm)
integral and confronted against the calibration line. The signal-to-noise ratio (SNR)
and integral ratio of the signal were calculated using TopSpin 3.6 software (Bruker).
The limit of detection (Lod) was defined as the 19F signal where the SNR <= 2.
Errors on the integral areas ratio are derived from the noise level of the spectrum
and from peak width but they are also operator dependent (as explained in (Holz-
grabe, 2015)) since phasing and baseline correction are performed manually. This
user-dependent variability in area estimation is reported to be up to 2% of the refer-
ence peak area. Taking into account this variability may result in an overestimation
of the error but it should not impact the results when a signal is clearly recognisable
(i.e SNR > 3).
For a quantification experiment total longitudinal relaxation should be achieved. To
quantify T1, an inversion recovery (IR) acquisition sequence with 8 IR times, tIR from
0.1 ms to 10 s were used, number of averaged scans N=512, repetition time TR=20 s.
Data were fitted to the mono-exponential function:

S(tIR) = S0(1− 2 exp
{
− tIR

T1

}
) (5.1)
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Blood samples, F-BPA in lysis buffer and the reference peak was tested. We found
that T1 for F-BPA in blood sample (1.5 ppm), the isoflurane in blood (40 ppm), the
reference peak and the F-BPA in lysis buffer were respectively (1140± 70)ms, (860±
90) ms, (1190± 70) ms, (750± 70) ms. Therefore we set TR = 9s that should always
satisfy the criteria TR > 5 · T1 that guarantee the proportionality between peak area
and the number of fluorine atoms (Holzgrabe, 2015). Spectra and inversion recovery
experiment data can be found in Appendix ??. Relaxation times of F-BPA in tissues
were difficult to measure since the signal was low but it is reasonable to estimate
them to be < 2s.

5.2.6 19F measure calibration

To test the detection performance and sensitivity of our measure we performed a
series of acquisitions on F-BPA samples with a known FBPA molecules content. F-
BPA content were prepared from serial dilutions as reported in Table 5.5.

Samples were diluted with lysis buffer to match the solvent used for tissue sam-
ples (see Section 5.2.4 ) up to a volume of 1.5 mL in a 10 mm NMR vial.

The 19F NMR spectra were acquired using: 17 1mus pulse, 74k points acquired
for free induction decay (FID), 140 ppm spectral width, 4096 averages, 10 h acquisi-
tion time, and a recycle delay of 9 s. The results were plotted as the signal in refer-
ence peak area units versus 19F-BPA content measured for each sample as shown in
Figure 5.1. A linear fit was performed on the experimental point (y = p1 ∗ x + p2);

In theory, the calibration if affected both by errors in the determination of the
dilution (so the reference concentration) and the error over the integral area calcu-
lated. We can say that the latter is dominant since the error in signal determination
when SNR is low can be difficult due to imperfect phasing and baseline correction
while volume determination with air displacement pipettes in this volume range
should be affected by a relative error less than 0.1 % of the nominal value (Ferroni
and Letang, 1989). For this reason we are not considering concentration error in the
fitting procedures.

Where y is the Peak Area Ratio and x is the F-BPA concentration measured in
µ moles. Results from the fit are: p1 = 0.635 - 95%CI(0.590, 0.681) , p2 = 0.017
- 95%CI(−0.018, 0.050), R2 = 0.9994. From them is possible to estimate the boron
concentration in ppm in the sample as:

BC = B f (
AR− p2

p1
∗Mw) ∗

1
msample

ppm (5.2)

Where B f is the percentage in weight of boron of the molecule, AR is the ratio be-
tween the area of the unknown signal and the area of the reference, Mw is the molec-
ular weight expressed in g/mole and msample is the mass of the sample in grams.
This relation hold only if there is a relation between the number of boron a fluorine
atoms in the molecule. In the case of metabolic defluorination where the fluorine
atoms are stripped from the F-BPA the relation between boron and Fluorine concen-
tration is invalid. This is also true for PET scans and it is one main bias sources in
BC estimation from fluorine concentration measure (Romanov et al., 2020).
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TABLE 5.5: Samples used for the calibration line and results from
19F spectra. Each sample consist in a known quantity of F-BPA-
fructose in a 10 mm NMR vial. A sealed glass vial containing 300µL
of 0.29 mM solution of PFTP-DOPA was inserted inside the samples
to be used as reference peak (rif.). For each data point the following
columns are reported: Moles of F-BPA in the calibration samples, In-
tegral Area Ratio between the reference sample peak and the F-BPA
total peaks area, SNR of the reference peak, SNR of the F-BPA peak.

SNRs are calculated from magnitude spectra.

µmol Area Ratio SNR rif. SNR F-BPA peak

S1 1.30 0.84 ± 0.03 115.2 ± 0.5 47.2 ± 0.5
S2 0.65 0.43 ± 0.03 123.1 ± 0.5 17.2 ± 0.5
S3 0.13 0.09 ± 0.03 138.4 ± 0.5 4.0 ± 0.5
S4 0.06 0.05 ± 0.03 109.3 ± 0.5 3.4 ± 0.5

5.3 results

5.3.1 In blood and tissue boron quantification

19F spectra analysis performed on blood samples shows an unexpected signal at 41
ppm and 35 ppm respect to the reference 0 (F-BPA in water). These peaks are shown
in Figures 5.2 and the signal relative to reference peaks is reported in Table 5.6. A
large chemical shift can be the result of drugs metabolization, that is effectively the
breakdown of the molecules in different compound, but it is difficult to attribute
these signals to F-BPA injection due to their large signal. We feared that there may
have been an external source of fluorine and after we realized that anesthesia was
performed with isofluorane and this is the most likely source of that line, albeit still
under investigation. From Table 5.6 appears that this area peak also diminish in
time. The blood was stored in a sealed but not airtight container so this compound
may still be volatile.

Only Mouse 2 had a detectable signal raised from F-BPA in blood. From the cal-
ibration (eq. 5.2) we can estimate the fluorine content and the boron concentration
in blood. Its peak area is consistent with (0.26± 0.05) µmoles of F-BPA. The error
associated is propagated from error in Area Ratio estimate and errors in the cali-
bration line coefficients. Considering the molecular weight of F-BPA (MwF−BPA =
227g/mole) and its boron content (4.8% of natural boron in weight) that correspond
to (2.8± 0.5) µg of natural boron. Given the blood volume (see Table 5.4) the boron
concentration estimate is (5± 1) ppm.

Tissue samples shows a weak signal from F-BPA in mouse 2 genitourinary sys-
tem and mouse CTR kidney. Signal in Mouse 2 sample can be quantified (0.08±
0.05)µmoles that correspond to (0.9± 0.5)µg of natural boron. Given the organ mass
(see Table 5.4) the boron concentration estimate is (4± 2) ppm. Signal in Mouse CTR
kidney is too low to be reliably quantified. All measures in the pancreas fail to shown
any meaningful source of signal outside the one related to isofluorane. Details can
be found in Table 5.7.
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FIGURE 5.1: Calibration samples signal vs. samples F-BPA content.
Signal (Black crosses) is expressed in reference peak area units. Red
line: linear fit (y = p1 ∗ x + p2); p1 = 0.635 - 95%CI(0.590, 0.681) ,

p2 = 0.017 - 95%CI(−0.018, 0.050), R2 = 0.9994.

5.3.2 Isofluorane quantification in blood

We can quantify isofluorane concentration in blood since for both resonance peaks
we have full relaxation. From the ratio of resonance peak area in Table 5.6 we derive,
knowing that isofluorane has 5 fluorine atoms, that: The concentration in blood on
Mouse CTR was (0.65± 0.03) mM for the first measure and (0.56± 0.04) mM after
1 week. Mouse 2 had an isofluorane concentration of (0.33± 0.02) mM for the first
measure and (0.17± 0.03) mM after 2 weeks. Mouse 1 had an isofluorane concen-
tration of (0.83± 0.04) mM. Both Mouse CTR and Mouse 2 exhibit a lower concen-
tration in the second measure: Isofluorane may remain volatile in blood and can be
released in air during the sample conservation since the NMR vials were closed but
not airtight. Unfortunately, the original gas mixture concentration and the exposi-
tion time were not recorded and in blood concentration of anesthetic gasses depends
strongly on both.

5.4 Discussion

During the analysis of data acquired in the experiment we become convinced that an
anomalous amount of fluorine was present in the blood samples. We later discover
that isofluorane instead of ketamine and xylazine was used to anesthetize the mice
before the cardiac puncture. As shown in Table 5.2, isofluorane contains 5 atoms of
fluorine and, from data available in literature (Mandal and Pettegrew, 2008; Chen
et al., 1992), we can reasonably attribute those signals to it. The main peak is raised
by ( at 40.8 ppm) the CF3 group and the secondary peak (at 35.4 ppm ) by the CHF2
group. The distance between the two peaks is consistent with the cited literature.
Currently an experiment with a sample of blood of an anaesthetized mouse is been
performed to dispel any doubt.

Clearly human error had an impact on our experiment but, once we had con-
firmed the presence of other fluorine sources, our results should not be negatively
impacted since the isofluorane resonance do not overlap our signal of interest.
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(a)

(b)

FIGURE 5.2: Spectra on blood samples referenced to F-BPA resonance
in water. Red notes are the area integral normalized to the area of
the reference peak. (a) Magnitude Spectrum of Mouse 1 blood sam-
ple (b) Magnitude Spectrum of Mouse 2 blood sample (c) Magnitude

Spectrum of Mouse CRT blood sample.
Reference peak (FTP-DOPA) in at 50 ppm, two other peaks are visi-
ble at 41 and 35 ppm and we attributed them to the anesthesia with
isoflurane. Only in Mouse 2 sample we were able to detect in blood a

signal related to F-BPA.
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(a)

(b)

FIGURE 5.3: Spectra on blood samples referenced to F-BPA resonance
in water. Red notes are the area integral normalized to the area of the
reference peak. (a) Magnitude Spectrum of Mouse CTR kidney (b)

Magnitude Spectrum of Mouse 2 prostate.
Reference peak (FTP-DOPA) in at 50 ppm, two other peaks are visi-
ble at 41 and 35 ppm and we attributed them to the anesthesia with

isoflurane.
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Our main problem is the absence of signal from F-BPA in the pancreas samples. It
is clear from the works reviewed in Section 5.1.1 that pancreas should have a large
boron uptake and at least 18F-BPA used in PET accumulate in it. It is also fair to
assume that the ratio between BC in pancreas and BC in blood is always larger than
1 for intravenous administration of BPA. However we fail to detect any sign of it.

Samples of Mouse 1 was sent to the the BNCT lab in Pavia to be analyzed trough
neutron autoradiography. Results for the pancreas sample can be found in Figure
5.4. From preliminary results, we understand that the signal measured is close to
their detection limit so it may be around 1 ppm of 10B that correspond to 5 ppm
of natural boron. Since pancreas are small, so total fluorine concentration in the
sample is low compared to larger samples at the same concentration, their measure is
consistent with our results that put under our limit of detection the fluorine content
of pancreas of Mouse 2 and Mouse CRT. It also worth noting that we did not find
F-BPA signal in blood of Mouse 1 so our observation may be consistent with the
measure of the pancreas on Mouse 1.

There are multiple explanations that are currently under evaluation: F-BPA prepa-
ration may have been not pure or at a much lower concentration than reported. The
same batch was used for the calibration line and purity was tested by an indepen-
dent 1H-MRS exam but we do not test directly the sample injected. For the next
experiment we will save a fraction of the administered preparation for later analy-
sis. Another explanation can be human error in the injection trough the tail vein,
although operators tend to exclude it. This procedure may be tricky and an error
can result in the dispersion of the drug outside the mouse body or a subcutaneous
injection of the drug. In the latter case the pharmacokinetics of F-BPA may be differ-
ent and probably much slower. In the next tests we will take a sample of the mouse
tail to evaluate this possibility.

In this experiment we aimed to test 19F-MRS as a tool for fluorine quantification
in tissues to evaluate BC for BNCT. We met this results in half: this technique can
detect low amount of F-BPA in blood and tissues but we fail to reproduce previous
results with our experimental model. This is probably cause by our inexperience
with animal models.

In general, the main limitation of 19F-MRS are sensitivity and that it is only appli-
cable to fluorinated drugs. The first limitation is partially removed by our primary
task that is to find high accumulation in tissue prior to a BNCT experiment. In this
case a low limit of detection compared to other techniques is less important. The sec-
ond limitation is shared with FBPA-PET that is the currently preferred method for
BC estimation (Ishiwata, 2019b) and may become a strength if the nuclear reaction of
proton and fluorine will be proved as radiobilogical relevance. Another weakness is
the duration of our experiments. Ten hours is unreasonable for most application. We
choose this duration principally because we had to confront our results with neutron
autoradiography, a technique that has a greater sensitivity.

Nevertheless, with the correct setup we believe we can reach the accuracy in
detection needed to screen compound to be tested as PNCT/BNCT drugs and we
believe that localized 19F-MRS can be eventually used in vivo and our results may
provide a calibration benchmark for future experiments.
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FIGURE 5.4: (a) Histological analisis of a pancreas sample stained
with hematoxylin-eosin. (b) qualitative autoradiograf of a pancreas
section of Mouse 1. Images courtesy of Silva Bortolussi, unpublished

results.

5.5 Remarks

5.5.1 Tumor growth monitoring

This experiment has highlighted two different questions on our experimental proto-
col. First, our result are not consistent with what is reported in literature. Second, we
still are not sure how reliably we are able to grow a tumor in our orthotopic cancer
model.

The first concern raises from the fact that in this single preliminary measure we
are not finding FBPA accumulation in the pancreas when it seems to be a consensus
that the pancreas is the first or second most active organ for BPA/F-BPA uptake. In
this case I think that human error is the most probable cause since our two orthog-
onal techniques didn’t find any relevant amount of boron/fluorine in any on the
tested organs.

Regarding the second concern, one of the main setback in our experimental de-
sign was the difficulty in monitoring the tumor growth. A critical part of our exper-
iment is a way to assure that the tumor reach a suitable size before F-BPA admin-
istration. I performed CT scans two weeks after the inoculation of the tumor (See
Appendix ?? for an example). The diagnostic image was negative and the veterinar-
ian was unable to detect any tumoral mass in both the tested mice. We still decided
to perform the treatment with F-BPA the following week and we confirmed that no
tumoral growth visible to the naked eye was present. The absence of tumoral growth
was later proved by histological analysis.

We need to device a strategy to monitor the growth of the tumor mass. A fast
methodology for this screening can the monitor of the level of blood sugar level:
Pancreas adenocarcinoma are know to disrupt organ functionality and to unbalance
the insulin production. Blood sugar level imbalance may be one of the first symp-
toms of tumoral growth so we may implement hyperglycemia monitoring. Ecog-
raphy can also be useful for this task but this exam need a skilled ecographist that
was not available in our facility and its sensibility is more operator dependant than
CT-scans.
Even considering the difficulty we faced in this first experiment, I still believe that
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our choice of an ortothopic pancreas cancer model should be preferred to a xenograft
model since the increase in technical difficulty and the greater probability of failure
are completely justified by the scientific relevance in respect to our hypothesis.

Even if our tests did not reach the original goal, data collected has been extremely
useful to make our protocol more robust and to develop techincal steps is some del-
icate process. Furthermore this first experimet let us test our collaboration between
the laboratory at ISS, the NMR facility at CNR and the autoradiography lab in Pavia.

5.5.2 Sample preparation

In this experiment sample masses ranged from 50 mg to 1.5 g and volumes ranged
from few 50 µL to 1.5 mL. This made sample preparation non trivial. In Figure
5.5 there is an example on the problem of working with large volume samples and
with an external reference. This problem can be easily overcome by using differ-
ent probe sizes and a different reference sample for lower volume samples but for
technical reasons we decided to dilute the samples when needed instead. The next
experiment will be tried with an internal standard to be added to the solvent in our
samples. Especially for tissue samples we are evaluating the possibility to increase
the concentration to keep the fixed volume to less than 500 µL by drying the homog-
enized tissues and reconstituting them in methanol, as described in (James et al.,
2017) for excreta analyses, to maximize the concentration of the sample and to mini-
mize the solvent/analyte ratio. Another important steps in sample preparation is to
exploit the possibility to measure the same sample with both our techniques. Neu-
tron autoradiography needs a few slices of the samples hundreds of micron thick
while 19F-NMR can work on the whole organs. They can be used together to have
both the global and local F-BPA concentration in the sample.

FIGURE 5.5: (a) Schematic configuration of our setup with two coaxial
cylindrical vials. (b) Example of the effect of the discontinuity on the
homogeneity of the field that results in the reference peak to be split.
The effect has been increased to be seen clearly. In the case of this

kind of dishomogeneity a "shimming" correction usually fail
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Chapter 6

MRI denoising in K-space

Chapter Abstract
Magnetic Resonance Imaging (MRI) raw data is acquired in the frequency domain (k-space)
and then transformed to magnitude image that are commonly used in many clinical appli-
cations. MRI can be afflicted by noise that can diminish the image quality and clinical in-
formation available. In this Chapter we will propose a new deep learning method to mitigate
the effect of the noise directly on the data acquired in the k-space.

We simulated with the MRiLab software a dataset of MRI acquisitions in the k-space
and their respective magnitude images. We tested the performance of a denoising convolu-
tional neural network (DnCNN)in the denoising task for both the images in k-space and in
magnitude images.

When the denoising task is performed in the k-space both the Peak-Signal-to-Noise-Ratio
and visual quality is improved respect to the denoising performed directly on the magnitude
images. Also, when used before the measure of relaxation times from noisy images, denoising
in the k-space improves the estimation significantly.

We found that on our simulated dataset a DnCNN applied on frequency data is superior
to a network with the same architecture applied on magnitude images. Thus, if a neural
network approach has to be implemented in a MRI acquisition pipeline it should be applied
to the data in k-space.

Our next step is to perform additional test on real data for a complete assessment of the
proposed model.

6.1 Introduction

Magnetic Resonance Imaging (MRI) is a diagnostic image modality that has found
a large number of applications in clinical practice. MRI can be greatly impacted
from noise, thus noise removal ( denoising) is a key preprocessing steps in many
image analysis tasks. In this Chapter we will test a deep-learning neural network
based approach for noise reduction in MRI. Our aim is to evaluate when, during
the acquisition pipeline of a MRI, a simple convolutional neural network (CNN) can
bring the greatest benefits.

MRI is based on a phenomenon known as Nuclear Magnetic Resonance (NMR).
When certain atomic nuclei are subjected to a Magnetic field, they rotate with their
own characteristic frequency that depends on the strength of the magnetic field (and
the nature of the atoms). Atoms are able to absorb energy at this frequency if they
are excited with a radio frequency (RF) pulse, and once the pulse is removed, they
emit this electromagnetic energy at the resonance frequency. This principle can be
used to obtain images: Since the resonance frequency depends on the strength of
the magnetic field applied, if a spatial gradient of the magnetic field is present (so
different locations are associated with different magnetic field strengths) atoms at
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different locations will resonate at different frequencies. Thus, listening to different
frequencies is the same as studying different locations. In medical imaging this effect
is used to study the properties of tissues in the imaging field. The important message
for the following sections is that the acquisition is made in function of frequency and
not of space.

We do not need the details of the physical process involved (our CNN models
aims to be only data driven) but one of our performance metric, which we will use
to test our denoising algorithm, is based on correct estimation of atoms relaxation
times from MRI acquisitions so we need to define them. A more rigorous definition
can be found in Section 3.1.1.

At equilibrium the spins of the atoms are aligned with the external magnetic
field (B0), the cumulative effect of all the spins of the atoms aligned is called the net
magnetization vector that, in this situation, is parallel to the external field. When a
specific RF pulse is emitted, it causes the net magnetization to flip to a certain angle
so two component of the magnetization can be defined the longitudinal magneti-
zation (the projection on the field axis, Mz) and the transverse magnetization (the
projection on the plane orthogonal to the field, Mxy).

After the excitation each atom returns to its equilibrium state and the net mag-
netization is again parallel with the external field: This phenomenon is called relax-
ation and it is associated with two independent physical processes.

Thus first, spins will rapidly dephase after the excitation occurs, pointing in all
directions perpendicular to the static B0 field and, as a result, removing the trans-
verse component created by the RF pulse. These effects cause spins to precess at
different frequencies that are related to the external B0 depending on their position.

Second, when the RF pulse is removed, the B0 field is still present, thus the spins
tend to point along the field’s direction, rising the longitudinal component. Both
processes occur at the same time and are basically independent, though the first one
is generally much faster. Therefore, there exist two relaxation times:

T1: is the time for the longitudinal component Mz to return to its original state
through the emission of electromagnetic energy. This is called the spin– lattice re-
laxation, corresponding to the exchange of energy between the spin system and its
surroundings.

T2: is the time for the transverse component (Mxy) to return to its original state,
associated with thermal equilibrium between spins. This is the spin–spin relaxation.
Both relaxation times T1 and T2 refer to the time constant of the exponential laws
ruling the two relaxation processes.

Measuring relaxation times of the longitudinal Mz and transverse components
Mxy , different properties of the tissues may be inferred(Aja-Fernández et al., 2016):
Contrast in morphological MRI acquisition are obtained by exploiting the difference
in T1 and T2 of different tissues. This acquisition modality is called T1 (or T2) weigh-
ing.

6.2 Magnitude images and Rician Noise

From the simplified scheme in Figure 6.1 we can see how the process of acquiring
an MR image starts in the frequency domain (the k-space) and it is acquired through
a quadrature detector that provides the real and imaginary part of the signal. Each
parts of the complex signal can be assumed affected by withe noise (i.e Gaussian
distributed with zero mean), the main source of this noise is the RF coil resistance
(Edelstein et al., 1986) and its final effect on the quality of the images depends on a
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variety of factor such as the pixel dimension, the duration of the acquisition and the
receiver bandwidth.

From the k-space, the real and imaginary images are reconstructed through the
complex Fourier transform in the x-space. In the complex x-space the noise is still
Gaussian and the real and imaginary part of the noise can be assumed uncorrelated,
since the Fourier transform is a linear and orthogonal transform (Gudbjartsson and
Patz, 1995). Then, the magnitude image is formed by calculating the magnitude of
the signal pixel-by-pixel from the complex image. This step is crucial because in the
magnitude image the noise is no longer additive and it is no longer Gaussian.

Clinical MRI are in most cases magnitude images but is possible to find image
derived from the phase of the complex image. In any case, magnitude images are
the most common, since phase artifact can be avoided by discarding the phase in-
formation (Gudbjartsson and Patz, 1995), so we will concentrate on them.

A noisy magnitude image can’t be divided in a part of signal and a part of noise
since, as we said, the noise in no longer additive: The probability distribution of
intensities in a noisy magnitude image M, reconstructed from an image of signal I
and Gaussian noise σ, assumed equal for both the real and imaginary parts, is given
by

p(M) =
M
σ2 e−

(I2+M2)
2σ2 I0(

IM
σ2 ) (6.1)

Where I0 is the modified 0− th order Bessel function. This is the Rice distribu-
tion. A Gaussian approximation of this distribution is possible only if I/σ � 1(that
is the Signal-To-Noise-Ratio (SNR) in the x-space). Magnitude image with high noise
level will be far from the Gaussian approximation of their signal and they will suffer
from the so-called "rician bias".

Thus, clinical MRI with low SNR, in addition of being difficult to read and inter-
preted, can also lead to the erroneous quantification of physical quantity since the
noise has not zero means and it is not additive.

For example in T2 relaxation images, the accuracy and precision of the measured
T2 may be substantially impaired by the low signal-to-noise ratio of images avail-
able from clinical examinations (Raya et al., 2010) or in diffusion weighted images
the decreasing SNR at increasing diffusion weighting causes systematic errors when
calculating apparent diffusion coefficients(Dietrich, Heiland, and Sartor, 2001).

The effect can be less important in morphological scan since new generation
scanners can achieve excellent imaging quality but the effect of Rician noise is still a
problem in many new acquisition modality (Diffusion - Kurtosis for example,(Glenn,
Tabesh, and Jensen, 2015)) or when the low signal is given by the low concentration
of the excited nuclei as is the case in fluorine magnetic resonance imaging (Taylor
et al., 2016).

This phenomena are very well known and several correction schemes have been
proposed to extract the real intensity I from the magnitude images and they often
involve the estimation of the variance of the noise in the complex space. A simple
review on the formulation and the proposition of an analytical correction scheme
can be found in (Koay and Basser, 2006).

In this Chapter we are interested in verifying if a simple neural network with a
supervised training approach can help mitigate this problem.
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FIGURE 6.1: Magnetic Resonance Images are acquired in the fre-
quency domain, then transformed to geometric space trough an in-
verse Fourier transform. The image usually used for medical applica-
tion is the magnitude image, that is obtained calculating the magni-
tude pixel-by-pixel of the complex x-space image. Phase information
are often discarded. Magnitude images are also referred as power

images (improperly) or reconstructed images.

6.2.1 Denoising Magnitude Images with residual learning

Image denoising is defined as the task of removing the effect of external noise from
an image. Thus, denoising an image should restore it (the noisy image) to the con-
dition it was before the application of noise (the original image). The performance
of an algorithm that performs this task (a denoiser) are evaluated on the closeness
of the restored image to the original image. However, since noise, edge, and texture
are high frequency components, it is difficult to distinguish them in the process of
denoising and the denoised images could inevitably lose some details. (Fan et al.,
2019)

In fact, image denoising is a classic problem and many solution has been pro-
posed especially for the processing of natural images. The features of a good de-
noiser for natural images can be defined as: Flat areas should be smooth, edges
should not be blurred, textures should be preserved, and new details absent in the
original image (artifacts) should not be generated.

In practice, denoising algorithm are often evaluated on the base of a quantita-
tive metric that measure the distance between the processed image and the original
image, the Peak-Signal-to-Noise-Ratio (PSNR, See Section 6.3.1) and from visual in-
spection. Many other metrics have been proposed but the PSNR is the most adopted
one.

This problem, namely the impossibility to directly use the desired performance
metric as the loss function of a learning model, is discussed in more detail in Section
2.2.

In particular, the cited good feature of a denoised image are more qualitative
than quantitative in nature so it is often very difficult to measure them correctly in
all the possible applications.

Recently, deep learning methods have also proposed to denoise MR images by
training different architectures with pairs of noisy and noise-free input-outputs (su-
pervised learning approach).

The denoising of MRI has also an additional challenge: physical quantities that
can be measured from the image should not be influenced by the effect of the denois-
ing algorithm. This request may seems obvious if we want to exploit NMR imaging
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as a quantitative tool: Quantitative MRI (qMRI) can be defined as maps of mean-
ingful physical or chemical variables that can be measured in physical units and
compared between tissue regions and among subjects (Pierpaoli, 2010).

If we follow this definition, still today most clinical MRI are not rigorously quan-
titative in nature thus, we should consider reasonable that most denoising algo-
rithms do not explicitly measure quantitative based performance and rely only on
standard denoising metrics, together with visual inspection, to evaluate their results.
See for example (Manjón and Coupe, 2018) for a recent attempt.

Our experiment aims to evaluate the performance of a of feed-forward denoising
convolutional neural networks (DnCNNs) that is applied to the denoising of magni-
tude images both directly on the image and on the raw frequency data in k-space.

The method chosen is derived from the work of Zhang and collaborators (Zhang
et al., 2017) that adopt a strategy based on deep architecture, residual learning (RL),
and regularization method into image denoising.

Specifically, residual learning and batch normalization (See Section 2.4.5) are uti-
lized to speed up the training process as well as boost the denoising performance.

We are particularly interested in the residual learning approach that aims to
gradually removing the latent clean image in the hidden layers to separate the noise
contribution from the original image.

Using the same notation developed in Section 2.1 we can schematize Residual
learning as follows: Focus on an image and its noisy approximation (y, X) where
the noise model is assumed additive X = y + ε. The exact form of ε may vary but
for this example it may be thought as Gaussian with zero mean.

In discriminative denoising a neural network can learn to map the noisy example
to the original by matching (finding the opportune set of weight w) its output ŷpred =
NNW(X) to the original image:

NNW(X) ∼ y (6.2)

The residual learning formulation instead aim to map the output of the network
to the noise part of the input (i.e residual mapping). This is performed by subtracting
the output to the noisy input

NNW(X) = X− ŷ (6.3)

We can write the loss function, using a pixel-wise mean squared error for sim-
plicity (i.e. each pixel is treated separately), of a denoising neural network with a
fully convolutional architecture (as defined in Section 2.4.4) as:

L(ŷ, y) =
1
n ∑

i
(yi pred − yi)

2 (6.4)

To simplify the notation we will not write explicitly the sum over the pixels in the
next steps. In normal learning for which the output is ŷ = NNW(X) the loss func-
tion is

LW = |ŷ− y|2 (6.5)

A good solution to minimize the loss is ŷ = argmin(L)→ ŷ ∼ y
While for the residual learning approach X− ŷ = NNW(X) the loss became

L(ŷ, y) = |X− ŷ− y|2 (6.6)
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For the additive noise model, where we can write X = y + ε, the loss reduce to

L(ỹ, y) = |��y + ε− ŷ− ��y|
2 (6.7)

That leads to ŷ ∼ ε. This slight modification in the loss function helps the neural
network to find a solution that focuses on the noise part of the problem instead of
learning features that depends on the image.

The authors of the original paper show that a simple neural network that ap-
plies this strategy can decrease training time, has a greater generalization ability
(the training can be translated to related task), its training converge with a relatively
small dataset and it is more stable and outperform many traditional algorithm in
blind denoising, that is a denoising task where the noise level is unknown.

This is not surprising: Adding a residual layer means using prior information,
in this case our knowledge of the additivity of the noise model, as an assumption to
simplify the network task.

It is even less surprising that a residual learning approach will not excel in de-
noising tasks where the noise model is not additive since the effect of the residual
learning will not remove the term that depends on the original image in equation
6.6.

From equation 6.1 is easy to see that the noise model for a MRI is not additive.
To generate rician distributed values we can directly sum in quadrature two values
sampled independently from a Gaussian distribution

x =
√
(y + ε1)2 + ε2

2 → x2 = y2 + 2yε + R (6.8)

Thus in quadrature, the noisy power image x2 will have a non additive noise
term 2yε and a additive noise term with non zero mean.

We tested how the performance of residual learning are affected when a DnCNN
is trained with Rican distributed signal in presence of a high noise level for which
the Gaussian approximation of equation 6.1 is invalid.

Since for power (and magnitude) images rewriting the loss function in a Residual
Learning approach will not cancel out the terms relative to the image,

L(x2 − ŷ, y2) = �
�y2 + 2yε1 + R− ŷ− �

�y2 (6.9)

residual learning may not improve the denoising performance. Instead, it may
impair the network ability to learn since the prior information given is misleading.

This test will be performed with a fully convolutional network architecture de-
scribed in Section 2.4.4. This network consist only in convolutional operation, detec-
tor stages and batch normalization. Convolution operation is described in Section
2.4, the detector stage with ReLU activation in Section 2.1.1 and batch normalization
in Section 2.4.5.

It is important to notice that this network has no subsamplig operation so its out-
put units have a small receptive field, that means that only partial local information
and not the entire input is used to compute (and train) the value of each output unit.
In particular, for this architecture the effective patch size is 40 by 40 pixel. In Fig-
ure 2.6 we can see an example of how receptive field propagates trough layers in a
FCNN architecture of this type.

The network is composed as follows:

• First Layer: 2D Convolutional with ReLU activation, 64 filter of size 3x3x1.
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• Layer 2 to (D-1) : 2D Convolutional with Batch Normalization, ReLu activa-
tion, 64 filter of size 3x3x64.

• Output layer: 2D Convolutional with linear activation with a residual layer.

In figure 7.8 a schematic representation can be found.
The model was built in Tensorflow 2.x (Abadi et al., 2015) and the definition

of the layers used can be found in the documentation. The model, code, trained
weights and (hopefully) a working example can be found in my personal repository.
The data used for training is the "BSDS500" dataset that is described in (Arbelaez
et al., 2011) and it is often used as a benchmark for denoising tasks. We tested our
performance on the "Set12" dataset (Fan et al., 2019). Both dataset can be freely
downloaded. Images are converted to grayscale with a color depth of 8 bit before
the noise addition.

The test will compare the performance of the denoiser in the task of denoising
additive Gaussian noise to the performance obtained in denoising Rician distributed
noise at the same image quality in terms of PSNR.

First, we generate noised data with additive Gaussian noise

Mgauss = I + ε (6.10)

where Mgauss is the resultant image affected by Gaussian noise, I is the original image
and ε is a zero mean Gaussian noise with standard deviation σ.

Second, we generate Rician distributed noise to model an MRI following Eq. 6.8.

Mrice =
√
(I + ε1)2 + ε2

2 (6.11)

where Mrice is the resultant image affected by Rician noise, I is the original image
and ε1, ε2 are zero mean Gaussian noise with standard deviation σ. After the noise
addition the images are again normalized to 8 bits.

Image are corrupted with an unknown level of noise (blind denoising task) with
a standard deviation extracted randomly between σ = [35 , 60). To mach the sample
size used in the original paper the model is trained on 400 images chosen randomly
from the train dateset and validated on the remaining images.

The reported performance are calculated over the independent "Set12" test data.
Each DnCNN is used to restore images affected only from the noise type it was
trained for. Results for the denoising task on the Gaussian additive noise are re-
ported in Figure 6.2 and 6.4a, while results for the denoising task on Rician noise in
Figure 6.3 and 6.4b. The metrics used to evaluate the performance are defined in Sec-
tion 6.3.1. We choose to compare our results to a standard image filtering technique.
The application of wiener filter is common strategy adopted in image restoration
task that is highly effective for white noise removal (Orieux, Giovannelli, and Rodet,
2010). In our case it is used as a baseline performance to justify the utilization of
deep learning for the chosen task. The filter used can be found in image-restoration
package of scikit-learn (Pedregosa et al., 2011).

Our results show that when we compare the restoration of images at the same
level of degradation, expressed as PSNR with the original image, Gaussian denois-
ing with residual learning is more effective than Rician denoising and, in particular,
our DnCNN is always better than a wiener filter applied on the same image only in
the case of Gaussian noise.
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The performance shown at high noise level may seem low but is important to
remember that in a 8 bit image, whose maximum intensity value is 255, a "bright
scene" has a mean intensity around 125-200. This means that with a perturbation
with σ > 50 the effective SNR is between 3 and 4.

For a natural image this means that the image is almost unrecognizable and it is
often discarded in many applications, while for certain MRI acquisitions it may be
an acceptable value.

In the next section we will propose and describe a new denoising methods based
on the application of a denoiser directly on the frequency space of a MRI acquisition
that will allow us to exploit the perks of residual learning even in magnetic reso-
nance images with very low SNR where the hypothesis of Gaussian additive noise
is invalid.

FIGURE 6.2: Example of the DnCNN on the Gaussian blind denoising
task with σ ∈ [35, 59].

Panel on the left: Clockwise, The nosy version of the image, the im-
age processed by the denoiser, the original image, the image after the

application of the wiener filter.
On the right: PSNR of the denoised images in function of the starting
PSNR of the noisy images. Each point is an image in the test dataset,
different colors represent different levels of noise applied. The dot-
ted red line indicates that there is no improvement in PSNR after the

application on the denoiser [PSNR(processed) = PSNR(noisy)].

6.3 Material and methods

6.3.1 Metrics

The quality, respect to noise in the acquisition, of magnitude images can be ex-
pressed as Signal-To-Noise-Ratio (SNR). For MRI this is often defined as the mean
over the intensity of the pixels in a region of signal divided by the standard deviation
calculated from a background region.

SNR =
µsignal

σbackground
(6.12)
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FIGURE 6.3: Example of the DnCNN on the Rician blind denoising
task with σ ∈ [35, 59].

Panel on the left: Clockwise, The nosy version of the image, the im-
age processed by the denoiser, the original image, the image after the

application of the wiener filter.
On the right: PSNR of the denoised images in function of the starting
PSNR of the noisy images. Each point is an image in the test dataset,
different colors represent different levels of noise applied. The dot-
ted red line indicates that there is no improvement in PSNR after the

application on the denoiser [PSNR(processed) = PSNR(noisy)].

When the noise free image is available we will use the Peak Signal to Noise Ratio
(PSNR) to quantify the quality of a magnitude image. PSNR is defined from the
mean squared error (MSE) that, for a pair of NxM real images I and I∗, is written as:

MSE =
1

N ·M
N

∑
i=1

M

∑
j=1

[I(i, j)− I∗(i, j)]2 (6.13)

MSE is just the mean square euclidean distance in the pixel space. The PSNR is
defined as:

PSNR = 20 · log10

(
MAXI√

MSE

)
(6.14)

and it is expressed in decibel (dB). It is the logarithm of the inverse of the euclidean
distance between two images normalized to MAXI , that is the maximum value that
a pixel can assume (i.e. 255 for a 8bit image).

6.3.2 Phantom Generator and Simulation

In order to perform a supervised learning we need to provide the network with pairs
of corrupted and noiseless images to be used as a ground truth. The ground truth
will be use to provide an example of the expected output. We discussed supervised
learning in more details in Section 2.2.

Unfortunately, dataset of clinical MRI images with pairs of high quality and low
quality images are difficult to obtain. Even more difficult is to obtain the raw data
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(a) (b)

FIGURE 6.4: Average PSNR for the test dataset after the application
of the DnCNN (Blue) and the wiener filter (Orange) in function of the

standard deviation of the noise for the two noise models:
(a) Gaussian noise (b) Rician noise

The DnCNN with residual learning is always better than a wiener
filter for blind Gaussian denoising. In the case of Rician noise the
baseline approach of a wiener filter has better performance in terms
of PSNR at high noise levels. When the average SNR drops below
3 (σ ∼ 50 ) the DnCNN is no longer a valid strategy for denoising

images with Rician noise.

in the k-space that is usually discarded when the acquisition is completed and the
image reconstructed.

To avoid this problem we decided to first validate our methods on simulated
data. This means that our work should be considered a "proof of concept" and it
may not be directly applicable to real data but we will be able to control every step
of the pipeline.

To generate the dataset we performed MRI simulation in MRiLab (Liu et al., 2017)
that is a comprehensive simulator for large-scale realistic MRI simulations. MRiLab
combines realistic tissue modeling with numerical virtualization of an MRI system
and scanning experiment to enable assessment of a broad range of MRI modalities.

Realistic simulation can be performed with biological plausible phantoms mod-
elled as large 3D objects with biologically relevant tissue models. The computational
power needed for simulation is gained using parallelized execution on GPU.

In addition to tissue and anatomical models, the realistic simulations require set-
ting up a virtual MRI system and RF pulse sequence which conform to the existing
physiological and technical limits of MRI scanning. MRiLab parameters specifying
the scanning environment include the maps of main magnetic (B0) [to simulate ar-
tifacts derived from field dishomogeneity], transmit, and receive fields [to simulate
artifacts derived from the coil geometry], and parameters of imaging gradients [to
simulate artifacts from frequency shift]. Also resolution, number of acquisition av-
erage, noise level and common preprocessing steps can be selected.

To build our dataset we first prepared a phantom generator to increase the vari-
ability of our data. A phantom is a high resolution 3D model of biological plausible
tissues with an anatomy that may resemble a clinical MRI.

Each phantom consist in a deformed cylindrical shape in which different element
(that we will call "organs") may appear.
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FIGURE 6.5: Schematic representation of the experimental pipeline.
1 - A phantom is randomly generated. 2 - A simulated magnetic
resonance image acquisition is performed in MRiLab with either a
Spin echo or Gradient echo sequence and a predefined set of acqui-
sition parameters. 3 - Before the reconstruction of the magnitude
image, data in the K-space are saved in a binary format compatible
with Python/Tensorflow. 4,5 - Once the train dataset is completed a
DnCNN is trained with pairs of original and corrupted images. Noise
power is chosen randomly (blind training). 6 - The DnCNN is applied
on noisy images, processed images are transformed in magnitude im-
ages and tested against the simulation noise free results. Steps in grey
rectangles are performed in Matlab 2018b. Steps in orange rectangles

are performed in Python/Tensorflow.

Shape, position, rotation and dimensions of organs can vary in a predefined in-
terval, an example can be seen in Figure 6.6. Each organ is provided with the phan-
tom properties that are needed in order to simulate the behavior of tissues in a mag-
netic resonance image acquisition as described in the user guide of the simulation
software (MRiLab, V 1.3, Section 3):

• Gyro (rad/s/T) : The gyromagnetic ratio of the spin

• Rho : A matrix for describing spin density

• T1 (s) : A matrix for describing T1 relaxation time

• T2 (s) : A matrix for describing T2 relaxation time

• T2Star (s) : A matrix for describing T2* relaxation time

• MassDen (kg/m3) : A matrixfor describing tissue mass density

• ECon (S/m) : A matrix for describing tissue electrical conductivity

This properties are sampled from a predefined interval with credible values for
a biological tissue.
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(a) (b)

FIGURE 6.6: Examples of phantoms generated. Each phantom is 3D
model with "organs" of different size, shape, orientation and posi-
tion. Physical quantities of the "organs" can also vary randomly in
a predetermined interval. (a) Example of a phantom that is used for
training. Random size sphere (Cysts) of different intensities and re-
laxation times can appear randomly inside the body. (b) Example of
a phantom that is used for testing in relaxation experiments. "Cysts"

can not appear.

In figure 6.5 is shown the schematic pipeline on the analysis. After the phantom
is generated a MRI exam is simulated with a spin echo 2D pulse sequence. A spin
echo is a simple acquisition modality where two RF pulses are used to generate the
signal. The peak of this signal is found at the echo time (TE). Many other pulse
sequence can be used in the simulation but we will limit to spin echo for simplicity.
This choice should impact on the generality of our results but in future more complex
acquisitions will be simulated.

Plane resolution is fixed at 128x128 pixel while slice thickness and the number
of slices in each exam can vary. After the simulation, raw data in k-space are saved
before the magnitude images are reconstructed. Afterwards, also the corresponding
magnitude images are saved.

Each saved example is a simulated MRI 2D image in the k-space composed by a
two channel matrix (128x128x2) that store the real and imaginary part of the signal
in k-space and the resulting magnitude image of size 128x128. Figure 6.9 shows an
example of the simulated data on a brain phantom.

To increase the variability of the dataset and to test if effectively the residual learn-
ing approach limits the formation of representations derived from the images in or-
der to concentrate on the noise form, some of the phantoms used in training will also
have signals sphere shaped, that we will call Cysts, of different random intensities
and relaxation times that can appear in random positions inside the phantom area.

In the examples used in testing and validation this additional variability is never
present. An example in shown n Figure 6.6 a, cysts are visible in the in the left part
of the lower organ. In simulation cysts appear as hyper-intense or ipo-intense spots.
These formations are confounding signal only and we will use them to test if these
details are correctly never proposed when the network is tested.
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FIGURE 6.7: Noise Effect on simulated MRI. Magnitude image recon-
structed after the addition of noise. Examples at σK = 40, 120, 200,
361. Resulting PSNR respect to the noise free simulation are 26 dB, 17

dB, 14 dB, 12 dB
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FIGURE 6.8: Noise Effect applied in k-space on magnitude images.
(a) Average PSNR of the noisy magnitude image respect to the noise
free magnitude image. PSNR in function of σk the standard deviation
of the noise applied in k-space. Red arrows indicate the range for
blind denoising training (b) Average SNR of two homogeneous signal
zone in the image in function of the standard deviation of the noise
applied in k-space. "liver" and "kidney" refer respectively to the single
"organ" that appears in the lower part of the phantom and to the pair

of "organs" that appears in the upper part.

6.3.3 Training and noise generation

After the noise free dataset is formed, noised data is generated by the addition of
complex white noise in the frequency domain. For a single coil acquisition, white
noise is a reasonable model (Aja-Fernández et al., 2016) under the assumptions that
the noise affects equally all the sampled frequencies and it is sample and source
independent.

The noise standard deviation in k-space σk is chosen to generate images with a
SNR between 5 and 2 when measured on the corresponding magnitude images. Fig-
ure 6.7 shows the effect of the addition of the noise in the k-space on the magnitude
images and Figure 6.8 shows the range of σk selected.

We trained a DnCNN for the task of denoising directly the k-space. We will refer
to this network as Kspace-Dn. Training is performed on pairs of clear and noisy
images minimizing the loss defined in Section 6.3.4. Also, to increase our statistic
we performed data augmentation on the k-space data.

Data augmentation in K-space is defined as a transformation that maintain the
same reconstructed magnitude image or produce a simple geometrical effect on the
magnitude image (i.e. rotation) Thus. given the k-space signal S(x, y) = SR(x, y) +
SI(x, y) we will apply randomly the following transformations:

• Reverse axis:

– S(x, y)→ S(−x, y)

– S(x, y)→ S(x,−y)

– S(x, y)→ S(−x,−y)
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• Transpose axis:

– S(x, y)→ S(y, x) [Rotation]

• Phase multiplication:

– S(x, y)→ S(x, y) ∗ exp{(iθ)} with θ ∈ [0, 2π]

To compare our results to a network with the same complexity (architecture and
number of parameters) we also trained a DnCNN on the noisy magnitude images
reconstructed from the noisy k-space. We will refer to this network as the M-Dn.
The training is performed in parallel to make sure that the two network can access
the same dataset statistics.

The network architecture is the same defined in Section 6.2.1 with a two channel
input and output for the Kspace-Dn that are needed because k-data are complex
number. Each channel represent the real and the imaginary part of the signal and
they are treated as colors in our image. We can not work directly with complex
number because activation function and convolutional operation are not defined in
the complex space.

Both networks have a deepness of 20 layers thus their effective receptive field
is 41x41 pixels. The receptive field of a fully convolutional network is discussed in
Section 2.4.4.

Thus, the Dn-CNN are effectively denoising areas of the image based only on
partial context. This helps to reduce the number of parameters of the model in order
to limit overfitting even when the network is trained on a small dataset and it will
also contribute to avoid the learning of complex anatomical structure since only a
patch on the input is seen at each output unit.

Both the networks are trained for 300 epochs with Adam (Kingma and Ba, 2017)
as optimization and a learning rate lR = 10−3. Afterwards, the learning rate is re-
duced to lR = 10−4 and the the network is trained for another 100 epochs.

We will train our models on 103 images generates from the simulation on the
phantoms defined in Section 6.3.2 to evaluate our performance with a dataset of the
size that is commonly available with clinical MRI.

During training the images will be augmented with the transformations described
earlier in this Section, so the actual instances of the signal examples will be higher
than the simulated scans.

Geometrical transformation will augment the dataset size by a factor 4 and forc-
ing the phase invariance, the random multiplication for an unitary complex number
that loosely model the coil orientation, will also increase the number of independent
samples.

Also, the corrupted images are generated on the fly so at every epoch the noise
is independently sampled from its distribution before the addition. This training
strategy allows to perform more training steps while limiting the overfitting risk
since the exact pair of original and corrupted example will be never shown more
than once.

In any case, for our simple simulation, where the only source of corruption is the
acquisition noise, the size of the dataset should be appropriate to learn the denoising
task.

Probably the limiting factor in the size of our dataset is our phantom generation
algorithm: even if a large sample is generated, its effective variability may be low
since the generator itself depends on a small number of parameters that can not
mimic the great variability observed in real biological tissues.
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FIGURE 6.9: Example data obtained from a simulation that is used
as the ground truth during training. An acquisition in k-space from
a 2D spin echo pulse sequence: (a) Real part of the signal (SR) (b)

Imaginary part of the signal (SI) (c) Magnitude image (M)

6.3.4 Loss function in K-space

The network that processes data in k-space will try to map a noisy version of an
input to its ground truth. The ground truth is the clean version of the k-space so the
minimization of the loss should reproduce it but since our metrics will be based only
on the reconstructed version of the image we can add a term in the loss function to
help the network to concentrate also on the final image.

The input of the network is a two channels image S representing the real (SR)
and imaginary (SI) parts of the signal in the k-space: S = (SR, SI).

The magnitude image M is reconstructed by taking the modulus of the 2D In-
verse Discrete Fourier Transform (iDFT) applied over the signal in k-space. Lets
define this procedure as:

M := reco(S) (6.15)

The loss used for in k-space denoiser is composed by two term:

Lk = MSE(Sy, S) + β ∗MSE(reco(Sy), M) (6.16)

Where Sy is the two channel output of the network. S is ground truth signal in
the k-space, M is the ground truth magnitude image.

The first term is just the mean square error for the two channels signal in k-space
and the second term is the mean square error for the magnitude image reconstructed
on the fly from the predicted k-space.

The parameter β is used to balance the two terms. If beta is kept small (β = 10−2)
it has no impact on the performance of the network (See Figure 6.11) but it helps to
avoid artifact in the magnitude image.

The loss function used to train the denoiser on the magnitude images is a stan-
dard MSE loss function.
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6.3.5 Testing data

Residual learning has the great benefit of generalize to different types of additive
models but as we have seen in Section 6.2.1 it won’t perform well at very low SNR on
magnitude images. We will test if working on frequency data improves our perfor-
mances in the denoising task since in this case we will have Gaussian noise instead
of rician.

To test the networks we will first use data from a realistic brain phantom, avail-
able in the simulation software (Liu et al., 2017), to check the noise removal capabil-
ities on fine details that are never seen during training. This test will be a measure
of the generalization capability of the networks.

Secondly, we will simulate a T2 measure experiment in which a series of acqui-
sitions is performed with RF pulses at increasing echo times (TE). We will use those
images to measure transverse relaxation. This magnetic resonance signal is expected
to follow an exponential decay with increasing echo time (TE) as we saw in Section
3.1.1.

S(TE) = S0 exp
{
(−TE

T2
)

}
(6.17)

The time constant is T2 relaxation time that affects the coherent components of
M perpendicular to B0.

The nonzero mean distribution of noise in magnitude images causes the signal
to not decay exponentially with increasing TE in low signal-to-noise-ratio (SNR) im-
ages.

Thus, calculating T2 from low-SNR images by fitting is prone to overestimation
of T2. This is a well know effect ((Raya et al., 2010)) and often prevents the use of
low SNR images for quantitative purposes.

We will then estimate the T2 from the denoised images to check if the Dn-CNN
restore the expected behavior since the diagnostic value of T2 critically depends on
how exactly T2 can be measured.

6.4 Results

6.4.1 Results on Realistic Phantom

In this test three networks were trained as described in Section 6.3.3 with pairs of
original and noisy simulated MRIs of the simple phantom described in Section 6.3.2:
a network with a reconstruction term with β = 10−2 as defined in Section 6.3.4 will
be trained on data in k-space (Kspace-Dn), a network with β = 0 also trained on
frequency data (Ks no RECO) and a network trained on the same dataset on the
resulting magnitude images (M-Dn). From Figure 6.11 we can see how the networks
that works on the k-space always outperform the network trained with magnitude
images in terms of image quality. Especially at high noise levels, the improvement
in PSNR from the noisy images is always significantly better for Kspace-Dn than for
M-Dn.

This was expected from our early experiences reported in Section 6.2.1 that were
based only on a different noise generation model and not from a simulation:

For a Dn-CNN with residual learning is inherently more difficult to work with
MRI magnitude images so it should be avoided.

In Figure 6.10 a few compared images denoised with Ks-Dn and M-Dn are shown
for visual inspection. It seems that M-Dn tends to favor smoother surfaces at the
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expense of losing details. This may be caused from an incorrect noise estimate in the
blind denoising task.

Ks no RECO is discussed in Section 6.4.3.

6.4.2 Relaxometry experiments

The aim of this experiment was to verify the ability to remove the bias in the T2
estimate from noisy magnitude images. These images are acquired at growing TE
and as expected from Eq. 6.17 the signal will decreases exponentially, so at fixed
noise standard deviation, the SNR of the image will also decrease exponentially.

We tested K-Dn and M-Dn (defined in Section 6.4.1) to the same task. It is im-
portant to remember that these networks were not directly trained to denoise a set
of images thus images are processed independently: The denoiser is able to perform
blind denoising so it should be able to estimate the effect of the noise and remove it
regardless.

Since we are not interested in reproducing correctly the shapes of the objects
but only in reproducing the average intensities in an area, for the purpose of this
experiment we used β = 0 in the loss function (Equation 6.16). The beta parameter
controls how much the reconstruction in magnitude space is weighed in the loss
function.

Test data were simulated at increasing TE with a fixed noise level of σk = 30, 100
T2 estimate is derived from a fit with an exponential function on the average

intensity of a patch of 15x15 pixels of the "organ" with no additional preprocessing.
Results from this test are shown in Figure 6.12. At high noise level M-Dn overes-

timate, as expected, the real T2 and K-Dn gives a better estimate.
A probable explanation is that the most prominent effect of rician noise at low

SNR is the non-zero term that increase the average intensity over the background.
This effect depends on both the noise variance and the original intensity so it is
difficult to remove.

Estimating and correcting this effect on magnitude images is more difficult re-
spect to perform the same task with gaussian noise in the k-space. The M-Dn fails to
remove the Rician bias giving smooth surface but at the wrong intensity while K-Dn
remove the effect of the non zero mean noise at the expense of higher variance in the
image.

This effect can be seen in Figure 6.13 where the intensity at high echo time is
plotted for the original image and the denoised ones in frequency and magnitude.

Qualitatively the M-Dn better reconstructs the smooth surface of the original im-
age but fails to reproduce the correct intensity on average. In morphological images
this behaviour may not be a problem but for quantitative MRI it is more important
to correctly measure the average signal in an area respect to obtain a sharp contrast.

It would be interesting to see how the performance compare to analytical meth-
ods such as(Raya et al., 2010) and (Koay and Basser, 2006) that explicitly use the
information about noise distribution in the estimation of the real intensity.

From this experiment we can also see that a M-dn may not correct the relative
pixel intensities in a T2 weighted image distorting the resulting contrast.

6.4.3 Artifact in Reconstruction

One of the main advantage with working with residual learning is that it should
help avoiding the creation of artifacts in the denoised image. A we said in Section
6.2.1, during learning with residual learning the noisy image is subtracted to the
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(a)

(b)

FIGURE 6.10: (a) Axial and (b) Coronal view of a the brain phantom.
Denoising in magnitude space tends to create smoother surfaces at

the cost of losing important details.
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(a) (b)

(c) (d)

FIGURE 6.11: Performance of the denoisers on the complex brain
blind denoising task for four value of noise level in the k-space σk.
The box-plots show: PSNR of the noisy images before the applica-
tion of the denoiser (noisy), PSNR of the images denoised in k-space
with the complete loss function (Kspace-Dn), PSNR of the images de-
noised in k-space with β = 0 (Ks no reco, no reconstruction term in
the loss function), SNR of the images denoised as magnitude images

(M-Dn) (a) σk = 150 (b) σk = 200 (c) σk = 250 (d) σk = 280
Performance of Kspace-Dn is always better than the M-Dn, especially
at high noise levels. The presence of a reconstruction term do not

impairs results in the denoising task.
Orange lines are the median of the distribution, boxes are the 25 and
75 percentiles, whiskers are the 5 and 95 percentiles. Outliers are in-

dicated with a dot.
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FIGURE 6.12: Noise effect on T2 estimate. "kidney" organ with "cor-
tex" (Blu) and "Medulla" (Orange) average intensity at increasing TE.
Dotted red line: real relaxation with T2 = 120 ms. Green line: Fit
on denoised data. (a) σk = 30 denoised in magnitude. Estimate
T2M = 140ms (b) σk = 30 denoised in k-space. Estimate T2k = 109ms.
(c) σk = 100 denoised in k-space. Estimate T2k = 99ms. (d) σk = 100

denoised in magnitude. Estimate T2M = 221ms.

network input to force the algorithm to reproduce the residual image instead of the
clean one.

One way to test this aspect is to feed the network with only noise to verify if
random activations of the weights produce in output only noise or structures that
are related to what the network had experienced during the training phase.

During training, cyst like objects were introduced in images as a confounding
signal (they are described in Section 6.3.2) , since they are random in intensity and
position, random fluctuations can be confused with them.
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FIGURE 6.13: Intensity in images at high echo time in the ROI for
the original, noise free image (red), the image denoised with K-Dn
(blue) and the image denoised with M-Dn (purple). K-Dn denoising
remove the effect that impairs the correct estimation of the relaxation
time since on average it reproduces a value closer to the original. M-
Dn instead reproduces the smooth surface of the original image but
at the wrong intensity level. Horizontal lines are the median of the
distribution, boxes are the 25 and 75 percentiles, whiskers are the 5

and 95 percentiles.

We trained two networks with the same dataset with RL and without it modify-
ing the loss function as explained in Eq. 6.6 and we tested the output when a image
with SNR << 1 is provided as input.

We tested 100 random images, in 77 of them structures resembling the cysts in
shape and intensity were present when normal learning was used, while networks
trained with RL never shown any recognizable form. An example of the output of
the network when random noise is provided in input is shown in Figure 6.14.

Even in residual learning artifact are possible but they are probably derived from
the incorrect processing of the k-space with patch operation such as convolution
that may introduce border effect that are more visible in the reconstructed image
since an error of a few pixels in frequency space may introduce large effects in the
corresponding magnitude space.

Our early tests were made with denoisers trained with β = 0 (as the Ks no RECO
network shown in Section 6.4.1) that showed better results in terms of PSNR respect
to M-Dn but in some occasion artifact was present in the reconstructed images. Since
we are interested only in the final magnitude image (that has clinical relevance) we
decide to add the reconstruction term to the loss function in equation 6.16.

If this term is small there is no loss of performances and artifacts are greatly
reduced. We are still developing a methodology to quantify the production of this
type of artifacts for a more rigorous analysis.

From Figure 6.15 we can see that there are artifacts that we think are derived
from a few pixels errors in k-space. In the example a dotted horizontal line may be
generated from a single pixel at low frequency in a coordinate (the line) and at high
frequency in the other coordinate. It is likely a boundary artifact that are common
in CNN but it has a greater effect on the resulting magnitude image. Unfortunately,
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FIGURE 6.14: Effect of the denoiser trained with and without residual
learning on an image with SNR << 1. Normal learning seems to
had learn the structure of the cysts that are included in training as
a confounding signal and it proposes these structure when there is
no signal. This behavior is absent when the denoiser is trained with

residual learning. Red arrows signal the positions of the artifacts

single pixel errors are difficult to avoid but our mitigation strategy may ease the
problem. Still, further investigations are needed.

6.5 Discussion

In this Chapter we introduced the problem of denoising a magnitude MRI with a
Deep CNN approach.

We implemented two solutions: A novel approach based on the raw frequency
data and a more traditional one that works on the already reconstructed image. The
advantage of working in the k-space is that the noise model is simpler since it can be
rightfully modelled as additive Gaussian while images in magnitude have a more
complex signal distributed with a Rician distribution.
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FIGURE 6.15: Example of an artifact probably caused by a few mis-
placed pixels in k-space. A dotted line has high frequency in a direc-
tion and low frequency in the other. It may have been generated by a

pixel with one high coordinate and one low coordinate in k-space.

As expected, the difference in performance of the two approaches start to be
relevant at very high level of noise that is usually not a problem in clinical morpho-
logical MRI but it is a major problem in other acquisition modalities such as DWI
and acquisitions on etereonucleai (19F or 13C, for example).

Another perk of working with frequency data is that the residual learning for-
mulation is exact since only in this case the noise is additive. Residual learning is
a powerful framework that helps the neural network forming representation of the
noise model instead of the underling clean image, allowing the development of a
denoising strategy with far less parameters respect to normal learning at the same
level of performance.

Residual learning is also less prone to include artifacts in the denoised image
since the internal representations of the network should contain less information
about the images structures. Our preliminary results suggest that when a network
trained with normal learning is exposed to a random input it may produce details
that are absent but that are present in the training set. A network trained with resid-
ual learning does not exhibit this behavior in the same conditions.

Also, since at low SNR the limit in the quantification of area intensities to extract
quantitative NMR parameter such as the relaxation times or the spin density, is given
by the Rician bias our K-space based method might be the most suitable choice since
it seems to better preserve the average signal intensity over the ROI, at the expense
of visual clarity, respect to the denoising in magnitude space.

It is worth notice here that our method doesn’t resolve the problem, common
to all standard denoising algorithms, that any unwanted effect in MRI, other than
fast Rician noise, that most of the times are the real problem in imaging such as any
movement artifact or field inhomogenities will be treated as signal and maintained
(or amplified) by our method. This is also a problem with standard denoising algo-
rithm, as a matter of fact these problems are usually treated by separated algorithms
in all other denoising solutions.
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Removing the "fast" noise of acquisition should be thought of as the first step of
a general MRI enhancement pipeline since it will help all the other steps eliminating
the acquisition noise that often limits the applicability of other correction algorithms.

Regarding the poor visual presentation of our denoised images, we need to say
that in the case of the tested phantoms where we were interest only in the conserva-
tion of the integral of the signal in an area, so we do not enforce any reconstruction
metric.

We don’t believe it is a problem in our specific case but we are aware that in mor-
phological images the visual inspection is a fundamental part of their examination
so we should aim to obtain better results in shapes and border sharpness.

This can be accomplished by tuning the loss function to weight more the recon-
struction term. The application to a morphological dataset already has better results
in this context as we will show in the next Chapter.

Furthermore, the availability of frequency data is scarce at best since they are
routinely discarded after the acquisition is completed. Thus, if we want to collect
them we will have to make a specific deal with the operators to save them. Open
dataset are, for now, also very limited with the notable exception of the FastMRI
dataset (Zbontar et al., 2019).

Also, while MRI images are saved in the DICOM standard, so they are easily
opened and processed almost independently from the scanner manufacturer and
software, there is no analogue for the raw data that often is saved only in binary
format and every manufacturer store it at different level of preprocessing.

Since we worked on simulated data we can’t produce general results valid on real
data but our work is useful to lay the foundation for future applications of denoiser
neural networks to magnetic resonance frequency data. In particular, the presented
tests do not aim to be definitive but we will like to propose this two parameter as
essential in evaluating the role of denoising in MRI: First, the ability to generalize to
different datasets and acquisitions modality and secondly the ability to restore the
physical quantities that can be extracted from images.

We believe that, in a general application of denoising with CNN, processing the
raw data in the k-space should be preferred and additional test with real data and
real noise and artifacts should be made.

In particular it is important to validate any denoising approach on other source
of noise that are present in clinical application of MRI such as movement artifact,
chemical shift artifact and hardware/acquisition related ones.

Currently we are applying our methods on real data acquired in k-space and
a more realistic model of noise. Also, a more realistic simulation to pre-train the
model and limit the scarceness of data, that is often a problem in clinical imaging, is
an interesting development that we are examining.

In the near future we would like to try this denoising methods in situation where
low SNR is inevitable such as fluorine magnetic resonance. As we can see from
Chapter 5 the fluorine concentration reached in organs in a real application is very
low. This will produce images with very low SNR and where noise will be a domi-
nant source of signal. It will be interesting if a deep learning approach may work in
this situation.

6.5.1 Limits of performance evaluation

Whenever a filter or a processing algorithm is applied to medical images there is an
inherent risk of loosing important information or worse, of creating a confounding
effect.



100 Chapter 6. MRI denoising in K-space

This risk is critical in the situation in which the automated operation that manip-
ulate or modify the medical image is performed before it is inspected by the operator.

In this context, we can safely say that denoising is more dangerous than auto-
mated image analysis like computer aided diagnosis (CAD) or automated segmen-
tation, since it is more difficult for the operator to exercise control or to refute the
computer proposal.

Low level denoising algorithm are already implemented in most commercial
image acquisition scanners but they mostly consist in traditional methods, usually
based on a statistical model of the noise, that has been extensively validated and, in
some situation, they may perform poorly but is difficult for them to create artifacts
that are not clearly recognizable by an expert operator.

When a learning algorithm is used there is another intrinsic risk that can have
highly unwanted effect for medical imaging, that is the risk of information transfer
between patients.

The biological variability in anatomical structures is typically very high but med-
ical images are in general very stereotyped since the general anatomy is the same in
all the subjects.

In this case overfitting, where we use the term to indicate the possibility to learn
the structure of the single example instead of the general rule of the task and not to
indicate the generic effect of diminishing return in longer training, can hypotheti-
cally transfer information gained from an example to another.

Research in image restoration usually care less of this particular effect since it
is more interested in the visual effect of the restored image. Often the border be-
tween denoising (i.e removing the effect of a noise source) and image enhancing (i.e
improve images visual effect) is thin in natural image denoising: One of possible
example is the denoiser variational autoencoder (Im et al., 2016) that implements a
very narrow latent space description between the downscale path of the encoder and
upscale path of the decoder. This kind of architecture may introduce unwanted de-
tails in the final image since it performs an extreme compression and decompression
of the input.

Because of these reason there is the necessity to define a performance metric to
evaluate the clinical applicability of deep learning based MRI denoising that take
into account both the quality (visual and quantitative) and the risk is details modifi-
cation.

Our proposed denoising method, although for now only applied to simulated
data, increases both SNR, PSNR and helps to retain the real integral count of the
signal for noised images.

Still, even if the performance based of these metrics will be confirmed of real
data, that would not be enough to ensure the safety of the application in a clinical
setting.

This is a general problem, to our knowledge even when image super resolution,
that is the task to create higher resolution images from lower ones, there is no explicit
quantitative metrics to measure the possibility of this phenomena. See for example
Chapter 10 of this collection (Lu et al., 2017) for a survey of super resolution in car-
diac MRI.

Our proposed method tries to indirectly limit this possibility:
The use of residual learning and its application at raw signal level where its exact

formulation is valid can help avoiding learning the images structures.
Additionally, the small receptive field are effectively a "pin hole" so retaining co-

herence for large anatomical structure is difficult. This is the opposite approach that
is used for example in super resolution on denoising autoencoders (Im et al., 2016)
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that usually have large downsampling branches in their architectures and are often
implemented since their performance can be superior to the simple CNN architec-
ture.

Also, the relatively simple architecture with only 0.5 M parameters is smaller
than the standard U-net with 30 M parameters (Ronneberger, Fischer, and Brox,
2015) that we can think of as the unofficial fully convolutional network benchmark.
The relative small size has benefits in computational and memory requirement, it
needs less data to be trained and it is less prone to overfitting.

Still, this is not definitive and more testing should be done and we should strive
for a quantitative measure of the risk in the application of any deep learning method
to medical imaging.

The most important requirement for any application to medical images should
be to ensure that the action of the denoiser does not produce effects that can lead to
an incorrect interpretation of the image by the clinician. This scenario would be at
the same time a technical failure and a risk of legal repercussions: It must be avoided
but the first step is to quantify it, if it is present.

The most robust method of testing it would be to prepare a set of original, noise
free, diagnostic images and a set on the same images with noise applied and then
removed with the algorithm, then to test if the application of the denoiser influences
the results of a human operator.

This proposal is difficult to implement in practice since it would require a large
dataset and a lot of works by skilled personnel. Also, it would not be general and it
would have to be repeated on a case-by-case basis.

An easier and more realistic alternative can be performed with an already vali-
dated CAD system on a dataset with established good performance. The experiment
would be to retest the same data after noise application and denoising to see if the
results of the analysis are influenced by the denoising operation.

For example, brain segmentation can be performed automatically reasonably
well and it is impaired by high level of noise so it may be a good candidate for
this test.

This scenario would also be important to develop a denoiser that removes the
effect of the noise and not the noise itself.

6.5.2 Limits for the application of our method on real data

The next step of our work is the validation of this method on real data acquired in
frequency.

We will have to face two main problems: First, as already mentioned we will
need to acquire the data. The first validation of our method will be done on mor-
phological acquisitions that are already available but afterwards we might want to
apply our solution to imaging acquisition of flurinated tracers. As we measured in
our ex-vivo studies (See Chapter 5) the time needed for an acquisition in our exper-
imental condition may be several hours for a spectroscopy experiment that are far
more sensitive than imaging since they measure all the spin in a volume many order
of magnitude larger than a pixel. So acquiring a large dataset is impossible.

Probably with a complete revisitation of our protocol, in the best possible condi-
tions, we might be able to reach a scan time of 10 to 20 minutes, that is also the limit
for an acquisition on an anesthetized mouse, that will still limits our dataset to a few
hundred maximum examples.

A possible solution will be to adopt a transfer learning strategy, training first on
a larger (for example simulated) dataset and then fine tune on the smaller dataset. If
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this strategy works, it may solve our particular problem and the underlying question
about the reasonableness of the application of deep learning in this case:

The time spent in acquiring a small dataset, that will always be a compromise
with respect to the real data needed to perform the training , is worth the probably
low performance CNN that we will implement? Probably not. Unless we also pro-
vide a strategy to generalize the training so that even an experiment with a low data
throughput may eventually benefit from it.

Second, especially for the fluorine case, we may have problems in the definition
of a ground truth since a noiseless scan is impossible in practice to obtain. With
morphological imaging we can have an almost perfect acquisition in reasonable time
while with very low fluorine concentration our dataset may be just the best possible
measure that can be acquired with specialized hardware and it may not be useful as
a ground truth.

In this case our only hope will be to work with unsupervised learning that have
the advantage of not needing a ground truth. A possible approach may be the so
called Noise2Noise framework (Lehtinen et al., 2018) that, if the condition of appli-
cability are met, allows to restore images training with only low signal samples.

Finally, real MRIs have many other defects introduced by the acquisition or re-
construction protocol that may increase the variability of our data to a value too
large to be effectively sampled in our dataset.

In any case this field of study is still open and many possible solutions that al-
ready works for natural image processing may be successfully implemented in our
case study.
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Chapter 7

Preliminary application of
K-DnCNN to the FastMRI dataset

Chapter Abstract

In this Chapter, our proposed denoising neural network is applied to a large dataset of
parallel multicoil acquisitions. We performed the training with both the supervised learning
and, exploiting a recently proposed technique (Noise2Noise), with the unsupervised learning.
The possibility to adopt the Noise2Noise framework is directly derived from the choice of
working with raw frequency data instead of reconstructed images. Both strategies produce
interesting results and they are comparable in performance. At the end, we discuss how to
improve our results and how to step up from the development phase of the method to the
optimization phase.

7.1 Introduction

In this chapter we are going to apply the deep learning based denoiser that we had
introduced in Chapter 3 to the task of denoising parallel multi coils acquisitions.

Our proposed method is based on the denoising of the raw data of an MRI in the
k-space instead of directly trying to denoise the reconstructed image.

The neural network was originally test on simulated data of single coils acquisi-
tion at very low SNR to test the possibility to remove the rician bias and restore the
quantitative relation between pixel intensities and physical quantities.

Now, we will show how with little modification it can be easily applied to a dif-
ferent imaging modalities that is instead used for accelerating morphological imag-
ing.

The possibility of quickly transferring the use of the Dn-CNN network to this
type of data is given by our idea of working in k-space because, independently from
the acquisition modality, the noise model is simpler in the frequency domain . We
will see how also in this case this property will be useful in the task of denoising.

This should not surprise since we exploit a fundamental relation in MRI acquisi-
tion that is common to many different modalities.

The availability of raw data in k-space is scarce and in particular we don’t have
access to 19F-MRI that are our final target, so to test the performance of our method
we decided to apply it on the denoising of the FastMRI dataset (Zbontar et al., 2019)
that contains raw k-data in the order of 104 examples.
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The FastMRI dataset is not originally conceived as a denoising task: It is used
to test reconstruction algorithms in parallel acquisitions with subsampling of the k-
space, that means that not every point in the frequency space is acquired to speed
up the acquisition process.

Still, it is a perfect candidate for our test because it consists of fully sampled, high
definition, k-space data of images with generally high SNR to which we can add
realistic simulated noise to train the Dn-CNN. Furthermore, this dataset provides
examples from two different anatomical district: The brain and the knee. This will
allows us to test if our network can maintain the same level of performance if it is
tested on data that comes from a different body part acquired with different NMR
sequences.

Together with the supervised learning strategy that we implemented in the previ-
ous chapter we will also perform an unsupervised training with this dataset.

In the denoising task, training with an unsupervised approach consists in devel-
oping a strategy that does not need the noise free ground truth image.

We will implement the Noise2Noise framework that substitutes the ground truth
images with multiple examples of pairs of the same images affected with different
sampling of the noise, thus in our case multiple low signal acquisition of the same
subject.

In MRI this strategy can be extremely useful since it is often easier and less time
consuming to perform multiple scans at low SNR instead of a single high quality
acquisition.

We will also discuss how the fact that this strategy of unsupervised learning
works without much modification is a direct consequence of working in the k-space
and how this can reinforce the motivation behind our proposed method.

7.1.1 The Noise2Noise framework

In general, the denoising task with deep learning is performed by constructing a
map between a corrupted version of an image and the corresponding clean one.
This map is usually learned directly by matching pairs of noisy images and clean
ones in a supervised training approach.

When the clean image is not available it is usually more difficult to train a neural
network with acceptable performance for the task.

One possible strategy to overcome this limit is to use an unsupervised learning
approach: The Noise2Noise framework was recently proposed by Lehtinen et al.
(Lehtinen et al., 2018) and it offers the possibility to train a neural network using
only multiple corrupted examples of the same target without explicitly using the
target itself.

Their method allows them to exploit the general purpose deep CNN model to
unsupervised denoising and to reach significant performance, very close to super-
vised learning, but without the problem of collecting a ground truth.

The idea is based on the fact that, if we think of the loss function L as a general-
ized point estimator, so an operator that involves the use of sample data to calculate
a single value which is to serve as a best guess of an unknown distribution param-
eter, then we can write the expected value over distribution of the pair of noisy /
clean image (X, y)

argmin
W

E(X,y){L(NNW(X), y)} (7.1)
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FIGURE 7.1: Example of the multiple coils signal in k-space for a ele-
ment of the FastMRI dataset. Each exam is composed by 15 acquisi-

tion from parallel coils, the first 6 are shown.
Top row: modulus of the complex signal in k-space. Bottom row:
Magnitude images reconstructed from the k-space signal for each coil.
Notice how each coil capture the whole volume with spatial depen-
dent sensitivity. The noise variance in each coil can be assumed con-
stant so the images that seems more noisy have a lower signal. The

strength of the signal is higher if the source is close to the coil.

To which we know a possible solution is the set of W that gives

NNW(X) = E(y){y} (7.2)

We can explicitly write the conditional distribution over all the possible clean
images and the average over the sample of the noisy images.

argmin
W

E(X){E(y|X){L(NNW(X), y)}} (7.3)

In this case P(y|X) means all the possible correct explanations that we can match
to a noisy sample. To visualize it lets take for example all the possible positions of
an edge when the borders are noisy or the exact position of a boundary between two
noisy surfaces.

We can notice that if we replace the P(y|X) with another distribution with the
same expectation value the relation 7.2 is still valid independently on the exact dis-
tribution that we are using. In particular, the parameters W found that solve the task
also remain unchanged. So we may reuse them to perform also the standard task.

If we replace the target with another noisy observation that has the same expec-
tation value (for example we add additive white noise) then the solution still hold
and for example in the case of the L2 loss we can train using target corrupted sam-
ples if their noise has zero mean since the L2 distance is the corrected point estimator
for noisy observation with additive noise with zero mean. In the loss function both
the input and the target ỹi are drawn from a corrupted distribution conditioned to
the (possibly unknown) clear target yi:
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argmin
W

∑
i

L(NNW(Xi), ỹi) (7.4)

Now, until E{ỹi|Xi} = yi we don’t need to know the explicit distribution of the
original images nor of the noise but having data distributed accordingly to them is
enough.

We will see that this relation also holds in the residual learning approach and if
we are working in the k-space where the noise model can be correctly represented
as additive we can apply this method to multicoil MRI. Doing so on the already
reconstructed images wouldn’t be that straightforward.

We will compare the performance to the supervised learning with the same num-
ber of examples in the blind denoising task to see if convergence and training time
are comparable since denoising performance is the more important but not the only
criteria to select a ML method.

The Noise2Noise approach can greatly improve the possibility of application in a
real task setting because in MRI is usually faster and more practical to perform mul-
tiple scans of the same subject at low quality instead of making an almost noiseless
acquisition. The main reasons is the presence of other problems such as movement
that impairs long scans and the fact also that, in MRI, SNR goes with the root of ac-
quisition time so acquiring multiple low quality scans may also be time conserving.

7.2 Methods

7.2.1 Dataset description

The FastMRI dataset (Zbontar et al., 2019) contains fully sampled k-space acquisition
of knees and brains consisting of raw multicoil k-space data of unprocessed complex
valued NMR measurement.

This dataset is thought of as a benchmark for algorithms that perform image
reconstruction of frequency subsampled data and it is not originally used for de-
noising tasks. Still, we believe that its characteristics make it perfect for our task:

The set of fully sampled images will be the ground truth of our training, they
represent an acquisition modality of higher quality than what is commonly used in
clinical practice so they are also a perfect, almost noise free, example that can be used
to train the denoiser. To be precise, some of the acquisitions can be noisy, as we can
see from Figure 7.1 , but they are a minority and usually the resulting image is still
of great quality.

In any case, the noise already present in the acquisition will be negligible with
respect to the artificial noise that we will add for training purposes and its presence
is natural and expected in real data so any denoising methods should be robust to
labels that are not perfect.

Given that the original task is reconstruction in presence of frequency subsam-
pling, the dataset contains also subsampled data to be used in the task for which it
is originally intended, but it is not useful in our case so we will discard it.

The dataset is formed by examples of multicoil acquisitions of the knee and the
brain. Initially we will train our neural networks on the knee data and we will test
its performance on both the brain and the knee scans.
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Multi coil raw data from 1594 knee scans acquired for diagnostic purposes are
present in the dataset. There are multiple scanners both at field strength 3T (Siemens
Magnetom Skyram, Prisma, and Biograph) and at 1.5 T (Siemens Magneton Aera),
all of them employ a 15 coils array.

The acquisition is performed with a turbo spin echo sequence with a pixel reso-
lution of 0.5mm and a thickness of 3mm. The parameters used between the scanner
are homogeneous but noticeably the scans were performed with the fat suppression
tecniques (See for example Figure 7.3) or without (See for example Figure 7.4). This
setup results in visually different resulting images.

The total number of patients used for training and testing are shown in Table 7.1.
The dataset also provides 6970 fully sampled brains scans. A portion of 255 of

them was used for additional testing of our solution but we did not perform any
training on it. A future version of our denoiser will be trained on the whole dataset.
This dataset provide examples from multiple sequence and acquisition modalities.
Both T1 and T2 weighted images are present and there are also contrast medium
enhanced acquisitions.

In Figure 7.1 an example of a multicoil knee scan is shown with both the raw
data and the corresponding reconstruction. The top row shows the modulus of the
complex signal in k-space and the bottom row the reconstructed image. The final
image is obtained from the combination of the images captured by each coil trough
the root sum of their square intensities as will be shown in equation 7.5.

TABLE 7.1: Description of the FastMRI dataset. In the left column is
reported the total size of the dataset. In the Right column is reported
the number of volumes (patients) used to train, validate, and test the
model. The results shown for the supervised and unsupervised train-

ing are based on the same data split.

FastMRI Patients Patients Slices

FastMRI Train Set 973
Used in Train : 350 10236
Used in Test : 100 2959

FastMRI Val. Set 197
Used in Validation : 80 2380

7.2.2 Data preprocessing

One of the main perks of our method is that it can be applied with minimal data
preprocessing. Still, manly to reduce the computational load during training, we
performed the following operations: We applied a low-pass filter to the frequency
data reducing the acquisition size from 640x372 or 640x368 to 320x184. This has
two main motivations. First, the k-space is sampled at a very high frequency that
in a noisy acquisition that we want to simulate wouldn’t be acquired in the first
place since the high frequency component encodes both the details and both the
vast majority of the noise. This provides us with cleaner ground truth images and
secondarily we obtain a smaller example reducing the memory needed for training.

Visually, this filtering produces only minor effects on the final image.
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Then, the complex k-space signal of each coil is normalized to the maximum value
of the modulus on a slice by slice basis.

This step allows the standardization of the examples and helps convergence dur-
ing training. However, it introduces a bias since not every coil has the same sensitiv-
ity in each point of the volume so a more natural solution would be to normalize by
the maximum value over the whole volume. The effect on image reconstruction in
this case is a minor difference in contrast in slices over the periphery of the scanned
volume where coils may have a large difference in sensitivity. In future tests we will
implement the normalization over the volume.

Finally, we do not use all the coils but we selected only 8 of 15 with a fixed choice
equal for all the examples. This step diminishes the overall quality of the final image
since less data is used in reconstruction but it is needed to perform the training
in a more reasonable time . We will avoid this step in future versions when the
development phase of this work will end.

All these preprocessing steps should not influence the overall performance metrics
since they are made before the ground truth reconstructed image is produced so both
the tested and ground truth images are processed the same way.

Working with Mixed Precision

To speed up the training during the development phase of this study we performed
the learning with the Tensorflow Mixed Precision1

framework that helps the model run faster and use less memory.
Mixed precision used both 16bit and 32bit variables during training. Lower pre-

cision data types in the model weights uses less memory and can exploit the pres-
ence of specialized hardware in GPU to perform faster operation: Modern accel-
erators can run operations faster in the 16bit data types, as they have specialized
hardware to run 16bit computations and 16-bit data types can be read from memory
faster.

The most important benefit is that we can double the size of the mini batch at
the same memory cost and doing so double the rate of examples processed at each
training step.

Implementing this technique gives us a three fold decrease in training time for
an epoch with little to none decrease in performance.

This package works better only if hardware Tensor Cores are used that can mul-
tiply float16 matrices very quickly. However, Tensor Cores requires certain dimen-
sions of tensors to be a multiple of 8.

For this reason we perform the crop over the data matrix and we select only a
part of the available coil channels.

Also the network parameters that are used in Tensor Cores are chosen to be mul-
tiple of eighth as shown for example in Figure 7.8.

7.2.3 Noise and signal model for multiple correlated coils

In parallel MRI the image is reconstructed from multiple k-space, each acquired from
a separate coil. Each coil captures the MR signal from the whole volume but it is

1https://www.tensorflow.org/guide/mixed_precision
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typically more sensitive in one region. Each extra coil produces an additional mea-
surement with a different sensitivity pattern that are afterward recombined together.

The final image is obtained from the root of the sum of square of the single mag-
nitude images reconstructed independently from each coil. This technique is called
the Sum of Square (SoS) reconstruction and it is one of the most commonly imple-
mented is clinical practice (Roemer et al., 1990)

M2
T =

L

∑
l=1
|Ml(~x)|2 (7.5)

In a multiple coils system the additive Gaussian noise model is still valid at the
coil level but the presence of multiple coils, since there is always mutual inductance
between them, introduces a strong correlation in the additive noise term.

In general, the complex signal sl in a system of L coils can be modelled as follows:

sl(~k) = al(~k) + nl(~k; 0, σKl (
~k)) (7.6)

Where l is the index that goes over the coils, al in the noise free signal generated by
the RF pulse and nl is an additive Gaussian noise term with zero mean and standard
deviation σKl (

~k) that in general depends on the coil and on the frequency.
In the approximation of stationary noise, variance does not depends on~k and is

equal on all the k-space. This approximation is realistic in most modern scanners
if the amplifier is well tuned. Thus we can drop the dependency from the point in
k-space in the noise model.

sl(~k) = al(~k) + nl(~k; 0, σKl ) (7.7)

Since all the coils are spatially close there will be a strong correlation in the noise
between them. In particular geometrically closer coils will be more correlated. Our
multivariate Gaussian will have a non diagonal covariance matrix where we will
indicate the covariace between the i, j coil as ρi,j.

C = σk0


1 ρ12 ... ρ1L

ρ21 1 ... ρ2L
... ... ... ...

ρL1 ρL2 ... 1

 (7.8)

Usually ρi,j is significant in multi coils system but their value is defined by how
the antenna is built and it will be a specific characteristic on the particular model of
MRI scanner.

We don’t know the exact value of the correlation matrix for the scanners that are
present in the dataset, although we may be able to estimate it from the few back-
ground scans that are present in it, so we will propose a dummy coils geometry and
a realistic correlation matrix associated.

We choose a circular geometry where correlation between coils is ρi,j = 0.3 if
the coils are first neighbours and ρi,j = 0.15 if they are second neighbours. In all
other cases ρi,j = 0.05. In Figure 7.2 there is representation of the chosen geometry
and a the correlation matrix is reported. As we already mentioned our system has
originally 15 coils that we subsampled to 8 coils. In the dataset there are 3 different
scanners but in our approximation they will have the same correlation matrix.

The correlation of noise on the coils is particularly important in the magnitude
space. When the signal is high a Gaussian approximation of the signal area is pos-
sible and the effect of correlation are left aside as minor visual effects. However,
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the effect of the correlation strongly influences the underling statistical model of the
noise and signal and, at low SNR, it makes difficult to adopt many statistical based
processing methods.

For the SoS reconstruction scheme that means that the effective noise value in
signal areas and background will be different so the noise in the background will
no longer be representative of the noise in the signal areas. This makes more dif-
ficult the estimation of the noise. In figure 7.7 we can see how an additive noise
model in k-space as the one described in Eq. 7.7 can generate complex residual (i.e
quadratic difference between the original and noisy image) patterns from the simple
and spatially uncorrelated noise model in Eq. 7.7 .

It is clear that we can see the anatomy in the residual map and it is a direct effect
of the SoS reconstruction.

The reason is easy to see. If we recall Eq. 6.1, each image reconstructed from a
coil will have a rician distributed signal: the distribution of the square sum of rician
distributed signal can be approximated as a non central chi-squared distribution.

Thus we can say that the non linear process of image reconstruction modifies the
noise introducing complex non linear terms that makes more difficult the denoising
respect to the k-space.

FIGURE 7.2: Noise correlation matrix and proposed dummy coils ge-
ometry. The values of correlation can be considered realistic with the
approximation of equal variance in the noise for each coil. The level
of correlation between two coils depends on their distance. Closer

coils are more correlated.

7.2.4 Metrics

The denoising performance of the FastMRI dataset will be evaluated with the fol-
lowing metrics:

The first one is the PSNR that was introduced in Section 6.3.1 and the second one
is the structural similarity index that is the average value calculated over the image
where the structural similarity measure (SSIM) was applied with a sliding windows.



7.2. Methods 111

The SSIM between the original image patch m and the patch m̂ of the denoised image
is defined as

SSIM(m, m̂) =
(2µm̂µm + c1)(2σm̂m + c2)

(µ2
m̂ + µ2

m + c1)(σ2
m̂ + σ2

m + c2)
(7.9)

where µ is the intensity mean of the patch, σ is the standard deviation, σm̂m is
the covariance and c1, c2 are small regularizing constant that we set to 0.01 and 0.03.
Images are normalized between 0 and 1 before the calculation. The filter size is set
to 11x11 pixels.

When computed over a sliding windows SSIM produces maps that are used to
check if the interdependency of nearby pixels are restored after the denoising.

Also, residual maps will be used. They are computed as the square differences be-
tween pixels intensity of the original and restored image so each value of the residual
map Di,j is

Di,j = (Ii,j − Îi,j)
2 (7.10)

Both I and Î are normalized between 0 and 1.
We also reports the average of the residual map over the image. This metric is

related to the PSNR (See Eq. 6.13) that is proportional to the logarithm of its inverse.
Both metrics are computed only on the center part of the image to avoid that

many background pixels are considered in the metrics since they are easy to treat
and they would give a bias in the score in images with large zones of background.

Examples of these maps are shown in Figures 7.11, 7.10, 7.14, 7.13, 7.17

Notice how these two metrics are complementary since SSI is computed over a
small region and gives information about the relation between close pixels while the
residual maps depends only on a difference between single pixel.

It is important to understand that the reconstruction term of the loss function is
directly correlated to the euclidean distance of the residual map so the network is
explicitly trained to minimize this value while the SSI is an independent measure.
This aspect is important to verify that the training helps restoring the image also at
the structural level.

7.2.5 Training

The model used in this test is the same described in Chapter 6. It is a fully convolu-
tional neural network with 18 convolutional layers regularized with batch normal-
ization, without any downsampling path and with a residual learning connection at
the output layer implemented as in Eq. 6.6.

This network has a receptive field, as defined in Equation 2.12, of 41 x 41 pixels,
this it works with local context only.

The network input is formed by the real and imaginary part of the complex k-
space data for each coil. Thus, it is an image with 16 channels (i.e 2 for each of the
eighth coils). The diagram of the network used is show in Figure 7.8.

We will now describe the two proposed learning strategies: the supervised learn-
ing that we already implemented with the simulated data in Section 6.3.3 and the
new approach the unsupervised Noise2Noise. Both these training strategies utilize
the same data for training and testing as described in Table 7.1.
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A subset of 350 patients with 104 slices was selected at random for training from
the official train data split. We do not utilize the whole dataset to reduce the training
time as these results are preliminary and we still are in the optimization phase. When
the correct strategy will be derived we will make use of the whole dataset and we
will reports any gain in performance.

In any case, 350 patients and 104 slices is a reasonable size for a clinical dataset
that may also be reached in an hospital setting.

We trained the network for a blind denoising task varying the standard deviation
of the noise between σ ∈ [5, 20] · 10−3 in the k-space. Since the starting quality of
the original images is not homogeneous and in the dataset are present both scan
acquired with and without fat suppression that generate brighter or darker images,
it is difficult to measure the effect of this noise on the whole dataset in terms of SNR.

Instead, we will use PSNR to define the degradation of noised images with re-
spect to the original ones and we will use the gain in PNSR as a measure of improve-
ments.

In general, this random noise addition with this range of standard deviation will
generate corrupted images with PSNR in a range between 10 to 35 that means their
visual quality is distributed from a reasonable to deeply damaged.

The network will then learn to estimate the noise content and remove it. In multi
coils scan with strong correlation between noise in the coils this task is particularly
difficult at the image level because the noise is not stationary and will depend on the
intensity of the image.

We will now discuss the supervised and unsupervised training and in the follow-
ing section we will report the results obtained.

The trained network obtained with these procedures is still not optimized so this
is the description of the experiment conducted and they may not be the best possible
set of hyper-parameters and training strategy.

Supervised learning

The supervised learning approach needs ground truth images and the learning pro-
cess is used to find the best set of weights that minimize the loss function.

The loss function used is a modification of the one presented for the denoising of
the single coil scan in Equation 6.16 that introduces the reconstruction with the Sos
(Eq. 7.5) for the final image.

Lk = MSE(Sy, S) + β ∗MSE(Sos(Sy), M) (7.11)

Where Sy is the 16 channels output of the network. S is ground truth signal in
the k-space, M is the ground truth reconstructed image.

The main difference is that now the coefficient of the term that directly checks
for the resulting image β has a larger value that makes the reconstruction term of
the same order of magnitude with respect to the one in k-space, since we are more
interested in the visual quality of the images.

Also, β is not a constant but it will start at zero and slowly increase to its maxi-
mum value.
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The network is trained with the Adam (Kingma and Ba, 2017) optimizer for 300
epochs with a learning rate of 3 · 10−3 then the learning rate is reduced to 3 · 10−4

and the network is trained until the validation loss decrease.
The loss coefficient β is initialized at 0 and then it linearly increases from 0 to

5 · 103 between epoch 50 and epoch 200. This final value is chosen to set the order
of magnitude of the reconstruction term to be of the same order of magnitude with
respect to the loss in k-space.

Unsupervised learning

For the unsupervised training we are using the Noise2Noise framework introduced
in Section 7.1.1. In this case there is no ground truth so the loss function is modified
to contain only the corrupted version of the images.

We can write the unsupervised loss explicitly, remembering the output of the
network in residual learning in Eq. 6.6, as

Lk = MSE(Sn − NW(Sn), S∗n) (7.12)

That with the additive noise model described in Eq. 7.7 became

Lk = |�S + n− NW(Sn)− �S − n∗|2 (7.13)

Where Sn = s + n and S∗n = S + n∗ are both independently corrupted versions of
the same original k-space data S as described in Section 7.2.3. This task is essentially
to create a map between two independent samplings of the noise.

We must say that for the blind denoising task there is no need to use the same
standard deviation of the noise (until the noise model remains the same) and the
input to the network does not need to be of better quality with respect to the target.
So it is possible to ask the network to map an image with higher PSNR to another
with lower PSNR without damaging the training. This is extremely important for a
true unsupervised blind denoising since also the level of the noise can be unknown
at every step.

We are exploiting the fact that the L2 distance is the correct estimator of the mean
in the pointwise estimation when the noise term has zero mean. For this reason only
the term in k-space can be used in the training loss since this relation is invalid for
the noise in the Sos image.

If we want to retain the adoption of the reconstruction term we should mix the
supervised and unsupervised learning with the possibility of implementing the su-
pervised term only for a small fraction of the dataset.

In contrast to the training in the supervised approach the aim here is not to min-
imize the training loss since the task is impossible to complete. In residual learning
this unsupervised task consists in transforming one instance of the noise to the an-
other one independently sampled.

Fortunately, the gradients are also very large and they point in very different
directions at each step but on average during training the effect of the weight will
point on the correct solution.

This is possible because we are effectively averaging the gradient effect on the
weights over all the pixels in the batch.
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For this reason while the training loss after a rapid transient will be constant the
validation loss computed on a network that is performing the original task (restor-
ing the clean images and not mapping noise to noise representation) will decrease
normally.

In Figure 7.9 is shown the loss function for the training and the validation of the
supervised and unsupervised training: In supervised training, the train and vali-
dation loss decrease together and they differ from a small amount that is called the
training bias. In unsupervised learning instead, we have a training loss that is almost
flat and a validation loss that rapidly decreases. Be careful that since parameters are
not the same the losses absolute values are not directly comparable.

The network is trained with the Adam (Kingma and Ba, 2017) optimizer for 300
epochs with a learning rate of 3 · 10−3, afterwards, the learning rate is reduced to
3 · 10−4 and the network is trained for another 100 epochs and then the learning rate
is exponentially decreased to zero.
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FIGURE 7.3: Noise effect and denoising with K-DnCNN for super-
vised and unsupervised (Noise2Noise) training at σ = 8 · 10−3 (Low)
and σ = 16 · 10−3 (High) noise level. This scan is an example of ac-

quisition with fat suppression.
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FIGURE 7.4: Noise effect and denoising with K-DnCNN for super-
vised and unsupervised (Noise2Noise) training at σ = 8 · 10−3 (Low)
and σ = 16 · 10−3 (High) noise level. This scan is an example of ac-

quisition without fat suppression.
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FIGURE 7.5: Noise effect and denoising with K-DnCNN for super-
vised and unsupervised (Noise2Noise) training at σ = 8 · 10−3 (Low)

and σ = 16 · 10−3 (High) noise level.
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FIGURE 7.6: Noise effect and denoising with K-DnCNN for super-
vised and unsupervised (Noise2Noise) training at σ = 8 · 10−3 (Low)

and σ = 16 · 10−3 (High) noise level.
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FIGURE 7.7: Right: Ground truth image. Left: Noisy version of it.
Center: Example of a residual map. Each pixel is the square differ-
ence between the ground truth and the noisy image. This is a clear
example of how noise in MRI is not additive and it is not stationary.
We can see the anatomy in the residual image, this means that the
noise term depend on the intensity value of the image. This effect de-
rives from the reconstruction process of the image since in the k-space

the noise is Gaussian additive noise.

FIGURE 7.8: K-DnCNN model for multichannel MRI denoising.
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(a) (b)

FIGURE 7.9: Example of the qualitative differences in training for the
(a) supervised and (b) unsupervised approaches.

Train loss (blue) and validation loss (orange) during live training. In
the unsupervised Noise2Noise the train loss does not decrease since
the train task is effectively impossible. Still, the weight gradients are
the correct ones so when the network is validated for the original task

the loss correctly decreases.
Since the coefficient β is different is the two cases the absolute values
are not comparable. The reconstruction term (reco) is explicitly part

of the loss function only in supervised training.
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7.3 Results

The Dn-CNN is trained for a blind denoising task so to test its performance we will
use different levels of image corruption. The test will be performed using a noise
standard deviation of σ = 8 · 10−3 , 16 · 10−3 that, since the initial image quality is
not homogeneous, will produce an average PSNR of the noisy images respectively
of (24.3± 2.9) dB and (18.9± 2.5) dB.

All the results obtained are measured on the reconstructed images only. The
denoising in performed in the k-space but since it is never shown to the operator it
would be useless to base our results on it.

The final reconstructed image from the denoised k-space, without any post pro-
cessing (with the exception of a 0 to 1 normalization of pixel intensities), is used in
all the tests performed.

The metric used to evaluate the restored image are the PSNR and the SSI and to
avoid that large background areas may contribute too much in the calculation, each
image is processed entirely but the metrics are computed only on a large central
region of signal as shown for example in Figure 7.4 for the whole image and in
Figures 7.10 for the central patch.

This is very important since the background is very easy to treat so its presence
will give us exceedingly high scores that are not representative of the real perfor-
mances.

We tested on a hold off portion of data of 100 patients and 2959 scans comprising
both acquisition with and without fat suppression.

In Table 7.2 the results for the supervised and unsupervised training are reported.
Both approaches consistently improve the image quality at high level of noise and
at low level and remarkably, at high noise level, their performance matches.

This is not trivial since the unsupervised approach did not explicitly show the
target image but it is nevertheless correctly reproduced.

In Figures 7.12 and 7.15 are reported the distributions of PSNR and SSI for the
high and low noise level for the supervised learning while in Figures 7.18 and 7.19
the results for the unsupervised case are reported.
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TABLE 7.2: Average results on the test Dataset composed by 100
patients with 2959 slices that were processed separately. The re-
sults is obtained at two levels on noise σ = 8 · 10−3 , 16 · 10−3

that produces an average PSNR of the noisy images respectively of
(24.3± 2.9) dB and (18.9± 2.5) dB. We report the results for both the
K-DnCNN trained with supervised learning and unsupervised learn-
ing (Noise2Noise) for the PSNR and structural similarity index (SSI).

Also, the gain (∆) respect to the noisy image is reported.
At the higher level of noise the two methods are comparable while at
low level the supervised training has better performance. Results are

reported as mean ± std.

Noise std PSNR (dB) ∆ PSNR (dB) SSI ∆ SSI

Supervised
σ = 8 · 10−3 29.3 ± 3.1 5.1 ± 2.1 0.80 ± 0.06 0.2 ± 0.1
σ = 16 · 10−3 25.6 ± 2.6 6.7 ± 1.8 0.60 ± 0.10 0.3 ± 0.1

Noise2Noise
σ = 8 · 10−3 28.3 ± 3.4 4.0 ± 3.1 0.80 ± 0.06 0.2 ± 0.1
σ = 16 · 10−3 25.6 ± 2.8 6.7 ± 2.4 0.61 ± 0.10 0.3 ± 0.1

FIGURE 7.10: a-c) Example of denoising on the celtral image patch.
d-e) Residual maps.

f-g) Structural similarity maps.
Results for the supervised training at noise level σ = 16
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FIGURE 7.11: a-c) Example of denoising on the celtral image patch.
d-e) Residual maps.

f-g) Structural similarity maps.
Results for the supervised training at noise level σ = 16

(a)

(b)

FIGURE 7.12: Distibution of the a) PSNR and b) SSI of the value com-
puted at slice level on the noisy image (Left), on the restored image
(center),and the slice-wise gain. Results for the supervised training

with at noise level σ = 16
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FIGURE 7.13: a-c) Example of denoising on the celtral image patch.
d-e) Residual maps.

f-g) Structural similarity maps.
Results for the supervised training at noise level σ = 8

FIGURE 7.14: a-c) Example of denoising on the celtral image patch.
d-e) Residual maps.

f-g) Structural similarity maps.
Results for the supervised training at noise level σ = 8
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(a)

(b)

FIGURE 7.15: Distibution of the a) PSNR and b) SSI of the value com-
puted at slice level on the noisy image (Left), on the restored image
(center),and the slice-wise gain. Results for the supervised training

with at noise level σ = 8
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FIGURE 7.16: a-c) Example of denoising on the celtral image patch.
d-e) Residual maps.

f-g) Structural similarity maps.
Results for the unsupervised Noise2Noise training at noise level σ =

16
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FIGURE 7.17: a-c) Example of denoising on the celtral image patch.
d-e) Residual maps.

f-g) Structural similarity maps.
Results for the unsupervised Noise2Noise training at noise level σ =

16

(a)

(b)

FIGURE 7.18: Distibution of the a) PSNR and b) SSI of the value
computed at slice level on the noisy image (Left), on the restored
image (center),and the slice-wise gain. Results for the unsupervised

Noise2Noise training with at noise level σ = 16
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(a)

(b)

FIGURE 7.19: Distibution of the a) PSNR and b) SSI of the value
computed at slice level on the noisy image (Left), on the restored
image (center),and the slice-wise gain. Results for the unsupervised

Noise2Noise training with at noise level σ = 8
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7.3.1 Application to the brain dataset

The possibility to perform the denoising task on data of the same type but with
meaningful differences respect to the one used during training is a sought after fea-
ture for a method that may be implemented in real practice.

To test if we reach reasonable performance on k-space data derived from dif-
ferent NMR acquisition sequences and from a different body area, we applied the
Dn-CNN trained on the knee dataset to the denoising of brain data that are also
present in the FastMRI dataset.

MRI of the brain differs profoundly in both acquisition parameters and general
visual effect, also the brain dataset contains a larger variety of acquisition modal-
ity since both T2 weighted, T1 weighted with and without contrast medium and
FLAIR (Fluid Attenuated Inversion Recovery, a heavily T2 weighted acquisition)
are present. Additionally they were acquired with different hardware and different
scanners.

Compared to the knee dataset, which is mostly homogeneous in acquisition pa-
rameters, this brain dataset is definitely more challenging for denoising especially
when it is not directly used for training.

Also, the shapes, contrasts, and average intensities of a brain scan are very visu-
ally different from the ones that are commonly found on an arthroscopic acquisition
such as the one on the knee.

For these reasons, this preliminary task of denoising based on training on a dif-
ferent dataset , is difficult to overcome and the results are an important test of the
generalizability of the method .

To test the Dn-CNN denoiser trained for the blind denoising task with supervised
learning, we selected 637 slices of brain scans from 255 patients present in the val-
idation set of the Brain FastMRI dataset and we add noise with a σ = 16 · 10−3
and with the correlation between coils defined in 7.2.3 to them to simulate an highly
noisy acquisition.

Since the starting quality of the scans are very different because it depends on
the acquisition used and the noise already present, this noise injection produces a
varying effect on the images in terms of quality.

The range of PSNR and SSI of the corrupted version of the images and of the
predictions is shown in Figure 7.22. The mean PNSR is (23.6± 4.5)dB that usually
correspond to highly noisy images with clearly visible fluctuations in intensity areas
and background as shown in Figures 7.21c and 7.20c .

After the application of the denoiser the average gain of image quality is 4.6± 2.7
dB for the PSNR and 0.2± 0.1 for the SSI that means that on average the image is
improved both in its original intensity restoration and pixel correlation.

An example of processed images and residual and SS maps can be found in fig-
ures 7.21d-f and 7.20d-f.

The results are a bit inferior but in line with the ones obtained earlier with the
knee dataset. This is not trivial since this kind of images are never shown during the
training and the variability in the dataset is very large.

To be more reasonable this test should at least be conducted with acquisition of
different body parts that are acquired with the same sequence but unfortunately
they are not available.
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FIGURE 7.20: Brain - std noise sigma = 16

FIGURE 7.21: Brain - std noise sigma = 16
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(a)

(b)

FIGURE 7.22: Results for the brain dataset: Distibution of the a) PSNR
and b) SSI of the value computed at slice level on the noisy image
(Left), on the restored image (center),and the slice-wise gain. Results
for the unsupervised Noise2Noise training with at noise level σ = 16
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7.3.2 Comparison with non local means denoising

To validate our denoising strategy we need to motivate our choice to develop a deep
learning based method by conducting an analysis of its performance and points of
strength with respect to already proposed, state of the art, denoisers.

As a first step, we must compare the performance achieved, in terms of our met-
rics the PSNR and SSI, with other MRI denoising solutions that are not based on
deep learning.

In the previous Chapter we applied to the same denoising task the wiener filter
and an image based Dn-CNN. The comparison was useful to analyze the behavior
of the network in the high noise regime but for a fair assessment of the network
capabilities, a more performant method should be chosen.

Some of the first approaches in MRI filtering were simple kernel based convolu-
tions with a gaussian assumption of the noise model but they are not implemented
in practice anymore.

The reasons behind the needs of developing new methods of MRI denoising is
that simple spatial filters do reduce the effect of noise, generally increasing the SNR
of images, but these methods also increase the blurr of edges, and deform the struc-
ture of small details depending on the size of the filter.

Moreover, in the high noise regime, they introduce a bias in the processed image
since usually they do not correctly model the noise form.

In order to avoid these limitations, one common strategy is to adopt filters based
on adaptive windows that try to estimate the correct pixel intensity from its neigh-
borhood while avoiding pixels that come from other tissues to be in the same esti-
mation window.

This is the case for the so-called non local neighbors methodology in which the
adaptive windows filters search the optimal neighbours across the entire image with
the aim of finding similar structural neighbors of the voxel of interest. The choice
of the optimal neighbours is performed using a similarity measure between local
patches.

This is the main idea behind the non-locals-means (NLM) algorithm initially pro-
posed by Buades et al. (Buades, Coll, and Morel, 2005) for natural image denoising
that was later introduced to MRI images and now is one of the most popular and
adopted methods.

The NLM algorithm is a non linear filter based on a weighted average of pixels
inside a large search window so a non local search, in terms of spatial distance from
the center pixel. The weights are selected to preserve the structure of the image
so pixels in the average have a larger weight if their neighbours are similar to the
neighbours of the pixel of interest. The similarity between neighbour patches is
defined, for example, as the MSE between the two.

In other words, in a large block every small patch is confronted with the neigh-
borhood of the pixel of interest and this pixel intensity is corrected with a weighted
average of all pixels that share a similar neighborhood thus with the assumption that
they are in the same context: a background pixel, a border pixel or a tissue pixel).

The simpler formulation of NLM presented in (Buades, Coll, and Morel, 2005) is
the following:

The corrected intensity of the pixel Ã(p) is the average of the intensity M(q) of
pixels in a large windows Ω with some weights w(p, q) that depends on the distance
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between the context of p and the context of q.

Ã(p) = ∑
q∈Ω

w(p, q)M(q) (7.14)

And the set of weights is

w(p, q) =
1

ζ(p)
exp(−d(p, q)

h2 ) (7.15)

With ζ(p) a normalization constant ,

ζ(p) = ∑
q∈Ω

exp(−d(p, q)
h2 ) (7.16)

And d(p, q) is a similarity measure at patch level between the neighborhood of p
and the neighborhood of q, while h is related to the noise power in the image and it
is a parameter of the algorithm.

The distance d(p, q) can vary between different implementations but usually is a
distance in the distribution of gray levels between the two patches.

For the performance comparison with our proposed method, we will adopt the
implementation specifically derived to denoise 3D MRI, the adaptive optimized
non-local means (AONLM), by coupe et al (Coupe et al., 2008; Manjón et al., 2010).

In AONLM, the restored intensities of a small block are the weighted average of
the intensities of all similar blocks within a predefined neighborhood. The 3 dimen-
sional AONLM extends the 2 dimensional NLM filtering by 3D using a block-wise
implementation.

This algorithm is a standard in the MRI denoising and it is also adopted as a
comparison with a deep learning method in the recent work of Tian et al. (Tian et
al., 2021) that proposes a RL CNN method for the denoising of magnitude images.

An implementation of the algorithm is present in the widely used Dipy package2.
The AONLM was performed assuming Gaussian noise with 3× 3× 3 patch radius
and 5× 5× 5 search volume (block). These parameters are selected by a grid search
algorithm with the aim of maximizing the PSNR gain over 5 volumes of the valida-
tion set.

The NLM does not perform blind denoising, thus an estimate of σ of the noise
has to be used as a parameter for the algorithm.

The Dipy implementation of the algorithm estimates the noise power using the
method presented in the work of Koay et al. (Koay and Basser, 2006) that correct the
estimate for the multicoil acquisition but do not treat the correlation between coils
introducing a bias in the estimate that leads to an overestimation of the true noise
variance.

Following the procedure reported in (Aja-Fernández and Vegas-Sánchez-Ferrero,
2016), if the noise correlation matrix æ is known, for the noise level used in the
test, it is possible to introduce a correction to the estimate multiplying by a factor
(1+ ρ̄(L− 1))−1/2 where ρ̄ is the average of the off-diagonal terms of the matrix and
L is the number of coils.

2https://dipy.org/documentation/1.4.1./interfaces/denoise_flow/#coupe11



134 Chapter 7. Preliminary application of K-DnCNN to the FastMRI dataset

For the noise model defined in equation 7.7 this factor is 0.65. To check if other
contributions has to be taken into account, we also performed an optimization of the
noise estimation by a grid search of the best parameter to be used in terms of PSNR
gain.

In the regime of noise used, a correction to the estimation of the noise power of
0.68 ± 0.04 was found to be optimal and it is in agreement with the effect of the
correlation between coils reported above. In figure 7.23a is shown the best value of
the noise power used as a parameter in the algorithm in function of the uncorrected
estimation. In figure 7.23b the improvement of performance adopting the correction
is reported. Both results was obtained using 5 patients from the validation set of the
Knee dataset that were not used in the test.

We compared the PSNR and SSI results obtained with the K-DnCNN with the
supervised and unsupervised training and the NLM. We tested 195 volumes of test
set the knee data and 95 volumes of test set the brain data. As specified in section
7.3.1 the networks are trained only on the knee dataset. All the metrics are computed
only on the central part of the image and values calculated over slices are averaged
in each volume.

In Figure 7.24 is shown the PSNR and the SSI of the processed image in func-
tion of the original quality of the noisy image. Each volume is corrupted with a
noise with standard deviation σK ∈ [6 · 10−3, 16 · 10−3] at steps of 2 · 10−3 and then
denoised with both the K-DnCNN and the NLM algorithm.

Our proposed method gives on average better or equal results than the NLM for
all the noise levels tested for both the metrics used as reported also in figure 7.25

On the brain dataset we also obtain better or equal results at high noise level but
in this case the difference in performance is less pronounced. The results are shown
in Figure 7.26 and 7.27.

We expected different results in the two datasets since the denoising task learned
from the knee data is probably only in part transferable to the brain dataset than
is extremely more complex and it does not contain the same acquisition modality
found in the knee dataset.

These results are encouraging but it is important to stress two points to put them
in the right perspective.

First, the NLM does not maximize the PSNR as an objective function as the K-
DnCNN (that minimize the MSE in the k-space) so we are comparing a specialized
tool to a generic one. For this purpose it is probably better to take more into account
the SSI metric instead.

Second, the NLM implementation used is not optimized for the acquisition modal-
ity in exam. In particular, it does not directly treat the noise correlation in coils.

Also, we can say that the neural network has access to more information to per-
form the denoising task since it can process the information acquired from the mul-
tiple coils to leverage the redundancy in the acquisition while the NLM algorithm
works only on the final reconstructed image.

Still, NLM is considered one of the state of the art methods for MRI denoising
thus this comparison produces a valid benchmark from which to start for future
developments of our denoising method.
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(a) (b)

FIGURE 7.23: (a) Best noise level estimation for the maximization of
PSNR gain in function of the estimation performed in the Dipy pack-
age (see text). The discrepancy in the two values can be attributed to
the effect of noise correlation in the coil array. The Dotted line is a lin-
ear fit performed in the range of noise level used in the test. (b) PSNR
gain after denoising when the noise estimation is performed with the
Dipy package (Black line) and with the corrected value (Blue Line) in

function of the noise level applied to the K-space.
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(a)

(b)

FIGURE 7.24: Performance metrics on the knee dataset. PSNR (a)
and SSI (b) of the denoised image for the neural network with the
supervised approach (Blue), the unsupervised approach (Green) and
the NLM (Orange) in function of the quality of the starting noised

image.
The quality of the starting image is ordered from high initial (a) PSNR
or (b) SSI (low noise) to low initial quality (high noise) The diagonal
indicates no gain in terms of (a) PSNR or (b) SSI. The Deep learning
approaches, at high noise level, obtain better or equal results than
the NLM for both the supervised and unsupervised approach. Each
point is the average over all the slices in a volume taking into account
only the central image patch for the images in the test set of the knee
dataset. The noise levels used cover all the interval the network is

trained for.
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(a) (b)

FIGURE 7.25: (a) Gain in PSNR (PSNR of the denoised image - Ini-
tial PSNR of the noisy image) and (b) gain in SSI (SSI of the denoised
image - Initial SSI of the noisy image) averaged over the 195 volumes
of the test set of the knee data for the neural network with the super-
vised approach (Blue), the unsupervised approach (Green) and the
NLM (Orange) in function of the noise standard deviation in the k-

space.
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(a)

FIGURE 7.26: Performance metrics on the brain dataset. PSNR (a)
and SSI (b) of the denoised image for the neural network with the
supervised approach (Blue), the unsupervised approach (Green) and
the NLM (Orange) in function of the quality of the starting noised

image.
The quality of the starting image is ordered from high initial (a) PSNR
or (b) SSI (low noise) to low initial quality (high noise) The diagonal
indicates no gain in terms of (a) PSNR or (b) SSI. The Deep learning
approaches, at high noise level, obtain better or equal results than
the NLM for both the supervised and unsupervised approach. Each
point is the average over all the slices in a volume taking into account
only the central image patch for the images in the test set of the brain
dataset. The noise levels used cover all the interval the network is

trained for.
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(a) (b)

FIGURE 7.27: (a) Gain in PSNR (PSNR of the denoised image - Initial
PSNR of the noisy image) and (b) gain in SSI (SSI of the denoised im-
age - Initial SSI of the noisy image) averaged over the 95 volumes of
the test set of the brain data for the neural network with the super-
vised approach (Blue), the unsupervised approach (Green) and the
NLM (Orange) in function of the noise standard deviation in the k-

space.
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7.4 Discussion

In this Chapter we performed the denoising task on the k-space raw data of the
FastMRI dataset that is the largest and more complete one of its type.

The method we proposed is based on the residual learning denoising applied to
the frequency data instead of denoising directly the reconstructed images.

Residual learning is a powerful framework that in presence of additive noise al-
lows the network to concentrate in building high level representation of the noise
component instead of the clean image.

In MRI, and in particular in multicoil acquisition, the noise can not be assumed
additive in the reconstructed image since the process to obtain it from the raw data
is non linear and introduces mixed terms and non additive terms is the noise form.

In Chapter 6 we discuss how in a simple simulation performing the denoising
task with residual learning over the frequency data produces superior results than
applying a network of the same complexity directly on the image data.

Now we have applied the same method to the denoising of multicoil data for mor-
phological imaging. In this case the most important result is the correct reproduction
of the anatomical parts of the knee such as the muscle, the bones and the cartilages.

For this reason we quantify our results in terms of PSNR and SSI: the first one
measures the pixel wise restoration of the true intensity and second the correct re-
production in a small window of the correlation between and contrast between the
original and predicted images.

In our test both metrics improved substantially after the action of the denoiser
in a blind denoising task both at a high level of noise and at a lower level. This is
an important result since the starting quality on a clinical MRI depends on a large
variety of factors and a denoising solution must be applicable in most cases.

We also tested the denoiser on data acquired on brains which is both a different
anatomical district, where the shape and size of the details are different from the ones
that the denoiser was trained with, and more importantly it consisted in different
MRI sequences.

We know that the k-space data depends on the acquisition sequence chosen so
this ability to generalize cannot be taken for granted. The results obtained were en-
couraging and the ability to generalize to different sequence and anatomical subjects
is probably one of the most important perks to develop in view of the applicability
in a clinical setting.

Another important result is that in our experimental pipeline, the supervised and
unsupervised training reach comparable performance with the same set of exam-
ples. This is not trivial since in general unsupervised learning needs a larger amount
of data.

This is the result of the implementation of the Noise2Noise approach that, in
turn, is easily applicable only because we decide to work in the k-space where the
noise form is simpler than the one present in images.

The possibility to perform unsupervised learning really widens the applicability
of the method since it is often impractical or impossible to acquire ground truth
images for a supervised training.

Since our final aim is the application to denoising MRI scans from acquisition of
etereonuclei the possibility to reach a good performance with unsupervised learning
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is mandatory to the successful application since the images are noisy due to the low
concentration of resonant molecules so the quality of imaging is always intrinsically
low making the definition of a ground truth very difficult.

We also performed a preliminary comparison of our proposed method with a
state of the art denoising algorithm that is widely adopted for MRI denoising, the
NLM.

Both the supervised and unsupervised approach performed better or at the same
level respect to the NLM algorithm and this result should motivate us to continue the
development of this methodology since it has the potential to be competitive with
state of the art methods with a relatively smaller, once it is trained, computational
cost.

The direction of improvements of these results are many: In the short term we
should train the network on the whole dataset and check if we reach gains in perfor-
mance. In general, a study of performance in function of the training size is always
useful to put a low-end to the dataset size needed for training in a real case scenario.

Again, in the short term we should restore the original data to which we cut the
higher frequency part that produced a somewhat easier task since we lowered the
noise content but probably erased also some small details in the image that are the
most difficult to retain when the network is trained with a distance based loss func-
tion such as the MSE: A few pixels do not impact the loss function much and the
network is prone to concentrate on the general intensity.

The visually most relevant effect of this behaviour is the smoothness of the sur-
faces that is usually present in the processed images.

In our case details are usually restored, at least in the low noise case, but we
can still improve the sharpness of the final results. However, we should be careful
to maintain the important aspect of our solution, that is to retain the quantitative
information of the original image, and we shouldn’t sacrifice this ability to force a
better visual effect.

Another improvement will be to utilize all the available coils in the denoising. This
will surely improve the results since more signal from the same volume is present in
each coil acquisition and a neural network can easily exploit this information.

We discard a part of the coils to obtain a number of channels multiple of eighth
in our input images to take full advantage of the Tesor Cores. Probably the best
solution will be to create a dummy coil to be added to the original 15 with useful
information such as the average absolute value of the signal to both introduce addi-
tional information and reach a suitable number of channels.

Also, training with the brain dataset and cross checking if performance is main-
tained when testing on the knee dataset will be another useful information. And
since the brain dataset consists of many different acquisition modality we can also
check if training with the right sequence example is needed to reach the best perfor-
mance or training can effectively be generalized across acquisition modality.

Instead, with regard to unsupervised training specifically, we are now limited by
an unrealistic scenario where the number of noisy examples of a real exam is theo-
retically infinite since we are generating pairs of corrupted samples automatically.
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This is not a realistic method since the number of noisy acquisition of a subject
is usually finite and relatively small (tens of copies). As the number of ordered
paired sample instead is large (i.e N ∗ (N − 1)) it is possible to try the Noise2Noise
with finite noise realization in MRI and it may still be a viable approach. In this
context we should not forget that for the supervised approach the limit is even more
constraining since if the noise is not generated from a model then the number of
possible pairs noise / ground truth is just N.

From the point of view of selecting the best neural network approach for the MRI
denoising task, the architecture proposed has many advantages as we deeply dis-
cussed in the conclusion of Chapter 6:

It works on partial context only since its receptive field is smaller than the image
and it effectively processes patches of the input. Thus, it should reduce the leakage of
information derived from learning to the denoised example since it lacks the spatial
coherence to create large details.

Furthermore , it uses a residual learning approach that, in addition to helping
in the performance increase, it may also contribute to the reduction of unwanted
artifacts in the final image.

Also, the network has a small size in terms of number of parameters and a rela-
tively simple architecture that should help make it robust to overfitting.

Still, many possible new architectures that maintain the original spirit can be
tested to find the optimal solution within these constraints.

For example a layer block derived from the popular ResNet (He et al., 2016) is
often employed with success in denoising and can substitute our simple convolu-
tional layer maintaining the general strategy intact while helping the deployment of
deeper solutions.

Finally, after the architecture and parameter optimization will be completed we
must compare the final performance reached with the state of the art in MRI denois-
ing that is not based on deep learning and it is optimized for multicoil acquisition
with strong noise correlation.

We already tested the performance of one of the most successful image based
denoising methods that is also used to improve quantitative measurement in MRI
affected by rician noise is the Non-Local-Means (Manjón et al., 2008) and it was be
a fitting benchmark for our proposed solution but we should strive to a more fair
comparison with newly proposed method that are specifically optimized for our
task.

In a completely different direction, we can think of merging the task for which the
FastMRI dataset was collected for, the reconstruction of frequency subsampled data,
with the denoising task. These two problems are independent but related since they
both influenced the quality of MRI when the acquisition time must be short.

It is theoretically possible to solve both problems with the same network and our
architecture can be modified accordingly.

Incidentally, a variance of the noise2noise framework that we are implementing
was proposed for subsampled MRI data (even if not in the case of interest in the
FastMRI challenge (Lehtinen et al., 2018)) so we may also be able to perform unsu-
pervised learning in this scenario.

If this solution is implemented and it proves to be competitive it may be a step
forward in a general porpoise deep learning based MRI acquisition enhancement in
the frequency space.
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Chapter 8

Conclusions

In this concluding section I will try to put the results achieved in my work into
context.

This work has carried out some necessary steps in order to make possible the
experimentation on animal model of magnetic resonance imaging as a quantification
tool of fluorinated tracers for proton therapy enhancement applications.

This work is composed of two parts: a section in which I concentrate on the
experimental work that was needed to perform the preliminary measures to validate
our choice of the tracer for the cancer model our research is aimed at.

These experiments are directly moved by the interest of collecting necessary pre-
liminary data prior to the quantification experiment in imaging of this tracer for in
in-vivo applications.

A second part deals instead with the development of a denoising system for
magnetic resonance imaging based on deep learning. This part also is theoretically
addressed to the same problem, because the rationale behind its development was
that when MRI is performed on nuclei that are not hydrogen the signal is inevitably
low and therefore the measurements are noisy.

Nonetheless, it can be considered a method that has its own function as it can
generally be applied to magnetic resonance image acquisitions regardless of the ac-
quisition modality since it is a general denoising technique that works on raw fre-
quency data that is collected in every MRI scan.

The first point addressed is the internalization of BPA inside the cells. This point is
fundamental because the accumulation in the cells is an essential step for the BPFT to
have an effect and therefore any future experiment, for this to be useful to contribute
to the development of this therapy, must be carried out with a molecule that is able
to deposit boron atoms inside cells.

This experiment led us to define the next course of the work because initially the
possible candidates were many and the choice of F-BPA as a model molecule influ-
enced the subsequent experiments. In particular the proposed B12F12, that had the
advantage of 12 identical fluorine atoms, was discarded because it does not internal-
ize in PANC1 cells.

The technique we adopted was aimed to measure the internalization of F-BPA
but it is a general methodology that can be applied to every molecule that contains
both boron and fluorine atoms.

The strength of our measurement is the fact that three different techniques based
on orthogonal physical principles were compared under the same experimental con-
ditions in the quantitative measure of the internalization fraction of F-BPA.

In particular, the internalization fraction of F-BPA in the PANC1 cell line was
determined by us for the first time.
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The second point addressed was the measure of the in vivo distribution of the
drug in the tissues of our animal model after the administration at the dose that is
used in the proposed therapy.

As we have seen, it is clear in the literature that BPA does not distribute itself
homogeneously in the tissues and it is equally clear that its distribution strongly de-
pends on the protocol used for the somministration that itself is strongly dependent
on the operators.

Before the conduction of the imaging experiment we needed to test our protocol
to set a ground truth to validate the results.

For this reason, we have tried to measure with an alternative technique but more
sensitive than imaging, quantitative NMR spectroscopy, the content of fluorine in
the different tissues.

To accomplish this measure we have performed 19F MRS in samples extracted
ex vivo and compared our results with neutron autoradiography.

This experiment was necessary in order to have a starting point on which to
program the parameters of the imaging experiment both to evaluate which is the
best acquisition strategy given the real signal concentration, both to fine-tune our
experimental pipeline.

The last point especially proved crucial because the encountered problems in our
experimental protocol, that greatly influenced our results, would have been more
difficult to be verified indirectly with an in vivo experiment in MRI.

This experiment will also have fundamental consequences on how continuing
our research.

Beyond the problems encountered, we realize that probably we should somehow
increase the fluorine concentration in the tissue since the measured fluorine content
was at the limit of our detection capabilities.

This suggests different paths to take, each one valid and promising: we can try
to find another boron carrier, we can change the delivery system or we can try to
improve the sensibility of our measure.

This brings us to the third point, the development of the denoiser.
It was expected that very low concentrations would cause a very weak signal,

thus very noisy images, and we dedicated ourselves to studying a software solution
to increase our ability to reduce the effect of the noise.

We then developed a deep learning-based denoiser that could be implemented
for this purpose.

We started from the very simple yet very important consideration that the form
of the noise in the images already reconstructed is more complex than the one in
the raw data acquired in frequency. While our conclusion is almost trivial from a
statistical perspective, it significantly eases the task of denoising.

In particular the choice of working with raw data in the k-space allowed us to
implement the residual learning strategy, that in image denoising has many advan-
tages, to our problem and that would have been more difficult, or impossible with-
out important modification, to use it directly on the images.

The first step was to test our idea on simulated data which allowed us to appreci-
ate the strengths of our solution in a controlled environment in which we compared
it against another neural network model that performed the same denoising task
on the corresponding reconstructed images and we found that denoising in k-space
allows us to have better performance in image restoration and the restored image,
while less visually attractive, keeps the average value of the intensity over an area
equal to the intensity value measured on the original image.
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This property is particularly interesting when the denoising has to be performed
before a quantitative study over the image.

Additionally, our method is very robust to overfitting since it has a deep architec-
ture but with a relatively low number of parameters and it works on partial context
only, that means that the noise removal is made at small patches level and that is a
valid strategy to avoid the creation of artifacts.

The second step was to validate our system on real data. We choose to work
with the FastMRI dataset that is the largest collection of MRI frequency raw data
available.

With this dataset we proved that we can in fact properly denoise reconstructed
images from the k-space with good performance at high noise level.

In this task we also adopted an unsupervised approach in training. This means
that we can perform the learning on the neural networks without providing a ground
truth. It is important to notice that the framework that we adopted, the Noise2Noise,
that allows the training with pairs of corrupted images instead the usual pair on
corrupted and clean images is applicable in our case only because we work in the
k-space.

This result is quite interesting in the task of denoising the FastMRI dataset but
more importantly it is extremely significant for our original goal of applying it to
denoise quantitative fluorine MRI.

To perform the training in normal learning we have to provide the network with
noise free high quality images that in our case, especially in in-vivo applications,
may be impossible to obtain in practice.

Since the expected concentration is so low we may be in the situation in which
our acquisition would already be the best possible measure so a ground truth may
be difficult to define.

The Noise2Noise approach will provide the means of training the network with
multiple noisy acquisitions of the same subject instead of providing a ground truth
of high quality.

If we would be able to confirm the applicability of this strategy with phantom
study in 19F MRI it may be possible to transfer the application in-vivo.

As far as future developments are concerned, there are many directions to ex-
plore.

From the experimental point of view we still have to optimize our delivery of the
drug, it may be the most rapid solution to increase the concentration in tissues.

Another solution would be to abandon the use of F-BPA and test new tracers,
in this case the know-how developed can be easily transferred to other possible
molecules.

As for the imaging with 19F part instead, once we will determine the molecule
of choice and the concentration at which we will have to work given the adopted
delivery system, we will need to develop the best pulse sequence and acquisition
method that is controlled by the MR properties of the nuclei being measured.

In particular, Relaxation Times determine the time frames of signal losses, so the
time scale for data acquisition should be assigned correctly.

Other parameters, such as acquisition bandwidths, should also be properly planned
to avoid recording unnecessary noise ,to achieve the highest possible SNR and to op-
timize the acquisition method to promote signal sensitivity.

We already discussed the problem of noise in MRI but also other effects come in
place to disrupt the quality of the measure and the quantitative estimation of concen-
tration. Particularly for quantitative 19F MRI, the dishomogeneity in the RF pulse
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and in the receiver field will impact the performance when comparing concentra-
tions of with an external standard of known 19F concentration.

This effect may also be treated with a deep learning approach but it will need a
dedicated study and solution.

Finally, the direction of development of the denoiser can be pursued along dif-
ferent paths: Probably the data needed for training will eventually be proved pro-
hibitive for the application to the denoising in our case. Even with the unsupervised
training we will need thousands of acquisitions to reach acceptable results.

Thus the first possible development is to work toward a realistic simulation of
the acquisition to pre train the denoiser on simulated realistic data to reduce the
number of real acquisition for training.

Also, we should consider the denoiser to be a separate part of the work that can
be deployed also to other problems. We had good performance with morphological
multiple coils acquisition and optimizing the method to be reliably adopted in this
field may be a valid choice.

The first step in this process is to establish a benchmark to compare our perfor-
mance to other methods that are not based on deep learning. This step will provide
the necessary boundaries to understand if our methods may be of general applica-
bility.

Also, at the moment we only test simulated noise even with the real data. This is
a major weakness since the noise model adopted is realistic but we will have to test
if performance is maintained on real low SRN acquisitions.

The field of deep learning denoising methods is in rapid development for MRI
acquisition and it still lacks a reliable all-purpose solution. The particular acquisition
process of an MRI makes it often difficult to adopt common strategy used in natural
images denoising and for what the raw data solutions are concerned, they are dif-
ficult to generalize since every scanner manufacturer performs the acquisitions and
the reconstructions in different ways.

In any case there is plenty of room for future proposals and a properly tuned
method that can handle multiple imaging modalities may also be directly imple-
mented in the scanning software.
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