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Abstract

Applications of reinforcement learning (RL) for supporting, managing and im-
proving decision-making are becoming increasingly popular in a variety of medicine
and healthcare domains where the problem has a sequential nature. By continuously
interacting with the underlying environment, RL techniques are able to learn by
trial-and-error on how to take better actions in order to maximize an outcome of
interest over time. However, if on one hand RL offers a new powerful framework, on
the other hand it poses some unique challenges for data analysis and interpretability,
which call for new statistical techniques in both predictive and descriptive learning.

Notably, several methodological challenges, for which the contribution of the
biostatistical community may play a crucial role, limit the use of RL in real life. In an
aim to bridge the statistics and RL communities, we start by assimilating the different
existing RL terminologies, notations and approaches into a coherent body of work,
and by translating them from a machine learning (ML) to a statistical perspective.
Then, through a comprehensive methodological review, we report and discuss the
state-of-the-art RL-based research in healthcare. Two main applied domains emerged:
1) adaptive interventions (AIs), encompassing both dynamic treatment regimes and
just-in-time adaptive interventions in mobile health (mHealth); and 2) adaptive
designs of clinical trials, specifically dose-finding designs and adaptive randomization.
We illustrate existing RL-based methods in these areas, discussing their benefits and
existing open problems that may impact their application in real life.

A major barrier to adopting RL in real-world experiments is the lack of clarity
on how statistical analyses and inference are impacted. In clinical trials for example,
if on one side, to achieve the practical (and more ethical) goal of improving patients’
benefits, RL may have better abilities in terms of maximising clinical outcomes by
adaptively randomizing participants to the best evidence-based treatment; on the
other side, to achieve the scientific goal of e.g., discovering whether one treatment is
more effective compared to a control treatment, less is known about their inferential
properties. Through a simulation study, we investigate the challenges of conducting
hypothesis testing from data collected through a class of RL, i.e., multi-armed
bandits (MABs), outlining the harms MAB algorithms can cause to traditional
statistical tests’ type-I error and power. This empirical evaluation provides guidance
to two alternative ways of pursuing improved statistical hypothesis testing: 1) to
explore ways of modifying the test statistic using knowledge of the adaptive data
collection nature; 2) to modify the algorithm or framework for a more sensitive
problem to both statistical inference as well as reward maximization. Focusing on
the Thompson Sampling (a randomized MAB strategy), we show how a modified
version of it results in an optimal intermediate between these two objectives.

These findings can provide insights into how challenges can be surmounted by
bridging machine learning, statistics, and applied sciences, to conduct adaptive ex-
periments in the real-world, aiming to simultaneously help individuals and advance
scientific research. We finally combine our methodological knowledge with a moti-
vating mHealth study for improving physical activity, to illustrate the tremendous
collaboration opportunities between statistics and RL researchers in the space of
developing adaptive interventions into the increasingly growing area of mHealth.
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Chapter 1

General Introduction

“What matters is not the enclosure of the work within a harmonious figure,
but the centrifugal force produced by it - a plurality of language

as a guarantee of a truth that is not merely partial.”
- Italo Calvino, Six Memos For The Next Millennium

In the era of big data and digital innovation, healthcare is undergoing a process
of rapid and dramatic change, with clinical decision support systems acquiring a
vital role for both developing and improving care delivery (Sultan, 2015; Jiang
et al., 2017). Increasing technological sophistication has lead to new biomedical
data sources, such as electronic health records (EHRs) and mobile/wearable devices,
that are generating exponentially more data, with an increasing complexity (Dash
et al., 2019; Toga et al., 2015; He et al., 2019). If on one side, this flood of data
offers a new powerful resource for improving quality and costs of healthcare and for
advancing knowledge discovery in clinical domains, on the other hand, it poses some
unique challenges for data analysis and interpretability, which call for new statistical
techniques in both predictive and descriptive learning.

Machine learning (ML) algorithms, used in data science to process data that may
exceed the capacity of the human brain, in order to make predictions or decisions
without being explicitly programmed to do so (Obermeyer & Lee, 2017; Rajkomar
et al., 2019; Johnson et al., 2016a), complement classical statistical tools. They
are swiftly infiltrating many areas within the healthcare industry and biomedical
domains for better informing the care of each patient. That is, decisions management,
diagnoses and therapies are personalized on the basis of all known information about
a patient, in real time, and incorporating lessons from a collective experience. An
overview on successful biomedical applications which used ML, mostly supervised
and unsupervised learning (Bishop, 2006) algorithms, is provided in Deo (2015) and
Rajkomar et al. (2019).

As an alternative ML area, Reinforcement Learning (RL), offers a potential
framework for tasks in which no initial data are provided and the algorithm has to
learn by interacting with the surrounding environment in a sequential manner (Sutton
& Barto, 2018; Bertsekas, 2019; Sugiyama, 2015). More specifically, in RL problems,
at each time step of a sequential process, an agent interacts with its environment,
performs action(s), and, based on a feedback received from the environment for
the selected action(s), learns, by trial-and-error, on how to take better actions in
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order to maximize the cumulative feedback over time. Such distinctive feature offers
a powerful solution in a variety of healthcare domains where the problem has a
sequential nature (Chakraborty & Moodie, 2013; Yu et al., 2019b; Gottesman et al.,
2019).

One of the emerging lines in both applied and methodological research within
the domain of personalized medicine is the development of evidence-based (i.e.,
data-driven) adaptive interventions (AIs; Almirall et al., 2014; Collins et al., 2004);
research line emerged from at least two different disciplines, i.e., RL and causal
inference. The fundamental problem of AIs is to operationalize sequential decision
making with the aim of optimizing individual outcomes by tailoring interventions
to or by the individual patient over the course of a disease or program. This is the
typical situation in clinical practice, in which a doctor needs to define a treatment
regime depending on patients’ characteristics, e.g., demographics, clinical conditions
or previous response to a specific treatment regime (Murphy, 2003; Lavori & Dawson,
2004; Chakraborty & Murphy, 2014). Finding personalized therapies is a major
challenge: it not only needs to handle “the right individual with the right treatement”
but also “at the right time”.

Reinforcement learning, perfectly resembling the AIs sequential problem, has
been initially introduced into the clinical trial arena for discovering optimal dynamic
treatment regimes (DTRs; Murphy, 2003; Lavori & Dawson, 2004; Chakraborty &
Murphy, 2014) in life-threatening diseases such as cancer (Zhao et al., 2009; Goldberg
& Kosorok, 2012), and then spread to broader healthcare and behavioural areas
including promoting physical activity (Yom-Tov et al., 2017; Avila-Garcia et al.,
2019) and weight loss (Forman et al., 2019; Pfammatter et al., 2019) or managing the
substance use (Goldstein et al., 2017; Naughton, 2017). The SMART Weight Loss
Management study (ClinicalTrials.gov Identifier: NCT02997943), for instance, seeks
to develop an effective DTR strategy, to manage treatment for obesity. We report
some details of the study, including the design, in Section 3.1. A more recent example
(compared to DTRs), is given by just-in-time adaptive interventions (JITAIs; Tewari
& Murphy, 2017; Nahum-Shani et al., 2018), a growing standard in the emerging
mobile health (mHealth) field (Istepanian et al., 2007; Kumar et al., 2013; Rehg et al.,
2017). JITAIs are AIs that use continuously collected data through mobile technology
(e.g., wearable devices or smartphones) to adapt intervention components in real
time for supporting behavior changes. MHealth applications (apps) for improving
physical activity by delivering messages to users, represent a typical example. To
discuss their use and benefits, we illustrate in Chapter 5 and Chapter 6 a mHealth
app, named DIAMANTE (Avila-Garcia et al., 2019), we developed for promoting
physical activity. While in Chapter 5 we report the results of the preliminary
DIAMANTE app-based study we conducted on a population of university students,
in Chapter 6 we discuss the challenges we faced for implementing and adapting the
same app on a population of patients with depression and diabetes, which is an
ongoing study (ClinicalTrials.gov Identifier: NCT03490253; Aguilera et al., 2020).
We include details on both trial design and RL-based strategy. For the latter, we
formulated the RL problem as a multi-armed bandit (MAB; Sutton & Barto, 2018;
Lattimore & Szepesvári, 2020; Auer et al., 2002a), a classic RL example.

Multi-armed bandit problems, have been extensively studied within statistics,
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engineering and psychology from a long time. They have been introduced in bio-
statistics by Thompson (1933), and extensively studied under the heading sequential
design of experiments (Robbins, 1952; Berry & Fristedt, 1985a; Lai, 1987). While
these models are nowadays widely studied with completely different applications in
mind, like online advertisement (Chapelle & Li, 2011) or recommender systems (Li
et al., 2010), there has been a surge of interest in the use of bandit algorithms for
clinical trials (Villar et al., 2015a), particularly given the increased attention payed
by regulatory agencies to to adaptive clinical trials (FDA, 2019; Pallmann et al.,
2018), which use interim collected data to dynamically adjust the trial design. They
have been proposed as a means to increase the efficiency of traditional randomized
clinical trials (RCTs), not only benefiting future patients, but also trial participants,
advancing patient care, and reducing costs (Bhatt & Mehta, 2016). MAB models
might be particularly appropriate for designing adaptive clinical trials since the
trade-off between clinical research and clinical practice can be seen as the well-known
trade-off between exploration and exploitation in the context of RL. Under this
pretext, the application of novel RL and MAB models tailored to clinical trials is
being increasingly studied and shows great benefits compared to standard approaches.
We review some of the proposed techniques in the context of adaptive-dose finding
and response-adaptive randomization.

However, broader use of adaptive clinical trials, or, more generally, adaptive
experiments, requires a better understanding of the trade-offs MAB algorithms make
between the scientific and practical goal. For example, in a clinical trial, to achieve
the scientific goal of a randomized trial such as testing whether a treatment is more
effective compared to a control, typically, patients are randomized to treatments
with equal and fixed probability. To achieve the practical (and more ethical) goal of
assigning the best treatment more often, an algorithm that dynamically modifies
the randomization probability of future patients, by using the evidence of previous
patients’ responses, would be preferred. A major barrier to adopting MAB algorithms
for experimental designs is lack of clarity on how statistical analyses and inference
are impacted (Rafferty et al., 2019). Theoretical work suggests that adaptive data
collection like the one used in bandit algorithms can induce bias in the estimates
of means (Bowden & Trippa, 2017; Deshpande et al., 2018; Nie et al., 2018; Shin
et al., 2019) and that confidence intervals constructed from these statistics may not
have correct coverage (Hadad et al., 2019; Zhang et al., 2020b). Both practical
decisions and scientific research rests on knowing and controlling how frequently
type-I error occurs, and having high power guarantees. In adaptively collected data,
these measures represent a major challenge, and their poor understanding, and
absence of robust inference and estimation in adaptively collected data, constitutes
one of the main drivers that prevents the practical use of bandit strategies in clinical
trials (Pallmann et al., 2018; Burnett et al., 2020).

Motivated by the existing challenges and open problems in many clinical and
healthcare areas, where the use of RL and MABs have been argued to provide
great benefits, we explore alternative ways of integrating statistical knowledge into
analysis and improvement of machine learning techniques, with the aim to inspire
the development and modification of theoretical frameworks and algorithms to better
tackle these issues. We believe that there is scope for important practical advances
in the use of RL and MABs in healthcare and behavioural areas, and with this work
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we aim to make it easier for theoretical disciplines (RL and statistics) to join forces
to assist clinical practice and medical discoveries and to develop the next generation
of methods for AIs and ADs in healthcare.

1.1 Outline, Content and Contributions

A summary of the key contributions of this work in relation to its structure is given.

• Chapter 2. We begin by providing the biostatistical, and more generally the
research community, with a mathematical formalization of the RL framework.
We translate the key terminologies and approaches from an ML to a statistical
perspective, assimilating also the different existing terminologies and notations
into a coherent body of work. This offers a foundation to more easily conduct
research in both theoretical and applied sciences.

• Chapter 3. Through a methodological review, we provide the general panorama
of the applications of interest, i.e., developing adaptive interventions - in
both clinical settings (dynamic treatment regimes) and behavioural sciences
(mobile health applications) - and designing adaptive clinical trials. we show
their natural formalization through RL, and illustrate the existing RL-based
methods in their respective healthcare domain, discussing main similarities
and differences among them in terms of their terminology of reference, trial
design and main RL class.

• Chapter 4. Focusing on the specific application of adaptive clinical trials,
particularly response-adaptive randomization, and motivated by the existing
challenges in drawing inference from data adaptively collected by RL-based
strategies, we quantify the extent of the problem and propose alternative
ways of integrating statistical knowledge into improvement of this adaptive
techniques. First, two ways of modifying the test statistic, using knowledge of
the adaptive data collection nature, are explored; second, a modification of
the algorithmic framework, for a more sensitive problem to both statistical
inference as well as reward maximization, is considered.

• Chapter 5. Focusing on the specific application of JITAIs in the emerging
mHealth area, we illustrate and discuss the benefits of a micro-randomized trial
for promoting physical activity in university students through a text-messaging
app, named DIAMANTE. We focus on the design of both the experimental
trial and the adaptive RL-based algorithm, as well as the final results.

• Chapter 6. Using as motivating example the main (clinical) DIAMANTE
study, we discuss the potential challenges that may arise when developing and
designing JITAIs in mHealth, and highlight the crucial role of the biostatistical
community in helping to overcome the existing issues.
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Chapter 2

Reinforcement Learning
Framework

Reinforcement learning is an area of machine learning concerned with determining
optimal action selection policies in sequential decision making processes (Sutton
& Barto, 2018; Bertsekas, 2019). The general framework is based on sequential
interactions between a decision maker or learning agent and the environment it wants
to learn about. More specifically, the agent and environment interact at each stage
or time step t ∈ N of a sequence (here, we assume a discrete time space, even though
it can be extended to the continuous-time case; Bertsekas & Tsitsiklis, 1996; Doya,
2000), in which the agent receives some representation of the environment’s state or
context, Xt ∈ Xt, and on that basis makes a decision by selecting an action At from
a set of admissible actions At. As a result, one time step later, the environment
responds to the agent’s action by making a transition to a new state Xt+1 ∈ Xt+1
and (typically) providing a reward Yt+1 ∈ Yt+1 ⊂ R.

By repeating this process for each t ∈ N = {0, 1, . . . , }, the result is a trajectory
T of states visited, actions pursued, and rewards received:

T .= {(Xt, At, Yt+1)}t∈N . (2.1)

In a medical context, this trajectory can be viewed as the collection of information
(e.g., covariates, treatments and responses to treatments) of a single patient i over
the course of a disease. Note that in some settings there may be only one terminal
reward (or final outcome, e.g., overall survival or school performance at the end
of the study, Pelham et al., 2002); in this case, rewards at all previous stages are
taken to be 0. In other settings (e.g., multi-armed bandits, as we will see later in
Section 2.0.1), the state is not considered, leading thus to a trajectory of actions
and rewards only.

Define now Xt
.= (X0, . . . , Xt), At

.= (A0, . . . , At) and Yt
.= (Y1, . . . , Yt), and

similarly xt, at and yt, where the upper and lower case letters denote random
variables and their particular realization, respectively. Also define the history Ht
(or filtration Ft) as all the information available at time t prior to agent’s decision
At, i.e Ht

.= (Xt,At−1,Yt); similarly ht. Stage t history’s space, denoted by Ht, is
therefore the product of Ht elements’ spaces, i.e. Ht = X0 ×

∏t
τ=1Xτ ×Aτ−1 × Yτ .

Note that, by definition, H0 = X0.
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We assume that these longitudinal histories (or equivalently the trajectories in
(2.1) plus the final state) are sampled independently according to a distribution
PFull-RL
π , with superscript clarified later in Section 2.0.1, given by:

PFull-RL
π

.= p0(x0)
∏
t≥0

πt(at|ht)pt+1(xt+1, yt+1|ht, at), (2.2)

where:

• p0 is the initial probability distribution specifying the initial state X0.

• π
.= {πt}t≥0 represents the exploration policy and it determines the sequence

of actions generated throughout the decision making process. More specifically,
πt maps histories of length t, ht, to a probability distribution over the action
space At, i.e. πt(·|ht). The conditioning symbol “|” in πt(·|ht) reminds us
that the exploration policy defines a probability distribution over At for each
ht ∈ Ht. Sometimes, the action At to take at each time step t is uniquely
determined by the history, therefore the policy is simply a function of the form
πt :Ht → At, or equivalently πt(ht) = at. We call it deterministic policy, in
contrast with stochastic policies that determine actions probabilistically.

• {pt}t≥1 are the unknown transition probability distributions and they com-
pletely characterize the dynamics of the environment. At each time t ∈ N,
the transition probability pt assigns to each state-action-reward sequence
(xt−1,at−1,yt) = (ht−1, at−1) of the trajectory up to time t− 1 a probability
measure over Xt × Yt, i.e. pt(·, ·|ht−1, at−1). At each time t, the transition
probability gives rise to:

– pt(xt|ht−1, at−1), the state-transition probability distribution which repre-
sents the probability of moving to state xt provided that a certain history
ht−1 was observed up to time t− 1 and that an action at−1 was chosen
in state xt−1.

– Yt = Yt(Ht−1, At−1, Xt), the immediate reward function. Generally, in RL,
the immediate reward Yt+1 is conceptualized as a known function (rather
than distribution) of the history Ht, the current selected action At and the
new state Xt+1; we thus, adapt our notation to Yt+1 = Yt+1(Ht, At, Xt+1).
To give a concrete example, one can think of a dose-finding trial, where
the level of toxicity is one of the covariates (or state variables), among
the others. In this setting, at each time t, the immediate reward Yt+1 of
a patient with history Ht and administered dose At, could be potentially
defined as a binary variable assuming value −1 if a toxicity level (Xt+1)
higher than a certain value α is observed, and 0 otherwise.

The cumulative sum of immediate (future) rewards, or, more generally, a dis-
counted version of it, is called return or discounted return. At time t, the discounted
return, denoted by Rt, an agent is going to receive over the future is defined as:

Rt
.= Yt+1 + γYt+2 + γ2Yt+3 + · · · =

∑
τ≥t

γτ−tYτ+1, t ∈ N. (2.3)
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The discount rate γ ∈ [0, 1] determines the current value of future rewards: a reward
received τ time steps in the future is worth only γτ times what it would be worth if
it were received immediately. If γ < 1, the potential infinte sum in (2.3) has a finite
value as long as the reward sequence {Yτ+1}τ≥t is bounded. If γ = 0, the agent is
myopic in being concerned only with maximizing immediate rewards, i.e. Rt = Yt+1.
If γ = 1, the return is called undiscounted and it is well defined (finite) as long as the
trajectory in (2.1) is finite, i.e. t ∈ [0, T ], with T <∞, so that Rt is a sum of a finite
number of elements (Sutton & Barto, 2018). When agent-environment interactions
have a terminal stage T <∞, the trajectory is also called episode and the agent has
to face an episodic task. An episodic task is also known in the general RL framework
as finite-horizon task if T is fixed and known in advance (e.g., in clinical trials), or
indefinite-horizon task if T is not pre-specified and can be arbitrarily big (the typical
case of EHRs). On the contrary, for T = ∞, the task is called continuing task or
infinite-horizon task (Sutton & Barto, 2018).

Solving a reinforcement learning task means, roughly, learning an optimal way
of choosing the set of actions or learning an optimal policy, so as to maximize the
expected future return. However, in many sequential decision problems, the target
policy we want to learn about might be different from the exploration policy π that
generated the data. This happens for instance when we use trajectory samples
generated from a policy which does not correspond to the policy of interest we
want to estimate, for instance another trial. We call this target policy of interest
estimation policy and denote it with d. Thus, being concerned of this potential
policy change, the RL problem at time t is to find an optimal policy d∗t

.= {d∗t }τ≥t
such that

d∗t = arg max
dt∈Dt

Ed[Rt] = arg max
dt

Ed

∑
τ≥t

γτ−tYτ+1

 , ∀t ∈ N, (2.4)

where the expectation is meant with respect to a trajectory distribution analogous
to (2.2), say Pd, where the fixed exploration policy π that generated the data is
replaced by an arbitrary policy d ∈ D we use to train the data, i.e., Ed = EPd . For
ease of notation we also use Ed for Edt : the time index is already incorporated in
the argument.

For policy learning, various methods have been developed so far. These methods
can be classified into model-based reinforcement learning and model-free reinforcement
learning, where the term “model” indicates a model of the unknown environment, i.e.,
the transition probability distributions {pt}t≥1. We refer to Sutton & Barto (2018)
and Sugiyama (2015) for the reader interested in an extensive overview. However,
traditionally, in a broad range of literature and applications, by optimal policy we
mean the one with the greatest value, i.e., the greatest expected return by following it
when starting from a given state (state-value or simply value) or a given state-action
pair (action-value or Q-value). Thus, efficiently estimating the value function is one
of the most important component of almost all RL algorithms, and it occupies a
central place in the medical decision making paradigm.

The stage t state-value function or value function of a fixed policy dt, maps a
starting history ht (with terminal state Xt = xt) to the expected return. Formally,
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∀t ∈ N and ∀ht ∈Ht, we denote it by Vt
.= Vdt :Ht → R and define it as

Vt(ht)
.= Vdt(ht)

.= Ed [Rt|Ht = ht] = Ed

∑
τ≥t

γτ−tYτ+1

∣∣∣∣∣∣Ht = ht

 . (2.5)

To ensure that the conditional expectation in Vt(ht) is well defined, each history
ht ∈Ht should have positive probability (P(Ht = ht) > 0). Note that, by definition,
at stage t = 0, V0(h0) = Vd0(x0) .= V (x0); while for the terminal stage, if any, the
state-value function is 0.

Similarly, we define the stage t action-value function for policy dt, also known
as Q-value or Q-function, as the expected return at time t, when starting from a
history ht, taking an action at and following the policy dt thereafter. Denoted it by
Qt

.= Qdt :Ht ×At → R, we have that, ∀t ∈ N, ∀ht ∈Ht and ∀at ∈ At,

Qt(ht, at)
.= Ed [Rt|Ht = ht, At = at] = Ed

∑
τ≥t

γτ−tYτ+1

∣∣∣∣∣∣Ht = ht, At = at

 ,
(2.6)

where, analogously to (2.5), Ht and At are randomly selected such that P(Ht =
ht) > 0 and P(At = at) > 0.

At stage t, the optimal Q-function Q∗t
.= Qd∗

t
and the optimal value function

V ∗t
.= Vd∗

t
for policy dt are defined as follows

Q∗t (ht, at)
.= max

dt
Qt(ht, at), ∀ht ∈Ht, ∀at ∈ At (2.7)

V ∗t (ht)
.= max

dt
Vt(ht)

.= max
at∈At

Q∗t (ht, at), ∀ht ∈Ht. (2.8)

Because an optimal state-value function is optimal for any fixed ht ∈Ht, it follows
that the time t optimal policy must satisfy

d∗t (ht) ∈ arg max
dt

Vt(ht) = arg max
at∈At

Q∗t (ht, at). (2.9)

A fundamental property of value functions used throughout RL is that they satisfy
particular recursive relationships. For any policy d, the following consistency
condition, known as Bellman equation for the value function, holds:

Vt(ht) = Ed [Yt+1 + γVt+1(ht+1)|Ht = ht] , ∀ht ∈Ht,∀t ∈ N. (2.10)

It expresses the relationship between the value of a state and the values of its
successor states: the value of the start state is equivalent to the value of the expected
next state plus the expectation of the reward along the way. Based on this property
and the definitions given in (2.7)-(2.8), for discrete state and action spaces the
following important rules, known as Bellman optimality equations (Bellman, 1957),
are satisfied:

V ∗t (ht) = E
[
Yt+1 + γV ∗t+1(Ht+1) | Ht = ht

]
, ∀ht ∈Ht, (2.11)

Q∗t (ht, at) = E
[
Yt+1 + γ max

at∈At
Q∗t (ht, at) | Ht = ht, At = at

]
, ∀ht ∈Ht, ∀at ∈ At.

(2.12)
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Here, the expectation is taken with respect to the transition distribution pt+1 only,
which does not depend on the policy, thus the subscript d can be omitted. This
property allows estimation of value functions recursively, from T backwards in time.
In finite-horizon dynamic programming (DP) this technique is known as backward
induction, and represents one of the main methods in for solving the Bellman
equation.

2.0.1 Specific Formalizations of the RL Problem

The RL problem can be posed in a variety of different ways, depending on assumptions
about the level of knowledge initially available to the agent. The framework is
abstract and flexible and can be applied to many different (sequential) problems, by
specifically characterizing the state and action spaces, the reward function, and other
general domain (or environment) aspects, such as the time horizon or the dynamics
of the process. The general framework introduced in Section 2, does not make any
simplifying assumptions on the dependency between rewards, actions and states:
by carrying over all the available history from the starting time, it considers a full
dependency between them. We name this framework full reinforcement learning
(full-RL).

Often, specific domains of application may have an underlying theory about the
potential relationships between the key elements of an RL problem. To illustrate,
consider a hospital admission scheduling problem (Kolesar, 1970), in which the
decision (or the action) is represented by the number of daily admissions. In order
to determine the optimal action, one may need to know the current (or at a certain
time, e.g., daily) number of beds occupied, but neither the number of beds occupied
at all the previous decision points, nor the set of all the previous actions. In other
words, one may ignore the overall history and consider only the current state in the
decision making process.

Alternatively, in some applied problems (e.g., indefinite-horizon problems), a
full-RL formalization may be unfeasible and/or intractable for both estimation and
inference purposes, requiring thus some forms of simplification in the distribution
of the longitudinal histories. In JITAIs, for instance, the “just-in-time” nature of a
decision making, assumes that the underlying decision rule is applied at the moment,
without any severe computational time costs.

Common examples of specific formalizations of an RL problem, include Markov
decision processes (MDPs) and multi-armed bandit (MAB) or contextual MAB
problems. While here we discuss the MAB problem as a subclass of, or a specific
way of formalizing, the RL problem (as in Sutton & Barto, 2018), we want to point
out that, belonging to different research areas (RL is mostly associated to ML, while
MABs to mathematics), some key researchers in the domain (see e.g., Lattimore
& Szepesvári, 2020) distinguish between the two. One driver of this choice may
be related to the major focus and attention to theoretical guarantees, e.g., optimal
regret bounds, that MAB algorithms are expected to satisfy.

In what follows, we illustrate more in depth these two specific formalizations,
starting with the MDPs, the main framework in indefinite-horizon DTRs problems.
A graphical illustration of the different settings is preliminarly given in Fig. 2.1.
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Action
𝜋t(At)

Reward Yt+1
Yt+1(At)

Reward Yt+1
Yt+1(At, Xt, Xt+1)

Stochastic MABs

Stochastic Contextual MABs

State Xt
pt(Xt|Xt-1, At-1)

Reward Yt+1
Yt+1(At, Xt, Xt+1)

Action At
𝜋t(At|Xt)

Action At
𝜋t(At|Xt)

Action At
𝜋t(At|Ht)

Reward Yt+1
Yt+1(At, Ht, Xt+1)

State Xt
pt(Xt|At-1,Ht-1)

MDP - RL

Full - RL

State Xt
pt(Xt)

Figure 2.1. Main difference in terms of relationships between states, actions and rewards in
a full RL (full-RL), MDP-based RL (MDP-RL), stochastic contextual MABs, and simple
stateless or non-contextual MABs. In stochastic non-contextual MABs, immediate
rewards depend on the current action only; in stochastic contextual MABs, immediate
rewards depend on the current action and context; in MDP-RL, they depend on the
current action and context as well as previous-time action and context; in full-RL, they
depend on the entire history upon that time, including current action and state. The
dashed line indicates a potential delayed effect in time of actions on the reward.

Markov Decision Processes

An MDP is a stochastic control process used to define environment’s dynamics
and to model the interaction between the agent and the controlled environment.
It provides a mathematical framework for modeling decision making in situations
where rewards are partly random and partly under the control of a decision maker
(Puterman, 2014), and it is the most common setting assumed for an RL problem
(Van Otterlo & Wiering, 2012).

What distinguishes an MDP-based RL (MDP-RL) from to the full-RL framework
is the environment’s random memory-less characteristic that informs the agent about
its transition probabilities and guides the decision-making process. More specifically,
assuming that the current state Xt contains all the information from the past history
Ht−1 (including also the current reward Yt) that is meaningful to predict the future,
it allows to ignore all the past histories when modelling next states and rewards.
This property, known as Markov property, leads to a finite-size representation of the
past, exemplifying all the trajectory distribution in (2.2) as follows:

PMDP
π

.= p0(x0)
∏
t≥0

πt(at|xt)pt+1(xt+1, yt+1|xt, at)

= p0(x0)
∏
t≥0

πt(at|xt)pt+1(xt+1|xt, at)pt+1(yt+1|xt, xt+1, at),

and, exemplifying, thus, the entire optimization procedure required for computing
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the optimal policy as reported in (2.4) or (2.9). Note that, under the Markov
property, the agent’s decisions can be entirely determined based on the current
information only, as the latter fully determines environment’s transition-probability
distributions, i.e., pt+1(·, ·|Ht, At) = pt+1(·, ·|Xt, At), ∀t ≥ 0. When transition
probabilities {pt+1}t≥0 are also time independent, i.e., pt+1 = p, ∀t ≥ 0 the process is
called time-homogeneous or stationary MDP. In light of this additional assumption,
states, rewards and actions are now time independent, given the previous stage
information. As we will see later is Section 3.1.1, time-homogeneous MDPs were
proposed in indefinite-time horizon DTRs, as they exemplify the problem by working
with time-independent quantities which do not require a backward induction strategy.

While RL, including both Full-RL and MDP-RL, is typically formulated as a
problem with states, actions, and rewards, with related transition rules, an exception
is made for MAB problems, whose original formulation can be viewed as a stateless
variant of RL.

Multi-Armed Bandits

MABs problems, often identified as a subclass of RL problems, have a long history
in the statistical literature. They have been introduced in biostatistics by Thomp-
son (1933) and, then, extensively studied under the heading sequential design of
experiments (Robbins, 1952; Berry & Fristedt, 1985b; Lai, 1987).

Generally speaking, the MAB problem (also called the K- or N -armed bandit
problem) is a problem in which a fixed limited set of resources must be allocated
between competing choices in order to maximize the expected total reward over time.
Each of the K choices provides a different reward, whose probability distribution
is specific to that choice or action. If one knew the expected reward (or value) of
each action, then it would be trivial to solve the bandit problem: they would always
select the action with the highest value. However, as this information is only partial,
for each time t the agent must trade-off between optimizing its decisions based on
acquired knowledge up to time t (exploitation) and acquiring new knowledge about
the expected payoffs of the other actions (exploration).

MABs strategies were originally proposed for solving stateless problems, in which
the reward optimization task is based on actions only. Subsequently, a ”stateful”
variant of MABs, named contextual MAB (C-MAB), in which actions are associated
with some signal, or context, was introduced. However, compared to Full-RL and
MDP-RL, in contextual MABs, actions do not have any effect on next states.
In addition, generally, there are no transition rules from one state to another in
subsequent times, implying that states, actions and rewards can be treated as a
set of separate events within time. The most typical assumption is that contexts
{Xt}t∈N are independent and identically distributed (i.i.d.) with some fixed, but
unknown distribution. This means that action At at time t has an in-the-moment
effect on the proximal reward Yt+1 at time t + 1, but not on the distribution of
future rewards {Yτ}τ≥t+2, for which the i.i.d. property holds as well. Under this
assumption, one can be completely myopic and ignore the effect of an action on
the distant future in searching for a good policy. This problems is better known
as stochastic MABs, in contrast with adversarial MABs, in which no independence
restrictions on the sequence of rewards are made. In stochastic contextual MABs
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the trajectory distribution is simplified as follows:

PC-MAB
π

.= p0(x0)
∏
t≥0

πt(at|xt)pt+1(xt+1, yt+1|xt, at)

= p0(x0)
∏
t≥0

πt(at|xt)pt+1(xt+1)pt+1(yt+1|xt, xt+1, at),

with a further reduction in the non contextual MAB problem as follows:

PMAB
π

.=
∏
t≥0

πt(at)pt+1(yt+1|at).

Note that, as the effect of an action in the stochastic MAB is in-the-moment,
the bandit problem is formally equivalent to a one-step/state MDP, in which the
time steps and states progression is not taken into account. MABs, thus, provides
a simplified way (compared to both MDP-RL and full-RL) of formalizing the
relationships between RL’s components in time. A graphical summary of the
different discussed RL frameworks is given in Fig. 2.1.

Similarly to the general RL, the MAB goal is to select the optimal arm A∗t at each
time t so that to maximize the expected return, alternatively expressed in the bandit
literature in terms of minimizing the expected cumulative regret. Indeed, in (online)
real-world problems, until we can estimate the optimal arms, we need to make
repeated trials by pulling different arms. The loss that we incur during this learning
phase (time/rounds spent for learning the best arm) represents what is called regret
(i.e., how much we regret in not knowing/picking the optimal arm). More formally, at
each round t, denoted with A∗t

.= arg maxat∈A E(Yt+1|Xt = xt, At = at) the optimal
arm of that round, the expected regret is defined as the difference between the
maximum possible expected reward and the expected reward resulting from the
chosen action At, i.e.,

reg(t) .= E(Yt+1|Xt, A
∗
t )− E(Yt+1|Xt, At), (2.13)

Then, the goal of the learner is to minimize the cumulative sum of the regrets over
a number T of steps, i.e., Reg(T ) .= ∑T

t=0 reg(t). In other words, the goal is to
maximise the expected reward, not only after a total number of rounds, but also
during the learning phase. More concretely, in a dose-finding problem as the one
mentioned in Section 2.0.1, the aim is may be not only to minimize the sum of
toxicities over time, but also to ensure that at each time t these have a proper upper
bound, capable to limit extremely harmful adverse events. For this reason, as we
will see later in Section 3.1.2, theoretical works on regret bounds occupy a central
place in bandit literature.
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Chapter 3

Review of RL Methods and
Applications in Healthcare1

Abstract

Applications of reinforcement learning (RL) for supporting, managing and improving
clinical and healthcare decisions are becoming increasingly popular. However,
several challenges, which the biostatistical community may play a crucial role to help
overcome, impact their use in real life. To bridge the statistics and RL communities,
we aim to translate and extensively review the state-of-the-art research, with reference
to both methodological and real-world studies. In this Chapter, we provide the
first unified review on RL-based techniques used in medicine and other healthcare
domains, including behavioural sciences, for supporting care and delivering optimized
interventions.

We start by introducing and discussing the main applied areas which proposed RL
as a potential solution for solving the related problem. With very few exceptions (e.g.,
automated medical diagnosis; Ling et al., 2017), we classify them in two broad areas
based on their goal: 1) to develop Adaptive Interventions (AIs), encompassing both
dynamic treatment regimes (DTRs) and just-in-time adaptive interventions in mobile
health (mHealth) - this is done in Section 3.1 - and, 2) to design adaptive clinical
trials, including both exploratory and confirmatory phases - covered in Section 3.2.
Then, we review the RL-methodologies which have been proposed within each
area, providing a unified view (terminology and notation), and illustrate their
potential benefits and drawbacks. Specifically for AIs, we show that, while a broad
theoretical literature on constructing optimal DTRs with RL methods exists, their
clinical application is still very limited. An opposite trend is registered in mHealth,
where the number of applied real-world studies is continuously growing, but several
methodological challenges (which will be discussed more in depth in Chapter 6)
are poorly addressed. Within the domain of adaptive clinical trials designs, while
applying RL (e.g., to adaptively adjust the randomization probabilities), can provide
a huge benefit for the patients involved in the trial, it represents a major open
problem in terms of inferential guarantees and results generalizability; this issue will

1Parts of the text of this chapter are extracted from the submitted/published manuscripts
coauthored by the candidate and listed on page vii.
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be illustrated in Chapter 4.

3.1 RL for Developing Adaptive Interventions

Adaptive Interventions (AIs) operationalize sequential decision making with the
aim of optimizing individual outcomes and guiding practice over the course of a
disease or, more generally, a program. They are represented by a sequence of
decision rules that tailor the type, dose or delivery of intervention strategies, based
on individuals’ personal characteristics or progress, and repeatedly adjusted over
time in response to ongoing performance (Almirall et al., 2014; Nahum-Shani et al.,
2018). Existing frameworks for adaptive interventions (Collins et al., 2004; Almirall
et al., 2014) highlight four components that play an important role in designing
these interventions: (i) the decision points t = 0, 1, . . . specifying the time points
at which a decision concerning intervention has to be made; and, at each point
t, (ii) the intervention options belonging to the action space At, (iii) the tailoring
variables, i.e., Xt ∈ Xt, and (iv) a decision rule dt which links the tailoring variables
to specific interventions. Intervention options correspond to different types, dosages
(duration, frequency or amount; Voils et al., 2012), or delivery options, as well as
various tactical options (e.g., augment, switch, maintain), while tailoring variables
capture information about an individual for a personalized decision making. An AI
is a multistage process, wherein each stage corresponds to a period of time following
a decision point in which the individual experiences an assigned intervention option.
The assigned intervention option in at least one of the stages is tailored based
on time-varying information about the participant, where “time-varying” refers to
information that may change over time as a result of prior intervention stages (e.g.,
response to prior intervention, or motivational changes during the previous stage;
Nahum-Shani et al., 2017).

AIs are known by a variety of different names, with adaptive treatment strate-
gies (Murphy, 2005a; Murphy et al., 2007), treatment policies (Lunceford et al.,
2002; Dawson & Lavori, 2012; Wahed & Tsiatis, 2006), and dynamic treatment
regimes (Murphy, 2003; Lavori & Dawson, 2004; Laber et al., 2010; Chakraborty
& Moodie, 2013; Laber et al., 2014a), or regimens, being the most common ones.
However, given the more generic nature and definition of AIs (sequential decision
making formalization), we use this term to refer to a broad setting for selecting
and personalizing interventions sequentially based on an individuals’ time-varying
characteristics, applicable, thus, not only in medical settings, but more generally
in healthcare and other behavioural sciences, such as education (Nahum-Shani &
Almirall, 2019). More specifically, we address two types of healthcare AIs in which
RL methods have been employed: DTRs and JITAIs. We introduce them here, and
discuss them more in depth in Sections 3.1.1 and 3.1.2, respectively.

With DTRs we refer to sequence of decision rules that dictate how to personalize
treatments to patients, which typically has to be treated at multiple pre-defined
stages, based on their evolving history (time-varying, dynamic state). In these
settings, for each stage t, the actions or arms At ∈ At are treatments, the state
Xt ∈ Xt is the set of patients’ available information or covariates, and the reward
Yt ∈ Yt is an intermediate outcome of interest. In some problems, there may only
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be an end-of-study outcome of interest Y = YT+1 instead of multiple intermediate
outcomes. For example, in the attention deficit/hyperactivity disorder (ADHD)
Study (Pelham et al., 2002) for evaluating the effects of a treatment on children
with ADHD, the target outcome was school performance score at the end of study.

The set of decision rules d = {dt}t≥0, or policies, is typically referred to as
DTR, and each trajectory from the decision process corresponds to the complete
history Ht ∈Ht of baseline and time-varying covariates, assigned treatments, and
observed outcomes of a single patient. Table 3.1 serves a table of equivalence for the
different terminologies of reference in each setting, with a unified notation according
to the general RL framework. Note that, while we report only the most common
terminology adopted in each setting, the lexical borrowing is widely used across the
different theoretical and applied domains. It is not rare to encounter for instance
the term treatment policy instead of treatment regime in the DTR literature, or the
term arm or treatment instead of intervention in JITAIs.

Table 3.1. Terminology of reference in reinforcement learning (RL), multi-armed bandits
(MABs), dynamic treatment regimes (DTRs) and just-in-time adaptive interventions
(JITAIs).

Notation Terminology
RL/MABs DTRs JITAIs

i Single Trajectory Single Patient Single User
t Time/Round Stage, Interval Time
X State/Context Tailoring Variables∗ Contextual Variables∗
A Action/Arm Treatment Intervention
Y Reward Intermediate, Distal Out-

come
Proximal Outcome

H History/Filtration History Filtration
π,d Policy Treatment Regime Policy
π∗,d∗ Optimal Policy Optimal Treatment Regime Optimal Policy

*Both tailoring and contextual variables represent the set of baseline and time-varying information
that is used to personalize the decision making. Alternative terms such as covariates or features
(that we use with a slightly different meaning as we discuss in Section 3.1.2) are also common.

An interesting aspect is the popular use of terms typical of specific RL methods
in applications where these methods are used: see e.g., the similarity between JITAIs
and MABs terms. We anticipate that methods for constructing JITAIs generally
belong to the MAB framework, while in DTRs the prevalent class is full-RL, followed
by MDP-RL proposed for indefinite-horizon DTRs problems. In fact, the underlying
theory of DTRs, characterized by potential delayed and/or carry-over effects of
a treatment over time, and importance of the evolving history of a patient for
predicting future outcomes, requires an accurate consideration of previous stages
information. Generally, the meaningful relationship between the different variables
of a patient’s history does not allow to simply or ignore the (state-)transition rules,
making full-RL (and exceptionally MDP-RL) the ideal candidate. On the other hand,
the behavioural theory of a momentary effect of the action on the proximal outcome
underlying mHealth applications, makes MABs a more suitable framework compared
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to full-RL and MDP-RL in this setting. In addition, the less computational burden
of carrying through all the historical information, allows MABs strategies to be
applied on a continuous time basis, e.g., every hour, and efficiently construct JITAIs.

With (mHealth) JITAIs we refer to sequence of decision rules which use contin-
uously collected data through mobile technology (e.g., activity sensors, wearable
devices, accelerometers or smartphones) to adapt intervention components in real
time to support behavior change and promote health. The “just-in-time” support is
based on considerations on whether and when the intervention is needed, and, in
addition to the four key elements of a standard AI, a JITAI is characterized also
by v) a distal outcome, i.e., the ultimate goal (typically a clinical outcome) the
intervention is intended to achieve, and vi) the proximal outcomes, which define
intermediate measures of the distal outcome, through which the intervention can be
made (Tewari & Murphy, 2017; Nahum-Shani et al., 2018). A typical example of
JITAIs is a physical activity JITAI. Here, intervention options might be whether or
not to send an activity encouraging message, the proximal outcome might be the
number of steps the person walked in a temporal range after intervention was sent,
and the context a set of user’s variables such as GPS location, calendar busyness
or heartrate. In JITAIs, we use the term interventions or intervention options for
actions/arms, proximal outcome for the reward variable, and context for the set of
tailoring variables. As we will see in Section 3.1.2, the problem in JITAIs is generally
framed as a contextual MAB problem, more suitable in dynamic environments where
context and options can change rapidly. This is the reason why the two frameworks
of MABs and JITAIs share some terminology (see Table 3.1).

Data for building optimized JITAIs can be gathered through randomized con-
trolled trials (RCTs; Collins et al., 2005), single-case experimental designs (Dallery
et al., 2013; Dallery & Raiff, 2014), factorial experiments (Collins et al., 2009),
or, most notably, micro-randomized trials (MRTs; Klasnja et al., 2015). In MRTs,
individuals are randomized hundreds or thousands of times over the course of the
study, and, in a typical multicomponent intervention study, the multiple components
can be randomized concurrently, making micro-randomization a form of a sequential
factorial design. The goal of these trials is to optimize mHealth interventions by
assessing the causal effects of each randomized intervention component and evaluate
whether the intervention effects vary with time or the individuals current context.
To better understand the design and value of MRTs, the design of the DIAMANTE
Study is presented in Figure 3.1. In this trial, based on the assigned study group
(Static, Adaptive or Control), patients might be randomized every day to receive
a combination of the different factors’ levels, including different categories of moti-
vational (Factor M) and feedback (Factor F) messages, and different time frames
(Factor T). The adaptive optimization strategy of the DIAMANTE Study will be
illustrated in Section 5.

For developing DTRs, two sources of data are commonly used: longitudinal
observational studies and sequentially randomized trials, more specifically sequential
multiple assignment randomized trial (SMART; Lavori & Dawson, 2000; Dawson
& Lavori, 2012; Murphy, 2005a). While observational trials are the most common,
SMARTs are experiencing a period of rapid growth and are currently the gold
standard for developing DTRs (Lei et al., 2012; Kasari et al., 2014). A SMART
design is characterized by multiple stages of treatment, each stage corresponding
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Block randomization with a 
1:1:1 allocation to:

A. Active Comparator Group: 
Static Messaging

B. Experimental Group: 
Adaptive Messaging using
Reinforcement Learning

C. Control Group: No 
Intervention

Proximal Outcome: Physical Activity Improvement
(Step change from yesterday – steps are passively collected through a pedomenter)

Informed consent + Baseline Visit
Collect baseline (time-independent) context:  
demographics, socio-economic status, health
status, physical activity, technology utilization

Observe
time-varying
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study day, day
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action sent
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Prior to the study Each day of the study
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Factor T (Time Frame):
• 09.00AM-11.30AM
• 11.30AM-02.00PM

• 2.00PM-04.30PM
• 4.30PM-07.00PM

Factor M
(Motivational

Message):

• No message
• Self-belief
• Walk Benefit
• Opportunity

Factor F (Feedback Message):

• No message
• Reaching Goal
• Steps walked yesterday
• Walked more/less than yesterday
• Steps walked yesterday + 
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2min after Factor M

End of the day

Online remote exit interview
(option to continue to 9 months)

Six-months follow-up

Group A:
Uniform Assignment* 

Group B: 
Adaptive Optimized
Assignment*

First two
study weeks

After the first two
study weeks

*Assignment refers to levels of each factor (T, M_type, M, F)

Factor M_type:
• Individual
• Social

Figure 3.1. Schematic of the micro-randomized trial (MRT) design of the DIAMANTE
Study (Aguilera et al., 2020) for developing a smartphone messaging App to improve
physical activity in patients with diabetes and depression.

to one of the critical decision time points. In this regard, it bears superficial
similarity with adaptive designs (ADs; Bhatt & Mehta, 2016), in which certain
trial features are allowed to change based on accumulating data. However, while
in ADs each stage may involve different participants, and a treatment adaptation
is made between-participants, in SMARTs the same participants move through
multiple stages of treatment, involving a within-participant adaptation (Chakraborty
& Murphy, 2014). In addition, in a SMART, unlike in an AD, typically, design
elements such as the final sample size, randomization probabilities and treatment
options are pre-specified. More aligned with traditional designs, the main goal
of a SMART is to develop a good DTR that could benefit future patients, while
ADs try to provide the most efficacious treatment to patients participating in the
current trial. To give a concrete example, see Figure 3.2 for the schematic of the
Weight Loss Management SMART design (Pfammatter et al., 2019) mentioned in
the Introduction. At program entry, all individuals are uniformly randomized to one
of first-stage intervention options, either mobile app alone (App), for supporting
self-monitoring of dietary intake and physical activity, or mobile app combined with
weekly coaching (Coaching). Those achieving in 12 weeks < 0.5 lb weight loss on
average per week, assessed by wireless scale at 2, 4, and 8 weeks, are classified as
non-responders and re-randomized to one of two second-stage augmentation tactics:
either modest augmentation, which consists of adding another mHealth component
in the form of supportive text messages (TXT), or vigorous augmentation, consisting
in adding supportive text messages combined with Coaching or meal replacement
(MR). Responders continue the initial treatment option, and weight is assessed for
all individuals in person at baseline, 3, 6, and 12 months, with weight change from
baseline to 6 months being the primary outcome. Because different subsequent
intervention options are considered for responders (continue) and non-responders
(modest vs. vigorous augmentation), response status is embedded as a tailoring
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Randomization
with equal
probability

Prior to the study

App

App + 
Coaching

R

First-stage intervention

Non-Response*

R

Continue: App
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Modest Augumentation: App + TXT

Vigorous Augumentation: App + TXT + Coaching

R

Continue: App + Coaching

Modest Augumentation: App + Coaching + TXT

Vigorous Augumentation: App + Coaching + TXT + MR

Response*

Non-Response*
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*Response assessed at Week 2, 4, 8

Figure 3.2. Schematic of the design of the sequential multiple assignment randomized trial
(SMART) Weight Loss Management Study (Pfammatter et al., 2019). App denotes a
mobile app, TXT a supportive text message and MR meal replacement. Response is
defined as a weight loss of at least 0.5 lb on average per week.

variable in this SMART by design. Such multistage restricted randomizations give
rise to several DTRs that are embedded in the SMART.

SMARTs are considered the gold standard for developing DTRs, and compared to
other types of randomized clinical trial designs, they offer tremendous advantages in
terms of: (i) increased validity of analyses aimed at discovering when the effect of one
intervention is enhanced by subsequent or prior interventions, (ii) increased validity
of analyses aimed at discovering useful tailoring variables, and (iii) increased ability
to reduce the impact of cohort effects (Lei et al., 2012). Moreover, when it comes to
its advantages compared to longitudinal observational studies, the discrepancy is
even higher. Indeed, in observational studies the treatments are not randomized,
and associations observed in the data (e.g., between treatment and outcome) may be
partially due to the unobserved or unknown reasons why individuals receive differing
treatments as opposed to the effects of the treatments. This adds an element of
complexity to the problem of estimation and requires careful handling and additional
assumptions for conducting causal inference. We review them in Section 3.1.1, where
the potential outcomes framework, essential for estimating DTRs, is reported.

3.1.1 Dynamic Treatment Regimes

In medical research, DTRs define a sequence of treatments individually tailored to
each patient based on baseline and time-varying (dynamic) state. In contrast with
traditional single-stage treatments in which all individuals are assigned the same level
and type of treatment, dynamic treatments explicitly incorporate the heterogeneity
in treatment across individuals and the heterogeneity in treatment across time within
an individual (Murphy, 2003), providing an attractive framework of personalized
treatments in longitudinal settings. In addition, by treating only subjects who
show a need for treatment, DTRs hold the promise of reducing non-compliance by
subjects due to overtreatment or undertreatment (Lavori & Dawson, 2000; Collins
et al., 2001), and at the same time are attractive to public policy makers, allowing
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a better allocation of public and private funds for more intensive treatment of the
needy (Murphy, 2003).

Operationally, DTRs formalize the treatment decision making as a sequence of
decision rules d = {dt}t≥0, one per stage or time of intervention t ∈ N. They dictate
how to adapt the type and/or dosage, plus the timing of treatment, according to
a patient’s evolving conditions and treatments’ history: each rule takes as input
a patient’s individual history Ht ∈Ht up to stage t and outputs a recommended
treatment At ∈ At from among the available feasible options At. Throughout this
section, we consider deterministic policies, which maps histories h directly into
actions or decisions, i.e., d(h) = a. The goal is to make these decisions so as to
lead to the most beneficial expected outcome Yt ∈ Yt for an individual patient given
history Ht ∈Ht. Assume that {Yt}t>0 are continuous variables coded so that higher
values are preferred, the goal in then to find an optimal DTR d∗ = {d∗t }t≥0 that, if
followed, yields the higher (most favourable), typically long-term mean outcome.

Methodology for constructing and evaluating optimal DTRs is of considerable
interest within the domain of precision medicine, and comprises a growing body
of research in both computer science and statistics (Chakraborty & Moodie, 2013;
Laber et al., 2014a). If from one side, DTRs problems, perfectly resembling the RL
design, attracted the attention of ML researchers, from the other side, the necessity
of quantifying causal relationships, rather than mere associations, called for the
intervention of causal inference community. Indeed, the main challenge in DTR
literature is that, since the underlying system dynamics are often unknown, inferring
the consequences of executing a policy d and understanding the causal effects is not
immediate.

Most of the current work in DTRs relies on the finite-horizon setting, and focus
on the strongly related offline learning procedures, where one tries to identify the
causal effect from finite observational data and causal assumptions about the data-
generating mechanisms. Typically, in finite-horizon problems, estimation of the
optimal DTR is obtain from these offline data, assuming we have access to the
collection of observed trajectories for all patients. We recall from Section 2 that
finite-horizon problems consider fixed length trajectories, with a terminal stage
T < ∞ known in advanced. On the contrary, in indefinite or infinite-horizon
problems, the number of stages is not a-priori specified and can be arbitrarily large
or even infinite. This is particularly relevant for some chronic conditions, or those
with very short time steps, in which patients have to be treated over the long term.
However, despite its utility, only recently it has been addressed by DTR literature.
Throughout this work I use the term “indefinite”, and not “infinite”, in line with
the finite life expectancy of an individual.

Before delving into existing RL algorithms for estimating DTRs, we provide
a taxonomy of the general RL methodologies. This will help the reader to better
understand and move within this rich domain and will also serve as a guide for
the development of the subsequent sections. Generally speaking, there are two
fundamental learning mechanisms for deriving optimal policies in RL problems:
direct and indirect methods. Direct methods seek optimal policies by directly looking
for the optimal policy that maximises an objective (typically the expected return or
value function) within a class of policies. On the contrary, indirect methods attempt,
first, to estimate a value or Q-value function, and then to determine an optimal policy
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based on the learned value function. This procedure is typically carried on through
dynamic programming (DP) or approximate dynamic programming (ADP), by solving
the Bellman equation of the value function and deriving the optimal action from it.
Besides the above direct and indirect methods, there exists also the so called actor
critic (AC) methods, which will be discussed more in depth in Section 3.1.2. AC
algorithms keep separate, explicit representations of both value functions and policies
and work on learning and improving both, providing, under certain assumptions,
a unique architecture which unifies both direct and indirect methods (Guan et al.,
2019). In computer science literature, direct and indirect methods are sometimes
referred to as model-free and model-based algorithms (Atkeson & Santamaria, 1997;
Sutton & Barto, 2018). However, more subtle classifications (e.g., Guan et al., 2019;
Sugiyama, 2015) tend to make a clearer division between the two categories in the
sense that direct/indirect are used for the learning process, while model-free/model-
based refer to the data modelling assumptions. To illustrate, in Sugiyama (2015),
model-free policy search is an equivalent of direct methods, while model-free policy
iteration belongs to indirect strategies. A graphical understanding of the main
classifications is provided in Figure 3.3. We adopt the general classification into

Policy
𝜋(A|H)

Transition Model
p(X, Y |A,H)

Experience
(X, A, Y)

Direct learning

Model-based RL

Model-free RL
Value functions
𝑄(H, A); C(H, A)

Indirect learning

Figure 3.3. An illustration of different classes of RL methods and their learning process
based on the classification in direct vs indirect learning and model-free vs model-based
approach.

direct and indirect RL methods, in line with current DTR literature (Chakraborty
& Murphy, 2014), and consider an additional subdivision into fully-parametric,
semi-parametric and non-parametric, according to whether the data trajectory is
fully-, partially- or not-parametrically modelled for estimation. Note that this
sub-classification is analogous, but not identical, to the model-based and model-free
classification, as the latter refers to a model for the entire environment (transition
and reward distributions). As I will illustrate later, both indirect and direct methods
can be parametric, but only indirect methods can be model-based.

In what follows, I review the existing techniques for estimating DTRs, starting
with a brief digression on its origins within the causal inference literature and
then focusing on the RL-based approach. Then, first the finite-horizon, which has
been the focus of most of the DTR literature so far, is covered, and eventually
the indefinite-horizon with some of the proposed on-line learning algorithms (e.g.,
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Luckett et al., 2020).

History of DTRs Estimation: from Statistics to Machine Learning

The study of DTRs, originated within causal inference, was pioneered by Robins
(1986, 1994, 1997), with the introduction of structural nested mean models (SNMMs)
and a number of estimating equation-based methods for finding optimal time-varying
treatment regimes. SNMMs, which model the difference in the mean outcomes under
different treatment regimes, rather than the full outcome model, were designed
for estimating the joint effect of a sequence of treatments in the presence of a
confounding variable (Robins, 1986). In this setting, standard regression methods,
which attempt to estimate causal effects simultaneously are inappropriate, whether
or not one adjusts for or conditions on the confounder. Over an extended period of
time, the author introduced three basic approaches for finding optimal time-varying
regimes in the presence of confounding variables: the parametric G-formula or
G-computation (Robins, 1986), structural nested models (SNMs), which include
SNMMs as a subclass, with the associated method of G-estimation (Robins, 1989,
1992, 1994), and marginal structural models (MSMs) with the associated method
of inverse probability of treatment weighting (IPTW; Robins, 2000)). In spite of
advantages and strong connections with popular estimation methods, SNMMs and G-
estimation have not become as popular as MSMs and IPTW methods. A discussion
on the possible reasons, with an accurate overview of the models and estimation
methods as developed by Robins, can be found in Vansteelandt et al. (2014), who
use the appellative “partially realized promise” referring to SNMs and G-estimation.

A number of methods have then been proposed within statistics, including
frequentist and Bayesian likelihood-based approaches (Thall et al., 2000, 2002, 2007),
or methods based on multiple imputation for estimating and comparing all potential
outcomes (Lavori & Dawson, 2000). However, all these methods first, infer the
data-generation process via a series of parametric conditional models, then estimate
the optimal DTRs based on the inferred data distributions. These approaches can
easily suffer from model misspecification due to the inherent difficulty of modeling
accumulative time-dependent and high-dimensional information in the models (Zhao
et al., 2015). The first semi-parametric method for estimating the optimal DTR was
proposed by Murphy (2003), immediately followed by Robins (2004), who introduced
two alternative approaches based on G-estimation and SNMMs, which generalize the
approach of Murphy (2003) (Moodie et al., 2007). These methods use approximate
dynamic programming, where “approximate” refers to the use of an approximation of
the value or Q-function, to estimate the optimal DTR. Thus, they can be considered
as the first prototypes of RL-based approaches in the DTR literature.

Machine learning methods represent an alternative approach to estimating DTRs
that have gained popularity due in part to their avoidance of having to completely
model the underlying generative distribution. The main bridge connecting statistics
and RL, previously confined to the computer science and control theory literature,
was provided by the work of Murphy (2005b), who adapted Q-learning (Watkins,
1989; Sutton & Barto, 2018) to DTRs estimation, and derived an upper bound on its
generalization error. It is based on ADP, and has been evaluated with parametric,
semi-parametric, and non-parametric strategies (Murphy, 2005b; Chakraborty &
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Moodie, 2013; Chakraborty & Murphy, 2014; Laber et al., 2014b) for modelling the
conditional mean outcome, i.e, the Q-function introduced in (2.6). Q-learning and
the semi-parametric techniques of Murphy (2003) and Robins (2004) are indirect
methods: optimal DTRs are obtained by indirectly modelling and estimating optimal
value functions with ADP. On the contrary, IPTW-based techniques (Robins, 2000;
Murphy et al., 2001; Wang et al., 2012), belong to direct methods, as they avoid the
need for postulating a (conditional) outcome model (Zhao et al., 2012).

An overview of the existing methods is provided in Figure 3.4. They are classified
based on the main taxonomy adopted in this paper, i.e., direct vs indirect RL methods,
and the nature of the assumed model for the data trajectory (fully-parametric, semi-
parametric and non-parametric). Before going into these algorithms, it is essential
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Atan et al, 2018)

Ø Q-learning with SVR & ERT (Zhao et al, 2009)

Ø Bayesian Machine Learning (Murray et al, 2018)
Ø G-computation / G-formula (Robins, 1986)

Ø A-learning with function approximation (Blatt et al, 2004)
Ø Regret-based A-learning / IMOR (Murphy, 2003)
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Figure 3.4. Schematic overview of RL-based techniques for estimating optimal DTRs.
Methods are primarily classified according to the taxonomy we adopt in this manuscript,
i.e., indirect (optimal policy is obtained by solving the Bellman equation, DP or ADP)
vs direct (optimal policy is obtained by directly maximizing an objective function).
Then an addition diversification is based on the parametric vs non-parametric nature
of the likelihood: when the latter or parts of it are modelled by a parametric model,
they are said to be parametric. Underlined methods refer to algorithms proposed in
indefinite-horizon problems.

to mention that, in order to allow the quantification of treatment effects in DTRs
and construct estimands of interest, Neyman (1923) and later Rubin (1974) laid the
foundations of the so called potential outcomes or counterfactual framework, which,
with the extension of (Robins, 1986) in both observational and randomized studies,
represents the pillar of modern causal inference.

Potential Outcomes Framework

By far, the most popular approach to mathematically defining a causal effect is
based on potential outcomes, or counterfactuals. With potential outcomes we refer to
the set of all possible values of a status or outcome variable that would be achieved,
if perhaps contrary to fact, the patient had been assigned to different treatments. In
a simple one-stage RCT in which subjects can receive either treatments a and a′, the
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set of (unobserved) potential outcomes for an individual with baseline information
X0, is given by

(
Xa

1 , Y
a

1 , X
a′
1 , Y

a′
1

)
, with Y a

1
.= Y1(X0, a,X

a
1 ).

In order to define what we mean by a causal effect, for each individual (or subject,
or unit) we assume the existence of the potential outcomes, Y a

1 , Y
a′

1 , corresponding
to what value the outcome would take if we did assign a or a′, respectively. Then,
to calculate the causal effect on a given individual we would need to somehow to
compute the so called individual-level causal parameter given by Y a

1 − Y a′
1 . However,

since we cannot observe all the potential outcomes on the same patient, typically
population-level causal parameter (e.g., E[Y a

1 ]− E[Y a′
1 ]) are considered instead. In

order to connect the potential outcomes with observed data, ensuring Ê[Y1|A = a]
is an unbiased estimate of E[Y a

1 ], the following assumptions about the assignment
mechanism must hold.

1. Stable unit treatment value assumption (SUTVA), which assumes that each
participant’s potential outcome is not influenced by the treatment applied to
other participants (Rubin, 1978, 1980). This assumption connects the potential
outcomes to the observed data such that, for each t, Xat

t+1 = Xt+1(at)
.= Xt+1

and Y at
t+1 = Yt+1(at)

.= Yt+1, when regime at is actually followed. This
agreement between potential outcomes under the observed treatment and the
observed data is known as axiom of consistency.

2. No unmeasured confounders (NUC), which states that conditional on the
patient’s history Ht up to time t, the treatment assignment At at time t is
independent of future potential outcomes of the individual (Robins, 1997).
That is, for any possible regime a,

At ⊥
(
Xat
t+1, Y

at
t+1, X

at+1
t+2 , Y

at+1
t+1 , . . .

)
|Ht, ∀t ∈ N.

This assumption always holds under either complete or sequential random-
ization, including SMART designs, but must be evaluated on subject matter
grounds in observational studies.

3. Positivity, which defines the set of feasible regimes so that for every covariate-
treatment history up to time t that has a positive probability of being observed,
there must be a positive probability that the corresponding treatment dictated
by the treatment regime will be observed (Robins, 1994). Formally, if we
denote with π the probability distribution of actions given the history, a
feasible regime d(h) = a satisfies

πt(dt(Ht)|Ht = ht) > 0, ∀ht ∈Ht, ∀t ∈ N. (3.1)

That is, feasibility requires some subjects to follow regime d to guarantee
non-parametric estimation of its performance.
Please note that notation “π” is not arbitrary, it perfectly translates the notion
of “exploration policy” introduced in Section 2 meant for the action process
generation, and in a case of a randomized trial it consists of the randomization
probabilities.
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Under the consistency, sequential randomization and positivity assumptions,
the conditional distributions of the observed data are the same as the conditional
distributions of the potential outcomes. It follows that an optimal treatment regime
may be obtained using the observed data.

RL Methods for Finite-Horizons Problems

Most of the existing methods in the DTRs literature, including those presented
in Section 3.1.1, fall in the finite-horizon setting, as they are designed to optimize
a utility function over a fixed period of time, say T . More specifically, given a
finite-horizon trajectory T .= {(X0, A0, Y1, . . . , XT , AT , YT+1)}, with X0 some pre-
treatment information, X1, . . . , XT the evolving information, A0, . . . , AT the assigned
treatments, and Y1, . . . , YT the intermediate and the final (YT+1) outcomes, a sample
(or batch) of N finite-horizon available patients’ trajectories, each of the above form,
are used for estimating an optimal DTR, which we denote with d∗ = {d∗t }t≥0. The
problem conforms to what is known as batch-mode RL in computer science.

Indirect methods

With indirect methods we refer to a class of methods that focus on estimating
an optimal objective function (typically, an expectation of the outcome variable
such as the Q-function), and then get the associated policy, rather that directly
looking for an optimal policy (see Figure 3.3). For learning and estimating the
optimal value at each stage t, indirect RL methods are mainly based on iterative
methods such as DP and ADP. These include Q-learning Murphy (2005b), where the
conditional mean outcome is modelled, and other approaches, which we generally
term Advantage-learning (A-learning), which model contrasts of conditional mean
outcomes. The latter has as examples the SNMMs with the G-estimation proposal
of Robins (2004). and with the iterative minimization of regrets (IMOR) of Murphy
(2003). We discuss them later in this section. To provide the reader with a unified
overview, making at the same time a clear distinction between the two different
procedures (even if based on an equivalent model formulation), we will consider the
terms Contrast-based A-learning and Regret-based A-learning, to refer to Robins’s
and Murphy’s works, respectively. This is done in line with the work of Schulte et al.
(2014), which will be taken as a guide for discussing more in depth A-learning and
compare it with the widely used technique of Q-learning.

Traditional statistical likelihood-based methods (Thall et al., 2000, 2002), in-
cluding the parametric G-computation (Robins, 1986) and Bayesian methods (Thall
et al., 2007), also fall into this category. We point to Tsiatis et al. (2019) and
Vansteelandt et al. (2014) for readers interested in these traditional approaches.

Q-learning with function approximation. In Section 2 we introduced the main
quantities of interest in RL problems, i.e., the value functions (see 2.5 and 2.6), and
we showed that a powerful property of value functions used throughout RL, is that
they satisfy particular recursive relationships between the value of a state and the
values of its successor states, as reported in equation (2.10). This property is of
fundamental importance, as it allows computation of optimal state-values V ∗t (ht)
and Q-functions Q∗t (ht, at) at any time t, by solving the Bellman optimality equation
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of DP (Bellman, 1957), also known as backward induction in finite-horizon problems.
Specifically for the Q-function, given a model of the environment’s dynamics, at any
time t, for all at ∈ At and ht ∈Ht, with discrete state and action spaces, we recall
that an optimal Q-function Q∗t (ht, at) could be obtained as:

Q∗t (ht, at) = E
[
Yt+1 + γ max

at∈At
Q∗t (ht, at) | Ht = ht, At = at

]
.

However, the task is typically impossible to achieve due to unknown transition
probability distributions (in DP we need an underlying model for the environment),
memory and computations constraints related to the iterative procedure. RL algo-
rithms that do not need an underlying model are known as temporal-difference (TD)
learning and they constitute the core of modern RL, with Q-learning (Watkins, 1989)
representing one of the most popular (off-policy) TD approaches. One fundamental
component of TD-learning is the incremental implementation, which requires less
memory for estimates and less computation. The general idea is that, for each time
step t ∈ [0, T ], a new estimate is obtained based in part on an old previously learned
estimate:

Qt(ht, at)← Qt(ht, at) + αt

[
Yt+1 + γ max

at+1∈At+1
Qt+1(ht+1, at+1)−Qt(ht.at)

]
.

The constant αt determines to what extent the newly acquired information will
override the old information, that is, how fast learning takes place: a factor of 0 will
make the learner not learn anything, while a factor of 1 would make the learner fully
update based on the most recent information. The discount factor γ, introduced
in Section 2, balances a learner’s immediate rewards and future rewards, and in a
finite horizon problem is generally set to one.

Under some appropriate and rigorous assumptions, Qt has been shown to converge
to the optimal Q-function Q∗t with probability 1 (Watkins, 1989; Jaakkola et al.,
1994; Tsitsiklis, 1994). However, this simple approach is practical in a small number
of problems because it can require many thousands of training iterations to converge
in even modest-sized problems. In addition, it represents value functions in arrays,
or tables, based on each state and action. Thus, large state spaces will lead not
just to memory issues for large tables, but also to time problems needed to fill
them accurately. A powerful, scalable way of generalizing this tabular Q-learning
and to overcome the computational burden, involves function approximation (FA).
We call this approach Q-learning with function approximation. The main idea of
Q-learning with FA is first, to estimate the Q-function using an approximator,
e.g., regression models, neural networks or decision-trees, and then to derive the
estimated policy based on the estimated Q-function. More specifically, we start
by assuming an approximation space for each of the t-th Q-functions, e.g., Qt

.=
{Qt(ht, at; θt) : θt ∈ Θt}, with parameter space Θt being a subset of the Euclidean
space. According to the results shown in Section 2, estimating an optimal stage t
policy is equivalent to estimate an optimal Q-function, or in this case, an optimal
parameter θ̂t, i.e.,

d̂∗t (ht) = arg max
at∈At

Q̂∗t (ht, at)
.= arg max

at∈At
Q∗t (ht, at; θ̂t)

.= d∗t (ht; θ̂t)), ∀t ∈ [0, T ].
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Then, according to Bellman optimality, we estimate an optimal regime
d̂∗ = (d∗0(x0; θ̂0), d∗1(h1; θ̂1), . . . , d∗T (hT; θ̂T )) by recursively estimating Q∗t backwards
through time t = T, T − 1, . . . , 0 (Bather, 2000). Formally, defined Q∗T+1

.= 0, we
proceed as follows:

Q∗T (hT, aT ; θ̂T ) .= Ê[YT+1|HT = hT, AT = aT ] (3.2)
d∗T (hT; θ̂T )) = arg max

aT∈AT
Q∗T (hT, aT ; θ̂T )

Q∗T−1(hT−1, aT−1; θ̂T−1) .= Ê[YT + max
aT∈AT

Q∗T (hT, aT ; θ̂T )|HT−1 = hT−1, AT−1 = aT−1]

d∗t−1(ht−1; θ̂t−1)) = arg max
aT−1∈AT−1

Q∗T−1(hT−1, aT−1; θ̂T−1)

. . .

Q∗0(x0, a0; θ̂0) .= Ê[Y1 + max
a1∈A1

Q∗1(h1, a1; θ̂1)|X0 = x0, A0 = a0]

d∗0(x0; θ̂0)) = arg max
a0∈A0

Q∗0(x0, a0; θ̂0).

We sometimes refer to this procedure as batch Q-learning, as learning occurs only
after the collection of a set of N trajectories. The procedure, with a generic FA, is
illustrated in Algorithm 1.

Algorithm 1: Q-learning with Function Approximation (Murphy, 2005b)
Input: Time horizon T , action and state spaces A, X , approximation space

for the Q-functions Qt
.= {Qt(ht, at; θt) : θt ∈ Θt}, for all

t = 0, . . . , T .
Initialization: Stage T + 1 optimal Q-function, for convenience it is
typically set to
Q∗T+1(hT+1, aT+1; θ̂T+1) = Ê[YT+1|HT = hT, AT = aT ] = 0.

for t = 0, 1, 2, . . . T do
Q-function parameters’ estimate: get updated estimates θ̂T−t
backwards by minimizing a loss, e.g., MSE, (PN is the empirical mean
over N trajectories)

θ̂T−t ∈ arg min
θT−t∈ΘT−t

PN [YT−t+1 + max
aT−t+1∈AT−t+1

Q∗T−t+1(hT−t+1, aT−t+1; θ̂T−t+1)

−Q∗T−t(hT−t, aT−t; θT−t)]2. (3.3)

Optimal policy estimate: get the (T − t)-time optimal regime
estimate as the one that maximises the optimal (T − t)-time Q-function
estimate

d∗T−t(hT−t; θ̂T−t) = arg max
aT−t∈AT−t

Q∗T−t(hT−t, aT−t; θ̂T−t) (3.4)

end for

Several Q-learning function approximators have been proposed in literature,
including linear regression, decision-trees or neural networks. As Q-functions are
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conditional expectations, the first natural approach to model them is through
regression models. Letting θt

.= (βt, ψt), Chakraborty & Moodie (2013) proposed
stage specific optimal Q-functions to be parametrized as

Q∗t (Ht, At;βt, ψt) = βTt Ht0 + (ψTt Ht1)At, t ∈ [0, T ], (3.5)

where Ht0 and Ht1 are two (possibly different) vector summaries of the his-
tory Ht, with Ht0 denoting the “main effect of history” and Ht1 denoting the
“treatment effect of history”. The collections of variables Ht0 are often termed
predictive, while Ht1 are said prescriptive or tailoring variables. Parameters
θ̂t

.= (β̂t, ψ̂t) are obtained by solving suitable estimating equations such as or-
dinary least squares (OLS) or weighted least squares (WLS). Given a sample{
X0i, A0i, Y1i, . . . , XT i, AT i, Y(T+1)i, X(T+1)i

}N
i=1

of i.i.d. trajectories, WLS (whose
choice might be dictated by heteroschedastic errors), will estimate θ̂t by solving

0 =
N∑
i=1

∂Q∗t (Hti, Ati; θt)
∂θt

Σ−1
t (Hti, Ati)

× [Y(t+1)i + max
a(t+1)i∈A(t+1)i

Q∗t+1(H(t+1)i, a(t+1)i; θ̂t+1)−Q∗t (Hti, Ati; θt)],

where Σt is a working variance model. Taking Σt to be a constant yields the OLS
estimator. Now, substituting {θ̂t}t∈[0,T ]

.= {β̂t, ψ̂t}t∈[0,T ] in the process (3.2) yields
an estimator for the optimal treatment regime as follows

d̂∗ = (d∗0(x0; θ̂0), d∗1(h1; θ̂1), . . . , d∗T (hT; θ̂T )).

As noticed first by Robins (2004) for G-estimation, and then by Chakraborty et al.
(2010) for Q-learning, the treatment effect parameters at any stage prior to the last,
can be non-regular under certain longitudinal distributions of the data. Q-learning,
for instance, involves modeling non-smooth, non-monotone functions of the data,
which complicates both regression function and inference. Particularly, with (3.5) as
model for the Q-functions, ψ̂t is a non-regular estimator, and inferential problems
arise when ψ̂Tt Ht1 is close to zero, as non-differentiable in that point. To solve
this issue, Chakraborty et al. (2010), adapting previous work in the context of G-
estimation (Moodie & Richardson, 2010), proposed two alternative ways of shrinking
or thresholding values of ψ̂Tt Ht1 near zero. In a similar spirit, Song et al. (2015);
Goldberg et al. (2013) proposed minimizing a penalized version of the objective in
the first step of Q-learning, where the penalty is given by a function pλ(|ψTt Ht1|)
with tuning parameter λ, while Fan et al. (2019) introduced the smoothed Q-
learning dictated by the use of a modified version of ψ̂Tt Ht1 in (3.5), given by(
ψ̂Tt Ht1

)
Kα(ψ̂Tt Ht1). Here, Kα(x) .= K(x/α), with α > 0 a smoothing parameter

and K(·) a kernel function that admits a probability density function. Another
proposal for conducting inference for the estimated Q-function parameters arised
in Chakraborty et al. (2013), where a general method for bootstrapping under
non-regularity, i.e., m-out-of-n bootstrap was presented. Subsequently, Laber et al.
(2014b) derived a new interactive Q-learning method, where the maximization step
is delayed, by adding an additional step between (3.3) and (3.4). This enables all
modeling to be performed before the non-smooth, non-monotone transformation.
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In addition to the challenges in development of statistical inference, it is impor-
tant to recognize that the estimated regime d̂∗ may not be a consistent estimator
for the true optimal regime d∗, unless all the models for the Q-functions are cor-
rectly specified (Schulte et al., 2014). The model in (3.5), for example, is quite
simple due to its linearity, thus prone to misspecification. In order to address
this problem, several FA alternatives have been proposed. Zhao et al. (2009), for
instance, discussed and evaluated through simulations the potential of Q-learning
with functions approximated by support vector regression (SVR) and extremely
randomized trees (ERTs), techiques adopted from the ML literature. In SVR, the
input data xi

.= {xit, ait}t=0,...,T , for i = 1, . . . , N , are mapped into a feature space
by a non-linear transformation Φ, which guarantees that any data set becomes
arbitrarily separable as the data dimension grows (Vapnik et al., 1997). Then a
hyperplane f(xi), equivalent to the Q-function, is fitted to the mapped data, i.e.,
f(xi,ai) = wTΦ(xi,ai) + b. The goal of SVR is to find a function that deviates from
the labels {yit}t=0,...,T by a value no greater than ε for each training point; it thus
solves an optimization problem of the form:

min
w,b,ξ,ξ′

1
2 ||w||

2 + C
N∑
i=1

(ξi + ξ′i),

subject to (wTΦ(xi,ai) + b)− yi ≤ ε+ ξi,

yi − (wTΦ(xi,ai) + b) ≤ ε+ ξ′i,

ξi, ξ
′
i ≥ 0, i = 1, . . . , N.

As such function may not exist for all i = 1, . . . , N , the slack variables ξ, ξ′ are
introduced for each point allowing for a “soft margin”, and C defines the penalty
imposed on observations that lie outside the ε margin. Compared to a Q-learning
with linear FA, SVR and ERTs (the complete procedure with a pseudo-code is
given in the Appendix of Geurts et al., 2006) proposed by Zhao et al. (2009) are
capable of obtaining promising results without much computational burden even in
a high-dimensional data set.

As an alternative FA strategy, deep neural networks (DNNs; Liu et al., 2017;
Raghu et al., 2017b,a; Atan et al., 2018) has been also considered. We cover DNNs
later in this section. Now we describe a completely different approach that may
offer robustness to such Q-function misspecification and involves advantage functions
rather that Q-functions.

A-learning with function approximation. A-learning (Robins, 2004; Murphy,
2003; Blatt et al., 2004), where “A” stands for the “advantage” in response incurred
if the optimal treatment were given relative to that actually received, is a general
term used to describe a class of alternative RL methods to Q-learning, predicated on
the fact that the entire Q-function needs not to be specified to estimate the optimal
regime. Models can be posited only for parts of the expectation involving contrasts
among treatments, as opposed to modeling the conditional expectation itself as in
Q-learning. Recalling that d∗ .= {d∗t }t=0,...,T denotes the optimal DTR, and denoting
with d∗t

.= {d∗τ}τ=t,...,T the optimal regimen from t onwards, dref .= {dref
t }t=0,...,T

a regimen of reference we want to make comparisons with, and with 0 the “zero-
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treatment” (standard or placebo), popular contrast examples include:

g

(
E[Y at−1,at,d∗t+1

t+1 |Ht = ht]
)
− g

(
E[Y at−1,dref

t ,d∗t+1
t+1 |Ht = ht]

)
, (3.6)

g

(
E[Y at−1,at,d∗t+1

t+1 |Ht = ht]
)
− g

(
E[Y at−1,0,d∗t+1

t+1 |Ht = ht]
)
, (3.7)

g

(
E[Y at−1,at,d∗t+1

t+1 |Ht = ht]
)
− g

(
E[Y at−1,d∗t ,d

∗
t+1

t+1 |Ht = ht]
)
, (3.8)

where g(·) is a known link function, typically taken to be the identity link. Optimal
blip-to-reference in (3.6) and optimal blip-to-zero in (3.7) evaluate removal of an
amount (“blip”) of treatment at stage t on the subsequent average outcome, when
optimal treatment regime d∗t+1 is followed from t+1 onwards: “blips” are represented
by the treatment of reference dref

t and the “zero-treatment”, respectively. The regret
function in (3.8) evaluates the increase in the benefit-to-go that we forego by making
decision at rather than the optimal decision d∗t at time t.

While Robins (2004) advocates optimal blip functions and Murphy (2003) regrets,
one can notice that they are mathematically equivalent (Moodie et al., 2007). In
addition, they both proposed to use SNMMs for modelling the contrasts. Indeed,
SNMMs represent popular models for parameterizing the conditional intermediate
causal effects, that is the difference between the conditional expectation of an outcome
in the observed data and the conditional expectation of an outcome under some
potential outcome scenario. For instance, considering the optimal blip-to-reference
function, at each t = 0, 1, . . . , T , Robins (2004) proposed to generally model the
causal effect as

g(Ed
[
Y

at−1,at,d∗t+1
t+1 |Ht = ht

]
)− g(Ed

[
Y

at−1,dref
t ,d∗t+1

t+1 |Ht = ht

]
) = γt(ht, at;ψt),

where g(·) is the link function and γt(ht, at;ψt) is a known (T − t+ 1)-dimensional
function, smooth in ψt. For all ht, at, the parameterization requires γt(ht, 0;ψt) = 0,
and typically, is chosen to be such that γt(ht, at; 0) = 0, so that ψt = 0 encodes the
null hypothesis of no treatment effect. However, it is important to note that, while
the model formulation is equivalent, the estimation technique differs. In Robins
(2004), an optimal DTR, under some assumptions (see e.g., Chakraborty & Moodie,
2013), is estimated through backward recursive G-estimation; in Murphy (2003) a
technique known as iterative minimization of regrets (IMOR) is proposed.

To provide the reader with a unified overview, making at the same time a
clear distinction between the two different procedures, we will consider the terms
contrast-based A-learning and regret-based A-learning to refer to Robins (2004)’s
and to Murphy (2003)’s works, respectively. This is done in line with the work of
Schulte et al. (2014), which will be taken as a guide for discussing more in depth
A-learning and compare it with the widely used technique of Q-learning.

Contrast-based A-learning - We define the optimal contrast- or C-function
C∗t (Ht, At) at time t, as the expected difference in potential outcomes when using a
reference regime dref

t instead of at at time t, and subsequently receive the optimal
regime d∗t+1

.= {d∗τ}τ=t+1,...,T . It is basically the optimal blip-to-reference given in
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(3.6) with g the identity function, and it can also be expressed as a function of the
optimal Q-functions as follows

C∗t (Ht, At)
.= E(Y (At−1, At,d∗t+1)− Y (At−1, d

ref
t ,d∗t+1)|Ht)

= Q∗t (Ht, At)−Q∗t (Ht, At = dref
t ), ∀t ∈ [0, T ].

For simplicity, we consider here only the case of two treatment options coded as 0
and 1, i.e., At = {0, 1} for all t ∈ [0, T ], and we let the standard or placebo “zero-
treatment” to be the reference treatment, i.e., dref

t = 0, leading to an equivalence
between (3.6) and (3.7). To determine an optimal DTR, we begin by defining an
approximation space for the contrast functions, e.g., Ct

.= {Ct(ht, at;ψt) : ψt ∈ Ψt},
with ψ ∈ Ψt, a subset of the Euclidean space. Then, in a backward fashion, starting
from t = T , and denoting the propensity of receiving treatment AT = 1 in the
observed data with πT (AT |hT) = P(AT = 1|HT = hT), we obtain a consistent and
asymptotically normal estimator for ψT by G-estimation (Robins, 2004), i.e., by
solving estimating equations of the form:

0 =
N∑
i=1

λT (HTi, AT i)[AT i − πT (AT i|HTi)]

× [Y(T+1)i −AT iC∗T (Hti, AT i;ψT )− θ(HTi, AT i)], (3.9)

for arbitrary functions λT (HT, AT i) of the same dimension as ψT and arbitrary
functions θT (HT, AT i). To implement estimation of ψT via (3.9), one may adopt
parametric models for all the unknown functions, including πT (AT i|HTi) if random-
ization probabilities are not known, i.e., in observational studies. Under certain
conditions, Schulte et al. (2014) report that an optimal choice for λT (HTi, AT i;ψT )
is given by ∂/∂ψTC∗T (Hti, AT i;ψT ). Once we get estimates ψ̂T , the contrast based
A-learning algorithm iteratively proceeds by estimating ψ̂T−1, ψ̂T−2, . . . , ψ̂0. Finally,
in this two treatment setting, the optimal DTRs is given by the one which positives
the C-function, i.e.,

d̂∗t (Ht) = d∗t (Ht; ψ̂t) = I(C∗t (Ht, At; ψ̂t) > 0), ∀t ∈ [0, T ].

Notice that, as the additional models specified in (3.9) are only adjuncts to estimating
ψT , as long as at least one of these models is correctly specified, (3.9) will provide a
consistent estimator for ψT (this property is called double robustness property). In
contrast, Q-learning requires correct specification of all Q-functions. An intermediate
approach between G-estimation and Q-learning, which affords double-robustness
to model misspecification and requires less computational skills compared to the
former, was later introduced by Wallace & Moodie (2015) as the dynamic weighted
ordinary least squares (dWOLS).

Regret based A-learning - Rather than modelling a contrast defined as the ex-
pected difference in outcome when using a reference regime dref

t instead of at at
time t, Murphy (2003) and Blatt et al. (2004) proposed to model a regret func-
tion similar to the one introduced in (3.8). Denoting it by µ∗t , it is defined as
µ∗t (Ht, At)

.= E(Y (At−1, At,d∗t+1)− Y (At−1, d
∗
t ,d∗t+1)|Ht), for t ∈ [0, T ]. Here the

“advantage”/regret, is the gain/loss in performance obtained by following action At at
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time t and thereafter the optimal regime d∗t+1 as compared to following the optimal
policy d∗t from time t on. Again, to estimate the optimal treatment regime, we model
the regrets by defining an approximation space for the t-th advantage µ-function,
e.g. Mt

.= {µt(ht, at;ψt) : ψt ∈ Ψt}, with ψ ∈ Ψt, a subset of the Euclidean space.
As with Q-learning and in contrast-based A-learning, we use ADP and permit the
estimator to have different parameters for each time t, but in this case an alternative
estimation strategy, known as IMOR, was proposed Murphy (2003). It is based on
simultaneously estimating the regret model parameter ψ plus a c parameter used
for improving the stability of the algorithm, by searching for (ψ̂, ĉ) that satisfy

T∑
t=0

PN

[
Y + ĉ+

T∑
τ=0

µτ (Hτ , Aτ ; ψ̂)−
∑
a

µt(Ht, a; ψ̂)πt(a|Ht; α̂)
]2

≤
T∑
t=0

PN
[
Y + c+

∑
τ 6=t

µτ (Hτ , Aτ ; ψ̂) + µt(Ht, At;ψ)

∑
a

µt(Ht, a;ψ)πt(a|Ht;α)
]2
,

for all ψ and c, with PN denoting the empirical mean of a sample of N patients. This
technique iteratively searchs a solution until convergence. We point to the original
work of Murphy (2003) for readers interested in this technique and its relationship
with G-estimation.

Q-learning and A-learning are probably the two most widely used approaches
for optimal DTRs estimation. They have been extensively studied and discussed in
literature, and I want to report here some of the considerations and results related
to the study of the trade-offs between the two off-line RL-based techniques.

First, Chakraborty et al. (2010) showed how, under some sufficient conditions,
Q-learning with linear models is algebraically equivalent to an inefficient version
of G-estimation with regret functions. The reasoning is based on the following
relationship between the contrast and Q-functions:

µ∗t (Ht, At)
.= E(Y (At−1, At,d∗t+1)− Y (At−1, d

∗
t ,d∗t+1)|Ht) =

= Q∗t (Ht, At)− max
at∈At

Q∗t (Ht, At), ∀t ∈ [0, T ].

Second, Schulte et al. (2014) evaluated through MC simulations their finite
sample performance in different scenarios, aiming at identifying regions in which
one method is superior to the other, and provided a detailed and self-contained
comparison of A-learning and Q-learning. In a two-stages (T = 1) experiment with
two treatment options, they found that when all models were correctly specified,
Q-learning was markedly more efficient (nearly twice) in estimating the second stage
(t = 1) parameters, but only modestly so for first stage (t = 0) parameters. Q-learning
was also more efficient than A-learning when the propensity model was misspecified.
However, if the Q-function was misspecified, there were values of the parameters
for which gains in efficiency exhibited by Q-learning were clearly outweighed by
the bias incurred, making A-learning preferable in terms of mean squared error.
Finally, with both propensity model and Q-learning models misspecified there was
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no general trend in efficiency of estimation across parameters that might recommend
one method over the other.

Finally, Moodie et al. (2007) also discussed the relationship between the different
proposed strategies, focusing on the similarities between IMOR and G-estimation.
They show how the IMOR optimization technique of Murphy (2003) is a special
case of G-estimation (Robins, 2004) under the null hypothesis of no treatment effect,
and modeling by a constant.

Deep Reinforcement Learning. The tremendous success achieved in recent years
by RL in many complex domains has been largely enabled by the use of advanced
FA techniques in combination with large-scale data generation, particularly from
self-play games (Jonsson, 2019). As seen for Q-learning, in most realistic settings,
when the state space X is too large, it is common to parameterize the Q-function
(or the value function or the policy itself) on some parameter vector θ. The value
in a state is then completely determined by the current parameters estimates, and
the update rules for RL algorithms are modified such that they no longer update
the values of states directly, but rather the parameters in θ. In large part, the great
success achieved by RL in intelligent game playing, e.g., AlphaGo (Silver et al., 2017)
or Atari (Mnih et al., 2015), has been made possible by powerful FA methods in the
form of deep neural networks (DNNs).

Combining RL and DNNs for approximating these quantities gives rise to deep
RL (DRL), which includes deep Q-network (DQN), or deep Q-learning, as an example.
In a DQN, a DNN (e.g., feed-forward, recurrent, convolutional; see Goodfellow et al.,
2016, for an overview of existing architectures) is used to approximate the Q-function.
More specifically, at each time t, a DNN is used to fit a model for the Q-function in
a supervised way: states and actions {(Ht,i, At,i)}i=1,...,N are given as input, and the
Q-values of all possible actions are generated as output {Qt(Ht,i, At,i; Ŵ, b̂)}i=1,...,N ,
leading to a labelled set of data D = {(Ht,i, At,i), Qt(Ht,i, At,i; Ŵ, b̂)}i=1,...,N . W
and b represent the unknown weight and bias parameters of the DNN, respectively.
Figure 3.5 shows a schematic of a feed-forward neural network (FFNN) used within
RL. It is characterized by a set of neurons, structured in layers: the input layer,
the output layer and the hidden intermediate layers. Each neuron processes the
information forward from one layer to the next one through a pre-specified activation
function depending on the unknown parameters. Collected data D is stored and
continuously updated by the user in memory for updating Q-function parameters’
estimates. Next action is determined by an exploration scheme (typically ε-greedy)
which probabilistically chooses between the action with the highest Q-value as in
Algorithm 1 and a random action. For updating the Q-network, we minimize a loss
function, generally the MSE between our target Q-value and our current Q-output,
and this is efficiently done by a technique known as back-propagation or stochastic
gradient descent (LeCun et al., 1998; Goodfellow et al., 2016).

Within the DTR literature, DRL implementations for estimating optimal regimes,
have been proposed in Liu et al. (2017) and Raghu et al. (2017b), for the graft-versus-
host disease after transplantation and sepsis treatment, respectively. Both works
use observational medical data and are build on the DQN developed in Mnih et al.
(2015), for which an illustration is available in Algorithm 2. More recently, Atan et al.
(2018) proposed a more sophisticated approach for constructing effective treatment
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Figure 3.5. Representation of a feed-forward neural network with four layers used within
RL. In the first (input) layer, we introduce our input data, covariates X1t, . . . , Xpt and
treatment At at time t, which are non-linearly transformed according to their weights
W (1) and a bias parameter b(1) through the neurons of the first hidden layer. In a
deep setting, many hidden layers may process the information, this is what make deep
learning different from a simple neural network. The final (output) layer, generates
the predicted outcome value (reward) Ŷ W,b

t+1 (Xt, At), with W and b representing the
parameters of the deep neural network.

policies when the observed data is biased and lacks counterfactual information. Their
approach separates the problem into two stages: first the bias is reduced by learning
a representation map using an auto-encoder architecture for a DNN, then a FFNN
is used on the transformed data to estimate an optimal DTR.

DNNs allow for model flexibility and process features without the need of domain
knowledge, being particularly suitable for real-life complexity, high dimensionality,
and adaptivity. Compared to their shallow counterpart, they are more capable of
automatic feature representation and capturing complicated relationships. However,
one general limitation of indirect methods such as Q- and A-learning, independently
on the FA, is that the optimal DTRs are estimated in a two-step procedure: one
estimates either the Q-functions or the contrast/regret functions using the data;
then these functions are either maximized or minimized to infer the optimal DTR.
In the presence of high-dimensional information, even with flexible non-parametric
techniques such as SVR and DL, it is possible that these conditional functions
are poorly fitted, and thus the derived DTR may be far from optimal. Moreover,
this approach may not necessarily result in maximal long-term clinical benefit, as
demonstrated by Zhao et al. (2012) who shifted to parameterize and estimate the
treatment rule directly.

Bayesian approaches. Many Bayesian methods have been used in practice to
identify optimal DTRs (Thall et al., 2007; Arjas & Saarela, 2010; Zajonc, 2012; Xu
et al., 2016). However, they are likelihood-based methods, requiring thus a joint
estimation of data trajectory, and then either apply DP or a full numerical search of
the action space to identify the optimal DTR. In order to bridge the gap between
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Algorithm 2: Deep Q-Network (Mnih et al., 2015; Liu et al., 2017)
Input: Pre-processing real data profiles {(H0,i, A0,i), Y (H0,i, Ai)}i=1,...,N ;

ε > 0; γ > 0.
Initialization: Experience memory
D0 = {(H0,i, A0,i), Q0(H0,i, A0,i; W0,b0)}i=1,...,N with
{Q0(H0,i, A0,i; W0,b0)}i=1,...,N based on random parameters (W0,b0).

Train a DNN with labelled data D0 and get estimates (Ŵ0, b̂0)
for t = 0, 1, 2, . . . T do

ε-Greedy step: select a random action at with probability ε;
otherwise at = arg maxa∈AQt(Ht, a; Ŵt, b̂t);
Execute at in emulator and observe state transition Xt+1 and reward
Yt+1(Ht, at);

Update the experience memory data: Dt+1 = (Dt, Yt+1, Xt+1);
Q-learning Update: update Q-function

Qt(Ht, at) = Yt+1(Ht, at) + γmax
a

Qt+1(Ht+1, a)

DNN Update: get updated estimates (Ŵt+1, b̂t+1) with SGD for
minimizing the expected loss

(
Qt(Ht, at)−Qt(Ht, a; Ŵt, b̂t)

)2 based on
the Q-learning update.

end for

Bayesian inference and existing RL-based DTRs approaches, Murray et al. (2018)
first proposed the so called Bayesian Machine Learning (BML), which allows both
for patient’s preferences and physician’s expert knowledge to be incorporated in the
model, and the flexibility of novel ADP approach. The BML proposal fits a series
of Bayesian regression models (authors recommend using Bayesian non-parametric
regression models), one for each stage, in reverse sequential order. One distinguishing
feature of BML is that it treats the counterfactual response variables as missing
values, and multiply imputes them from their posterior predictive distribution, which
is derived from the previously fitted regression models. A detailed presentation of
Bayesian methodologies and the many modeling choices required for a Bayesian
estimation of a DTR is beyond the scope of this text, however a great number of
resources are available to the interested reader (e.g., Chen et al., 2010).

Direct RL methods

Direct methods, also known in RL literature as direct policy search methods (Ng
et al., 2000), seek to maximize the return (i.e., the discounted sum of future rewards,
see Section 2) by learning the optimal policy or value directly, without involving
intermediate quantities such as Q-functions or C-functions. These methods typically
do not assume models for conditional means or other aspects of the conditional
distributions of the the outcomes; in this sense they are called “non-parametric”.
However, they may consider a parametrization of the class of policies.

In direct methods, indeed, first a class of policies or regimes D, often indexed by
a parameter, say ψ ∈ Ψ, is pre-specified. Then, for each candidate regime d ∈ D, an
estimate V̂d = V̂d(X0) of the corresponding value is obtained. Recall from Section
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2 that the value is the mean of the return marginalized over all observations that
might be impacted by the treatment (see 2.5). The regime that maximizes this value
function represents the optimal treatment regime d∗

d̂∗
.= arg max

d∈D
V̂d = arg max

ψ∈Ψ
V̂dψ . (3.10)

For a simple example of a parametric class of policies, consider DTRs that use a
suitable summary of the available history (tailoring variable) to indicate when to
change treatment: if the tailoring variable falls below/above a threshold ψ, treatment
is changed. Another common example is given by the soft-max class of functions
D .= {π(ak|x, ψ) = e−xTψk/

∑K
j=1 e

−xTψj : ψ ∈ Ψ, k = 1, . . . ,K}, where a1, . . . , aK
denote the K possible treatments and ψ

.= (ψT1 , . . . , ψTK) the vector of parameters
for the K treatments indexing the class of policies.

Most of the statistical work in this area is based on the IPTW technique (Robins
et al., 1994). It is used, for instance, in estimating MSMs (Robins, 2000; Orellana
et al., 2010) or value functions (Zhang et al., 2012b, 2013); in classification-based
frameworks, such us outcome weighted learning (OWL; Zhao et al., 2012, 2015; Liu
et al., 2018), and in combination with ML approaches, such as decision trees (Laber
& Zhao, 2015; Tao et al., 2018).

Inverse Probability of Treatment Weighting. IPTW is a general technique
that can be used in DTRs for inferring causal effects from observational data, under
the standard assumptions for causal inference discussed in Section 3.1.1.

In case of a randomized trial, particularly SMART designs (see Section 3.1),
estimating an optimal regime based on 3.10 is relatively straightforward. The target
policy we learn d corresponds to the fixed exploration policy π that generated
the trajectories: it consists in the randomization probabilities and is known by
design. On the contrary, when this information is not available, as in the case of
the most common observational studies, the value function has to be estimated
for an arbitrary treatment policy d using an empirical sample of N trajectories.
This learning procedure is also called off-policy (batch) learning. Making use of
the importance sampling technique, which assumed Pd absolutely continuous with
respect to Pπ (corresponding to the positivity assumption in 3.1), we change the
distribution under which we compute the value function. In doing that, we basically
weight our returns according to the relative probability of their trajectories occurring
under the target and exploration policies:

Vd = Ed[Y ] =
∫
Y dPd =

∫
Y

(
dPd
dPπ

)
dPπ = (3.11)

=
∫ ( T∏

t=0

I[At = dt(Ht)]
πt(At|Ht)

)
Y dPπ

.=
∫
wd,πY dPπ.

Now, a natural way to estimate Vd is given by its Monte Carlo (MC) estimator,
i.e., V̂d

.= PN [wd,πY ], where PN denotes the empirical average over N patients’
trajectories. The MC estimator is known to be an unbiased estimator (by the Strong
Low of Large Numbers), but its variance is unbounded. To this purpose, to obtain
a more stable estimator, the weights wd,π are normalized by their sample mean,
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leading to the IPTW estimator (Robins, 2000)

V̂ IPTW
d

.= PN [wd,πY ]
PN [wd,π] . (3.12)

The technique allows balancing the confounders across levels of treatment: higher
the probability of receiving a specific treatment conditioning on confounder X,
π(A|X), lower the weight wπ = 1/π(A|X) of their outcome Y .

When π is known (e.g., SMART design), the IPW estimator is consistent.
However, it is highly variable due to the presence of the non-smooth indicator
functions inside the weights.

An alternative version, which integrates the properties of the IPTW estimator
with those of the regression based estimator, assuming models for both the propensity
score and the (conditional) mean outcome, is the augmented inverse probability of
treatment weighting (AIPTW) estimator (Zhang et al., 2012b). Its original version,
was designed for a single stage treatment regime, thus, does not make use of any RL
strategies. Assuming a single-stage treatment regime with two treatment options
(A ∈ {a, a′}), let H = X0 denote patient’s history, d(H) .= d(H;ψ) a treatment
regime indexed by ψ, µ(A,H; β̂) an estimated model for the mean outcome E[Y |H,A],
and π(A|H, γ̂) an estimated propensity score. Then, the AIPW estimator is defined
by

V̂ AIPW
d

.= PN
{I[A = d(H;ψ)]Y

π(H;ψ, γ̂) − I[A = d(H;ψ)]− π(H;ψ, γ̂)
π(H;ψ, γ̂) µ(H;ψ, β̂)

}
,

(3.13)

where,

π(H;ψ, γ̂) .= π(a|H, γ̂)I[d(H;ψ) = a] + π(a′|H, γ̂)I[d(H;ψ) = a′],
µ(H;ψ, β̂) .= µ(a,H; β̂)I[d(H;ψ) = a] + µ(a′, H; β̂)I[d(H;ψ) = a′].

It only requires either the propensity or mean outcome model to be correctly specified
but not both, hence, doubly robust method. In addition to being more robust to
model mis-specification, AIPW estimators tend to be more efficient than their
non-augmented counterparts (Robins, 2004).

An adaptation of this approach from the single-stage setting to sequential
treatment decisions is available in Zhang et al. (2013); Tao & Wang (2017); Zhang
& Zhang (2018), where, with models posited for either Q-functions or C-functions,
a Q-learning or Contrast-based A-learning strategy was combined with the IPTW
estimation, making it fully RL based.

IPTW represents a basis for other existing direct methods. For instance, it
constitutes one of the most common approach for estimating MSMs, introduced in
the causal inferences literature for controlling for confounding through assigning
each participant a weight (Robins, 2000; Neugebauer et al., 2012). MSMs are
a powerful alternative to SNMMs for describing the causal effect of a treatment
(hence “structural”), and pertain to population-average effects (“marginal” over
covariates, baseline and time-varying outcomes). They basically represent models
for the expectation of a potential outcome under a specified unobserved DTR d,
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marginalizing over the covariate history Vd = Ed[Y ] = E[Y d], or alternatively as a
function of the baseline covariates X0 only, i.e., Vd(X0) = Ed[Y |X0] = E[Y d|X0].
Examples and a further discussion is provided in Appendix A.

Other IPTW-based methods are developed within the general framework proposed
by Zhang et al. (2012a) and Zhao et al. (2012), who recast the estimation of the
optimal decision rule as a classification problem. We illustrate now this framework
and the specific OWL approach Zhao et al. (2012), with some of the subsequent
developments.

Outcome Weighted Learning. As an alternative direct approach, Zhao et al.
(2012) reformulated the problem of optimal DTRs estimation as a weighted classi-
fication problem, with weights retrospectively determined from clinical outcomes
(from here “Outcome Weighted Learning”); and proposed to solve it with tools of
ML literature.

In the case of two treatments, expressed as A ∈ {−1, 1}, Qian & Murphy (2011)
first showed that the problem can be formulated as a weighted 0−1 loss in a weighted
binary classification problem, where d∗ can be estimated as

d̂∗
.= arg max

d∈D
V̂d = arg max

d∈D
PN

[I[A = d(H)]
π(A|H) Y

]
= arg min

d∈D
PN

[I[A 6= d(H)]
π(A|H) Y

]
.

However, as solving the problem is hard due to the discontinuous indicator
function, Zhao et al. (2012) proposed to address it with a convex surrogate loss
function for the 0 − 1 loss, which corresponds to the hinge loss used for SVM
optimization (Hastie et al., 2009). Considering that d(H) can always be represented
as sign(f(H)) for some suitable function f , the corresponding minimization problem
proposed by the authors can be given as

f̂∗
.= arg min

f∈F
PN

[
Y

π(A|H)φ(Af(H)) + λN ||f(H)||2
]
, (3.14)

where λN is a tuning penalty parameter that can be chosen via cross-validation, and
φ(x) .= max(1− x, 0) is the hinge loss.

Although the seminal work of Zhao et al. (2012) allows the use of different loss
functions, the specific considered setting (non-negative rewards, single stage, binary
treatments) opened many problems for its practical employment, some of which have
been addressed by subsequent DTR literature. We report them and illustrate their
relative progress with respect to the basic OWL estimator in (3.14) in Table 3.2.

However, note that while a broad literature focused on the single stage setting,
only two works (Zhao et al., 2015; Liu et al., 2018) proposed an extension to
multiple stages, integrating the OWL estimator and the RL framework. Zhao et al.
(2015) developed the so-called Backward Outcome Weighted Learning (BOWL) and
Simultaneous Outcome Weighted Learning (SOWL) procedures. In the first approach,
the stage-t estimator which we denote with f̂∗B,t is obtained recursively by

f̂∗B,t
.= arg min

f∈F
PN

[
Y
∏T
τ=t+1 I[Aτ = d̂∗τ (Hτ )]∏T
τ=t πτ (Aτ |Hτ )

φ(Atft(Ht)) + λt,N ||ft(Ht)||2
]
.

Here (d̂∗t+1, . . . d̂
∗
T ) are obtained prior to stage t, and the T -stage estimator does not

account for treatments followed afterwards, i.e., ∏T
τ=T+1 I[Aτ = d̂∗τ (Hτ )] .= 1.
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Reference & Technique Extension from the standard OWL (Zhao et al., 2012)
Zhao et al. (2015)
BOWL + SOWL From a single stage to general T -stages, with T <

∞. Authors proposed two methods: one performs an
iterative backward OWL (BOWL) estimation, the other
a simultaneous OWL (SOWL) estimation. Both are
based on the original OWL.

Liu et al. (2018)
AOL Extends to negative outcomes and considers

multiple stages. Authors proposed an augumented
version for the weight of the OWL (AOL) integrating
OWL and Q-functions. The robust augmentation, mak-
ing use of predicted pseudo-outcomes from regression
models for Q-functions, reduces the variability of weights
and improves estimation accuracy.

Zhou et al. (2017)
RWL Suitable for continuous, binary and count out-

comes, and performs variable selection. Authors
proposed a general framework, called Residual Weighted
Learning (RWL) for improving the finite sample perfor-
mance, where they employ a smoothed ramp loss and
derive outcome residuals with a regression model.

Chen et al. (2018)
GOWL Suitable for ordinal treatments and negative out-

comes. Authors generalize the OWL (GOWL) by using
a modified loss function and a reformulation of the ob-
jective function in (3.14).

Zhang et al. (2020a)
MOML Extension to multicategory treatment scenarios

and negative outcomes. Authors use sequential bi-
nary methods by proposing a margin-based learning
(build upon the large-margin unified machine loss),
which has a special case the standard OWL.

Fu et al. (2019)
ROWL Tackles the problem of outliers and consid-

ers multicategory treatments and negative out-
comes. Authors propose a robust OWL (ROWL), based
on an angle-based classification structure, designed for
multicategory classification problems, and a new family
of robust loss functions to build more stable DTRs.

Table 3.2. Statistical methods which extended the standard OWL estimator in (3.14) for
developing optimal treatment regimes.
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For the second approach, a simultaneous estimation is performed with

f̂∗S
.= arg max

f∈F
PN

[
Y ψ(A0f0(H0), A1f1(H1))∏1

t=0 πt(At|Ht)
− λN (||f0(H0)||2 + ||f1(H1)||2)

]
,

where ψ(x1, x2) .= min(x1 − 1, x2 − 1, 0) + 1 is a concave surrogate for the product
of two indication functions.

Even if in numerical examples both BOWL and SOWL have demonstrated
superior performances to existing direct methods, significant information loss is reg-
istered as t decreases. To overcome this problem, an augumented version integrating
OWL and Q-functions is proposed in Liu et al. (2018). Defining and denoting a
pseudo-outcome with Ỹt

.= Yt + Q̂t+1 − ŝt(Ht), this is given by

f̂∗A,t
.= arg min

f∈F
PN

[
|Ỹt|

πt(At|Ht)
φ(Atsign(Ỹt)ft(Ht)) + λN ||ft(Ht)||2

]
,

where ŝt(Ht) is estimated via a least squares regression that minimizes PN [Yt +
Q̂t+1 − st(Ht)]2, and function φ is analogous to the one previously defined.

Tree-based methods. Again, by integrating tools from the ML literature, first
Laber & Zhao (2015), in the context of individualized (single stage) treatment
regimes, and then Tao et al. (2018) and Sun & Wang (2020) for dynamic regimes,
introduced the tree-based approach (Breiman et al., 2001) for directly estimating
optimal DTRs. The underlying idea of Tao et al. (2018) is, first, to define and
estimate a purity, i.e., a target measure or output which needs to be optimized,
and then, to improve the purity with a decision tree. Improvement is performed
by splitting a parent node into child nodes repeatedly, and by choosing a split
among all possible splits at each node so that the resulting child nodes are the
purest (e.g., having the lowest misclassification rate). The mean outcome (or value
function), is used as purity measure, and its estimation is carried out with the
IPTW estimator (Robins, 2000), or alternatively a kernel smoother in the case of
continuous treatments (Laber & Zhao, 2015), and the AIPTW estimator Zhang
et al. (2012b), respectively. Differently, Sun & Wang (2020) proposed a stochastic
tree-based reinforcement learning which uses Bayesian additive regression trees,
and then stochastically constructs an optimal regime using a Markov chain Monte
Carlo (MCMC) tree search algorithm. In the multiple stages setting, estimation
is implemented recursively using backward induction, starting from t = T + 1 and
using the outcome YT+1 directly.

By combining the properties of a tree-based learning (straightforward to un-
derstand and interpret, and capable of handling various types of data without
distributional assumptions) with those of the AIPTW (semi-parametric robust esti-
mator), the tree-based approaches are robust, efficient and more interpretable and
flexible (compared to the OWL, or the DNN, for instance) in the identification of
optimal DTRs.

RL Methods for Indefinite-Horizon Problems

While in computer science, a vast literature on estimating optimal policies over
an increasing time horizon exists (Szepesvári, 2010; Sugiyama, 2015), this scenario
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is rare in DTR literature. By adopting backward induction, most of the existing
methods cannot extrapolate beyond the time horizon in the observed data. However,
for some chronic conditions, or those with very short time steps, including mHealth
JITAIs (see Section 3.1), the time horizon is not definite, in the sense that treatment
decisions are made continually throughout the life of the patient, with no fixed time
point for the final treatment decision.

To the best of our knowledge, only two proposals (Ertefaie & Strawderman,
2018; Luckett et al., 2020) have been advanced in DTR literature for indefinite-
horizon tasks, one of which, i.e., Luckett et al. (2020), motivated by a real mHealth
study for treating patients with diabetes over the long term. We now review these
methods; they are both developed under a time-homogeneous Markov behaviour,
and, while the V-learning technique of Luckett et al. (2020) directly maximises the
policy (direct-RL), the alternative Greedy Gradient Q-learning (GGQ) of Ertefaie &
Strawderman (2018) uses indirect RL.

Greedy Gradient Q-learning (GGQ). The first extension of DTRs estimation
in indefinite-horizon problem was introduced by Ertefaie & Strawderman (2018).
Motivated by the original GGQ algorithm of Maei et al. (2010), they proposed a
generalization of the GGQ imposing a time-homogeneous Markov assumption (see
Section 2.0.1) on the state-action sequences for each subject. Although not imposed
by other DTRs methods, this assumption exemplifies estimation and inference by
working with time-independent Q-functions and optimal regimes, and avoiding the
need for backward induction, which has time horizon limitations.

We adopt similar notation as in the previous sections, with the introduction of
an absorbing state c representing, for instance, a death event. We assume that at
each time t patients’ covariates Xt take values in the state space X ? .= X ∪{c}, with
X ∩ {c} = ∅. We remind that in time-homogeneous MDPs, transition probabilities
{pt}t≥1, states and actions spaces are time-independent. Let also the state and action
spaces be finite, with the action space Ax defined by the covariates’ information. Ax
consists of 0 < mx ≤ m treatments, with m the total number of available treatments
during all the steps. For any t such that Xt = c, let Ax = Ac = {u}, where u denotes
“undefined”; this implies that p(Xt+1 = c, At+1 = u|Xt = c, At = y) = 1.

Now, denoted with T̃
.= inf{t > 0 : Xt = c} a stopping time (death for

example), individual trajectories, including also the last final state, will be given by
(X0, A0, R1, . . . , XT̃−1, AT̃−1, RT̃ , XT̃

). Note that P(T̃ <∞|X0, A0) = 1, regardless
of (X0, A0).

Based on these specifications, under the causal inference assumptions, one
can define the infinite time-horizon stage t action-value function for a specified
deterministic regime π(ht) = π(xt) = π(x), for x ∈ X , as

Q(x, a) .= Eπ [Rt|Xt = xt, At = at] = Eπ

[ ∞∑
τ=0

γτ−tYτ+1

∣∣∣∣∣Xt = xt, At = at

]
.

From Section 2, we know that the optimal Q-function satisfies the Bellman
optimality equation given in (2.12). In addition, we also have that Q∗(c, a) = 0, as
the return is set to 0 after a patients is lost to follow-up.

For estimating an optimal regime, Ertefaie & Strawderman (2018) proposed to
estimate the optimal Q-function Q∗(x, a) with linear FA (as illustrated in Section
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3.1.1). Let Q(x, a; θ∗) be a parametric model for Q∗(x, a) indexed by θ∗ ∈ Θ ⊆ Rq,
and suppose a linear model with interactions, i.e. Q(x, a; θ∗) = θ∗Tψ(x, a), with
ψ(x, a) being a known q-dimensional vector of features summarizing the state and
treatment pair. To ensure Q∗(c, a) = 0, we also need ψ(c, a) = 0.

Now, the Bellman optimality equation suggests and motivates the following
unbiased estimating function for θ∗

D̂(θ∗) = PN

{
T−1∑
t=0

(
Yt+1 + γ max

a′∈AXt+1

Q(Xt+1, a
′; θ∗)−Q(Xt, At; θ∗)

)
ψ(Xt, At)

}
,

(3.15)

where PN denote the empirical average on N i.i.d. trajectories, and ψ(Xt, At)
.=

∇θ∗Q(Xt, At; θ∗).
However, the estimating function in (3.15) is a continuous, piecewise-linear func-

tion in θ∗ that is non-convex and non-differentiable everywhere. To overcome the
problem, under some regularity conditions, any solution θ̂∗ is equivalently defined as
a minimizer of M̂(θ∗) .= D̂(θ∗)T Ŵ−1D̂(θ∗), with Ŵ

.= PN
{∑T−1

t=0 ψ(Xt, At)⊗2
}

,
and x⊗2 .= xxT , for any vector x (Ertefaie & Strawderman, 2018). If θ̂∗ =
arg minθ∗∈Θ M̂(θ∗) is the unique solution, then Q̂∗(x, a) = Q(x, a; θ̂∗) and the corre-
sponding optimal regime is given by π̂∗ = arg maxa∈Ax Q(x, a; θ̂∗).

GGQ’s performance has been demonstrated in the context of chronic diseases with
large sample sizes and a moderate number of time points. Under additional assump-
tions, authors also prove that θ̂∗ is a consistent estimator for θ∗ and asymptotically
normally distributed.

V-learning . In the GGQ method of Ertefaie & Strawderman (2018), the estimated
policy is based on the estimating equation in (3.15), which contains a non-smooth
max operator that makes estimation difficult without large amounts of data (Laber
et al., 2014b; Linn et al., 2017), and, depending directly on θ̂∗, it requires modeling
the transition probabilities. Motivated by a mHealth application, where policy
estimation is continuously updated in real time as data accumulate (starting with
small sample sizes), an alternative method, which directly maximizes estimated
values over a class of policies, was proposed in Luckett et al. (2020).

Under the same causal inference and time-homogeneous MDP assumptions of
Ertefaie & Strawderman (2018), and provided interchange of the sum and integration
is justified, the targeted state-value function of policy d is state xt is

V (xt) =
∑
τ≥t

E
[
γτ−tYτ+1

(
τ∏
v=0

d(Av|Xv)
πv(Av|Sv)

∣∣∣∣∣Xt = xt

)]
,

π and exploration policy, which can be seen as the randomization probability in an
RCT, and d an arbitrary policy which we want to learn about.

In light of the Bellman equation in (2.10) for the value function, it follows that,
for any function ψ defined on the state space Xt, the state-value function satisfies

0 = E
[
d(At|Xt)
πt(At|St)

(Yt+1 + γV (Xt+1)− V (Xt))ψ(Xt)
]
,
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which represents an importance-weighted variant of the Bellman optimality (Sutton
& Barto, 2018).

Let now V (x; θ), with θ ∈ Θ ⊆ Rq, denote a model for V (x). Assuming that
V (x; θ) is differentiable everywhere in θ, for fixed x and d, let ψ(x) be the gradient
of V (x; θ), i.e., ψ(x) .= ∇θV (x; θ), and define the alternative estimating equation
function as

Λ̂(θ) = PN

[
T∑
t=0

d(At|Xt)
πt(At|St)

(Yt+1 + γV (Xt+1; θ)− V (Xt; θ))∇θV (Xt; θ)
]
.

Similarly to (3.15), θ̂ can be defined as the minimizer of M̂(θ) .= Λ̂(θ)T Ŵ−1Λ̂(θ)+
λP(θ), with Ŵ a positive definite matrix in Rq×q, λ a tuning parameter and
P : Rq → R+ a penalty function. Subsequently, V (x; θ̂) is the estimated state-value
function under d in state x, and the estimated optimal regime d̂∗ is the one that
maximises the estimated value function.

V-learning only requires modeling the policy and the value function, rather than
the data-generating process. In addition, by directly maximizing the estimated
value over a class of policies (see Luckett et al., 2020, for more details) it avoids
the non-smooth max operator in (3.15). The developed RL method is applicable
over indefinite horizons and is suitable for both off-line and online learning. Thus, it
can be successfully applied in the novel mHealth field which we will discuss soon in
Section 3.1.2.

Real-World DTR Studies using RL and Practical Challenges

In the previous sections we reviewed existing RL-based methodologies for estimating
optimal DTRs. These were introduced within the ML and statistical literature and
generally evaluated through simulations. Now, we want to provide a more concrete
idea of applications of RL for estimating optimal DTR in real-world settings, as found
in clinical literature. At the same time, we want to illustrate the main challenges
that clinical researchers face in applying these methods in practical settings, and
the main limitations that might impact a successful output.

Generally speaking, based on the type of the disease, we can distinguish two main
domains: chronic diseases and critical care. Chronic diseases are defined broadly
as long-lasting conditions (three months or more) and require ongoing medical
attention or limit activities of daily living (Bernell & Howard, 2016). They include
the leading causes of death and disability (e.g., cancer, cardiovascular diseases,
diabetes, mental illness, obesity) and are also the main drivers of nations healthcare
costs (Organization et al., 2018, 2005). Typically, apposite protocols (Wagner et al.,
2001) support practitioners to facilitate decision making. However, such protocols
are based on an average evidence, posing challenges for selecting the best regime
for an individual patient due to the diversity across or within the population. This
limitation calls for RL which represent a perfect support for the discovery and
generation of optimal DTRs.

Yu et al. (2019b) provides a detailed review on clinical and healthcare studies
which used RL, including DTR estimation for specific chronic diseases. Yu et al.
(2019b) provides a detailed review on studies which used RL in healthcare, including
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DTR estimation for specific chronic diseases. However, they extensively include the
multitude of works which have been developed in the DTR field, regardless their
theoretical or applied nature. Notably, among these works (see Appendix B for a
partial view in cancer), very few studies evaluated the proposed method in a real
cohort of patients (rather than simulations). For cancer therapies, only one work
exists (Tseng et al., 2017). It proposes a DRL framework for estimating the optimal
radiation dose escalation, considering a retrospective population of 114 non-small-cell
lung carcinoma patients, and looking at different radiotherapy outcomes (reward
variables).

An increased number of real-world studies can be found in chronic diseases
different from cancer, such as diabetes (Yasini et al., 2009; Asoh et al., 2013;
Luckett et al., 2020), anemia (Mart́ın-Guerrero et al., 2009; Malof & Gaweda, 2011;
Escandell-Montero et al., 2011), HIV (Parbhoo et al., 2017), substance addiction
(Murphy et al., 2016; Chakraborty et al., 2008, 2010; Tao et al., 2018), and mental
health. The latter includes the popular Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) trial (Rush et al., 2004) on depression, and the Clinical
Antipsychotic Trials of Intervention Effectiveness (CATIE) study (Keefe et al., 2007)
on schizophrenia; based on these several RL improvements has been proposed within
ML and statistics (Pineau et al., 2007; Chakraborty et al., 2013; Laber et al., 2014b;
Linn et al., 2017; Schulte et al., 2014; Song et al., 2015; Liu et al., 2018; Shortreed
et al., 2011; Ertefaie et al., 2016; Lizotte et al., 2012; Lizotte & Laber, 2016; Laber
et al., 2014c; Butler et al., 2018). However, excluding some exceptions (Yasini et al.,
2009; Asoh et al., 2013; Luckett et al., 2020; Tao et al., 2018), these studies used real
data, as well as simulated data, only for evaluating the proposed RL method, thus,
only as an illustrative example. In between pure simulations and real data, there’s
also an intermediate line of research for DTRs estimation which used either real-data
to build a simulator environment (Daskalaki et al., 2013; Ernst et al., 2006), or
established mathematical models for simulating disease specific dynamic system in
patients (Ngo et al., 2018), e.g., the Palumbo mathematical model (Palumbo et al.,
2007). We do not cover these studies.

Moving now from chronic diseases to critical care, where patients need urgent
medical treatment, development of new data generating tools available for use in
intensive care unit (ICU), suggests a great opportunity for applications of ML and
RL methodologies (Vellido et al., 2018). To date, RL has been used in the treatment
of sepsis (Vellido et al., 2018; Raghu et al., 2017b,a; Yu et al., 2019a), regulation of
sedation (Moore et al., 2014), and other intensive care unit problems (Wang et al.,
2018; Liu et al., 2017). Most of these applications (a summary is provided in Yu
et al., 2019b) are based on the Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC)-III (Johnson et al., 2016b) freely accessible database, and mainly use
a DL framework for approximating the Q-learning functions. A key motivation for
using the DL, is related to its higher flexibility and adaptability to high dimensional
action and state spaces compared to standard RL methods and its superior capability
in modelling real-life complexity in heterogeneous disease progression and treatment
choices, and automatic feature extraction directly from the input data. As in the
previous case, data are generally used for illustrative purposes.

The content above highlights and summarizes an increasing progress and interest
in applying RL for optimal DTRs estimation. However, despite remarkable theoreti-
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cal results, only a few studies applied RL for real clinical purposes. Moreover, in
these cases applications simply use RL approaches (typically Q-learning) for solving
DTR problems in relatively simplified settings, thus exhibiting a number of short-
comings and practical limitations, and posing interesting technical challenges and
exciting open problems. To illustrate, how can we better understand and interpret
the process of an RL algorithm, which often acts in a black box expressed by, for
instance, deep neural networks, is a frequently debated problem, which may prevent
their application in real-world. Similarly, a major concern is how to adequately
adapt the RL strategy to the complex disease scenario a scientist may work in. For
instance, formalizing suitable relationships in the RL process, particularly for the
reward function, taking into account prior knowledge on the specific disease, multiple
objectives, and presence of unstructured data. While, for instance, several software
packages exist for implementing many of the reviewed algorithms (we report them
in Appendix C), these are often suitable only under specific settings (e.g., only
continuous and positive rewards), and require users’ knowledge about the specific
software.

3.1.2 Just-in-Time Adaptive Interventions in MHealth

Increasing technological sophistication and widespread use of smartphones and
wearable devices provide a great platform to enhance healthcare delivery, and has
led to the emergence of mobile health (mHealth; Istepanian et al., 2007; Kumar
et al., 2013; Rehg et al., 2017). MHealth is a rapidly expanding area which refers to
the use of mobile technologies for conducting and managing health-related activities
in an aim to support and improve healthcare at all levels of care, in both clinical
and non-clinical populations. A key objective in mHealth is to deliver efficacious
interventions in response to rapid changes in an individual’s circumstances, while
avoiding over-treatment as it leads to user disengagement (e.g., recommendations are
ignored, app is deleted). As introduced in Section 3.1, this can be efficiently achieved
by real-time AIs, known as just-in-time adaptive interventions (JITAIs; Nahum-Shani
et al., 2018). The distinctive feature of JITAIs, compared to DTRs, is to adapt
intervention to the user’s in-the-moment context or needs, e.g., time, location or
current activity. This peculiarity contributed to their increasing popularity in a
variety of domains, including physical activity (Consolvo et al., 2008; Van Dantzig
et al., 2013; Hardeman et al., 2019), illness management support (Ben-Zeev et al.,
2014), addictive disorders in alcohol and drug use (Gustafson et al., 2014; Goldstein
et al., 2017; Garnett et al., 2019; Bell et al., 2020), smoking cessation (Naughton,
2017), obesity/weight management (Patrick et al., 2009; Aswani et al., 2019). As
JITAIs are carried out in dynamic environments where context and options can
change rapidly, thus requiring a continuous learning, often in indefinite horizons.
Existing theory and guidance on constructing high-quality evidence-based JITAIs
is still insufficiently mature to precisely specify which particular intervention and
when it should be delivered. In addition, they pose some unique challenges, which
we will discuss in Chapter 6 with reference to a real-world study we conduced, that
preclude direct application of existing methodologies for DTRs (Nahum-Shani et al.,
2015, 2018).

The current standard approach for developing JITAIs is given by contextual
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MABs (Tewari & Murphy, 2017), which occupy a middle ground between MAB
(Bubeck & Cesa-Bianchi, 2012; Auer et al., 2002b) and full-RL, as illustrated in
Section 2. This is because MABs assumptions match the conceptual design of
many JITAIs. In fact, intervention options in a JITAI are sometimes referred to
as Ecological Momentary Interventions or micro-interventions. Such a terminology
emphasizes that the effects of many of the treatments in this domain are expected
to be short-lived in nature.

With a few exceptions, contextual MAB algorithms applied in mHealth rely
on two fundamental MAB approaches introduced in advertising: the Linear Upper
Confidence Bound (LinUCB; Li et al., 2010; Chu et al., 2011) and the Linear
Thompson Sampling (LinTS; Agrawal & Goyal, 2013). Exceptions include the Actor-
Critic strategy (Lei et al., 2017) and other more full-RL oriented techniques (Zhou
et al., 2018).

Contextual MABs with LinUCB-based Exploration

LinUCB (Li et al., 2010; Chu et al., 2011), inspired by the work of Walsh et al. (2012),
represents an extension of the upper confidence bound (UCB; Auer et al., 2002a)
method, in the sense that the expected reward is assumed to be a linear function of
a context-action feature, say f(Xt, At) ∈ Rd. We consider features (constructed e.g.,
via linear basis, polynomials or splines expansion; Marsh & Cormier, 2001) rather
than a standard linear function as they may capture non-linearities in the data,
yielding more predictive and explanatory power. The idea behind UCB and LinUCB
is to perform an efficient exploration by favouring arms for which a confident value
has not been estimated yet, and avoiding arms which have shown a low reward
with high confidence. This confidence is measured by the UCB of the expected
reward value for each arm, because the interest is in the arm with the highest reward.
More specifically, under the linearity assumption, i.e., E[Yt+1|Xt, At] = f(Xt, At)Tµ,
with µ ∈ Rd the unknown coefficients vector, the proposal is to estimate the UCB
associated with arm at at time t, say Ut(at), by

Ût(at)
.= f(Xt, At = at)T µ̂t + αst(at),

where the first part f(Xt, At = at)T µ̂t, with µ̂t
.= B−1

t bt an estimator of µ, re-
flects the current point estimate of the reward, while the second part st(at)

.=√
f(Xt, At = at)TB−1

t f(Xt, At = at) represents an indication of its uncertainty, i.e.,
the standard deviation. B−1

t and bt are analogous to the terms “(XTX)−1” and
“XTY ”, respectively, that constitute the OLS estimator in a standard linear re-
gression model (E[Y |X] = XTµ). But, here, they are recursively computed tak-
ing into account previously explored arms. Assuming a ridge penalized estima-
tion, with penalty parameter λ ≥ 0, at time t, Bt

.= λId + ∑t−1
τ=0 f(Xτ , Aτ =

ãτ )T f(Xτ , Aτ = ãτ ) and bt
.= ∑t−1

τ=0 f(Xτ , Aτ = ãτ )TY (Xτ , Aτ = ãτ ), with{
ãτ

.= arg maxaτ∈A Uτ (aτ )
}
τ=0,1,...,t−1 being the estimated optimal arms on previous

rounds. Algorithm 3 provides a schematic of this approach. The tuning parameter
α > 0 can be viewed as a generalization of the critical values typically used confidence
intervals. It controls the trade-off between exploration and exploitation: small values
of α favor exploitation while larger values of α favor exploration.
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Algorithm 3: LinUCB (Li et al., 2010; Chu et al., 2011)
Input: α ∈ R+, λ ∈ R+, T ∈ N, d ∈ N
Initialization: B0 = λId′ , b0 = 0d
for t = 0, 1, 2, . . . T do

Estimate the regression coefficient µ̂t = B−1
t bt;

for at ∈ A do
Observe feature f(Xt, At = at) and compute the upper confidence
bound Ut(at)

Ut(at) = f(Xt, At = at)T µ̂t+α
√
f(Xt, At = at)TB−1

t f(Xt, At = at);

end for
Select arm ãt = arg maxat∈A Ut(at) and get the associated reward
Yt+1(Xt, At = ãt);

Update Bt and bt according to the best arm ãt

Bt+1 = Bt + f(Xt, At = ãt)T f(Xt, At = ãt);
bt+1 = bt + f(Xt, At = ãt)TYt+1(Xt, At = ãt).

end for

Theoretical studies on LinUCB showed that they provide high probability guar-
antees on the regret suffered by the learner. Under the assumption on bounded
features and rewards, and sub-Gaussian (Rigollet & Hütter, 2015) regression errors,
Abbasi-Yadkori et al. (2011) showed that appropriate choices of α will give, at time
T , for any δ ∈ (0, 1), with probability at least 1− δ a regret bound of

O

(
d
√
T log(T/δ) log(1 + T/δ)

)
. (3.16)

Several theoretical variations and extensions of the LinUCB have been proposed
in the bandit literature. These include: i) Linear Associative RL (LinREL) and
SupLinREL (Auer, 2002), based on singular-value decomposition rather than ridge
regression for obtaining an estimate of the UCB; ii) generalized linear model versions
(UCB-GLM; Filippi et al., 2010) and SupUCB-GLM (Li et al., 2017), which assumes
that the reward function can be written as a composition of a linear function and a
link function; iii) non-parametric modeling of the reward function, such as Gaussian
processes (GP-UCB; Srinivas et al., 2009, 2012); contextual GP-UCB (Krause &
Ong, 2011) and kernel functions (SupKernelUCB; Valko et al., 2013); iv) NeuralUCB,
which leverages the representation power of DNNs and uses a neural network-based
random feature mapping to construct the UCB for the reward (Zhou et al., 2019).

More recently, in addition to the exploration-exploitation dilemma, other sta-
tistical objectives started to be considered in the LinUCB. To accommodate more
complex models of the world, Urteaga & Wiggins (2018), propose leveraging advances
in sequential Monte Carlo (SMC) methods from the approximate inference commu-
nity. More specifically, they incorporate the flexibility of (sequential) importance
sampling to allow for accurate estimation of statistics of interest which cannot be
computed in closed-form, within the MAB problem. By combining SMC methods -
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which estimate posterior densities and expectations in probabilistic models that are
analytically intractable - with Bayesian UCB-based algorithms, they extend their
applicability to complex models: those for which sampling may be performed even
if analytic computation of summary statistics is infeasible, e.g., non linear reward
functions and dynamic bandits. In a similar context to ours, i.e., behavioural science,
Dimakopoulou et al. (2019) introduced balancing methods from the causal inference
literature, i.e., weighting each observation with the estimated inverse probability of
a context being observed for an arm, in the regression estimation process, in order
to make the bandit algorithm less prone to bias. More specifically, the idea is that
at every time t, the linear contextual bandit weighs each observation (xτ , aτ , yτ+1),
τ = 1, . . . , t in the history up to time t by ŵaτ = 1/p̂aτ (xτ ), i.e., the estimated
inverse probability of context xτ being assigned to arm aτ . Theoretical guarantees
of their Balanced UCB (BLUCB) match the state-of-the-art guarantees, but it helps
to reduce bias, particularly in misspecified cases, at a cost of increased variance.
Clipping the propensity scores away from zero (Crump et al., 2009) with some
threshold, e.g. 0.1 can control the variance increase.

Real-world studies. Moving now from to real-world mHealth applications, the
use of LinUCB has been encountered in Paredes et al. (2014) and Forman et al.
(2019). The former developed a LinUCB based intervention recommender system for
learning how to match interventions to individuals and their temporal circumstances
over time. The aim was to send one of the 10 available types of stress management
strategies (upon user’s request in the mobile app), with the goal of maximizing
stress reduction. After four weeks of study, participants receiving the LinUCB-
based recommendations showed a tendency towards using more constructive coping
behaviors. Similarly, Forman et al. (2019), in the context of behavioural weight
loss (WL) and maintenance, conducted a pilot experimental study to evaluate the
feasibility and acceptability of an RL-based WL intervention system, and whether it
would achieve equivalent benefit at a reduced cost, compared to a non-optimized
intervention system. To this purpose, participants were randomized between a
non-optimized, a individually optimized (individual reward maximization) and a
group optimized (group reward maximization) group. Reward optimization was
based on the UCB technique Auer et al. (2002a) and adjusted for intervention cost
(i.e., time): based on previous work (Ontanón, 2013, 2017), UCB was used to balance
the need for exploiting the best intervention (thus far) with the need for exploring
interventions that had not been explored for a long time for a particular person.
Specifically, the likelihood that a lower-reward-score intervention would be explored
for a participant was proportional to how many days it had been since the last time
this intervention had been delivered to that particular person. The study showed
that the LinUCB-based optimized groups have strong promise in terms of outcome
of interest, not only being feasible to deploy and acceptable to participants and
coaches, but also achieved desirable results at roughly one-third the cost.

Contextual Bandits with LinTS-based Exploration

Under the same linear reward function assumption considered above, Agrawal &
Goyal (2013) proposed a randomized version of LinUCB, based on a generalization
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of the Thompson Sampling (TS) technique for stochastic contextual MABs problems.
Rooted in a Bayesian framework, the idea of TS is to select an arm according to
its posterior probability of being optimal, i.e., maximizing the posterior reward
distribution. More specifically, assuming a Gaussian prior for the µ regression
coefficients vector, e.g., µ ∼ N (0d, σ2

µId), and a Gaussian distribution for the reward,
i.e., Yt|µ, f(Xt, At) ∼ N (f(Xt, At)Tµ, ν2), at each time t, the optimal arm ãt will be
the one that maximises the a-posteriori estimated expected reward, i.e., f(Xt, At)T µ̃t.
The posterior nature is reflected in µ̃t, which represents a sample from the posterior
distribution, given by N (µ̂t, ν2B−1

t ); here µ̂t
.= B−1

t bt is the posterior mean, with Bt
and bt defined in the same way as for LinUCB. The full iterative process is described
in Algorithm 4.

Given all the trajectory data up to time t, Tt−1 = {(Xτ , Aτ , Yτ+1)}τ=0,1,...,t−1 and
f(Xt, At), LinUCB is deterministic and allows exploration through the uncertainty
term st(at), while TS is randomized, and exploration is given by the random draws
from the posterior distribution. Note that the standard deviation st(at) characterizing
LinUCB has the same order of the standard deviation of the updated posterior
distribution of the reward Yt|µt, f(Xt, At) ∼ N (f(Xt, At = at)T µ̂t, ν2f(Xt, At =
at)TB−1

t f(Xt, At = at)) used in TS, where f(Xt, At = at)TB−1
t f(Xt, At = at) =

st(at) by definition.
Authors showed that TS achieves strong regret guarantees: with probability

1− δ, δ ∈ (0, 1), the total regret for TS at time T is bounded as

O

(
d2

ε

√
T 1+ε(log(Td) log(1

δ
))
)
, (3.17)

for any ε ∈ (0, 1) tuning parameter of the algorithm. If T is known, Agrawal &
Goyal (2013) suggest to choose ε = 1

log T to get Õ(d2√T ) regret bound.

Algorithm 4: LinTS (Agrawal & Goyal, 2013)
Input: σµ ∈ R, ν ∈ R, T ∈ N, d ∈ N, λ ∈ R+
Initialization: B0 = λId, b0 = 0d
for t = 0, 1, 2, . . . T do

Estimate the regression coefficient µ̂t = B−1
t bt;

Get posterior samples µ̃t ∼ N (µ̂t, ν2B−1
t )

for at ∈ A do
Observe feature f(Xt, At = at) and compute the ‘a-posteriori’
estimated expected reward, i.e., f(Xt, At = at)µ̃t

end for
Select arm ãt = arg maxat∈A f(Xt, At = at)µ̃t and get the associated
reward Yt+1(Xt, At = ãt);

Update Bt+1 and bt+1 according to the best arm ãt

Bt+1 = Bt + f(Xt, At = ãt)T f(Xt, At = ãt);
bt+1 = bt + f(Xt, At = ãt)TYt+1(Xt, At = ãt).

end for
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Similarly to LinUCB, LinTS has been intensively studied within the theoretical
literature, and several extensions, including those proposed by Dimakopoulou et al.
(2019) and Urteaga & Wiggins (2018) for LinUCB, and a generalized TS version
(Li, 2013), based on more general loss functions, have been considered. The latter
introduced a new family of algorithms, called Generalized Thompson Sampling for
Contextual Bandits, and analyze its regret in the expert-learning framework, where
each expert corresponds to a contextual policy for arm selection. Motivated by the
TS’s Bayes update rule, which can be viewed as an exponentiated update with the
logarithmic loss, the idea is to use a more general loss function to update the experts’
weights by comparing the actual received reward and the expert prediction. Then,
similarly to the TS idea, the Generalized TS follows an expert’s policy more often if
the expert is more likely to be optimal.

In what follows we focus on works which have been developed within the mHealth
literature, specifically addressing field-related characteristics.

Bootstrap Thompson Sampling. A different extension, more targeted to efficient
computation of the posterior distribution of the TS, is proposed in Eckles & Kaptein
(2014) and Eckles & Kaptein (2019). Under the normal conjugate family in Algorithm
4, sampling from the posterior is straightforward. However, to be practically feasible
for many problems, and thus scalable to large T or to complex likelihood functions,
TS requires computationally efficient sampling from the distribution of the regression
parameters µt|Tt−1, f(Xt, At). Already in situations in which a logit or probit model
is used to model the expected reward of the actions, the posterior is not available in
closed form and is then often computed using Markov chain Monte Carlo (MCMC)
methods or otherwise approximated, which can be computationally costly. To this
end, motivated by relationships between bootstrap distributions Rubin (1981) and
Bayesian posteriors, and by the fact that the bootstrap distribution can be used
to approximate posteriors Efron (2012); Newton & Raftery (1994), in Eckles &
Kaptein (2019), a Bootstrap Thompson Sampling (BTS) technique for replacing the
posterior by an online bootstrap distribution of the point estimate µ̂t at each time t,
is proposed. Specifically, in BTS, at each step t, the algorithm first chooses the best
arm according to a single, uniformly randomly selected, bootstrap replicate, and
then, for each bootstrap replicate j = 1, . . . , J , each observation i gets an updating
weight wij ∼ 2 × Bern(1/2) (see McCarthy (1969); Owen et al. (2012) for more
details on reweighting bootstrap). In an empirical evaluations, authors showed that,
in comparison with LinTS and other methods, BTS it is more robust to some kinds
of model misspecifications, thanks to the robustness of the bootstrap for statistical
inference, and it can be easily adapted to dependent observations, a common feature
of behavioral sciences (Eckles & Kaptein, 2014, 2019).

Intelligent-Pooling Thompson Sampling. When data on individuals is limited,
learning an adaptive strategy separately for each user may be a very slow process,
particularly if data are sparse and/or noisy and the process is non-stationary.
However, a natural tension exists between individual personalizing and pooling
using data over users, a choice which can introduce bias. For balancing this tension,
Tomkins et al. (2019) introduced a novel algorithm called Intelligent Pooling that
generalizes LinTS by using a Gaussian mixed effects linear model for the reward.
Mixed effects models are widely used across behavioral sciences, including mHealth
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(Qian et al., 2020), to model the variation in the linear model parameters across
individual and within an individual across time (Raudenbush & Bryk, 2002; Laird &
Ware, 1982). The idea of this method is to use random effects to adaptively pool users’
data based on the degree to which users exhibit heterogeneous rewards. In addition,
unlike LinTS, in which the prior hyper-parameters are set at the beginning, their
proposal includes a procedure for updating the hyper-parameters online. Empirical
evaluations showed that Intelligent Pooling achieves an average of 26% lower regret
than state-of-the-art, demonstrating promise of personalization on even a small
group of users.

Action-Centered Thompson Sampling. Moving now to specific challenges aris-
ing in emerging mHealth applications, Greenewald et al. (2017) provides an extension
of the linear model for contextual bandits by specifically targeting the time-invariant
and linear model assumption, which is untenable in human behavior. They consider
a particular type of non-stationary and non-linear contextual bandit that has two
parts: a baseline reward (associated with a “do nothing” or control arm, denoted with
0) and a treatment or action effect. Assuming K (non-control) arms, in addition to
the 0 (control) arm, at each time step t ∈ N, the expected reward model is formalized
as

E(Yt+1|Xt = xt, At = at) = f(xt, at)TµI(at 6= 0) + gt(xt), (3.18)

with f(xt, at) ∈ Rd a fixed context-action feature (with context Xt chosen by an
adversary on the basis of the trajectory Tt−1 up to time t), µ ∈ Rd the parameters
vector, and gt(xt) a time-varying component that can vary in a way that depends on
the past, but does not depend on current action (thus, allowing for non-stationarity).
The term adversarial in contextual bandits refers to the context and reward generation
mechanism: when both contexts and actions are allowed to be chosen arbitrarily
by an adversary, no assumptions on generating process nature are made (Tewari &
Murphy, 2017). Note that, due to the indicator function I(at > 0), the expected
reward when baseline action 0 is taken is given by the time-varying component only,
which we regard as a baseline reward. Based on this framework, a linear model for
the reward difference, or differential reward, at time t is obtained as

Yt+1(Xt, At)− Yt+1(Xt, 0) = f(Xt, At)TµI(At > 0) + εt+1,

where εt+1 is zero-mean sub-Gaussian noise with variance σ2. If the bandit had
access at each time t to the differential reward, estimating the unknown parameter
µ would be straightforward, e.g., by using the ordinary or penalized least-squares
approach, as seen in LinUCB and LinTS. However, we only have access to the
observed Yt+1(Xt, At), which contains the sum of the arbitrarily complex baseline
reward and the differential reward we want to estimate. To isolate the differential
reward at each time step, authors propose the so called action-centering trick, which
randomizes the action at each time step, allowing to construct an estimator whose
expectation is proportional to the differential reward Yt+1(Xt, At) − Yt+1(Xt, 0),
where At is the nonzero action chosen by the bandit at time t to be randomized
against the zero action. More specifically, denoted with πt

.= 1−πt(0, t)
.= P(At > 0)
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the probability of taking a non-zero action, we have that[(
I(At > 0)− πt

)
Yt+1(Xt, At)|Ht, At

]
= πt(1− πt)Yt+1(Xt, At)

− (1− πt)πtYt+1(Xt, 0)
= πt(1− πt)

(
Yt+1(Xt, At)− Yt+1(Xt, 0)

)
,

meaning that the observed reward Yt+1(Xt, At) is proportional to an unbiased
estimator of Yt+1(Xt, At)−Yt+1(Xt, 0). Thus, the proposed estimate of the differential
reward at time t, which we call pseudo-reward, is given by Ŷt+1(Xt, At) = I(At >
0) − πt)Yt+1(Xt, At). An important property of this pseudo-reward is that its
conditional expectation does not depend on the arbitrarly complex gt(xt) term.

Furthermore, to avoid sending too few or too many interventions, and prevent
the algorithm from converging to an ineffective deterministic policy, a constraint on
the size of the probabilities of delivering a non-control intervention (i.e., probability
clipping) is considered:

0 < πmin ≤ 1− π(At = 0|Xt) ≤ πmax < 1,

where 1 − π(At = 0|Xt) is the conditional bandit-chosen probability of delivering
an intervention at time t, and the constants πmin and πmax in [0, 1] are not learned
by the algorithm, but chosen using domain science, and might vary for different
components of the same mHealth system.

In the context of a LinTS strategy, the proposed Action-Centered Thompson
Sampling (ACTS) method can be viewed as a two-step hierarchical procedure, where
the first step, is to estimate the arm that maximizes the reward, and the second
step is to randomly determine whether to take the non-control arm, choosing an
arm At 6= 0 with probability πt given by

πt = P(At 6= 0) = max
(
πmin,min(πmax,P

(
f(Xt, At)T µ̃ > 0

))
, (3.19)

where At denotes a random non-control arm, µ̃ a draw from the posterior distribution
defined in the TS algorithm, and πmin and πmax in [0, 1] are constant probability
constraints. This procedure is summarized in Algorithm 5.

Under restrictive conditions on the action choice probabilities, authors showed
that ACTS achieves performance guarantees similar to the linear reward setting,
while still allowing for non-linearities in the baseline reward. Empirical evaluations
on a popular mHealth study, known as HeartSteps, were also performed. HeartSteps
is an app and MRT (Liao et al., 2015; Klasnja et al., 2015) aiming to evaluate
the efficacy of contextually tailored activity suggestions and activity planning for
increasing physical activity among sedentary adults (Klasnja et al., 2015, 2019). It
has been the subject of interest of many works in both biostatistics (Liao et al.,
2016; Boruvka et al., 2018) and RL/bandit literature (Greenewald et al., 2017; Lei
et al., 2017; Liao et al., 2020). Following the ACTS strategy, Liao et al. (2020), for
instance, incorporated in the differential reward model an “availability” variable,
stating whether the user is available to receive an intervention.

Further theoretical improvements over the ACTS can be found in both Krish-
namurthy et al. (2018) and Kim & Paik (2019). Here, a relaxation of the action-
independent assumption of the component gt(xt) in (3.1.2) of the ACTS is considered,
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Algorithm 5: Action-Centered TS (Greenewald et al., 2017)
Input: ν

.= R
√

9d′ log(T/δ), T ∈ N, d′ ∈ N, (πmin, πmax) ∈ [0, 1]
Initialization: B0 = Id′ , b0 = 0d′
for t = 0, 1, 2, . . . T do

Estimate the regression coefficient µ̂t = B−1
t bt;

Get posterior samples µ̃t ∼ N (µ̂t, ν2B−1
t )

for at = A .= {1, . . . ,K} do
Observe feature f(Xt, At = at) and compute the ‘a-posteriori’
estimated expected reward, i.e., f(Xt, At = at)µ̃t

end for
Let a∗t = arg maxat∈A f(Xt, At = at)µ̃t;
Compute the probability πt of taking non-zero action and play action
ãt = a∗t with probability πt, else play ãt = 0;

Get the associated reward Yt+1(Xt, At = ãt);
Update Bt+1 and bt+1 according to arms a∗t and ãt

Bt+1 = Bt + πt(1− πt)f(Xt, At = a∗t )f(Xt, At = a∗t )T ;
bt+1 = bt + (I(At > 0)− πt)f(Xt, At = a∗t )Yt+1(Xt, At = ãt).

end for

making the reward model at time t entirely non-parametric when allowing depen-
dence on both time and history, i.e., E(Yt+1|Ht = ht, At = at) = f(xt, at)Tµ + gt.
For estimating the unknown parameters, Krishnamurthy et al. (2018) proposed
the adversarial Bandit Orthogonalized Semiparametric Estimation (BOSE) method,
based on an action-elimination strategy adapted from Even-Dar et al. (2006), and
a centering trick as in Greenewald et al. (2017) to cancel out gt. The proposed
estimator µ̂t at time t is given by

µ̂t =
(
λId +

t−1∑
τ=0

f(Xτ , Aτ )f(Xτ , Aτ )T
)−1 t−1∑

τ=0
f(Xτ , Aτ )Yτ+1(Xτ , Aτ ),

where λ ≥ 0 is the ridge penalty parameter, and f(Xτ , Aτ )
.= f(Xτ , Aτ ) −

E(f(Xτ , Aτ )|Hτ , Aτ ) represents the centering trick. It is derived so that, con-
ditionally on (Hτ , Aτ ), E(f(Xτ , Aτ )|Hτ , Aτ ) = 0d.

The BOSE algorithm does not require any constraint on the action choice
probabilities as in (3.19), and it achieves a (1 − δ)-probability regret bound of
O(d

√
T log(T/δ), that matches the best known regret bound of LinUCB for linear

reward models (see 3.16). However, the action elimination step requires O(K2)
computations at each round, and, in order to meet the regret bound, the distri-
bution used to select the action should satisfy specific non-trivial conditions. To
overcomes this difficulties, under the same framework, Kim & Paik (2019) proposed
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an alternative estimator, given by

µ̂t =
(
Id +

t−1∑
τ=0

f(Xτ , Aτ )f(Xτ , Aτ )T

+
t−1∑
τ=0

E(f(Xτ , Aτ )f(Xτ , Aτ )T |Hτ , Aτ )
)−1 t−1∑

τ=0
2f(Xτ , Aτ )Yτ+1(Xτ , Aτ ).

The proposed algorithm requires only O(K) computations at each round, and enjoys
a tighter high-probability upper bound than the BOSE. This bound matches the
bound of the LinTS algorithm reported in (3.17).

Actor-Critic Contextual Bandits

Specifically addressing the problem of personalized mHealth interventions, Lei (2016)
and Lei et al. (2017) proposed to use an alternative class of RL algorithms, known as
actor-critic (AC) RL (Sutton & Barto, 2018; Grondman et al., 2012), based on which
both policies and value functions are directly learned. Actor is the component that
learns policies, and critic the one that learns a value function, which is then used to
“critizise” and update actor’s policy in a direction of performance improvement. In
this sense, AC architectures combine direct and indirect methods, and in specific
settings they provide a framework of equivalence for the two distinct approaches
(Guan et al., 2019).

Considering a binary action space A = {0, 1}, and assumptions similar to the
ones of LinTS and LinUCB (i.e., linear reward model and bounded rewards and
features), authors formulated the problem as a stochastic contextual MAB and
proposed a class of parameterized stochastic policies, with P(A = 1|X = x) =
π(1|x; θ) = eg(x)T θ

1+eg(x)T θ , and g(x) a p-dimensional policy feature. Similarly to the
ACTS algorithm (Greenewald et al., 2017) illustated in Section 3.1.2, authors also
considered a stochastic chance constraint of the form

P(πmin ≤ π(A = 1|X; θ) ≤ 1− πmin) ≥ 1− α, (3.20)

with πmin ∈ (0, .5) and α ∈ (0, 1) being constants controlling the amount of stochas-
ticity. By improving treatment variety, this constraint may increase engagement
and decrease the habituation effect (Raynor & Epstein, 2001; Epstein et al., 2009;
Wilson et al., 2005) which can incur in deterministic policies.

An optimal policy is then obtained by maximizing the expected reward under the
policy π(a|x; θ), i.e., V (θ) .= Eπθ(Y ), subject to the constraint in (3.20). Solving this
constrained optimization problem involves a major difficulty since it is, in general,
a non-convex constraint on θ, involving also some non-smoothness. To circumvent
this difficulty, first, a relaxation of (3.20) is made, and then the Lagrangian function
Jλ(θ), with λ the Lagrangian multiplier, is proposed as an alternative objective,
referred to as regularized average reward. That is,

Jλ(θ) .= V (θ)− λθTE(g(X)g(X)T )θ (3.21)
= Eπθ(Y )− λθTE(g(X)g(X)T )θ
= Ep(x)Eπ(a|x;θ)[E(Y |X = x;A = a)]− λθTE(g(X)g(X)T )θ,
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where p(x) is a fixed unknown distribution of the context. For a given λ, the optimal
policy π∗

.= πθ∗ is the one with θ∗
.= arg maxθ∈Θ Jλ(θ). However, both Jλ(θ) and

E(Y |X = x;A = a) are unknown. The conditional mean of the reward or Q-function
is first estimated through a penalized (L2-norm) linear regression as in LinTS and
LinUCB - this is the critic step. Then, the obtained estimates for each a and x are
plugged into (3.21) and an estimated optimal actor’s policy is derived based on the
Monte-Carlo estimator:

Ĵλ(θ) .= PT

[∑
a

Ê(Y |X = x;A = a)π(a|X = x; θ)− λθT (g(x)g(x)T )θ
]
, (3.22)

where PT denotes the empirical average on T i.i.d. samples. We illustrate the full
procedure in Algorithm 6.

Algorithm 6: Actor-Critic Contextual Bandits (Lei et al., 2017)
Input: T ∈ N, λ ∈ R+, a class of parameterized policies {πθ : θ ∈ Θ ⊆ Rp}

based on a p-dimensional policy feature g(x)
Critic Initialization: B0 = λId′ , b0 = 0d′
Actor Initialization: Initial policy parameter θ̂0 based on domain theory
or prior data

for t = 0, 1, 2, . . . T do
Observe context Xt and the feature vector f(Xt, At);
Draw an action ãt according to probability distribution πθ̂t(Xt, At);
Get the associated reward Yt+1(Xt, At = ãt);
Critic Updates: update

Bt+1 = Bt + f(Xt, At = ãt)f(Xt, At = ãt)T ;
bt+1 = bt + f(Xt, At = ãt)Yt+1(Xt, At = ãt);

and estimate the regression coefficient µ̂t = B−1
t+1bt+1 and the associated

reward Ŷt+1 = f(Xt, At = ãt)µ̂t
Actor Update: estimate the unknown policy parameter θ

θ̂t = arg max
θ∈Θ

Ĵλ(θ) = 1
t

t∑
τ=0

[∑
a

Ŷτ+1π(a|Xτ ; θ)− λθT
(
g(Xτ )g(Xτ )T

)
θ

]

end for

An extension of the AC contextual bandit algorithm of Lei (2016) and Lei et al.
(2017), was later proposed in Zhu et al. (2018), with the aim of including potential
presence of outliers in the data trajectory of mhealth applications. Their proposal
involve, first, during the critic step, the use of the capped-L2 norm instead of the
standard L2 norm measure for estimating the expected rewards. That is, iteration i,
the feature parameter estimates are obtained as

µ̂(i)
ε =

(
T∑
t=0

f(Xt, At)U (i−1)
t f(Xt, At)T + λIp

)−1 T∑
t=0

f(Xt, At)U (i−1)
t Yt+1, (3.23)
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where the weights U (i−1)
t

.= I(||Yt+1 − f(Xt, At)T µ̂(i−1)||22 ≤ ε), for t = 0, 1, . . . , T ,
specify which tuple should be treated as an effective observation and which as an
outlier, i.e. given a fixed threshold ε > 0, if the residual of tuple t is greater than ε,
then we regard the t-th tuple as an outlier. Convergence of estimator in (3.23) is
reached after a finite number of iterations.

Then, to boost also robustness on the actor step’s objective Jλ(θ), the estimated
weights Ut, t = 0, 1, . . . , T , learned in the critic step, are considered. Recalling an
estimate of Jλ(θ) is obtained through (3.22) by plugging in the estimated expected
reward, its capped-L2 norm robust version is given by

Ĵλ,ε(θ) = Tε
T
× PTε

[∑
a

f(X = x,A = a)T µ̂επ(a|X = x; θ)− λθT (g(x)g(x)T )θ
]
,

where PTε denotes the empirical average on the Tε ≤ T i.i.d. samples of X whose
residuals satisfy the ε-capped condition, or equivalently, for which Ut is equal to
1. Compared to Lei et al. (2017) actor’s objective in (3.22), an extra weight term
Ut here is added. It gives those tuples, whose residuals are very large in the critic
update, zero weight, thus are not considered in the actor updating.

Other RL-based Approaches used in MHealth Interventions

The majority of mHealth studies that used RL, or, more specifically MAB algorithms,
focused on the popular Contextual MAB strategies of UCB, TS and Actor-Critic.
There exist, however, other mHealth applications which used RL techniques falling
in categories different from the ones just mentioned. These include the works of
Yom-Tov et al. (2017), for evaluating the effectiveness of personalized feedback in
increasing adherence of diabetic patients to recommended physical activity regimes;
Zhou et al. (2018), for developing a fitness app, CalFit, which automatically sets
personalized, adaptive daily step goals and adopts behavior-change features such
as self-monitoring; and Rabbi et al. (2015), again for developing a physical activity
app, MyBehavior, able to automatically learn users’ physical activity and dietary
behavior, and strategically suggest changes to those behaviors for a healthier lifestyle,
also incorporating users’ preferences. While the first two works are based on
a more full-oriented RL, the last one considers an adversarial bandit approach,
namely the randomized context-free exponential-weight algorithm for exploration
and exploitation (EXP3; Auer et al., 2002b; Bubeck & Cesa-Bianchi, 2012). In
EXP3, most beneficial actions are frequently exploited with seldom exploration of
less beneficial ones. It has been shown to be able to quickly adapt to changes in
underlying payoff functions, meaning that, if the user starts following new suggestions
or his/her lifestyle changes (e.g., moving to a new location), then underlying benefits
of certain behavior also change.

In Yom-Tov et al. (2017) two policies were considered for the treatment arms:
an “initial policy” based on the results of Elliot & Church (1997) to incentivise
exploration, designed so that i) no message was sent on 20% of days, and ii) for
the remaining days, a negative or a positive feedback might be received by the user
with equal probability based on their expected fraction of activity; and a “learning
policy”, based on a linear regression algorithm with interactions and the Bolzmann
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sampling (Watkins, 1989) on the outputs of the learning algorithm to choose the
feedback message to be given.

Finally, Zhou et al. (2018) propose a predictive quantitative model for each
participant based on the historical steps and goal data for that user, as in Aswani
et al. (2019), and a two-stage RL for selecting the optimal interventions: in the first
stage, inverse reinforcement learning (Ng et al., 2000) is employed to estimate the
parameters of the assumed predictive model for each user; in the second stage, an
RL technique equivalent to a direct policy search (Sutton & Barto, 2018), using the
model parameters estimated in the first stage, is used.

3.2 RL for Designing Adaptive Clinical Trials

Well-designed randomized controlled trials (RCTs) have long been recognised as the
gold standard for conducting evidence-based clinical research for assessing efficacy
or effectiveness of interventions. The traditional way of conducting an RCT, and
more generally any clinical trial, is by following an underlying fixed design, where
with fixed we mean that key elements of a design, e.g., sample size or randomization
probabilities, are not allowed to change during the course of the trial. These are
typically determined according to study objectives and main hypothesis (Friedman
et al., 2015), so that certain statistical properties are guaranteed. Once the pre-
specified sample size is reached and the study ends, collected data are used for final
analyses.

While these types of designs are valued for their strong statistical guarantees,
they do not give the investigator the flexibility of making desirable or necessary
changes based on continuously emerging knowledge of an ongoing trial (Pallmann
et al., 2018). For example, an interim analysis may provide enough evidence for
stopping the trial earlier for success or lack of efficacy. Such decision has also a
relevant ethical component, since there is a responsibility to minimise the number
of people given an unsafe, ineffective, or clearly inferior treatment. In addition,
traditional RCTs can demand substantial time and resources, in terms of both
sample size and cost. These limitations have been widely acknowledged as limiting
medical innovation (Bothwell et al., 2016).

Adaptive trial designs have been proposed as a means to increase the flexibility
and efficiency of RCTs, extending the benefits to trial participants, in addition to
future patients, and advancing patient care by enhancing the likelihood of finding
a true benefit, and reducing costs (Bhatt & Mehta, 2016). The fundamental
characteristic of an adaptive clinical trial is to dynamically adjust key elements of
the underlying adaptive design (e.g., randomization probabilities, sample size or
compared treatments) while patients enrollment in the trial is ongoing. Adaptive
designs (ADs) define the potential changes of the ongoing trial and schedule the
interim looks at the data, so that its integrity and validity is not compromised (Chow
et al., 2005; Pallmann et al., 2018). In Fig. 3.6 an illustrative comparison between
traditional clinical trials and adaptive clinical trials is provided.

As pointed out by FDA (2019), each modification should be “prospectively
planned”. It is thus essential to distinguish prospective (i.e., by design or pre-
planned) from unplanned ad hoc changes, that may commonly occur in ongoing
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Traditional Fixed Clinical Trials

Adaptive Clinical Trials

Fixed study design Study conduction as per design Final analyses

Study conduction as per design Final analysesAdaptive study design

Interim analysis at pre-specified
(by design) time point(s)

Interim adaptation of pre-
specified (by design) element(s)

Figure 3.6. Illustrative comparison between traditional fixed clinical trials and adaptive
clinical trials. An adaptive study design, as opposed to a fixed study design, allows
for modifications of design elements such as sample size or randomization probabilities,
based on interim data.

traditional trials (e.g., alterations to the eligibility criteria). To this purpose, a recent
surge of research focuses on the quality of randomized adaptive clinical trials, arguing
for an improved transparency and reporting, in order to allow results interpretability
and methods reproducibility (Dimairo et al., 2020), especially with the rise of new
(more complex) methodological strategies.

The use of adaptive designs for modifying aspects of ongoing clinical trials has
been discussed and practiced for years in clinical research. The concept can be traced
back to the seminar paper of Thompson (1933). Thompson introduces an adaptive
randomization method and debates the potential “considerable saving of individuals
otherwise sacrificed to the inferior treatment” when a superior treatment is tried
against an inferior alternative. Due to this historical link-up, the term adaptive
design is sometimes used to specifically refer to adaptive randomization (Efron,
1971a; Lachin, 1988; Rosenberger et al., 2001). However, the notion applies more
generally to any trial design that allows some type of adaptive modification (not only
the randomization probability) of an ongoing trial based on interim analyses (Bhatt
& Mehta, 2016). In Table 3.3 we provide an overview of well-recognized ADs
summarizing their underlying idea and the adaptive nomenclature, while a rich
discussion on the topic is given in Chow & Chang (2008). Note that a single trial
may also consider multiple adaptations, e.g., a group-sequential design featured with
a mid-course sample size re-estimation and/or adaptive randomisation. To illustrate,
consider a seamless phase-II/III design, representing a fusion of a phase-II (e.g.,
treatment selection) and phase III (e.g., efficacy confirmation) design. An adaptive
seamless phase-II/III design may define three stages and two interim analyses before
the end of the enrollment such that: (1) after the exploratory stage (phase II), in
which subjects are assigned equally to e.g. five treatments (four active and one
placebo), a first interim analysis is performed to select the best active treatment;
then, (2) at a second stage (confirmatory phase III), the best active treatment and
the placebo groups continue, while new patients are allocated equally to the two
arms, and an interim analysis based on second-stage response-data is performed to
skew the allocation probabilities in favour to the most successful treatment; finally,
(3) during the third stage (confirmatory phase III), the best active treatment and
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the placebo arm are allocated according to the adjusted probabilities, and second-
and third-stage data are used for efficacy confirmation in the final analyses. A
main motivation behind adaptive seamless phase-II/III designs is the possibility of
shorten the time and patient exposure in the development of new needed drugs, by
efficiently (and more ethically) use the collected data (Maca et al., 2006). Carrying
forward only a sub-number of the initially compared treatments may provide relevant
improvement of the power of the phase-III confirmatory phase trial.

Once the idea of an adaptive design is clear to the reader, they may wonder how
the adaptation is performed in order to (optimally) meet the objective of such a trial.
Traditionally, rule-based or standard Bayesian and frequentist statistical approaches
were considered for guiding the adaptation of adaptive clinical trial. For example, in
adaptive dose-finding phase-I designs with the objective of determining the maximum
tolerated dose (MTD), a common rule-based strategy is the so called “3-plus-3” dose-
escalation design. This design is implemented as follows: three patients are initially
enrolled into a given dose cohort, and, if no toxicities are observed, a dose escalation
occurs for the subsequent three patients; otherwise an additional three patients are
treated at the same dose level. If only one of the six enrolled patients has toxicity,
escalation again continues; otherwise the trial stops, with the lower dose declared as
MTD.

More recently, machine learning (ML; Bishop, 2006) approaches, which are swiftly
infiltrating many areas within healthcare and medicine for better informing and
personalizing individual care (Deo, 2015; Johnson et al., 2016a; Rajkomar et al.,
2019), have been introduced in the context of designing adaptive clinical trials.
Given the sequential nature of such trials, a specific ML framework has emerged as
a potential solution for solving the sequential, adaptive, learning problem. This is
represented by the reinforcement learning (RL) framework (Sutton & Barto, 2018;
Sugiyama, 2015).

Thus far, a plethora of methodological and theoretical studies have evaluated RL
techniques in a variety of AIs, achieving performance exceeding that of alternative
traditional techniques in many cases, and enhancing its use in real life.

Despite these propositions for the use of RL, and ML in general, to improve
care delivery in medical research and practice, their practical use in (adaptive)
clinical trials is still very limited. Nevertheless, the RL framework suggests to be
particularly appropriate for clinical trials since the trade-off between clinical research
and clinical practice can be seen as the well-known trade-off between exploration and
exploitation. Under this pretext, development and evaluation of novel RL algorithms,
specifically tailored to some of the above mentioned adaptive designs settings, is
being increasingly interesting a broad literature. While, their introduction in the CTs
arena can be traced back to the multi-armed bandit (MAB; Lattimore & Szepesvári,
2020) solution proposed by Thompson (1933), where with MAB we generally refer
to a subclass of RL problems (as we will make it clear in Section 2), only recently, a
sparkling interest in RL and MABs has emerged in relation to the CTs domain (Villar
et al., 2015a; Shen et al., 2020). This trend is currently also being alimented by the
increased attention of regulatory agencies for adaptive clinical trials (FDA, 2019;
Pallmann et al., 2018) and the unprecedented response in terms of clinical research
activity of the COVID-19 (Zame et al., 2020; Stallard et al., 2020). Notably, the
urgent need of sufficiently strong evidence required results to be obtained as rapidly
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Table 3.3. Overview of common types of adaptive clinical trials designs and their charac-
teristics

Adaptive Design Underlying Idea Adaptive
Element∗

Dose-finding &
seamless phase-I/II
designs

Determine the most appropriate
dose level in terms of either toxic-
ity (maximum tolerated dose), or ef-
ficacy (minimal effective dose), or
both (seamless phase-I/II trial de-
signs), to be used in further phases

Treatment’s dose

Sample size re-
estimation (or
N-adjustable)
design

Adjusting or re-estimating the sam-
ple size to ensure the desired power

Total sample size

Adaptive random-
ization design

Skewing the randomization proba-
bilities towards the most promising
(e.g., with higher probability of suc-
cess) or informative (e.g., that bal-
ance assignments within covariate
profiles) treatment(s)

Randomization prob-
ability

Group sequential
designs

Prematurely stopping the trial due
to safety, efficacy or futility, accord-
ing to a stopping criterion to either
support or reject the sequential null
hypotheses

Sample size (through
the reduction in the
number of groups
due to a potential
earlier stopping
time)

Population-
enrichment designs

Restricting future enrollment to sub-
group(s) of patients more likely to
benefit (most) from the treatment

Sample sizes of each
group

Seamless phase-
II/III design

Combining treatment selection (ex-
ploratory phase II: learning about
the best treatment and dropping less
efficacious or unsafe treatments) and
efficacy confirmation (confirmatory
phase III: testing hypothesis) into
one trial

Compared treat-
ments

∗In each of the adaptive designs, in addition to the main adaptive element, other adaptations may
be pre-specified, e.g., a seamless phase-II/III design may include an adaptive randomization
probability as discussed in the illustrative example

as possible, making adaptive designs a particularly attractive option. However,
existing heated debates around their reliable applicability in CTs argue for a deeper
understanding of their mechanism and statistical properties.

In this work I conduct an extensive methodological review of current RL based
methodologies proposed for designing adaptive CTs, with the aim of providing the
research community with systematic understanding of theoretical foundations of
this emerging paradigm, in conjunction with its applicability, potential benefits and
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existing challenges within the CT domain.
Exclusively focusing on the types of adaptive CTs designs where the use of RL

has been proposed, we show how these can be naturally formalized through the RL
framework, and discuss their key differences under this common framework. With
this unified understanding we hope to offer a foundation to more easily conduct
research in both theoretical and applied sciences. Subsequently, we separately tackle
the above mentioned adaptive designs (more specifically, adaptive-dose finding,
group sequential testing and adaptive randomization), reviewing the proposed RL
technique in each domain and discussing the related benefits and open problems.

Please note that this review (unlike the tentative approach taken for the adaptive
intervention setting) is not meant as a comprehensive a fully-inclusive work of all
the existing settings and methods. Just to mention, I identified an additional area
in the design of adaptive clinical trials which used some form of RL for adaptively
improving the design of the study. It is the case of group sequential tests, which
deal with repeated significance testing applied at predefined time points, or after
having sampled a group of observations, to cumulating data, with critical boundaries
adjusted for multiple testing. We refer to Jennison & Turnbull (2000) and Proschan
et al. (2006) for an overview and general concepts of the statistical methodology in
group sequential designs; and point to Jennison & Turnbull (2013) for a RL-technique
used in this setting (the only existing one, to our knowledge).

The focus of the next two sections will be on the the design of adaptive-dose finding
trials and response-adaptive randomization, and existing RL-based methodologies
proposed in these areas. Connecting the RL, MAB, and clinical trials design literature,
we report in Table 3.4 the correspondence between these literatures’ terminologies.

Table 3.4. Reference terminology in reinforcement learning (RL), multi-armed bandits
(MABs) and Dose-finding and Response-adaptive randomization (RAR) designs

Notation Terminology
RL MABs Dose-finding RAR

i Trajectory Trajectory Trial* Trial
t Time Round t-patient/t-cohort* t-patient/t-cohort
X State Context Covariates Covariates
A Action Arm Treatment dose Treatment
Y Reward Reward Toxicity (+Efficacy) Outcome/Response
H History Filtration Past observations Observations sequence

π/d Policy Policy Dosage allocation Allocation sequence
*In (adaptive) dose-finding designs, sometimes i is also used to indicate a single patient or cohort,

which is followed for t times.

3.2.1 Adaptive Dose-Finding Designs

An adaptive dose-finding design is often used in early-phases (I or I-II) clinical trials
development to determine the most appropriate dose level that should be used in
further phases of the trial (Yuan et al., 2017). Conventional phase I designs focus on
determining the highest dose with acceptable toxicity, called the Maximum Tolerated
Dose (MTD). More specifically, given K different dose levels that have been chosen
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by physicians based on preliminary experiments (K is usually a number between 3
and 10), and denoting by pk the (unknown) toxicity probability of dose k, the MTD
is defined as the dose with a toxicity probability closest to a target:

MTD = k∗ ∈ arg min
k∈{1,...,K}

|pk − θ|, (3.24)

where θ is the pre-specified targeted toxicity level (TTL), which is determined
by clinical expertise, evidence from previous studies, and guidance from the trial
statistician, and is typically set between 0.2 and 0.35 (Wheeler et al., 2019).

Once an MTD has been determined, and safety is no longer a major concern,
early efficacy is evaluated in phase II trials on larger groups to evaluate whether an
experimental treatment is promising (Yuan et al., 2017; O’Quigley et al., 1990). For
clinical trials in life-threatening diseases, efficacy is often assumed to be increasing
with toxicity and dose, hence the MTD is the most appropriate dose to further
investigate in the rest of the trial. However, the assumption that both toxicity and
efficacy of the treatment are monotonically increasing with the dose (Chevret, 2006),
has been shown to not hold in general (Riviere et al., 2018). Thus, recently, more
complex designs evaluating simultaneously both toxicity and efficacy have been
considered in dose-finding methods to accelerate the development process of new
treatments and to reduce costs (Thall & Cook, 2004; Zhang et al., 2006; Zang et al.,
2014; Riviere et al., 2018). These “multi objective” dose-finding designs, known as
“seamless” phase I-II trial designs (Mahajan & Gupta, 2010), aim to estimate the
smallest dose to obtain a desired efficacy, called the Minimal Effective Dose (MED),
while satisfying specific MTD safety requirements. Because little is known about
the new drug in the early phase investigation, these studies are naturally conducted
in an adaptive and small-group-sequential manner, characterized by an iterative
process.

A general overview of the dose-finding problem and related adaptive designs can
be found in Chevret (2006); Yin (2012), while a more up-to-date review of modern
methods and theory in Cheung (2015). They discuss the widely used rule-based
approaches (O’Quigley & Zohar, 2006), model-based designs such as the Continual
Reassessment Method (CRM; O’Quigley et al., 1990; Wheeler et al., 2019) and other
Bayesian strategies (Yin et al., 2006; Yin, 2012), and solve the adaptive problem in
a traditional statistical way, as opposed to RL-based approaches.

Here, given the general aim of this review work, we focus our attention on the
existing methods in dose-finding trials designs which used novel ideas based on RL,
which include both MAB-based strategies such as Thompson Sampling and Upper
Confidence Bound (see Algorithms 4 and 3) and Q-learning (see Algorithm 1).

Thompson Sampling for MTD Identification Interestingly, in the growing lit-
erature on Bayesian adaptive designs (Berry et al., 2010), several designs that may
be viewed as variants of Thompson Sampling have been proposed (Thall & Wathen,
2007; Satlin et al., 2016). However, to the best of our knowledge, only very recently,
the use of MAB algorithms, more precisely Thompson Sampling, has been investi-
gated for dose-finding trials (Aziz et al., 2019). The proposed MAB approach by Aziz
et al. (2019) is based on the well-known exploration-exploitation problem: finding
the MTD (which is crucial for the next stages of the trial) and treating as many trial
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participants as possible with this MTD, which is a common issue in clinical trials.
By viewing optimal dose identification as a particular multi-armed bandit problem,
authors rephrase the exploration (finding the best treatment dose, i.e., MTD) and
exploitation (treating as many trial participants as possible with this MTD) trade-off
as a trade-off between error probability and rewards, two performance measures
that are well-studied in the bandit literature and that are known to be somewhat
antagonistic (Bubeck et al., 2011; Kaufmann & Garivier, 2017).
They propose a simple statistical model for the MTD identification problem in phase
I clinical trials, and show that it can be viewed as a particular multi-armed bandit
problem, with the notion of optimal arm naturally defined as the arm with mean
closest to the TTL threshold θ in the MTD identification problem, as in (3.24). We
remind that a MAB model refers to a situation in which an agent sequentially chooses
arms (here doses) and gets to observe a reward (here a realization of an underlying
probability distribution which characterises the probability that the chosen dose is
toxic).
Specifically, denoted with At the dose at round t, for each t, the MAB strategy selects
and administers a dose At ∈ {1, . . . ,K} to a patient for whom a toxicity response
Y tox
t+1(At) is then observed. Assuming a binary reward variable Y tox

t+1(At), with
Y tox
t+1(At) = 1 indicating that a harmful side-effect occurred and Y tox

t+1(At) = 0 than
no harmful side-effect is present, Y tox

t+1(At) is modelled by a Bernoulli distribution with
mean pAt . Assuming, now, a prior distribution over the vector of toxicity probabilities
p = (p1, . . . , pK) ∈ [0, 1]K , e.g., Π0 = ∏K

k=1 πk,0 where each πk,0 = U [0, 1] is an
independent uniform distribution, authors advocate the use of the Independent TS
for MTD identification as follows. For each time t, a sample θ̃t = (θ̃1,t, . . . , θ̃K,t)
from the posterior distribution Πt = ∏K

k=1 πk,t of the toxicity probability vector p is
generated for each dose k, and the dose for which the sample is closest to the TTL
θ is selected.
More formally, for the given prior and likelihood, at each time t and ∀k ∈ {1, . . . ,K},

θ̃k,t ∼ πk,t = Beta(Sk,t + 1, Nk,t − Sk,t + 1),
At+1 ∈ arg min

k∈{1,...,K}
|θ̃k,t − θ|, (3.25)

where Beta(Sk,t + 1, Nk,t − Sk,t + 1) represents the conjugate posterior distribu-
tion (note that the Uniform prior is equivalent to a Beta(1, 1)), with Sk,t =∑t
s=1 Y

tox
s I{As=k} the number of times a harmful toxicity from dose k has been

registered, Nk,t = ∑t
s=1 I{As=k} the number of times dose k has been given, and As

is the dose allocated at time s.
As the TS randomization induces some exploration, and recommending k̂t = At+1
might not be the best idea, authors propose the idea of recommending k̂t =
arg mink |µ̂k,t − θ|, where µ̂k,t is the empirical mean of dose k after the t-th pa-
tient of the study as in Bubeck et al. (2011) or k̂t = arg maxkNk,t.
Please note that this is a simplified version, in the sense that it is a context-free
strategy, of the TS with linear reward algorithm introduced in Section 3.1.2. In
addition, by using a Beta-Bernoulli model, it has a directly interpretable objective
function in terms of mean toxicity probabilities pk,t’s, or θ̃k,t’s.
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As a further development, authors also show that using more sophisticated prior
distributions allows the algorithm to leverage some particular constraints of the
dose-finding problem, like increasing toxicities or a plateau of efficacy, considering a
multi-outcome optimization problem.
For example, by assuming a two-parameter Bayesian logistic model (that is among
the most popular - also used in the CRM) for increasing toxicity probabilities, i.e.,

pk(β0, β1) = 1
1 + e−β0−β1uk

, (3.26)

with uk the effective dose, and β0 and β1 the model’s parameters for which N (0, 100)
and E(1) priors are considered, respectively, the following TS strategy can be adopted:(

β̃0, β̃1
)
t
∼ πt,

At+1 ∈ arg min
k∈{1,...,K}

∣∣pk(β̃0k,t, β̃1k,t)− θ
∣∣.

Posterior distribution πt over the parameters
(
β0, β1

)
at time t is not available in

closed form, and it can be approximated by using Hamiltonian Monte Carlo (HMC)
Markov Chain algorithms such as in Aziz et al. (2019).
As for the Independent TS in (3.25), authors do not recommend the use of k̂t = At+1
as MTD, but instead k̂t ∈ arg mink∈{1,...,K}

∣∣pk(β̂0k,t, β̂1k,t)− θ
∣∣, with β̂0k,t and β̂1k,t

the posterior means, typically considered in the CRM literature.
Finally, in order to take into account both toxicity constraints and dose effectiveness,
the notion of admissible set of doses At, inspired by Riviere et al. (2018) and
described in detail in Aziz et al. (2019), is introduced, and the optimization problem
focuses on finding the MED. Practically, each time a not admissible candidate
dose At 6∈ At is given by sampling from the posterior, the sampling process has
to be repeated again, limiting the exploration of the TS; while in the second case,
the optimization problem for the optimal dose considers a two dimensional reward
vector

(
Y tox
k,t , Y

eff
k,t

)
, with Y eff

k,t an efficacy outcome, and an additional parameter qk
denoting the efficacy probability of dose k. Thus, if we now consider as admissible
set At = {k : pk ≤ θ}, the optimal dose finding problem becomes

k∗ = min
{
k : qk = max

l∈Al
ql
}
. (3.27)

Following Riviere et al. (2018), again a model based approach is considered: toxicity
follows the two-dimensional Bayesian logistic model presented in (3.26) and efficacy
also follows a logistic model, with an additional parameter τ that indicates the begin-
ning of the plateau of efficacy. Efficacy and toxicity are assumed to be independent.
Based, on this model, TS is carried out in the general way, with samples this time
from the multivariate posterior distribution, obtained with the HMC technique for
the continuous parameters of the logistic functions and the random sampling from
the conditional distribution of the discrete parameter τ .

Contextual Constrained Learning: a UCB-based Approach Following the
multi-criteria dose-finding strategy of Aziz et al. (2019) presented in (3.27), and
the multi-dimensional toxicity and efficacy outcomes vector, an alternative bandit
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solution, based on the UCB principle, is developed in Lee et al. (2020). They
propose the C3T-Budget, a solving strategy for what they call contextual constrained
clinical trial (C3T) problem for dose-finding. In the C3T problem, patients arrive
sequentially and the agent has to determine which patients to treat and the dose to
be allocated to the patient, based on both budget (maximum number of patients that
can be admitted into the trial) and safety constraints, also considering heterogeneous
groups of patients, that makes the dose-finding problem more complex (Wages et al.,
2015).

The proposed C3T-Budget algorithm selects at each time t the dose As,t ∈ A =
1, . . . ,K for each group s so as to maximize the expected efficacy (clinical practice),
while satisfying the safety constraint based on information learned from previously
treated patients. Then, given the chosen dose, the algorithm determines whether
the patient is treated or not (we denote with k = 0 the absence of treatment) with
the aim of maximizing the information from clinical research, balancing thus the
trade-offs between information gathering and treatment effectiveness.

Formally, denoted with s ∈ S = {1, . . . , S}, the observed subgroup over a time-
horizon T , with B the limited budget, and with Y tox

s,k and Y eff
s,k the toxicity and

the efficacy outcomes of dose k for subgroup s, authors model the outcomes as
Bernoulli random variables with unknown parameters ps,k and qs,k, respectively.
Y tox
s,k = 1 indicates that dose k is unsafe for subgroup s, and Y eff

s,k = 1 that dose k is
effective for subgroup s. We remind that a dose k is considered unsafe if the expected
toxicity ps,k exceeds the MTD threshold (or TTL) θ; it is considered ineffective if
a minimum efficacy threshold ψ is not reached. For ps,k, is considered again the
logistic dose-toxicity model ps,k(a) =

( tanhuk+1
2

)a, as in O’Quigley et al. (1990),
where uk is the effective dose level of dose k and a a common dose parameter.

The cost/budget variable at time t is denoted by Y cost
t , and it adds one unit each

time a patient is administered a dose (i.e., At = k 6= 0); in this case we have
Y tox
t = Y tox

t (At, Xt), Y eff
t = Y eff

t (At, Xt) and Y cost
t = 1, with Xt ∈ S representing

the contextual subgroup variable. When At = 0, we have no efficacy or toxicity and
the cost Y cost

t = 0. The clinical trial ends when the budget is exhausted or at the
end of time-horizon T .

To make a recommendation, the MTD threshold and minimum efficacy threshold
are considered: by defining the set of candidate doses (analogously to admissible
set) for subgroup s by Ks = {k : qs,k ≥ ψ, ps,k ≤ θ}, the optimal dose-to-recommend
for each subgroup s is given, similarly to (3.27), by:

k∗s =
{

arg maxk∈Ks qs,k, if Ks 6= 0
0, otherwise.

Denoting now with k̂∗s(T,B) the estimated dose to recommend to subgroup s at the
end of the clinical trial, and incorporating the budget constraint, the C3T problem
becomes a problem of minimizing the dose recommendation error while satisfying
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the budget and safety constraints, and it is formally presented as

minimize
∑
s∈S

E
[
I[k̂∗s(T,B) 6= k∗]

]
subject to P

[
ps(T,B) ≤ θ

]
≥ 1− δs, ∀s ∈ S

T∑
t=1

Y cost
t ≤ B,

where ps(T,B) =
∑T

t=1 I[Xt=s]Y tox
t∑T

t=1 I[Xt=s]I[At 6=0]
is the expected toxicity of subgroup s, and δs

the maximum probability with which the toxicity for subgroup s can exceed the
TTL threshold θ.
For solving this minimization problem, at each round t, the C3T-Budget first,
constructs the sets of candidate doses for s, Ks, by considering the estimated
expected efficacy and toxicity of each dose for the subgroup. Then, among the
candidate doses, the proposed algorithm selects the estimated optimal dose at
round t, k∗s,t, that has the largest UCB of the expected efficacy for subgroup s,
i.e., k∗s,t = arg maxk∈Ks q̂s,k,t. Here, q̂s,k,t denotes the UCB of qs,k at time t, and

is given by q̂s,k,t = qs,k +
√

c logNs,t
Ns,k,t−1

, with Ns,t = ∑t
τ=1 I[Xτ = s] the number of

times subgroup s has arrived up to time t, Ns,k,t−1 = ∑t−1
τ=1 I[Xτ = s,Aτ = k] the

number of times that dose k has been allocated to subgroup s up to round t − 1,
and qs,k =

∑t

τ=1 I[Xτ=s,Aτ=k]Y eff
t

Ns,k,t
the empirical efficacy estimation of dose k. Finally,

the agent determines whether the patient in round t is to be skipped or not by
considering how convincing the estimation of the efficacy of k∗s is. To do this, the
Bayesian credible interval of the estimation of qs,k is adopted.
In a simulation study, authors compare their proposed C3T-Budget method to the
Contextual Independent TS of Aziz et al. (2019) introduced in (3.2.1), as well as
the Contextual UCB introduced in Section 3.1.2 and some rule-based standard
techniques, showing its out-performance in terms of both total error rate and efficacy
per patient.
Based on the same UCB principle, a more recent strategy is illustrated in Shen
et al. (2020), who proposed the Safe Efficacy Exploration Dose Allocation (SEEDA)
algorithm. This novel adaptive clinical trial methodology, explicitly imposes safety
constraints to the allocation and recommendation of dose levels, while maximizing
the cumulative efficacies, by adaptively updating the admissible set of dose levels
with UCB. Experiments on simulated datasets, as well as clinical trials built from
real-world datasets, show that the proposed method is capable of finding the optimal
dose with higher success rate and fewer patients, compared to other state-of-the-art
designs (Shen et al., 2020).

Approximate Dynamic Programming for Hybrid Designs Optimization
A different strategy is considered in Bartroff & Lai (2010), where, again the optimal
phase I design is formulated as in Aziz et al. (2019) and Lee et al. (2020) so as to
incorporate the treatment versus experimentation dilemma, addressing the ethical



66 3. Review of RL Methods and Applications in Healthcare

issue of treating patients at dose levels below the unknown MTD for safety, and
hopefully close to the MTD for efficacy. Here, authors formulate the problem
as a stochastic optimization problem, and, by making use of recent advances in
approximate dynamic programming (ADP), develop a new tool for tackling the
optimization problem and derive an approximated optimal design in a Bayesian
fashion.
The proposed design, is a presented as a convex combination, therefore hybrid design,
of a “treatment” design that is targeted toward treating the current patient at the
best guess of the MTD, and a “learning design”, aiming to efficiently experiment and
gather information for future patients. Following the hybrid idea, and denoting by
ai, i = 1, . . . , N , the dose administered to patient i, a representation of the optimal
dose sequence is given by

a∗i = (1− εi)mi + εili, (3.28)

where li is the chosen “learning design” and mi the myopic dose that minimizes a risk
(toxicity) function. The weights εi’s in these convex combinations are determined by
ADP, more specifically by using rollouts, and can be conveniently stored to provide
simple table look-up schemes for the clinical user.
We remind that dynamic programming (DP) is a standard optimization approach to
a general stochastic optimization problem of the form

E
[ N∑
i=n

h(ai, η) + g(η̂, η)|hN
]

= E
[
h(an, η) +

N∑
i=n+1

h(ai, η) + g(η̂, η)|hN
]
, (3.29)

based on which, a simplification acts upon the complicated decision by breaking it
down into a sequence of simpler sub-decision in a recursive manner, and a solution is
given by using for instance the Bellman equation (see Equation (2.10) in Section 2). In
(3.29) the expectation is taken over the joint distribution of (η;A1, Y1, . . . , AN , YN ),
with Yi the outcome for patient i, hi = (a1, y1, . . . , ai, yi) the “history”, or the
information set generated by the first i doses and responses, and η the MTD. h and
g are two functions quantifying the risk of toxicity in relation to dose ai, and more
generally they denote an outcome/reward function. The state-value function in (2.5)
and action-value function in (2.6) are typical examples of (3.29).
To minimize the global risk in (3.29), dynamic programming solves for the optimal
design a∗1, . . . , a

∗
N by backward induction that determines a∗i after determining the

future dose levels a∗i+1, . . . , a
∗
N . It involves computing and minimizing the conditional

expectations over all a, which makes it a formidable hard task.
To overcome this difficulty, approximated DP solutions which go under the rubric
of ADP, and combine least squares regression with Monte Carlo simulations, have
been employed. However, rather than having an approximation in the value space,
as seen in Section 3.1.1 for Q-learning, authors propose approximating the policy
space, which uses iterated rollouts to optimize the parameters in a suitably chosen
parametric family of (dosing) policies. The choice of the family of policies should
involve domain knowledge and reflect the kind of policies that one would like to
use for the actual application. The main idea behind the rollout is iterative policy
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improvement: starting with a base policy â = (â1, . . . , âN ), the rollout of â, i.e.,
a(1) = (â(1)

1 , . . . , â
(1)
N ) is given by the dose that minimizes a function similar to the

one in (3.29); then a(1) can be used as base policy for further rollouts yelding the
optimal design after n number of times. Further details of this approach can be
found in Bartroff & Lai (2010), Bartroff et al. (2013) and Chapter 6 of Bertsekas
(2011).

Note that (3.29) measures the effect of the dose an on the n-th patient through
h(an, η), its effect on future patients in the trial through ∑N

i=n+1 h(ai, η), and its
effect on the post-trial estimate η̂ through g(η̂, η). It can therefore be used to address
the dilemma between safe treatment and experimentation and can be viewed as
the hybrid design in (3.28) by relating the myopic dose mn to the minimum of
the proximal risk function h(an, η) - if the n-th patient were the last patient to be
treated in the trial (n = N), and the ln design to the perturbation one expects to
have from mn in the direction of a dose that provides more information about the
dose-response model, for the relatively large number of doses that will have to be
set for the future patients, i.e, ∑N

i=n+1 h(ai, η). Since the trade-off quantified by the
weights in (3.28) stems from the uncertainty in the current estimate of the MTD
η (see Bartroff & Lai, 2010; Bartroff et al., 2013, for more details), it is natural to
expect that the amount of perturbation from the myopic dose mn depends on the
degree of such uncertainty, using little perturbation when the posterior distribution
of η (here again a two-logistic model as in the CRM is assumed) is peaked, and much
more perturbation when it is spread out. This suggests choosing εi’s as functions
of the posterior variance, such as εi = εi(si), with si = vi−1/v0 (basic features of
the posterior distribution of η used to approximate the εi) and v2

i−1 = V ar(η|hi−1).
The ADP rollout algorithm is used to determine the functions εi = εi(si).

Q-learning: dose-finding as a DTR identification problem We finally want
to point out that an adaptive dose-finding problem can be actually regarded as a
sequential decision-making problem in which different treatments consist in different
doses. Based on this relationship, in such phase I/I-II trials, the attending physician
may actually use a DTR for making personalized multi-cycle decisions for each
patient. Depending on the patient’s history of doses and outcomes, the dose given
in each cycle may be above, below, or the same as the dose given previously, or
therapy may be terminated due to excessive toxicity or poor efficacy. Since typical
early-phase trial designs ignore such within-patient multi-cycle decision making, the
“optimal” dose chosen by such a design actually pertains only to the first cycle of
therapy.

The problem of adaptively optimizing each patient’s doses (given in multiple cycles)
based on binary efficacy and toxicity has been firstly addressed in Lee et al. (2015a).
Authors employ a model-based Bayesian objective function, defined in terms of
efficacy and toxicity utilities, which structurally resembles Q-learning functions
(Watkins, 1989). The goal of the proposed method is to choose a dose in each cycle
so as to maximize the posterior expected mean of the objective function, applying
a modified recursive Bellman equation (see Equation (2.10)). More specifically,
denoting the set of actions or doses with A = {0, 1, . . . ,K}, where A = 0 is the
decision to not give the patient any treatment, with Y tox

i,t ∈ {0, 1} and Y eff
i,t ∈ {0, 1}
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the outcome indicators for toxicity and efficacy of patient i at cycle t, the mean
utility, or mean reward function, of action a2 in cycle t = 2 is defined as

Q2(a2, a1, Y
tox

1 , Y eff
1 , θ) = E[U(Y tox

2 , Y eff
2 )|a2, a1, Y

tox
1 , Y eff

1 , θ]

=
1∑

ytox
2 =0

1∑
yeff
2 =0

U(ytox
2 , yeff

2 )p(ytox
2 , yeff

2 |a2, a1, Y
tox

1 , Y eff
1 , θ),

with U reflecting patients’ utility, e.g., U(0, 1) = 100 and U(1, 0) = 0, and p the
joint likelihood for the observables of a patient.
The objective function at cycle 2 is the posterior expected utility of giving dose a2
in cycle 2 defined as

q2(a2, a1, Y
tox

1 , Y eff
1 ,Dn)) = E[Q2(a2, a1, Y

tox
1 , Y eff

1 , θ|a2, a1, Y
tox

1 , Y eff
1 ,Dn)],

where Dn) indicates current data, and an optimal dose is given by the one which
maximises the given objective. The dose-finding process proceeds backward for the
optimal stage 1 dose as illustrated in Algorithm (1).
Since maximizing a posterior utility-based objective function, per se, ignores the
undesirable but important possibility that considered options are too toxic, dose
acceptability constraints criteria are included in the algorithm. More specifically,
denoted by aM1 and aM2 the highest doses among those that have been tried in cycle
1 and either cycle respectively, the search for optimal actions is constrained so that
1 ≤ a1 ≤ min(aM1 + 1,K) and 1 ≤ a2 ≤ min(aM2 + 1,K): the first constraint is that
an untried dose level may not be skipped when escalating; the second constraint
does not allow escalating a patient’s dose in cycle 2 if toxicity was observed in cycle
1, Y tox

1 = 1; the third criterion, defined in terms of expected utility, is to avoid giving
undesirable dose pairs.
The overall method provides an optimal two-stage regime consisting of an optimal
cycle 1 dose, and an optimal function of the patient’s cycle 1 dose.
A similar sequentially outcome-adaptive Bayesian design, using utilities of a bivariate
(toxicity and efficacy), but ordinal, outcome is proposed also in Thall & Nguyen
(2012). However, rather than choosing the dose that maximizes the posterior mean
utility, they deal with the well-known “exploration versus exploitation” dilemma
(Sutton & Barto, 2018) by adaptively randomizing patients among a set of acceptable
doses, An. In this case, a dose is considered acceptable if it (i) has acceptable toxicity,
(ii) has posterior mean utility that is close to the maximum, and (iii) is not unlikely
to have the highest posterior utility. In addition, in order to define the adaptive
randomization (AR) probabilities, the acceptable dose set An is also refined in
relation to a set of “good” outcomes, defined as G = {(ytox, yeff) : U(ytox, yeff) ≥ U},
where the lower limit U is elicited from the physicians who provided the utilities. Now,
given G, and denoting the posterior mean µG(a,Dn) = E[P((Y tox, Y eff) ∈ G|a,Dn)],
where P((Y tox, Y eff) ∈ G|a,Dn) is the probability of a good outcome for a patient
treated with dose a, the idea is to randomize a patient to dose a ∈ A with probability

π(a,Dn) = µG(a,Dn)∑
z∈An µG(z,Dn) .



3.2 RL for Designing Adaptive Clinical Trials 69

Adaptively randomizing patients in clinical trials is of increasing use in clinical
practice, and the problem is increasingly studied in clinical literature. We specifically
address this problem, reviewing existing RL and MAB-based techniques in Section
3.2.2; however, as in Thall & Nguyen (2012) AR is used as part of the primary
objective of dose-finding, we decided to mention this work in the current section.

3.2.2 Response-Adaptive Randomization

RCTs have traditionally followed a static design in which patient allocation to
treatments is fixed throughout the trial, typically based on a uniform randomization
or a blocked randomization (Lachin et al., 1988), to prevent an imbalance between
the groups. The primary goal of this static design is to learn about the efficacy of
treatments and allow comparison between the treatment(s) and the control. Adaptive
randomization (AR) designs, where assignment to treatments evolves as patient
outcomes are observed, are gaining in popularity due to potential for improvements
in cost and efficiency over traditional designs. They use data of previous cohorts
to adapt allocation of patients in succeeding cohorts: if a particular treatment
showed more promising or informative results in prior patients, the probability
of being assigned to that treatment is increased (Hu & Rosenberger, 2006; Berry,
2006). Commonly used AR procedures include restricted or treatment-adaptive
randomization (Efron, 1971b; Wei, 1978), covariate-adaptive randomization (Zelen,
1974; Taves, 1974), and response-adaptive randomization (RAR; Rosenberger &
Lachin, 1993; Hu & Rosenberger, 2006). An extensive overview of these AR designs
can be found in Rosenberger & Lachin (2015) and Antognini & Giovagnoli (2015).
Here, we focus on RAR, where the idea is to skew the sequential allocation procedure
in favour of the treatments associated with the best response (including also historical
allocation or covariate knowledge, if any). The goal is to improve the overall benefit
to patients. However, at the same time, we also require some allocation of the worse
treatments which will enable us to make meaningful inferences about treatment
differences or other parametric functions of interest. Thus, such adaptive strategies
should lead to allocating a larger number of patients to the eventual better treatment,
without significantly weakening the strength of the comparison between treatments.

RAR methods for CTs have been studied by many authors and have a long history
within CTs literature. Traditional statistical contributions include non-parametric
procedures based on urn models, such as the pioneering concept of Play-the-Winner
(PW; Zelen, 1969; Robbins, 1952; Hoel & Sobel, 1971; Wei & Durham, 1978) rule,
generalized urn designs (Athreya & Karlin, 1968; Durham & Yu, 1990; Durham et al.,
1998), birth and death urn designs (Ivanova et al., 2000) or Drop-the-Loser (DL;
Ivanova & Durham, 2000; Ivanova, 2003; Zhang et al., 2007) rules, and parametric
procedures based on sequential estimation, such as the doubly-adaptive biased coin
designs (Eisele, 1994; Eisele & Woodroofe, 1995; Hu et al., 2004). As noticed by
Hu & Rosenberger (2006), these procedures are myopic or one-step-look-ahead, in
that they incorporate current data on treatment assignments and responses into
decisions about treatment assignments for the next subject only. Thus, there is no
guarantee that such procedures are globally optimal.

A different line of research, which aims to find an allocation sequence (i.e.,
policy) with the objective of maximizing the cumulative outcomes (patient benefits)
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over the total sample or horizon, is based on bandit problems (Berry & Fristedt,
1985a; Gittins et al., 2011; Villar et al., 2015a). This line has an old and long
history in statistics, starting with the Bayesian proposal of Thompson (1933, 1935).
However, after his pioneering work, the bandit problem received little attention until
the works of Robbins (1952); Bellman (1956) and, later, the celebrated results of
Gittins (1974) for Bayesian bandits. Indeed, much of the bandit literature in ADs
takes the Bayesian approach: as mentioned in Berry & Fristedt (1985a), “It is not
that researchers in bandit problems tend to be ‘Bayesians’; rather, Bayes’s theorem
provides a convenient mathematical formalism that allows for adaptive learning, and
so is an ideal tool in sequential decision problems”. With a Bayesian strategy, a
bandit is a typical DP problem; when the horizon is finite, backward induction can
be used to determine an optimal allocation. Berry & Fristedt (1985a) also provides
a comprehensive overview and survey of all the early bandits-based methods for
adaptive randomization (see the “Annotated bibliography” pp.207-261). Here, we
aim to focus on the more recent literature, reviewing also some of the early methods
when necessary. The essential criterion for inclusion is that they resemble the RL or
MAB problem, i.e., directly or implicitly, maximizing a sum (here we only deal with
the discrete case), perhaps with discounting.

We now introduce some basic notation. In RAR designs, we wish to allocate a
total of N patients to K + 1 available treatments (say A0, . . . , AK , with A0 denoting
the control treatment), with patients recruited in a total of T time steps. Patients
can arise sequentially in cohorts, in which case T < N , or one after the other at
subsequent steps. In the latter, each time step t will be uniquely identified by the n
patient entering the trial, thus N = T . We focus for now on this case. Each patient t
of our sample will be assigned one of the available treatments and a response Yt will
be observed before making the treatment decision for patient t+ 1. The objective is
to find an allocation rule so as to maximize the expected discounted return given
in (2.3). Formally, denoted with γ the discount rate, and at

.= (a0,t, . . . , aK,t) the
allocation vector for patient t, where ak,t = 1 if unit t is allocated to treatment k and
ak,t = 0 otherwise, we want to choose the optimal allocation strategy π∗ .= {π∗t }Tt=1
so that

π∗ = arg max
π∈Π

Eπ

[
T∑
t=1

γt
K∑
k=0

ak,tYt

]
, (3.30)

where the expectation Eπ = EPπ is based on the entire trajectory distribution as
in (2.2), with policy π, and Π = ∏T

t=1 Πt, with Πt ⊂ {0, 1}K+1 is the family of
admissible policies, that is, all the feasible sequences of treatment allocations ak,t for
all k and t. Clearly, given that only one treatment can be allocated per patient we
have that ∑K

k=0 ak,t = 1 for each t. The reward variable Yt at time t is a function of
both the treatment At and the state Xt, which can incorporate covariate information
on that patient, but also previous responses information; we alternatively denote it
with Yk,t, indicating the response to treatment k for patient t.

If we consider the example of random and binary responses, that is, reward is
either a success (Yk,t = 1) or a failure (Yk,t = 0), and model the sequence of successes
and failures as a Bernoulli process, with pk = P(Yk,t = 1) the true unknown success
probability of arm k, then, each treatment may be modelled as a Markovian bandit
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process with state Xk,t the random vector of successes Sk,t and failures Fk,t up to
time t, i.e., Xk,t

.= (Sk,t, Fk,t); it can be interpreted as a sufficient statistic for arm k.
States update are based on the Bayes rule (with a Beta prior, with positive constant
hyperparameters sk,0, fk,0), and the reward function is the average reward given
by the mean of the Beta function, i.e., Yk,t = E[pk|Xk,t] = Sk,t/ (Sk,t + Fk,t). This
setting is also known as the Bayesian Bernoulli MAB problem, and, as we will see
in the next subsections, is the most common framework assumed in RAR methods
for CTs. In general, as MAB problems are a special class of MDPs, the traditional
technique to address them is via a DP and backward induction. However, as shown
in Section 3.1.1, such techniques suffer from a severe computational and memory
burden, especially when size of the state space grows with the horizon T .

In order to provide the reader with an idea of existing RL and MAB-based
strategies for response-adaptive randomization, we now illustrate some of the pro-
posals in the field, focusing on the Gittins index ’s approaches. We want to mention
that common MAB techniques such as LinTS and LinUCB (see Section 3.1.2) have
also been employed in RAR, and other new proposals also exists (see e.g., Atan
et al., 2019; Ahuja & Birge, 2016, 2020), also in different areas such as in two-stages
SMART designs (Cheung et al., 2015). However, unlike the comprehensive work for
adaptive interventions which constituted one of the main focus of this thesis, the
purpose of this section is more illustrative for setting the ground of the problem and
related challenges which will be discussed in Chapter 4.

MAB approaches based on the Gittins index

The Gittins index theorem represents a cornerstone for most of the current work in
adaptive CTs and a key breakthrough for the MAB problem in (3.30), as it showed
how equivalently to solve it with k 1-dimensional MDPs instead of the k-dimensional
MDP as required by DP. While the Gittins index (GI), originally named dynamic
allocation index (Gittins, 1974), offers a solution to a very large number of problems
(see Chapter 1 of Gittins et al., 2011, for an overview), here we associate it with
the Bayesian Bernoulli MAB problem illustrated above. More specifically, assuming
that patients enter the trial one-by-one and the outcome for patient t is observed
before patient t + 1 appears, the GI theorem states that, for any infinite-horizon
(T =∞) discounted MAB problem with finitely many arms and bounded rewards,
the allocation rule obtained by backward induction is optimal if and only if it always
allocates patient t+ 1 to the treatment with the highest GI at time t. The GI of
treatment k at state xk,t, denoted by Gk(xk,t), is given by:

Gk(xk,t) = sup
τ≥1

E
[∑τ−1

i=0 γ
iE[pk|xk,t+i] | xk,t

]
E
[∑τ−1

i=0 γ
i | xk,t

] , (3.31)

where τ is a {σ(Xk,1, . . . , Xk,t)}∞t=1 (past-measurable) stopping-time, and the expec-
tation is computed with respect to the Markovian states transition distribution (see
Section 2.0.1). As illustrated above, states xk,t ∈ Xk,t

.= {(sk,0 + sk,0, fk,0 + Fk,t ∈
N2

+ : Sk,t + Fk,t ≤ t,∀t = 0, 1, . . . , T} represent the posterior distribution, i.e., all
the possible two-dimensional vectors of information on the unknown parameter pk
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at time t: (Sk,t, Fk,t) is the random vector of successful and unsuccessful patient
outcomes, and (sk,0, fk,0) is the prior hyperparameters.

The GI policy assigns a value to each treatment based on the observed state
variables, and suggests as optimal strategy the one with the highest value. It can be
calculated with off-line and on-line algorithms (see Chakravorty & Mahajan, 2014,
for an overview), but typically it is computed by solving the problem of allocating
patients optimally between treatment k and a known treatment which yields a
constant reward (the detailed explanation is given in Gittins et al., 2011).

Despite the optimality of the GI, the rule has never been used in real clinical
trials. Practical barriers include: (1) the underline infinite-horizon setting; (2)
insufficient statistical power (when computed using traditional hypothesis testing
procedures); (3) the need for instantly observed treatment outcomes; and, (4) a
lack of randomization to provide a basis for inference. We now review some of the
subsequent literature that tried to overcome this limitations.

Restless MABs and the Whittle index. The Gittins index theorem was devel-
oped for a infinite-horizon discounted Markov bandit problem. However, in clinical
trials we deal with finite resources or patients, typically, we choose the minimum
number of patients to achieve a pre-determined power. Besides the requirement of
infinite horizon, the theory of the GI only applies when the actions are deterministic.
When these are randomized, the problem becomes so-called restless, meaning that
more than one arm can change its state in every period. Also, even when the actions
are deterministic, but the horizon is finite, the problem can be seen as restless, by
adding the remaining number of subject allocations to the state of each arm. Based
on this, an equivalent finite-horizon version of the GI for the Bayesian Bernoulli
MAB problem was derived by reformulating the problem as an infinite-horizon
restless MAB. A solution of the restless problem was given by Whittle et al. (1981),
with the Whittle index (WI), which reduces to the GI in the non-restless setting.

Controlled Gittins. To overcome the severe loss of statistical power of the Gittins
index, Villar et al. (2015a) introduced a controlled version of the GI, called controlled
Gittins (CG) approach, that ensures that the allocation to the control treatment
never goes below 1/(K + 1). The procedure can be viewed as a composite design
in which one in every K + 1 patients is allocated to the control group, and the
remaining patients are assigned to the experimental K treatments using the Gittins
index rule. Based on simulation results, CG managed to solve the trade-off between
power and patients benefits quite successfully, achieving more than 80% power with
a mean number of successes higher than the one achieved by fixed randomization
and other adaptive allocation strategies such as TS and less variability compared to
TS.

The CG approach was initially developed for binary outcomes as in the GI, but
later extended to normally distributed endpoints with known variance (Smith &
Villar, 2018), based on the reformulation of the GI for continuous data (Gittins
et al., 2011).

Forward-looking Gittins index. Motivated by the deterministic and fully sequen-
tial nature of the Gittins index, which reduces its applicability to medical contexts
where outcomes are observable soon after treating a patient, Villar et al. (2015b)
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developed a probabilistic version of the GI, which can also be applied to blocks
of patients rather than individual patients. Assume that a total of T patients are
enrolled over J stages, each of which consisting in a block of size b so that J × b = T .
At each decision point j (j = 1, . . . , J), the aim is to allocate the next b patients to
the K + 1 treatments, given the data up to block j − 1; or equivalently to determine
the probability of allocation to treatment k at stage j, πk,j , which is common to
all b patients of block j. Denoting with x̃(j−1)b all the data observed up to block
j − 1, which can be written as a (K + 1)× 2 matrix in which row k represents the
parameters of treatment k’s current posterior distribution up to patient (j − 1)b,
adopting the GI, this probability if given by

πk,j = 1
b

jb∑
t=(j−1)b+1

[ ∑
x̃t−1∈X̃t−1

P(aGI
k,t = 1|X̃t−1 = x̃t−1 (3.32)

×P(X̃t−1 = x̃t−1|X̃(j−1)b) = x̃(j−1)b)
]
,

with X̃t−1 representing the set of all possible values for X̃t−1 given initial data x̃(j−1)b
for every future patient t in (j − 1)b+ 1, . . . , jb under the GI rule (summarized by
aGI
k,t). Note that the computational cost of computing the πk,j ’s, which depend on

the joint state for the K + 1 arms, i.e., x̃t (instead of the one-arm state xt as in the
GI), will grow exponentially as b and K increase.

Randomization is introduced by taking into account future sequences of allo-
cations in the same block under Gittins’ rule; from here the name forward-looking
Gittins index (LFGI). Indeed, notice that

• for all the b patients of block j = 1, x̃(j−1)b contains only the prior beliefs
on the effectiveness of each treatment, and πk,j = 1/(K + 1) for all k, if all
treatments are assigned the same prior;

• for the first patient of block j (j = 2, . . . , J), i.e., for patient t = (j − 1)b+ 1),
the allocation rule is deterministic if a single treatment has a unique maximum
GI given x̃(j−1)b;

• from the second patient of block j (j = 2, . . . , J), i.e., for patients t =
(j− 1)b+ 2, . . . , jb), allocation probabilities are obtained by averaging over the
posterior predictive distribution (Beta-Bernoulli in case of Bernoulli data and
Beta priors) of future data given x̃(j−1)b.

If the maximum GI is not unique, and multiple treatments are joint maxima, ties
are broken at random among the optimal treatments, introducing a degree of
randomization also for the first patient of the subsequent blocks.

In simulation studies carried out in Villar et al. (2015b), compared to fixed
randomization and other adaptive allocation rules such as TS, the FLGI, as well
as the GI, showed an increased number of patients assigned to the better arm
and an increased successes. On the other hand, FLGI and GI resulted also in a
dramatically reduced power. However, when considering a controlled version of
the FLGI analogous to the CG, which ensures that the allocation to the control
treatment never goes below 1/(K+1), the power issue was corrected, sometimes also
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improving upon the fixed randomization scheme. In terms of type-1 error, the FLGI
approach showed to control it conservatively, with higher performances compared to
the GI and TS.

An extension of the FLGI, originally developed for binary responses, to normally
distributed outcomes, can be found in Williamson & Villar (2020). In addition to
showing the benefits of the response-adaptive designs compared to traditional equal
randomized design, authors also showed that there are efficiency and patient benefit
gains of using allocation procedures with a continuous endpoint instead of a binary
one. These gains persist even if an anticipated low rate of missing data due to
deaths, dropouts, or complete responses is imputed online.

A major criticism of response-adaptive randomization is that, despite their ethical
benefit, they are not suitable for performing reliable statistical inference in general.
One of the most prominent recent arguments against their use is the concern that
the Type-I error rate may not be controlled at the nominal level. This can be the
case of a drift in patient characteristics over time independently of any treatment
effect, and the traditional methods of analysis are used. An example of the first
phenomenon is when the underlying prognosis of patients recruited in the early stages
of a trial differs from those recruited in the latter stages. Using covariate-adjusted
response-adaptive randomization can be a solution to this problem if the underlying
covariates causing the heterogeneity are known in advance. For this reason, RAR is
still infrequently used in practice. In the next chapter we fully illustrate and discuss
this problem, and to conclude this section we illustrate one proposal on adaptive
randomization based on time-to-event outcomes with covariates.

Continuous Bayesian adaptive randomization based on event times with
covariates . Motivated by a practical problem that has arisen repeatedly when
applying adaptive-randomization methods in trials when not all outcomes are ob-
served immediately, Cheung et al. (2006) proposed a Thompson Sampling inspired
approach with time-to event outcomes that also accounts for baseline prognostic
covariates. Authors first assume the Weibull model, instead of the widely employed
Bernoulli model, in which the survivor function for treatment k is denoted by
Sk(T |X;θ) .= P(Y > T |X;θ), with T a fixed time such that the patient’s treat-
ment is considered a success if Y > T , X the covariates and θ the Weibull model
parameters.

The AR criterion is based on the fact that treatment k is superior to treatment
k′ if Sk(T |X;θ) ≥ Sk′(T |X;θ). Let Ht denote the data accumulated from patients
in the trial up to study time t. If patient i with covariates Xi enters the trial at
study time ti, the AR criterion is defined as the posterior probability that treatment
k is superior to all others, in terms of the probability of surviving beyond T given
the covariate vector Xi of the patient accrued at ti, i.e.,

γi(k|Xi) = P
(
Sk(T |Xi;θ) = max

j=1,...,K
Sj(T |Xi;θ)|Hti

)
. (3.33)

Since ∑K
k=1 γi(k|Xi) = 1, when the survival time distributions are continuous,

γi(1|Xi), . . . , γi(K|Xi) may be used as the allocation probabilities. For K = 2 and
no covariate, (3.33) is similar to the randomization probability proposed by Thomp-
son (1933), who considered two independent binomial samples with probabilities
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following beta priors. Here, a Weibull distribution is assumed for the time response
variables Y , such that log

(
− log(Sk(y|Xi;θ)

)
= log(µk) + φ log(y) + β′X, where

θ = (µ, φ,β), with φ > 0 and µ > 0 the baseline rate parameter; and non-informative
independent normal priors on (log(µ); log(φ); log(β)). In addition to this full model
based approach, authors also illustrate the use of a semi-parametric approach (with-
out assuming a distribution for Y and only requiring some mild assumption) based
on approximate Bayes methods. We refer to the original work of Cheung et al. (2006)
for readers interested in this proposal.
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Chapter 4

Inference in
Adaptively-Randomized
Experiments with MABs1

Abstract

Multi-armed bandit algorithms have been argued for decades as useful for adaptively-
randomized experiments. In such experiments, an algorithm varies which arms
(e.g., alternative treatments or text-messages) are assigned to participants, with the
goal of assigning higher-reward arms to as many participants as possible. However,
existing works suggest that adaptive randomization leads to estimation bias and a
poorer confidence intervals coverage, compared to uniform randomization.
By using a real-world 2-arm binary reward setting experiment as a motivating
example, in this Chapter, we empirically investigate the impact of using Thompson
Sampling (TS) instead of uniform random (UR) assignment. Focusing on hypothesis
testing, with common test statistics for mean differences, we show that using TS
can as much as double the type-I error (α; incorrectly reporting differences when
none exist) and the type-II error (β; failing to report differences when they exist).
We empirically illustrate how and why this occurs. Maximizing a reward function
can lead to unbalance samples in favour to a random superior arm under the null,
which creates type-I error inflation; and reduced confidence in estimates under
the alternative, which inflates type-II error, thus reduces power (1 − β; correctly
reporting differences when they exist). We show this problem persists using different
bandit strategies and different test statistics, including a Bayesian framework. We
then propose two adjusted versions of the Wald Z-test that incorporates knowledge
of the adaptive randomization nature of the TS algorithm. While, these adjustments
can help, they do not eliminate completely the inference issues. As an alternative
strategy, we show that modifying the algorithm itself, by introducing a higher degree
of uniform randomization when no empirical evidence for mean differences exists,
may help in solving the issue. These results, primarily illustrate the nature of the
problem, and then, suggest different strategies for improving statistical inference in

1Parts of the text of this chapter are extracted from the submitted/published manuscripts
coauthored by the candidate and listed on page vii.
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adaptive experiments based on multi-armed bandit algorithms.

4.1 Introduction

Multi-armed bandit algorithms have been put forth for decades as being useful for
adaptively-randomized experiments, where an algorithm varies which arms (e.g.,
alternative interventions, treatments or text-messages) are assigned to participants,
with the goal of giving higher-reward arms to as many participants as possible (Berry
& Fristedt, 1985a). Furthermore, the rising usage of digital technologies enables
scientists to conduct randomized experiments in real-world settings to understand
people’s real-world behavior and help them achieving their goals. For example, recent
work has shown bandit algorithms can speed up use of data to help participants in
education (Clement et al., 2014, 2015; Williams et al., 2016, 2018; Segal et al., 2018),
in healthcare (Tewari & Murphy, 2017; Rabbi et al., 2015; Aguilera et al., 2020),
and in product design (Li et al., 2010; Chapelle & Li, 2011; Lomas et al., 2016).
Yet, these examples are only a tiny fraction of the tens of thousands of experiments
where bandit algorithms could be useful by directing more participants to more
effective conditions.

In a multi-armed bandit problem, a system learns about the value of different
arms by choosing among them, and receiving a stochastic reward associated with
the chosen arm (see Section 2.0.1, or alternatively Lattimore & Szepesvári, 2020, for
an overview). The mean reward for each arm is initially unknown (although rewards
are independent of one another given the arm choices) and the system learns about
the reward distributions based on its choices. Typical bandit algorithms aim to
make arm choices that maximize the expected cumulative reward, or equivalently
that minimize the cumulative regret, as reported in (2.13). Adaptively-randomized
experiments (which we abbreviate sometimes to adaptive experiments) can be viewed
as a bandit problem by considering the randomization of arms to participants. If
the randomization is based on previous responses of participants, then, we have a
response-adaptive randomization.

For example, in a clinical trial, arms might be the different available treatments,
and the reward might be whether the patient responded to that treatment or not.
To achieve the scientific goal of a randomized trial, e.g., of discovering whether one
treatment is more effective compared to a control treatment, typically, patients are
randomized to treatments uniformly at random (equal and fixed probability). To
achieve the practical (and more ethical) goal of assigning the best treatment more
often, an algorithm that dynamically modifies the randomization probability of future
patients, by using the evidence of previous patients’ responses, would be preferred.
However, broader use of adaptive experiments, requires a better understanding of
the trade-offs bandit algorithms make between the scientific and practical goal.

A major barrier to adopting bandit algorithms for experimental designs is the
lack of clarity on how statistical analyses of data are impacted when using a bandit
algorithm to adapt an experiment (Burnett et al., 2020). Theoretical work suggests
that adaptive data collection like the one used in bandit algorithms can induce
bias in the estimates of means (Bowden & Trippa, 2017; Deshpande et al., 2018;
Nie et al., 2018; Shin et al., 2019, 2020), and that confidence intervals constructed
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from these statistics may not have correct coverage (Hadad et al., 2019; Zhang
et al., 2020b). Both practical decisions and scientific research rests on knowing and
controlling how frequently type-I error occurs, as these can be deeply problematic.
Incorrectly concluding one intervention is more effective than another can lead to
wasted resources from a practical perspective, and mislead future research that
builds on these findings. Recommendations for changes to practice typically rely on
meta-analyses or multiple studies reporting similar findings (e.g., Means et al., 2009),
but an uncertainty about the inference performance has the potential to negatively
impact the likelihood that research will be translated to practical improvements. It is
therefore necessary to quantify how collecting data using a bandit algorithm (rather
then a uniform randomization) impacts the type-I error of a statistical hypothesis
test in a particular application, e.g., how often one incorrectly concludes the sample
data provides evidence for a difference in arm means, when none exists.

Scientists or practitioners also need empirical insight into the impact on statistical
power of a test, or the probability of concluding there is a difference in arm means
when it truly exists. We remind that power is equal to 1− type-II error (or 1− β),
i.e., the probability of failing to conclude a difference exists, when it does. When
compared arms have unequal sample sizes, because one arm was assigned to fewer
participants, lower confidence in the sample estimate of the inferior arm mean
can reduce statistical power for detecting differences (Villar et al., 2015a; Zhang
et al., 2020b; Yao et al., 2020). Quantifying this reduction is also essential, as
there is a high bar for scientists and practitioners to trust statistical analysess of
adaptively-collected data, to ensure best practices are followed and meet regulatory
requirements (FDA, 2019). Integrating statistical considerations to lower the barriers
for analysis of real-world experiments by scientists and practitioners has tremendous
opportunity for bandit algorithms to have an impact.

This work therefore aims to provide empirical evaluation into how using bandit
algorithms impacts statistical hypothesis testing. We explore in a simulations
study how much and why using a bandit algorithm inflates type-I error and reduces
statistical power. We target the 2-arm binary reward setting, because it is ubiquitous
in experiments, and because if these issues are non-trivial to solve in this case, they
will only be more compounded in more complex settings. We constructed a simulation
environment with parameterization of arm differences and number of participants
inspired by real-world experiments (Williams et al., 2016).

We show that when there is no difference in arms (e.g., both arm means have
success probability of 0.5), using Thompson Sampling instead of uniform random
can increase type-I error from 5% to as much as 13%. When there is a difference
in the arm means (e.g., arm mean of 0.45 vs 0.55), we show that the power of a
test to detect this effect is reduced from 80% with uniform randominzation to 56%
with Thompson Sampling. We also show that the identified problems occur: 1) not
only for the commonly used Wald Z-test (Wald, 1943), but also for the Welch’s
t-test (Welch, 1947), and when using a Bayesian framework for hypothesis testing,
i.e., the Bayes Factor; 2) when using another common bandit strategy, i.e., ε-Greedy.
We illustrate the potential motivation behind this trend.

These findings provided guidance to two alternative ways of pursuing improved
statistical inference in data collected by bandit algorithms. First, to explore ways
of modifying the test statistic using knowledge of the data collection process of
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the bandit algorithm. More specifically, this work investigates two methods for
adjusting the Wald Z-test: 1) using inverse probability weighting to reduce bias in
the estimates of the means in an attempt to deflate the type-I error and increase
power; 2) estimating through simulations the empirical distribution of Wald Z-test,
assuming data are collected by TS, and use the latter, rather then the Wald Z-test’s
theoretical normal distribution. Second, to modify the algorithm or framework for
formulating the problem of interest: being more sensitive to statistical analysis as
well as to reward maximization.

These analyses and results can provide insights into the challenges to be sur-
mounted in bridging machine learning, statistics, and applied sciences, to conduct
adaptive experiments in the real-world, in an aim to simultaneously help individuals
and advance scientific research.

In summary, the contributions of this Chapter are:

• To empirically investigate the challenges of drawing inferences, specifically
hypothesis testing, from bandit-collected data in simulation, and show that
these issues persist across different hypothesis tests and bandit strategies;

• To give insights and explain why adaptively-collected data negatively impact
type-I error and power of a statistical test;

• To explore two ways of modifying a common traditional statistical test, i.e.,
the Wald Z-test, by incorporating knowledge of the adaptive nature of bandit
algorithms; and show that, while these can mitigate some of the arising issues,
they do not fully solve the hypothesis testing problem;

• To propose a new bandit framework that balances reward maximization and
uniform randomization.

Our hope is to illustrate some considerations necessary for applying bandit
algorithms for both maximizing reward and enabling reliable statistical analysis
and inference from data, as well as inspire the development and modification of
theoretical frameworks and algorithms to better tackle these issues.

4.2 Related Work

Real-world applications of bandit algorithms. Bandit algorithms have been
applied to conduct adaptive experiments in different areas where maximizing the
immediate participants experience takes precedence over generalizable statistical
conclusions from collected data. This is the classic bandit problem formulation of
maximizing reward, or, equivalently, minimizing regret. Applications include both
industry, e.g., to give more popular versions of websites (Hauser et al., 2009; White,
2012), product features or advertisements (Li et al., 2010; Chapelle & Li, 2011; Russo
et al., 2018; Bakshy et al., 2012) or to find the best available radio channel from a
large set of channels (Toldov et al., 2016), and research, e.g., in education (Clement
et al., 2015; Segal et al., 2018; Williams et al., 2016). Here, the primary focus is
on optimizing learning outcomes rather than questions of how best to analyze the
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data from the experiments. However, it should be noticed that there are still many
product teams that do not use bandit algorithms due to concerns about drawing
generalizable conclusions from the data (Kohavi et al., 2012).

Bandit algorithms, typically contextual bandits (see Chapter 2.0.1, or Tewari &
Murphy, 2017, for an introduction), have also been applied in health research, such
as to deliver text messages in order to improve users’ physical activity (we present
our related study in Chapter 5), or maximizing stress reduction (Paredes et al., 2014).
We don’t focus on the rich literature on contextual bandit algorithms, but we expect
that issues that arise in simpler cases are likely a compounded problem, probably
with a higher impact, for more complex settings such as contextual bandit problems.
These applications mainly belong in a bandit setting where optimization of reward
is the key goal. However, a different line of literature also addressed the problem in
the context of best-arm identification, e.g., for automate machine learning (Hoffman
et al., 2014), for selecting influenza mitigation strategies (Libin et al., 2018) or for
insect control for organic agriculture (Libin et al., 2019), where the aim is to identify
the arm with the highest mean with high confidence.

Despite the clear promise for using data more rapidly, the breadth of applications
could be substantially increased if there was not the sense that one had to trade-off
maximizing reward and drawing generalizable conclusions with reliably quantifiable
levels of statistical certainty. Poor understanding of this aspect and absence of robust
inference and estimation in adaptively collected data, constitutes one of the main
drivers that prevents for instance the practical use of bandit strategies in clinical
trials (Pallmann et al., 2018; Burnett et al., 2020). We now turn to related work on
this topic and explain how the current work aims to advance this goal.

Statistical inference from bandit-collected data. In high stakes settings, such
as clinical trials, there has been limited use of adaptive designs due to the challenges
of drawing inferences from them (Pallmann et al., 2018; Burnett et al., 2020). While
some theoretical and modeling work in this area exists (as shown in Chapter 3,
Section 3.2), current guidance on adaptive clinical trials (FDA, 2019) emphasizes
the need for more applications, case studies, and data sets on which to evaluate
the theoretical work. Still, uptake of adaptive clinical designs is relatively slow,
evidence that higher guarantees are needed for running trials, and lowering their
risk of being inconclusive or wrongly conclusive (Burnett et al., 2020). One barrier
to the application of these methods is the ongoing debate and concerns about how
such adaptive experiments influence properties of statistical hypothesis tests such as
type-I error and statistical power. For a scientist, a lack of understanding of how
much using a bandit algorithm impacts type-I error is deeply problematic, as they
might draw an incorrect conclusion that a difference between arms or treatments
exists when none occurs, which misleads future scientific research and contributes
to the replication crisis (Camerer et al., 2016; Collaboration et al., 2015). Even
practically, it can waste tremendous practical resources to pursue an intervention
that seems to be better but is not actually better. Or, a low power where one misses
an effective intervention.

Drawing inferences from bandit-collected data can be challenging due to biases
in the means and other functions of the arm means (Atkinson et al., 2014; Bowden &
Trippa, 2017; Deshpande et al., 2018; Nie et al., 2018; Shin et al., 2019, 2020). Thus,
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some recent work, in the context of hypothesis testing, claims the need for unbiased
estimators of means (e.g., Deshpande et al., 2018; Hadad et al., 2019; Zhang et al.,
2020b), which may also solve poor confidence intervals coverage (Hadad et al., 2019;
Zhang et al., 2020b), rather than directly addressing type-I error and power. In this
paper, we also explore this strategy, building on Bowden & Trippa (2017)’s work
that uses inverse probability weighting (Robins, 2000) to reduce bias. However, this
bias reduction inflates the variance of the estimator, which means there are still
challenges in drawing conclusions about the relative values of different arms.

Some works have directly investigated the challenges in hypothesis testing with
data from adaptive experiments using bandit algorithms (Villar et al., 2015a; Zhang
et al., 2020b; Yao et al., 2020; Kasy & Sautmann, 2021). Some of the proposed
techniques rely on considerable information about (and control over) the data
generating process. Yao et al. (2020) consider clipping the probabilities of selecting
each action at each point in the data selection, and (Kasy & Sautmann, 2021) propose
modifying the bandit algorithm so that an action is assigned at most half of the times
to encourage more exploration. Other works, by focusing on addressing the biased
ordinary least squared (OLS) estimator, require the computation of more advanced
estimators, based on adaptive weights and other correlation summaries (Deshpande
et al., 2018; Hadad et al., 2019; Zhang et al., 2020b). In the spirit of this recent
theoretical work, our primary goal is to provide empirical exploration and insights
on the type-I error and power issue. Secondarily, we propose some alternative
solutions, including a bandit modification strategy, to balance reward maximization
and generalizability of conclusions. Our study considers various scenarios and uses
different existing bandit algorithms and statistical tests. Our focus is complementary
in exploring primarily the simplest form of TS (without parameters scientists would
have to fit), and the widely used Wald Z-test, and targeting the 2-arm case with
binary rewards.

Balancing reward maximization against other objectives. A theme of the
current paper is exploring how reward-maximizing bandit algorithms impact the ob-
jective of statistical inference, and how this is similar to and different from past works
that considered adaptive allocation to optimize other objectives besides regret. For
instance, best-arm identification aims to adaptively assign arms in order to efficiently
or accurately identify the optimal arm (Even-Dar et al., 2002; Audibert & Bubeck,
2010; Russo et al., 2018). Similarly, work on optimal experimental designs aims to
estimate a parameter of interest with maximum precision and efficiency (Myung
et al., 2013; Kaptein, 2015; Smucker et al., 2018). As algorithms cannot be guar-
anteed to be optimal on both reward maximization and other objectives, such as
best-arm identification (Bubeck et al., 2009), some literature has directly considered
the question of how to trade off competing goals. For instance, some work proposed
to use a multi-objective bandit problem for trading off cumulative reward against
minimizing estimation errors for arm means rewards (Liu et al., 2014; Erraqabi et al.,
2017) or to introduce a random cost for pulling an arm and constrain the total cost
by a budget (Xia et al., 2015; Hoffman et al., 2014). Other work aims to maximize
reward by choosing the best arm, while also gaining enough accuracy in estimating
alternative arms to be able to have high confidence that the best arm was chosen and
justify generalization about the best arm (Yang et al., 2017; Jamieson & Jain, 2018).
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In this paper, we also consider both reward and an additional objective, related to
but different from the previous work. More specifically, our additional goal is to have
low type-I error and high power when testing the null hypothesis of no difference
between two arms. We focus specifically on understanding how an interpretable
bandit algorithm (i.e., Thompson Sampling) performs on this alternative objective
when adaptively collecting data. We believe that such empirical evaluations may
give useful insights on how an hypothesis testing procedure is affected by the TS
algorithm in different plausible settings and how to potentially correct it and en-
sure stronger guarantees. Existing literature provided only a partial view on this
phenomenon, focusing mainly on modifying the bandit strategy in specific settings,
which will represent our secondary goal in this work.

4.3 Challenges in Drawing Inferences from Data Col-
lected with MABs

In this section, first, we introduce: 1) the compared allocation strategies, with a
full illustration of the standard Beta-Bernoulli Thompson Sampling (a simplified
version of Algorithm 4), designed to solve the MAB problem in a 2-arm binary
reward setting; 2) the compared statistical procedures for the hypothesis testing
problem, and; 3) the simulation environment. Then, we outline the harms to the
Wald Z-test’s type-I error and power that Beta-Bernoulli TS can cause when used
to adaptively assign experiment participants to different conditions. We show that
the problem persists when using different bandit strategies and different hypothesis
testing procedure.

4.3.1 Methods and Simulation Environment

Allocation Strategies

We simulate our experiments by using two adaptive allocation strategies, i.e., Thomp-
son Sampling and ε-Greedy, and compare them with a traditional uniform random
allocation. We remind that a uniform random allocation will randomize partici-
pants to arms with equal probability, while the ε-Greedy algorithm will assign, with
probability 1 − ε, the arm with the highest mean reward so far (in the sample),
and, with probability ε, a random arm. We consider a value of ε = 0.1, so that for
each participant, with probability 0.1 arms will be assigned using UR, and with
probability 0.9 the greedy arm will be selected. For Thompson Sampling, given the
binary reward and 2-arm setting, we assume a Beta-Bernoulli model and a Beta(1, 1)
prior, corresponding to a uniform distribution. As TS will be the primary focus of
the next section, we provide a detailed description of the Beta-Bernoulli Thompson
Sampling.

Beta-Bernoulli Thompson Sampling. In 2-arm Beta-Bernoulli TS, pulling arm
k, with k ∈ {1, 2}, results in a reward of 1 with a probability pk and 0 with probability
1− pk. pk denotes the success rate of arm k, which is unknown and independent of
the other arm. An independent beta-distributed prior with parameters of αk > 0
and βk > 0 over the estimation of each pk is assumed. At each iteration of TS, a
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sample is drawn from the posterior distribution of pk for each arm, and the arm
with the larger sample is selected. This rule is equivalent to choosing arms with
probability equal to the posterior probability that they have the highest probability
of returning the highest reward (Chapelle & Li, 2011; Russo et al., 2018), in our
case a reward of 1. In other words, denoted with at and yt the arm and the reward
at time t, respectively, we have that the probability of selecting arm 1 at time t, say
ρ1,t = P(at = 1), is equivalent to its probability of being optimal, and in a 2-arm
case can be defined as:

ρ1,t =
∫

I
[
E[yt|at = 1, p1] = maxkE[yt|at = k, pk]

]
π(p|Dt)dp

=
∫

[0,1]2
I
[
E[yt|at = 1, p1] > E[yt|at = 2, p2]

]
π(p|Dt)dp

=
∫

[0,1]2
I[p1 > p2]π(p|Dt)dp,

where I is the indicator function, p = (p1, p2) is the parameters’ vector, Dt is set of
available data up to time t, and π(p|Dt) is the posterior distribution of the unknown
pk’s parameters given the observed data Dt. Note that the second equality comes
from the adaptation in a 2-arm setting, and the third one derives from the exact
specification of the expected value of Binomial rewards.

After pulling arm at at time t and observing the associated reward yt, the
distribution of the selected arm is updated based on Bayes’ rule, while the distribution
for the other arm will stay the same, i.e,

(αk, βk)←
{

(αk, βk) if at 6= k

(αk, βk) + (yt, 1− yt) if at = k.
(4.1)

Choosing actions with TS, balances exploration and exploitation in the long
run, sampling from arms such that it converges on the better arm asymptotically
(Agrawal & Goyal, 2012).

Hypothesis Testing Procedures

A typical example of interest in experimentation aims to test whether there is a
difference between average outcomes across groups or not. The logic of hypothesis
testing for a difference between two arm means, or two proportions, say p1 and p2,
in case of binary rewards, consists of testing the null hypothesis H0 : p1 − p2 = 0 of
equal means against the alternative H1 : p1 − p2 6= 0 of different means. Scientists
want to draw conclusions from a hypothesis test about whether there is evidence
for a difference in the arms, or if a difference in sample of arm means results purely
from chance.

Wald Z-test. One decision rule for rejecting the null hypothesis is by identifying a
region of acceptance by using the Wald Z-test statistic (Wald, 1943), given by

Z = (p̂2 − p̂1)√
p2(1−p2)

n2
+ p1(1−p1)

n1

, (4.2)
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where n1 and n2 are the number of the sample observations, p̂1 and p̂2 are the
maximum likelihood estimators (MLEs), in the normal case the sample proportions
(or means), of arms 1 and 2, respectively, which has a standard normal distribution
under the null. Notice that in our case of binary data, we used the normal approxi-
mation of binomial distribution for n large enough (Peizer & Pratt, 1968). Such tests
are thus computed through the comparison of the sample means and their respective
number of participants - which also determines the standard error of the estimate
for a proportion - and, given an acceptable significance level α, they give us a sense
of the strength of the evidence that there is truly a difference. More specifically,
we compute the observed test statistic, say zobs, which is based on the observed
arms and rewards data, and check if it belongs to the rejection or acceptance region,
which is basically defined by the pre-specified α level. We use a significance level α
of 0.05, as it is commonly used in social and behavioral sciences and was defined
as a convenient cutoff level to reject the null hypothesis by Fisher (1992). We then
reject the null hypothesis if |zobs| > F−1(0.975) = 1.96, where F−1 denotes the
inverse Cumulative Density Function (CDF) of a standard normal distribution. The
normal distribution is indeed the distribution of the Wald Z-test statistic under the
null hypothesis, and assuming that the nk’s, with k = {1, 2}, are independent and
identically distributed (i.i.d.).

We used as primary test statistic the Wald Z-test, motivated by the fact that
it is a widely used test statistic and its asymptotic characteristics have been well
investigated by statisticians, both in i.i.d. settings (Engle, 1984) and non i.i.d.
data (Yi & Wang, 2011). In general, as sample sizes approach infinity, the Wald,
Likelihood Ratio test, t-tests and Lagrange multiplier tests are equivalent; n = 30
gives already a good equivalence (Agresti, 2003). However, in adaptively collected
data, Yi & Wang (2011) showed that the Wald Z-test has a better performance in
statistical power for small to moderate sample sizes.

Welch’s (unequal variances) t-test. Using the same strategy illustrated above,
we now draw hypothesis testing conclusion by employing a different test statistic
that is designed for unknown and unequal sample distribution variance (that may
be caused by unbalances sample sizes), but requires the same assumption of sample
distribution normality as in the Wald Z-test. The Welch’s t-test (Welch, 1947)
defines the test statistic as:

(p̄2 − p̄1)√
s22
n2

+ s21
n1

,

where n1 and n2 are the sample sizes, p̄1 and p̄2 the sample means, and s1 and
s2 the sample standard deviations, of arms 1 and 2, respectively. It represents an
adaptions of the Student’s t-test (the denominator is not based on a pooled variance
estimate), and is more reliable, with higher control of the type-I error, when the two
samples have unequal variances and/or unequal sample sizes (Ruxton, 2006; Derrick
et al., 2016).

Bayes Factor. As an alternative strategy we investigated a Bayesian framework
for hypothesis testing. A Bayesian analysis compares two hypotheses as a special
case of model comparison, providing a measure for which model (i.e., hypothesis)
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better fits the data and quantifying the strength of that support (Rubin, 1978). We
used the Bayes factor (BF) for comparing the evidence in favor of the alternative
hypothesis that there is a difference in arm means with the null hypothesis that
there is not a difference between arm means. The BF is given by the ratio of the
marginal likelihoods for both hypothesis-specific models (Rubin, 1978). Details on
the computation of the BF in the binary reward setting and the prior choices are
given in Appendix D. We consider two cutoffs as the “critical” values for favouring
the alternative hypothesis over the null hypothesis: 1) a threshold of 1, which is the
more intuitive cut-point for selecting one of the two models and, 2) a threshold of 3.
The choice of 3 is based on Jeffreys’ scales of evidence for model selection (Jeffreys,
1961; Kass & Raftery, 1995), which considers a Bayes factor > 3 as substantial
evidence in favour of the alternative hypothesis or the null. While the idea of
evaluating type-I error and power with this approach results in a combination of
Bayesian and frequentist analysis methods, rather than purely Bayesian, its results
can help to illustrate that the issues with frequentist hypothesis testing in this setting
are not caused only by idiosyncrasies of the tests we examined.

Simulation Environment

We focus on the kinds of data and analysis methods typically used in real-world
experiments. For our 2-arm setting with a binary reward outcome, we construct a
simulation environment that allows for varying the values and differences in arm
means, as well as the sample size or number of trials. We examine cases where the
arms have equal rates of rewards (p1 = p2 = 0.5) and where there is a difference of
0.1 in the reward rate (p1 = 0.55, p2 = 0.45). The latter corresponds to a small effect
size, as measured by Cohen’s w (Cohen, 1988); in many cases, effect sizes are quite
small in experiments in social/behavioral sciences. In all simulations, we use a sample
size n = 785 simulated participants. This is the sample size needed for uniform
randomly collected data to have 80% power given the true arm differences that we use.
We then conduct 5000 simulations for each assignment or data collection strategy
(TS, UR, EG), and each arm difference (0, 0.1). This simulated the application of
UR/TS/EG to 5000 randomized experiments with a particular experimental design
(n = 785, 2 arms, binary reward) and two different arm differences, i.e., 0 and 0.1.
In each simulated dataset, we compare the different allocations strategies and the
different hypothesis testing procedures with respect to their type-I error and power.
We compute type-I error as the proportion of the 5000 simulated experiments with
true arm difference 0, where the statistical hypothesis test concluded there was a
difference in arm means (e.g., value of the observed Wald Z-test statistic was ±1.96
or greater in absolute value). Power is computed as the proportion of the 5000
simulations with true arm difference of 0.1, in which the statistical hypothesis test
concluded there was a difference in arm means.

4.3.2 Results: Type-I Error and Power

Figure 4.1 shows the type-I error and statistical power using different statistical
tests for data collected using TS, ε-Greedy and Uniform Random. We start by
focusing on our main bandit algorithm of interest, Thompson Sampling. We can
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Figure 4.1. Type-I error and power for data collected using Thompson Sampling (TS),
ε-Greedy with ε = 0.1 (EG-0.1) and Uniform Random (UR). Hypothesis testing are
based on a significance value α = 0.5 and are performed with different statistical tests:
1. Wald Z-test, 2. Welch’s t-test, 3. Bayes factor (BF) with cutoff 1, and 4. Bayes
factor (BF) with cutoff 3. Results are based on a sample size of n = 785 and a number
of independently simulated dataset of 5000.

see that type-I error of data collected with TS is generally inflated. When there is
no difference in arm means, as expected, using the Wald Z-test, the type-I error is
controlled at 5% for Uniform Random, but it goes up to 13% for TS. Statistical
power is also reduced. With the Wald Z-test, we achieve a power of only 56% for
TS compared to 80% for UR. This might make practitioners reluctant to use a
bandit algorithm, as the chance that a statistical analysis will not be able to detect
a difference when it exists (type-II error) goes from 20% to 44%. When investigating
a different prior specification, i.e., Jeffreys’ prior (Jeffreys, 1961), in the Thompson
Sampling algorithm, no substantial differences were noticed, suggesting consistency
of TS results across different priors; see Appendix E for more details.
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Drivers of Inflated Type-I Error and Reduced Power

When there is no difference in arm means, type-I error is increased by
biased underestimation of the “inferior” arm and increasing confidence in
the “superior” arm. As discussed in the previous section, when the arm difference
is 0 (in this work we assumed both arm means have success probability of 0.5), using
Thompson Sampling instead of Uniform Random can increase type-I error from 5%
to as much as 13% with the Wald Z-test, which is problematic for false discoveries.
Figure 4.2 shows one of the simulations of TS for an arm-mean difference of 0 that
illustrates what drives the rejection of the null hypothesis when it is true and why
the overall type-I error of TS is inflated compared to UR.

Figure 4.2. This figure shows an illustrative example of TS behaviour over the course
of a single simulation experiment, which results in a type-I error. This is a scenario
where the true arm difference is 0 with p1 = p2 = 0.5 and sample size n = 785. The
sample mean estimates of arm 1 are displayed in blue, and the sample mean estimates
of arm 2 are displayed in orange (left vertical axis). The assignment probability for arm
1 is denoted in green (right vertical axis). The vertical bars around the sample means
represent 95% confidence intervals.

When there is no true underlying difference in arm means, sampling variability
nevertheless will lead to sample estimates of means that make one arm look “inferior”
(with a lower mean) than the other one. Since TS is adaptive to the posterior
probability (which is sensitive to the sample mean), when (by chance) an arm’s
sample mean is lower than its true mean, TS will assign fewer participants to
that arm, favouring the “superior” arm, which has a sample mean closer to (or
higher than) its true mean. Increasingly assigning the seemingly “superior” arm
to participants reduces the standard error in the estimate of its sample mean and
increases confidence in its value, even though in reality it is not higher - the “inferior”
arm simply has a sample mean that is below its true mean. Even as more and more
data is collected, TS does not substantially correct the earlier biased estimate of
the estimated lower mean. Figure 4.2 illustrates how the assignment probability
only gets higher and higher as confidence in the higher mean increases, and this
convergence means there is increasingly less assignment of the “inferior” arm, and
so little opportunity to obtain data that contradicts earlier misleading observations.
Notably, these results suggest that the convergence of a bandit algorithm to one arm
is not in itself strong evidence that there is actually a difference in arm means. The
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adaptation of a reward-maximizing algorithm to random lows and highs can result
in a very high assignment probability (and far more participants) being assigned to
one arm. TS is more likely than UR to result in one arm having a higher sample
mean than the other, even when the true means are identical.

When there actually exists a difference between arm means, the power
to detect this difference is reduced because unequal assignment leads to
reduced confidence in the estimate of the lower sample mean. When there
is a difference in the arm means (in this work we assumed arm means of 0.55 and
0.45), we showed that statistical power of the Wald Z-test to detect this effect was
reduced from 80% with Uniform Random to 56% with Thompson Sampling (see
Figure 4.1). This means that trying to improve the reward for participants in an
experiment takes the type-II error from 20% to 44%, more than doubling how often
a UR experiment might fail to report a difference, when it exists. As shown in
Figure 4.3, the power decreases because TS assigns very few samples into the truly
worse arm, decreasing the overall confidence that a true difference exists.

Figure 4.3. This figure shows an illustrative example of TS behaviour over the course of a
single simulation, which results in a type-II error. This is a scenario where the true arm
difference is 0.1 with p1 = 0.55 and p2 = 0.45 with sample size of n = 785. The sample
mean estimates of arm 1 are displayed in blue, and sample mean estimates of arm 2 are
displayed in orange (left vertical axis). The assignment probability for arm 1 is denoted
in green (right vertical axis). The vertical bars around the sample means represent 95%
confidence intervals.

Although TS underestimates the worse arm, which increases the estimated
difference, this is outweighed by the far larger increase in the standard error (and
confidence interval) for the sample mean. As TS allocates most of the participants
into the superior arm, increasing the reliability of the estimate as shown by the
confidence interval becoming tighter around the mean. However, great uncertainty
persists in the sample mean for the inferior arm, illustrated by the confidence intervals
remaining fairly large even after the experiment is complete. Since the inflation in
the estimated difference is outweighed by the corresponding change in the standard
error, this results in a smaller observed Wald Z-test statistic under the alternative,
decreasing the power to reject the null hypothesis. Notably, the distribution of the
Wald Z-test statistic, expected to be a standard gaussian, results in fatter tails under
the null, and a shifted mean under the alternative (see Figure 4.4).
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Figure 4.4. Distribution of the Wald test statistic under both the null and alternative
hypothesis, for (a) Uniform Random (UR) allocation, and (b) Thompson Sampling (TS)
allocation. The common critical value of 1.96 for hypothesis testing is used for the Wald
Z-test statistic. Type-I error is shown as the red areas under the curve, and power as
the green area. We can see that the type-I error is increased when using TS (compared
to UR) because the distribution of the Wald Z-test statistic has fatter tails under arm
difference of 0. Power is also decreased because the mean of the Wald Z-test statistic
distribution is smaller under the alternative hypothesis compared to the Wald Z-test
performed on UR data.

Higher assignment probability to one arm is not sufficiently indicative
of an arm-means difference. One might hypothesize that when TS has a higher
assignment probability for one arm and puts more participants in one arm, this
higher posterior probability that the arm is optimal could in itself be more reliable
evidence for a difference in arms, than the statistical hypothesis tests we have
investigated. However, based on what we just discussed, we see evidence against
this idea, and reason to see high assignment probabilities as providing less evidence
for a difference than might be presumed. The results in Table 4.1 show that even
when there is no difference in arm means, the assignment probabilities can mislead
one to believe that an arm is superior.

For example, when the difference in arm means is 0, the assignment probability
will be 0.7 or higher in the 70% of times. When the difference in arm means is 0.1,
the assignment probability will be 0.7 or higher in the 98% of times. Table 4.1 shows
what proportion of the 5000 simulations result in a particular assignment probability
whichever arm has the higher assignment probability in a simulation. So a simulation
where the superior arm had an assignment probability of 0.74 would contribute to
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Assignment Probability Proportion of Simulations
of “Superior” Arm Arm Difference of 0 Arm Difference of 0.1

[0.5, 0.6] 15% 1%
(0.6, 0.7] 15% 1%
(0.7, 0.8] 16% 3%
(0.8, 0.9] 20% 8%
(0.9, 1.0] 34% 87%

Table 4.1. Distribution of assignment probability (Assign. Prob.) into the “superior”
estimated arm when the arm difference in 0 (column 2) and when there exists an arm
difference of 0.1 (column 3). This table shows the proportion of simulations in which an
arm has a certain assignment probability (column 1) at the completion of an experiment.
To illustrate that assignment probabilities are still extreme when there is no difference
in arm means, we bin by the “superior” arm (whichever arm has higher assignment
probability in a simulation, regardless of what the true arm means are) at various
assignment probability intervals.

the proportion of simulations in the interval (0.7, 0.8]. These results show that large
disparities in the assignment probabilities across arms (e.g., arm 1 is 0.2 and arm 2
is 0.8) are weaker evidence for a difference actually existing, than might be hoped.
Even when there is no difference in arm means, the assignment probabilities can
get very high quite often: assignment probabilities of 0.9 or higher occur 33% of the
time when there is no difference in arm means, as TS tends to converge on one arm.
Therefore when the arm difference is 0, the posterior probabilities are unreliable for
inferring whether a real difference across the arms exists due to adaptive policies
being sensitive to random noise as a result of their reward maximizing nature.

We now incorporate in the discussion an alternative bandit strategy and alterna-
tive statistical tests and compare their performances in terms of type-I error and
power.

A Comparison with ε-Greedy

The results presented so far suggest the relevant type-I error and power issues would
arise for other bandit algorithms, because of how reward-maximization changes
responsiveness to random highs and lows. Of course, the exact pattern of how
much power is decreased and type-I error is increased could vary, and this is a key
direction for future research. Here, we investigate the ε-Greedy algorithm, with
ε = 0.1 (EG-0.1), meaning that 10% of participants are assigned using UR, and
the remaining 90% are given the greedy arm (the one with higher sample mean).
One might predict EG-0.1 would perform well due to explicitly incorporating UR
assignment. When using the Wald Z-test, Table 4.1 shows that EG-0.1 seems to
have better type-I error compared to TS (6% vs 13%), which is also quite close
to the 5% nominal level of UR. However, this comes at a cost of power, which is
reduced to only 39%, compared to 56% for TS and 81% for UR. Because of the
greedy assignment, far fewer participants are assigned to the “inferior” arm and the
very small sample sizes, mean there is insufficient evidence for a statistical test to
conclude there is a difference. In addition to EG-0.1’s highly reduced power, EG-0.1
also fails to attenuate its adaptiveness in cases where there is less certainty about the
difference, where for the sake of both reward and inference, it would be preferable
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to do more exploration.

A Comparison with Alternative Hypothesis Testing Approaches

Analysis using Welch’s t-test shows similar results as the Wald Z-test.
While the prior results suggest that properties of the data itself, not specifics of the
Wald Z-test, lead to the issues with type-I error and power, one might hypothesize
that the issues could be resolved using a test better suited to experiments with
unequal sample sizes, that may cause unequal variances. We therefore consider
Welch’s t-test, which is typically used for handling unequal variances and/or unequal
sample sizes between groups, and so might be particularly suitable for an adaptive
experimentation based on bandit algorithms. However, Welch’s t-test does not
correct the issues: as shown in Table 4.1, the type-I error is only 1.5% less than using
the Wald Z-test, and this reduction comes with a reduction in power of 3.8%. This
illustrates that the issue is with biases in estimates of means and reduced confidence
in those estimates, as illustrated earlier. The Welch’s t-test and Wald Z-test are
asymptotically equivalent (and, as n → ∞, they will reject the same cases). The
advantage of Welch’s t-test for handling unequal variances in the estimate of the
sample mean is largely observed in small sample sizes, so we would not expect a
huge difference in performances with a sample size similar to the one we have in
experiments we typically do (n = 785, smallest is n = 88; see e.g., Williams et al.,
2016) as typically a heuristic is that the advantage of t-tests over z-tests rapidly
diminish from a sample size of n = 30 and larger (Hogg et al., 1977; Casella &
Berger, 2002).

Bayesian analysis shows similar patterns to frequentist analysis. While
both frequentist tests exhibit the same issues with type-I error and power, one might
hypothesize that these issues would be eliminated or mitigated by using a Bayesian
framework, as illustrated in Section 4.3.1. When using the commonly used Bayes
factor (BF) for Bayesian hypothesis testing, as shown in Figure 4.1, we see that
the test is overall significantly more conservative than the Wald Z-test even for
UR sampling: using the cutoff of 3 gives a type-I error of only 0.5% and power of
49.8%. Relative to these values, TS sampling increases the type-I error to 4.2%,
while further decreasing the power to 19.3%. The looser cutoff of 1, where 1 indicates
equal support for both models is somewhat less conservative, shows the same trends
of inflated type-I error and decreased power for TS. This demonstrates that pattern
of results when evaluating the data using a Bayesian-inspired approach mirrors the
pattern of the purely frequentist methods.

As a final remark in this section, we want to mention that an important issue when
changing the hypothesis testing framework using the Bayes factor is that it is very
high stakes in the scientific world, for example the Food and Drug Administration has
strict requirements for reporting results for trials they fund (FDA, 2019), and issues
like an inflated type-I error could be seen as serious risk for funding and publication.
For a behavioral scientist, the recommendation to “simply try a different statistical
technique” that neither they nor many others may closely understand, without
direct empirical evidence and many other papers published using the technique, is a
nonstarter.
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4.4 Proposals for Improving Hypothesis Testing

Section 4.3 highlighted the problem of increased type-I error and decreased power in
applying the Wald Z-test and other hypothesis testing procedures to data adaptively-
collected via Thompson Sampling. To lower the barriers for bandit algorithms to
be applied in real-world adaptive experiments by scientists, we consider: How can
we use features of the algorithm used to run an adaptive experiment to improve the
statistical inference procedures?, or, alternatively, How can we modify features of the
algorithm used to run an adaptive experiment to improve statistical inference from
the data collected?. We try to explore these questions in the next sections.

4.4.1 Adjusting Existing Statistical Tests

We start by focusing on the first question and examine two approaches which are
related to the Wald Z-test statistic itself, to address the inflated type-I error and
the reduced power problem. These approaches are similar in the sense that they
both adjust the Wald Z-test statistic by incorporating knowledge about the data
generating process that is induced by the adaptive nature of the bandit algorithm.
However, while the first proposal relies on replacing the biased MLE used in the
Wald Z-test equation in (4.2), the second proposal directly estimates the distribution
of the test statistic in order to derive some adjusted critical values, based on which
inference can be performed.

Most of the statistical tests, including the parametric Wald Z-test, are based
on some underlying assumptions of the data, such as the i.i.d. assumption. In a
traditional UR experiment, where data are i.i.d., the MLE has strong theoretical
properties such as unbiasedness and normality distribution. However, in adaptive
experiments, an extensive number of studies have demonstrated both that the
unbiasedness property does not hold anymore (Bowden & Trippa, 2017; Deshpande
et al., 2018; Nie et al., 2018; Shin et al., 2019, 2020), proposing also some strategies to
correct this bias, both that the derived test statistics does not satisfy the theoretical
standard normal distribution (Jamieson & Jain, 2018; Hadad et al., 2019; Zhang
et al., 2020b). Thus, by specifically addressing the two issues, we investigate two
alternatives, which we call IPW-adjusted Wald Z-test and TS-induced Wald Z-test
(this idea builds on a previous work of Smith & Villar, 2018), and show how they
perform in an hypothesis testing problem.

IPW-adjusted Wald Z-test

With the IPW-adjusted Wald Z-test, we propose to replace the biased MLE in
the Wald Z-test equation in (4.2) with an unbiased estimator in order to evaluate
whether correcting the bias might also improve the type-I error and power. The
unbiased estimator we use here is the Inverse Probability of Weighting (IPW; Robins,
2000) estimator, proposed first, in causal inference literature (Robins, 2000; Robins
et al., 1994), and then, adopted by (Bowden & Trippa, 2017) in the context of
adaptive clinical trials with data collected by Play-the-winner (PW; Zelen, 1969;
Robbins, 1952) strategy. We introduce IPW as a second way (compared to the MLE)
of estimating the sample proportions, by incorporating knowledge of the assignment
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probabilities of Thompson Sampling. More formally, in the context of an adaptive
randomized experiment, if we now denote with n the total number of participants
and with yi the binary outcome observed for the i-th participant, the IPW estimator
of the mean reward for arm k is given by:

p̂IPW
k =

1
n

∑n
i=1 yi

δik
πik

1
n

∑n
i=1

δik
πik

,

where πik is the randomization probability for student i to arm k, with k = {1, 2},
and δik is the delta function, which takes value 1 if student i is assigned to version
k, and 0 otherwise.

Intuitively, the IPW estimator for arm k is a weighted average of observed rewards
from arm k, i.e., δikyi, with weights given by the inverse of the probability for that
participant to be assigned to condition k, i.e., 1/πik: the higher the probability of
receiving a specific treatment, the lower the weight of the reward. This allows a
fairer comparison across arms with different sample sizes. By replacing now the
biased MLE in the Wald Z-test formula with the unbiased IPW estimator we obtain
the proposed IPW-adjusted Wald test, given below:

ZIPW = (p̂IPW
2 − p̂IPW

2 )√
p̂IPW

2 (1−p̂IPW
2 )

n2
+ p̂IPW

1 (1−p̂IPW
1 )

n1

,

with n1 and n2 denoting the sample size of arm 1 and 2, respectively.

Performance of the IPW-adjusted Wald Z-test. First, by comparing the IPW
estimator with the MLE estimator, we can gain insights into whether and how the
bias in the estimates of arm means in adaptive experiments, impacts statistical
power and type-I error. As shown in Table 4.2, using the IPW estimator instead of
the MLE helps us to correct the bias of the arms mean when data are adaptively
collected. In particular, when there is no difference across arms and n = 785, we
see that the bias in the estimate of arm 1 is only −0.0032 for the IPW estimator,
compared to −0.0231 for the MLE estimator. This reduction is also verified when
there is a difference between arm means (arm difference of 0.1; p1 = 0.55, p2 = 0.45;
n = 785), where the bias of the IPW estimates for each arm are −0.0005 and −0.0079
respectively, compared to −0.0031 and −0.1452 respectively for the MLE estimates.

Given this reduction in bias, one might expect that we would then see an
improvement in the type-I error. However, as one can see in Figure 4.5, IPW only
slightly decreased type-I error. We do see a small reduction in type-I error for IPW
relative to MLE (10% (SE = 0.004) vs 13% (SE = 0.005)), although this 2.4%
reduction in type-I error does not get to the level a scientist has set the test to, and it
comes at the cost of a 20% reduction in power (from 56% to 36%). In addition, this
reduction is driven by a different pattern, rather than the bias reduction. Indeed,
by looking at the bias in arm means difference, we can see that the same value of
−0.0015 is achieved with both MLE and IPW estimator under TS assignment, and
this is the parameter we are interested in; in addition it also builds the Wald Z-test
(as its numerator is given by the arm means difference). The main difference is related
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Arm Difference of 0 Arm Difference of 0.1
Estimate of MLEUR MLETS IPWTS MLEUR MLETS IPWTS
p1 − p2 -0.0003 -0.0015 -0.0015 0.0997 0.1421 0.1074
|p1 − p2| 0.0279 0.0623 0.0015 0.0998 0.1445 0.1074
bias of p1 0.0000 -0.0231 -0.0032 0.0002 -0.0031 -0.0005
bias of p2 -0.0003 -0.0215 -0.0017 0.0005 -0.1452 -0.0079
SE of p1 0.0003 0.0009 0.0009 0.0003 0.0004 0.0004
SE of p2 0.0003 0.0009 0.0009 0.0003 0.0013 0.0019
SE of the

Wald Z-test 0.0139 0.0395 0.0428 0.0141 0.0455 0.0583

Table 4.2. Estimated arm-means differences and absolute arm-means differences, with
their bias and standard errors (SE), and the SE of the distribution of the Wald Z-test
statistic for: 1. the Maximum Likelihood Estimator (MLE) - based both on the Uniform
Random (MLEUR) and Thompson Sampling (MLETS) assignment - and 2. the Inverse
Probability Weighted (IPW) estimator based on the Thompson Sampling assignment
(IPWTS). We report these results for both an arm difference of 0 and of 0.1. Estimates,
bias and SE are computed based on 5000 simulated trajectories of size n = 785.

to the overall distribution and variability of the two test statistics, particularly on
the tails. The mass probability we have on the tails, as shown in Figure 4.4 for the
Wald Z-test distribution of a UR and TS with the MLE estimator, corresponds to
the type-I error (considering the critical values of ±1.96). With the IPW-adjusted
Wald Z-test, this mass is lower than the one we have for the standard Wald Z-test
with TS assignment, but still higher that the 5% probability we would have had with
the standard Wald Z-test in a UR experiment. Using IPW slightly reduces type-I
error (and not fully to the expected 5%) at the cost of decreased power: relative to
the standard Wald Z-test with the MLE, power decreases from 56% to only 36% for
the IPW-adjusted Wald Z-test (see Figure 4.5).

The decrease in power may also be understood based on the distribution of the
two test statistics: despite the decreased bias in the estimate of the arm means
difference, the increase in the overall variability of the estimates (see Table 4.2),
which is translated into an increase standard error of the IPW-adjusted Wald Z-
test compared to the MLE-based Wald Z-test (standard error of 0.058 vs 0.046,
respectively; Table 4.2).

TS-induced Wald Z-test

The second statistical test adjustment alternative we propose is this work, is the
TS-induced Wald Z-test. Instead of tackling the biased estimator, we now aim to
tackle the theoretical asymptotic distribution of the Wald Z-test distribution (under
standard assumptions on the data). Indeed, this is known to be a standard normal
distribution under the null, with i.i.d. data. However, when this assumption does
not hold, using the theoretical standard normal distribution for testing an hypothesis
may lead to wrong conclusions. As previously illustrated in Figure 4.4, the empirical
distribution is different form a standard normal under TS-collected data, with a
higher variability compared to the standard normal distribution, probably because of
the correlation in the reward variables induced by the adaptive algorithm. We thus
propose a more flexible non-parametric approach: simulating and estimating the
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Figure 4.5. Type-I error and power for data collected using Thompson Sampling (TS)
with two different prior choices, i.e., Beta(1, 1), equivalent to a Uniform distribution
in [0, 1], and the Jeffreys’ prior, in this case a Beta(1/2, 1/2). Hypothesis testing are
based on a significance value α = 0.5 and are performed with different existing strategies,
i.e., 1. Wald Z-test, 2. Welch’s t-test, 3. Bayes factor (BF) with cutoff 1, 4. Bayes
factor (BF) with cutoff 3, and the alternative strategies we propose, in this section, i.e.,
5. IPW-adjusted Wald Z-test and 6. TS-induced Wald Z-test. Results are based on a
sample size of n = 785 and a number of independently simulated dataset of 5000.

empirical distribution of the Wald Z-test under the null (when there is no difference
in arm means; assuming p1 = p2 = 0.5 and n = 785) induced by the TS assignment
procedure. We then derive its adjusted critical values as the empirical quantiles of
the estimated TS-induced Wald Z-test distribution at the desired significance levels
of α/2 = 0.025 and 1− α/2 = 0.925 for obtaining a 5% type-I error control.

As shown in Figure 4.5, the use of the TS-induced Wald Z-test allows type-I
error to be controlled; compared to the standard Wald-Z test it is now reduced
from 13% to 5%. However, as we can also see that this comes with a severe cost to
statistical power, being only 17% for the proposed TS-induced Wald Z-test vs 56%
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for the standard Wald Z-test with data collected adaptively with TS and 81% for
the standard Wald Z-test with data collected with UR.

For checking the robustness of the proposed strategy we also change the simulation
setting, based on which TS-induced Wald Z-test distribution is simulated and
estimated. More specifically, we set the parameters p1 = p2 = 0.25 with the same
sample size of n = 785, and replicate the above analysis. Appendix F shows that
this has only a minor impact.

4.4.2 Adjusting the MAB Strategy: TS-PostDiff

In previous Section 4.4, we showed that both IPW-adjusted Wald Z-test and the
TS-induced Wald Z-test can be useful in reducing the negative impact of a bandit
algorithm on type-I error. We provided empirical illustration that can guide others
to take this approach with a range of bandit algorithms and statistical tests. These
methods for changing analysis techniques are attractive because they do not require
changes to the algorithms’ behavior, but simply employ knowledge of how the
algorithm behaved. They do not impact participants’ experiences, and can be
employed anytime after the data are collected. However, the results also showed the
statistical analysis problem cannot be easily or readily solved by simply modifying
these tests. This suggested the importance of future work that modifies bandit
algorithms (or the theoretical frameworks around maximizing reward) to change the
data collection strategy, to be more sensitive to statistical considerations like type-I
error and power, and the importance of considering whether different strategies are
optimal based on the magnitude/existence of a difference in arms. We now discuss
more in depth our proposal of formalizing the problem with a novel framework
formulation, and propose a solution based on a modification of the Thompson
Sampling algorithm we have discussed so far, which allows us to perform more
reliable inference, particularly, in cases when there’s no or very negligible difference
between arms’ means.

The novel problem of balancing reward maximization and inference

As discussed in Section 4.3.2, when there is small or no difference between arms,
Thompson Sampling will often converge to assigning all participants to the same arm
due to the variability of arms. In hypothesis testing, with traditional statistical tests
such as the Wald Z-test, this behaviour can increase the probability of incorrectly
rejecting the null hypothesis of no difference between arm means, compared to
uniform random allocation. It can also reduce the probability of correctly rejecting
the null hypothesis, which is especially impactful when effect sizes are small.

While it may seem intuitive to focus on large effect sizes, this may distract from
the fact that small differences in arms can be extremely important to detect and
use. For example, obviously large effects may be well known and easy to detect even
without experimentation, while experimentation is necessary to discover small effect
sizes. Even a 1% increase in the real-world can be extremely impactful. A great
majority of effect sizes in many fields, such as education, are small. Nonetheless,
discovering small effects can is still be scientifically valuable (Prentice & Miller,
1992). In fact, some have argued that seeking unrealistically large effect sizes has led
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to poor statistical practice and lack of replicability (Fraley & Vazire, 2014; Friston,
2012). We would thus like an algorithm which is sensitive to the scenarios which are
likely to arise in the real world, and can adjust its policy to increase the probability
of distinguishing between a small effect and no effect.

More precisely, if an effect is small, the difference in reward between arms is
not great, but the demand on statistical power in detecting this effect is large, and
thus we would prefer the algorithm to assign participants to conditions closer to
uniformly, to ensure we can detect this small effect. Likewise, when no effect exists,
there is no reward to be gained, and reward maximization can result in an inflated
type-I error. We would thus want to choose actions uniformly at random in this case.
Finally, as the effect size grows larger, we would like the algorithm to assign more
participants to the reward-maximizing arm. We thus introduce the novel problem of
balancing the goal of a traditional randomized experiment for result generalizations
(by favouring uniform random exploration when there’s likely no chance to gain
reward) and the MAB algorithms problem of reward maximization (by favouring
exploitation, and assign more often the superior arm). Solving this problem is crucial
to effectively designing adaptive experiments that also enable rigorous hypothesis
testing with low type-I error and high power.

Proposed Strategy: TS with Posterior Difference Exploration

Motivated by the above, we would like to tune TS in order to increase uniform
random assignment when there are non-existent or smaller effects (and less evidence
for these effects), with a minimal loss in terms of reward when there is a substantial
effect and reward to be gained. Towards this end, we propose the Thompson Sampling
with Posterior Difference Exploration (TS-PostDiff) algorithm, which operates as
follows:

• with probability φt, chooses arms with a UR policy

• with probability 1− φt chooses arms according to TS policy

We define φt to be the posterior probability after t steps that the difference
in expected reward between actions is less than some threshold c. We propose to
compute it as follows:

φt
.= P(|p1 − p2| < c|Dt) (4.3)

=
∫

[0,1]2
I
[
|E(yt|at = 1, p1)− E(yt|at = 2, p2)| < c

]
π(p|Dt) dp

=
∫

[0,1]2
I
[
|p1 − p2| < c

]
π(p|Dt) dp,

with c ∈ (0, 1) a constant value set by the experimenter as a hyperparameter
(interpretation of c is discussed below). As with TS, we can avoid computing (4.3)
explicitly, and instead draw samples from our posterior distributions over rewards for
each arm. However, note that in this case the focus is on computing the probability
φt in a similar Bayesian fashion, rather that applying TS. This procedure results in
choosing actions uniformly randomly if |p1 − p2| < c, and use TS otherwise; at step
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Algorithm 7: TS-PostDiff
Input: c ∈ (0, 1), αk > 0, βk > 0, for k ∈ {1, 2}
for t = 0, 1, 2, . . . T do

for k ∈ {1, 2} do
Sample pk ∼ Beta(αk, βk)

end for
If |p1 − p2| < c then
ãt = u+ 1, with u ∼ Bern(1/2)

else
for k ∈ {1, 2} do

(Re-)sample pk ∼ Beta(αk, βk)
end for
Select arm ãt = arg maxk pk and get the associated reward
Update posterior parameters (αk, βk) for arm ãt according to (4.1).

end for

t with probability φt a UR sceme is applied. Pseudo-code for TS-PostDiff is given
in Algorithm 7.

Note the inclusion of a resampling step. This step is used to prevent using the
same p1, p2 samples to determine if a difference exceeds c, as well as for arm selection,
as this can result in TS behaving too exploitatively, choosing the estimated best
arm too frequently.

Interpretation of hyperparameter c. Setting the hyperparameter c for TS-
PostDiff allows us to constrain TS with respect to established small effect size
thresholds in behavioural science. For instance, in behavioural science we find
established thresholds for a small effect size: a Cohen’s w of 0.1 is regarded as a
small effect size (Cohen, 1988). We can thus set c to be around 0.1, which results
in increasing power in the presence of small effects, increasing reward when effects
are larger than c, and reducing type-I error inflation when no effect exists. We can
think of c as the effect size below which we are willing to forgo reward in favour of
improved statistical hypothesis testing.

Results

Under the same experiment setup as the one in Section 4.3.1 (arm differences of
0, with p1 = p2 = 0.5, and 0.1, with p1 = 0.55 and p2 = 0.45; n = 785), we now
show in Table 4.3 the results comparing the standard TS, the proposed TS-PostDiff
strategy with two alternative threshold values for the c parameter (0.1 and 0.2), and
the UR gold standard procedure. In addition to reporting our quantities of interest,
i.e., type-I error and power, we also look at the average reward and the proportion
of optimal arm allocation.

Based on results in Table 4.3, we see that TS achieves the highest reward when
there exist a small effect (0.536), but also the highest type-I error when there is no
effect (0.135) and the lowest power when there is an effect (0.564). Also, we see
that UR achieves controls the type-I error, achieving the highest power when there
is an effect (0.806), but it is also associated with the lowest reward when there is
an effect (0.50). Looking now at the values obtained by the TS-PostDiff strategy,
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Arm difference of 0 Arm difference of 0.1
Method Type-I Error Power Prop. Opt Reward

UR 0.055 (0.002) 0.806 (0.004) 0.500 (0.0) 0.500 (0.0)
TS 0.135 (0.003) 0.564 (0.005) 0.860 (0.003) 0.536 (0.0)

TS-PostDiff
(c = 0.1) 0.078 (0.003) 0.775 (0.004) 0.738 (0.003) 0.524 (0.0)

TS-Postdiff
(c = 0.2) 0.054 (0.002) 0.800 (0.004) 0.560 (0.002) 0.506 (0.0)

Table 4.3. Table comparing UR (Uniform Random), TS (Thompson Sampling), and
TS-PostDiff with exploration parameter c set to 0.1 and 0.2. Results for effect size 0 are
shown in the left block (meaning actions have the same expected reward), and results
for effect size 0.1 are shown in the right block. Within the 0 effect size block, we show
type-I error, while in the effect size 0.1 block, we show power, mean reward, and the
proportion of optimal allocation (Prop. Opt.) for each of the algorithms. In brackets
one half the 95% confidence interval is reported. All shown values are averaged over
10, 000 simulations.

we see that it achieves an effective compromise between the extremes of TS and
UR for both considered threshold’s c values. Notably, with c = 0.1, type-I error is
below that of TS (0.078 vs 0.135), and little reward is lost compared to TS (0.536
vs 0.524), whereas a large amount of power is gained (0.564 vs 0.775) when there is
an effect. A point worth noting: one might expect that such a loss in power for TS
seen in Table 4.3 would be matched with a large gain in reward. But in this case
since the effect size is relatively small (0.1), TS has a much higher proportion of
optimal allocation (0.860) which does not translate strongly to reward gain (0.536),
whereas TS PostDiff, by adapting the amount of uniform random allocation based
on the size of the effect, has lower proportion of optimal allocation (0.738), thereby
reducing reward slightly (0.524), but increasing power greatly relative to TS. We
thus see the value of doing more UR assignment when effect sizes are small.

Recommendations for the Choice of Hyperparameter c

In order to give recommendations for the choice of the hyperparameter c, we first
examine how the probability φt, given in equation (4.3), defined as the posterior
probability of observing an arm-mean difference lower that a threshold c, evolves
as more participants are seen. In Figure 4.6, we show this estimated probability
for various values of c, for an effect size of both 0 and 0.1. We estimate φt as
φ̂t = P̂(|p̃1 − p̃2| < c), with p̃1 and p̃2 draws from the TS posterior distribution of
the arm means, and P̂ the empirical probability, i.e., the average number of times
an absolute difference between these draws resulted to be less than c.

We can see that when c is above the true effect size, φ̂ is increasing with sample
size towards 1. When c is less than the true effect size, φ̂ is decreasing towards 0.
These are non-trivial results, as they indicate that the additional UR allocation of
TS-PostDiff is able to overcome the bias induced by TS. For example, the above
shows that the tendency of TS to lead to overestimating the size of the difference in
arms does not prevent φ from converging to 1 when the effect size is 0.0.
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Figure 4.6. Estimated probability of observing an absolute difference between arm means
less that a threshold c, i.e., φ̂t, which also corresponds to the estimated probability of
choosing actions uniformly, with respect to different thresholds c. Results are shown
for different sample sizes and the two different effect sizes considered in this study: 0.1
(right plot) and 0 (left plot). We estimate φt as φ̂t = P̂(|p̃1 − p̃2| < c), with p̃1 and
p̃2 draws from the TS posterior distribution of the arm means, and P̂ the empirical
probability, i.e., the average number of times (out of a total of 10, 000 simulations) an
absolute difference between these draws resulted to be less than c.

First Recommendation. Based on the this discussion of the behaviour of TS-
PostDiff’s φt probability trend with respect to c, the first recommendation would be
to choose c as the value of an effect size which is small enough that we are willing to
forgo reward in favor of improving data analysis capabilities. For example, if one is
willing to accept an l loss in expected reward (|p1 − p2|) for a sub optimal allocation
in favor of improved data analysis, Figure 4.6 tells as that if we choose c = l, when
the true effect size is such that |p1 − p2| < c, we will converge to always using UR
allocation, and if the true effect size is such that |p1−p2| > c, we will converge to TS.
In other words, if the true effect size is below what we are willing accept in expected
loss in reward for a sub optimal allocation in favour of improved type-I error and
power, TS-PostDiff will likely converge to choosing all arms with UR allocation.
Similarly, when the true effect size is greater than what we are willing accept in
expected loss in reward for a sub optimal allocation, TS-PostDiff will likely converge
to TS.

Second Recommendation. If one isn’t sure what reward they are willing to
give up for improved data analysis, or perhaps such a decision would be easier
to make if it was clearer what is being traded off, we advice to choose c equal
to a guess for the true effect size. We motivate this recommendation based on
results shown in Figure 4.7. Here, we illustrate how type-I error, power, and TS-
PostDiff’s percentage reward (compared to standard TS) for different values of
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Figure 4.7. Type-I error (left; p1 = p2 = 0.5; n = 785), computed across 10, 000 simulations.
Different values of c are shown on the x-axis and indicators of performance are shown
on the y-axis. Type-I error is computed as the percentage of simulations in which
the null hypothesis is rejected when there is no difference between actions. Power is
computed as the percentage of simulations in which the null hypothesis rejected when
there is a difference between actions. Reward is computed as the percentage of total
reward achieved by TS-PostDiff compared to the standard TS. These simulations show
that as c increases, type-I error decreases and power increases, while reward decreases.
Furthermore, improvements to power and type-I error diminish as c increases, while the
to reward is roughly linear in c.

c ∈ {0.0, 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.200}, considering effect sizes 0 and
0.1 and a sample size of n = 785. The percentage of TS-PostDiff’s reward is the
average reward for TS-PostDiff for the given c value, divided by the average reward
attained by TS; this metric allows us to see what percentage of the best possible
(best of UR, TS, TS-PostDiff) reward we have achieved. This figure helps us discover
a trend in the relationship between increasing c and these metrics. We see that we
have diminishing returns in power when c exceeds the effect size of 0.1, whereas
the percentage of TS’s reward decreases roughly linearly. Type-I error also reaches
diminishing returns, but a c value of 0.1 is close to the value where we see such
diminishing returns. Choosing a c value of 0.1 is thus a reasonable choice, or in
general a c value equal to the estimated effect size when effect sizes are smaller. If
the effect size is larger though, then the loss in reward will be greater. Though
the percentage of TS’s reward is decreasing linearly, if TS reward is large, then
this linear decrease will be more costly. Following the thresholds in behavioural
science for small and medium effect sizes Cohen (1988), we don’t recommend setting
c higher than 0.2.

4.5 Discussion

Multi-armed bandit (MAB) algorithms have the potential to be extremely useful for
conducting experiments in settings like healthcare, or other behavioural sciences,
where a higher number of participants may benefit from the best interventions or
arms. However, as the main goal of experiments is to draw conclusions about the
arms, e.g., whether or not they differ from one another, this potential can only be
realized if we are confident in our ability to draw correct conclusions. In this chapter,
motivated by real-world educational experiments deployed with MAB algorithms -
where instructors appreciated that the experiment had the ability to help their own
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students, but were also concerned about whether the results reflected real differences
in the quality of instructional materials (Williams et al., 2016) - we evaluated the
performances of hypothesis testing in such adaptive settings.

Through a simulation study, we showed that Thompson Sampling (TS), a common
bandit algorithm, by searching for a superior arm with the aim to maximize reward,
both tended to overestimate differences between arm means, with around 70% of
simulations assigning the “superior” arm to more than 70% of participants (see
Table 4.1), when the actual difference in mean was zero, and stopped sampling an
arm even when there was still significant uncertainty about that arm’s mean. These
behaviors translated in a difficulty of drawing conclusions using statistical hypothesis
testing: both with a frequentist framework (standard Wald Z-test and Welch’s t-test)
and a Bayesian framework (Bayes factor), we demonstrated that there was a high
type-I error and a very low power when conducting inference on TS-collected data.

As a first exploratory approach, motivated by the typical data-assumptions in
hypothesis testing, two alternatives for modifying the statistical test by incorporating
knowledge about the dependent data collection process, were proposed. While the
first alternative, using inverse probability weighting estimators to adjust the Wald
Z-test, did reduce the bias in the estimated means, this was not enough to correct the
inflated type-I error or decreased power (see Figure 4.5). With the second alternative,
i.e., estimating the critical values used in hypothesis testing by simulating the TS-
induced distribution of the Wald Z-test, the heightened type-I error was addressed,
but at a significant cost in power (see Figure 4.5). As a whole, these results suggest
significant barriers to using TS to conduct experiments, despite the fact that it has
the potential to benefit participants in the experiment.

While the challenges of statistical hypothesis testing could be construed as only
of interest to statisticians or behavioral researchers, they are important to consider
from the machine learning perspective both for developing algorithms that can
address scientists’ real world challenges and for better understanding the behavior
of typical bandit algorithms in cases where arms are equivalent. Many of the results
we saw in the case study stem from two issues: a) the tendency of the algorithm
to focus on a single arm even when both arms are equivalent, and b) failing to
collect sufficient evidence to rule out the possibility that an arm that appears to be
performing badly is in fact reliably worse than another. These tendencies cannot
be counteracted solely by changing the way one analyzes the data, since the data
look the same in some cases where there truly is a difference between arms and in
cases where the arms are equivalent. They also cannot be counteracted solely by
adding more participants and thus lengthening the horizon: when the two arms are
equivalent, any pattern of sampling is equivalent in terms of regret, and the behavior
of focusing on a single arm does not vanish asymptotically.

Motivated by the above, bandit algorithm modifications were explored. First,
the novel problem of adding uniform random (UR) exploration to MAB algorithms,
based on the estimated loss of reward in cases where there may exists or not a
true arm-means difference, was introduced. Indeed, when the expected values of
arms are similar, it is simultaneously true that the expected increase to reward
from TS is small and sampling from both arms uniformly is important to increase
the capacity to distinguish between arm means with a hypothesis test. Therefore,
increases to power are more important and cost less reward when effect sizes are
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small, so increasing UR exploration in those cases is particularly important. Based
on this novel framework, a modified TS algorithm, TS-PostDiff, was developed.
This was designed to increase UR exploration when there is either less evidence
for a difference between arm means or evidence for a small difference. Overall, the
proposed strategy resulted in a better balance of statistical power, type-I error and
reward, compared to both UR and TS allocation (see Table 4.3).

Limitations. The current work was limited in exploring primarily the TS algorithm
and considering a limited range of scenarios, including focusing on binary rewards
and two arms. As the setting becomes more complex, we expect these challenges to
persist, and further work is needed to explore the trade-offs between bandits being
able to focus on better arms, perhaps permitting experimentation with a larger
number of arms, and the inference concerns that we have laid out here. The case
studies we developed can provide a foundation for what concerns to consider as well
as highlighting the importance of considering cases in which arms are equivalent or
nearly equivalent. In considering our hypothesis testing approaches, we focused on
illustrating why small changes to the hypothesis testing approach do not address
the inference issues satisfactorily. An illustration on how one can integrate machine
learning knowledge into how statistical analysis is conducted, showing what worked,
and what limitations persisted, was given. As the more straightforward modifications
don’t address the type-I error and power issues, this points to the need for further
work on developing new statistical tests that consider the assumptions of particular
algorithms for data collection (whether bandit algorithms or other methods like
best-arm identification). While we show and believe that changes to algorithms like
TS are needed to address these inference issues, there are still promising avenues
for collaboration between the machine learning and statistics community to explore
how changes in both the test procedures and the data collection might trade-off
between best solutions from a regret standpoint and best solutions from an inference
standpoint.

More generally, this work points to the need for formulating bandit problems that
explicitly consider the quality of the evidence collected. Prior work has considered
this in some bandit problem formulations, such as best-arm identification (Even-
Dar et al., 2002; Audibert & Bubeck, 2010; Russo et al., 2018), power-constrained
bandit algorithms (Yao et al., 2020), and bandit algorithms that aim to correct
for estimation error (Erraqabi et al., 2017). None of these is explicitly concerned,
however, with recognizing when arms are equivalent, an reward-maximization may
become a secondary objective compared to “good-data quality” reliable inference.

Overall, there remains a great deal for future work to explore how to effectively
collect data such that participants in experiments are able to benefit from accrued
evidence, and the collected evidence is such that researchers can draw correct
conclusions about the underlying properties of the arms. Here, we provided a
foundation for future work on bandit algorithms that explicitly consider the reliability
of statistical analysis in the objective. We hope that this may serve as motivation for
the broader endeavour of bridging the gap between reward-maximising algorithms
and scientific experiment design, by highlighting how balancing these competing
objectives can be framed, and providing an instance of a solution.
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Chapter 5

MHealth App to Promote
Physical Activity in University
Students: Results from A
Micro-Randomized Trial1

Abstract

Low physical activity is an important risk factor for common physical and mental
disorders. Physical activity interventions delivered via smartphones can help users
maintain and increase physical activity, but outcomes have been mixed. Here we
assess the effects of sending daily motivational and feedback text-messages in a
multi-level micro-randomized clinical trial on changes in physical activity from one
day to the next in a student population. We analyse 93 participants who used a
physical activity app called DIAMANTE for a period of 6 weeks. Every day, their
phone pedometer passively tracked participants’ steps. They were micro-randomized
to receive different types of motivational messages, based on a cognitive behavioral
framework, and feedback on their steps. We use generalized estimation equation
models to test the effectiveness of feedback and motivational messages on changes in
steps from one day to the next. Sending any versus no text message results in an
initial increase in daily steps (729 steps, p = 0.012) but this effect decreases over
time. A multivariate analysis evaluating each text message category separately,
shows that the initial positive effect is driven by the motivational, though the
effect is small and trend-wise significant (717 steps; p = 0.083), but not the
feedback messages (−297 steps, p = 0.5). Sending motivational physical activity
text-messages based on a cognitive behavioral framework may have a positive effect
on increasing steps, but this effect decreases with time. Further work is needed
to examine the possibility of personalization and contextualization to improve the
efficacy of text-messaging interventions on physical activity outcomes.

ClinicalTrials.gov Identifier: NCT04440553.
1Parts of the text of this chapter are extracted from the submitted/published manuscripts

coauthored by the candidate and listed on page vii.
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from A Micro-Randomized Trial

5.1 Introduction

Insufficient physical activity is one of the leading risk factors of death worldwide
(WHO, 2018). It is associated with worse outcomes in many common chronic
diseases, including diabetes, cancer, coronary heart disease and worse mental health
outcomes, including depression and anxiety (Brugnara et al., 2016). Additionally,
a low level physical activity is associated with the occurrence of mental disorders
such as depression (Choi et al., 2019). The World Health Organization (WHO)
recommends 2.5 hours of physical activity per week of moderate intensity (WHO,
2018). However, in 2018, almost half of American adults did not achieve this goal
(CDC, 2020). Adolescents and university students show even lower levels of physical
activity (Kriemler et al., 2011; Castro et al., 2020). Given the detrimental effects of
low physical activity for individuals, families and society as a whole, there is a great
need to develop effective interventions that help people to increase and maintain
their physical activity patterns over time.

Behavioral interventions delivered via mobile devices, such as text messaging
and/or smartphone apps, hold great promise for helping people engage in healthy
behaviors such as increased physical activity. They may be able to overcome some
of the barriers to physical activity, like lack of will power, and help to identify the
benefits of, and opportunities for, exercise. They can also help users gain insight
into their walking behavior and aid with goal setting and accountability. Literature
reviews suggest that mobile interventions have beneficial effects on physical and
mental health, with effect sizes up to 3.10 (Cohen’s d; Cohen, 1988) after three month
follow up (though null effects were also reported; Rose et al., 2017; Roberts et al.,
2017; Rathbone & Prescott, 2017). Further, a meta-analysis showed that smartphone
interventions led to an increase of 476.75 steps per day (Romeo et al., 2019). In
addition, a scoping review that included 30 studies also showed that physical activity
interventions decreased depression and anxiety symptoms in young people (Pascoe
et al., 2020). Delivering interventions via mobile phones has advantages as it allows
for a wide dissemination of these interventions, and provides a potentially low-burden
and low-cost manner of support (Schueller et al., 2019).

However, similar to face-to-face treatments, the effects of mHealth physical
activity interventions are mixed (Stuckey et al., 2017), and typically do not seem
to be sustained over longer periods of time (Romeo et al., 2019). In addition,
a systematic review of physical activity interventions showed that 12 out of 20
reviewed interventions resulted in increased physical activity, but noted the level
of evidence regarding the immediate and the long-term effects of interventions to
promote physical activity among university students is limited. One reason is that
these interventions are not personalized enough (Triantafyllidis et al., 2019). For
instance, despite collecting a wealth of data, they do not adapt their messaging
strategy (content and frequency) to changing behavior of participants over time, or
allow people to vary their goal. Further, because most mHealth studies evaluate
the effects of the intervention as a whole, and not its separate components, much
remains unknown about which components of smartphone interventions are effective
to increase daily physical activity.

A state-of-the-art experimental design proposed for testing the proximal effects
of the intervention components in mHealth is the micro-randomized trial (MRT)
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design (Klasnja et al., 2015). As introduced in Section 3.1, in an MRT, individuals
are repeatedly randomized to different intervention options. This design allows
researchers to test separate intervention components, such as different categories of
text-messages (as in the current study), and explore short-term effects of intervention
components (e.g., steps within a 24-hour period after sending a message).

In this study, we tested a mobile phone application that sends daily feedback and
motivational text messages, consisting of different categories of messages (motiva-
tional (k = 4) and feedback (k = 5)) based on a cognitive behavioral framework: the
Capability, Opportunity, Motivation, Behavior (COM-B) model (Michie et al., 2011).
COM-B is a behavioral change model that proposes that engaging in a particular
behavior depends on the dimensions of capability (physical and psychological), op-
portunity (social and physical) and motivation (need to engage in the behavior more
than in other behaviors). These are interacting dimensions, and interventions must
target at least one of them to achieve behavior change. The model hypothesizes
that changing perceived opportunities, capabilities and motivations could lead to
long lasting behavior change. COM-B has previously been used to identify physical
activity barriers (Flannery et al., 2018), and to design physical activity interventions
(Carney et al., 2016; Nyenhuis et al., 2017).

The primary aims of the study were: 1) to examine the overall effectiveness
of a text-messaging mobile app for improving physical activity, defined as the
change in users’ steps counts from one day to the next one, and 2) to assess the
effectiveness of different types of text-messages (motivational and feedback) on
physical activity. Secondary aims included: 1) to understand if there is a time effect
on the interventions effectiveness; 2) to explore whether the adaptive RL-based
policy has an improved outcome in terms of physical activity compared to the
static uniform random assignment of messages; 3) to examine participants’ pre- and
post-intervention depression, anxiety and behavioral activation scores and differences
between random messaging and adaptive sampling.

5.2 Experimental Design

Mobile App. We employed the DIAMANTE mobile phone app (https://
diamante.healthysms.org/), developed by Audacious Software and the authors
(Aguilera et al., 2020). This application tracks step counts by pooling from Google
Fit, Apple HealthKit or the built-in pedometer on patients’ phones. We use the
HealthySMS text-messaging platform, developed by Audacious Software and the
authors, to send text-messages and manage participant responses back to our system.
The app only needs to be installed once, but has to remain open consistently. The
app is designed in English and Spanish versions and is freely available as a download
from the Apple App Store and Android Google Play.

Participants. Undergraduate and graduate students of University of California,
Berkeley were recruited through the Social and Experimental Research Lab (Xlab)
app. The Xlab app is advertised during campus events and online advertisements
on Facebook. Students go through an online screening process to determine their
eligibility. Students that did not have a smartphone, were not able to exercise
due to disability, or had plans to leave the country during the study, or where

https://diamante.healthysms.org/
https://diamante.healthysms.org/
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not between the ages of 18 − 65, were not eligible to participate. The study was
approved by the Committee for Protection of Human Subjects (ID: 2019-04-12118).
All procedures performed in studies involving human participants were in accordance
with the ethical standards of the institutional and/or national research committee
and with the 1964 Helsinki Declaration and its later amendments or comparable
ethical standards.

Study Visits. Before entering the study, participants came for a baseline study
visit and informed consent. Participants filled in baseline survey measures of
interest on Xlab computers using Qualtrics, including the measures outlined below,
and participant demographics and information about current mobile technology
familiarity and utilization. All participants received assistance if necessary in
downloading a pedometer application onto their phone. Participants were instructed
to have the app open at all times. They received 15 USD for their participation in
the baseline visit, independently of whether or not they used the app and received
text-messages. At six-week follow-up, participants were invited for an online remote
exit interview on their personal digital devices, for which they received 25 USD.

Measures and Outcomes of Interest. At baseline and at six-week follow-up,
students were asked to complete a survey which included questions about demo-
graphics, socioeconomic status, health status, physical activity and the following
psychological questionnaires: the Patient Health Questionnaire-8 items (PHQ-8;
Kroenke et al., 2001), the General Anxiety Disorder-7 items (GAD-7; Spitzer et al.,
2006), the Behavioral Activation for Depression Short-Form (BAD-SF; Santos, 2013))
and the International Physical Activity Questionnaire - Short Form (IPAQ-SF; Lee
et al., 2011). PHQ-8 is a reliable and valid eight-item measure of depression severity
over the past 2 weeks in clinical and general population samples (Kroenke et al.,
2001). The PHQ-8 omits the PHQ-9’s suicidality question and was found to be prefer-
able to the PHQ-9 in research settings and online studies (Spangenberg et al., 2012).
All the baseline information constituted the contextual or independent variables.
The main outcome of interest, representing physical activity, was chosen to be the
number of steps. Steps were passively collected by the pedometer mobile phone
application continuously during the time participants remained in the intervention,
provided that they did not close the application. For each day, we calculated the
total number of steps recorded between 00 : 00 and 23 : 59. We then computed the
change in daily step count, defined as today’s step count minus yesterday’s step
count, to study and model the improvement in physical activity. Daily step change
represented the dependent or reward variable in this study.

Experimental Factors: Text-Messages. We adapted a text-messaging bank
that we originally designed for the clinical population (Aguilera et al., 2020) of the
DIAMANTE Study (see Section 3.1), for the current population, by removing mes-
sages that talked about chronic disease or family. Messages were designed to fit into
the three dimensions of the COM-B model. Further, about half the messages were
framed with a social connotation (i.e. exercising with friends or being healthy for
others), and half were individually framed (exercising for yourself). We additionally
added messages about the benefits of walking on brain health and concentration.
Besides the motivational messages, participants also received one feedback message
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daily, at approximately the same time as the motivational messages (two minutes
apart). The feedback messages contained information on step count and step goal in
the previous day. See Tables 5.1 and 5.2 for examples.

Motivational category Example
M0. No message NA
M1. Capability/Self-belief Push yourself a bit further with the help of friends.

They believe in you!
M2. Opportunity Find 30 minutes in your day to go for a walk.

That is less time than it takes to watch one episode
of a TV show.

M3. Motivation/Walk-benefit Going for a walk can improve your mood and
clear your mind.

Table 5.1. Motivational messages categories and examples within each category.

Feedback category Example
F0. No message NA
F1. Reaching goal Yesterday, you did not reach your goal.
F2. Steps walked yesterday Yesterday, you walked 3824 steps.
F3. Walked more/less than goal
yesterday

Yesterday, you walked more than your goal.

F4. Steps walked yesterday, plus
a positive/negative message

You walked 4000 steps yesterday, you can do
better!

Table 5.2. Feedback messages categories and examples within each category.

Study Design. The design of this study is an MRT (Klasnja et al., 2015). In each
study day, interventions or treatments are defined by the full factorial design with a
total of three factors representing Motivational Messages (M), Feedback Messages
(F), and the Time Frame (T) when the message was sent, of k = 4, k = 5 and k = 4
levels each, respectively. One level of both M and F corresponded to a control
treatment, i.e., no message sent. Each participant received a combination of M , F
and T every day, constituting a multi-level MRT design (Xu et al., 2020). These
designs allow us to examine the effect of sending a message versus no message on
physical activity and explore the effectiveness of different categories of messages.

In addition, for evaluating the adaptive RL-based strategy, we compared it to a
static uniform randomization, in which the same types of messages were sent out
randomly. Our initial design, which is currently applied to the main DIAMANTE
Study (see Section 3.1; Figure 3.1), additionally planned to randomize participants
to the uniform random vs the adaptive condition. Because of technical difficulties
(errors in execution with incoming data), we only enrolled a subset of participants
towards the end of the study (after the errors were fixed) in the adaptive group,
starting from October 21st, 2019. Thus, the majority of participants were assigned
to a uniform random combination group. However, participants were not aware of
their group membership until after the study ended.
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5.3 Adaptive RL-based Strategy

Every day, we implemented an adaptive learned decision mechanisms for deciding on:
1) the feedback message, 2) the motivation message and 3) the timing of the message.
Each combination of levels of the three experimental factors represented an arm or
action. To increase personalization, the decision about which message to send did
also take into consideration the contextual variables: time-independent variables
such as baseline socio-demographic information, and time-dependent covariates,
including the day of the week (Monday-Sunday), the data steps of the previous day,
and the number of days since messages from different categories were sent.

For this study, we adopted the randomized Thompson Sampling MAB strategy,
previously described in Section 3.1.2. However, we proposed some modifications from
its original version described in Algorithm 4, to account for the specific mHealth
setting and the high dimensionality of the context.

Similarly to Algorithm 4, we assumed that the expected reward (i.e., the daily
step change) is a linear function of the context-action feature f(Xt, At) ∈ Rd+1, i.e.,

E[Yt|Xt, At] = f(Xt, At)Tβ,

with β ∈ Rd+1 an unknown reward parameter, Yt the reward variable, Xt
.=

[X0t,X1t, . . . ,Xd′t] ∈ Rd′+1 the contextual vector of d′ number of baseline covariates,
and At the actions or experimental variables at time or day t, with t = 1, . . . , T .
The inclusion of covariate X0t

.= 1 is considered in order to incorporate the model
intercept. Note that the context-action feature can be any function of the contextual
and action variables, that may have a relevance according to the behavioural scientist.
It can include interactions between those variables, or other combinations that may
account for specific characteristics of the data, such as habituation, which we will
discuss later.

Regularization. Differently from Algorithm 4, which considers a Normal prior
distribution, here, we used a Bayesian linear regression setting with a Normal-
Inverse-Gamma (NIG) prior on the regression coefficients (mean and variance). This
keeps coefficients small and minimizes overfitting and provides some regularization, by
shrinking coefficients. Formally, for each day t, we assumed a Gaussian distribution
for the reward, i.e.,

Yt|f(Xt, At),β, σ2 ∼ N (f(Xt, At)Tβ, σ2),

and a multivariate Normal-Inverse-Gamma conjugate prior for the joint distribution
of the parameters vector β and the variance parameter σ2 > 0, i.e.,

(β, σ2)|µβ,Σβ, a, b ∼ NIGd+1(µβ,Σβ, a, b),

with µβ ∈ Rd+1, and a, b ∈ R>0 fixed and known prior hyper-parameters. Alterna-
tively, assuming Σβ known, the prior distribution can be formulated as

β|µβ,Σβ, σ
2 ∼ Nd+1(µβ, σ2Σβ),

σ2|a, b ∼ IG(a, b),
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simplifying the sampling process of the TS algorithm. In fact, to perform a pos-
terior sampling from the NIG posterior distribution, at each time t = 1, . . . , T ,
is enough to sample the unknown variance and mean parameters from their up-
dated Inverse-Gamma and Normal posteriors, which we denote with IG(a∗, b∗) and
Nd+1(µ∗, σ̃2

(t)Σ∗), respectively, where

µ∗ =
(
Σ−1
β + f(Xt, At)T f(Xt, At)

)−1 (
Σ−1
β µβ + f(Xt, At)TYt

)
,

Σ∗ =
(
Σ−1
β + f(Xt, At)T f(Xt, At)

)−1
,

a∗ = a+ n

2 ,

b∗ = b+ 1
2
(
µTβΣ−1

β µβ + Y TY − µ∗TΣ∗−1µ∗
)
,

σ̃2
(t) ∼ IG(a∗, b∗).

The resulting vector
{
β̃(t), σ̃

2
(t)

}T
t=1

, with σ̃2
(t) ∼ IG(a∗, b∗) and β̃(t) ∼

Nd+1(µ∗, σ̃2
(t)Σ∗) provides samples from the joint NIG posterior distribution, while{

β̃(t)

}T
t=1

and
{
σ̃2

(t)

}T
t=1

provide samples from the marginal Normal and IG posterior
distributions, respectively. Based on the posterior samples, at each iteration t the
optimal arm ã(t) will be the one that maximises the ‘a-posteriori’ estimated expected
reward, f(Xt, At)T β̃(t), where the posterior nature is reflected in β̃t.

Habituation. In many real-world scenarios, temporal changes in the reward distri-
bution structure are an intrinsic characteristic of the problem, and the stationary
assumption, as in the linear TS without any additional time modelling considerations,
may be simplistic. One may expect for instance that the effectiveness (reward) of a
specific intervention on a user would deteriorate over time or continuous assignment
to that intervention. It is, thus, unlikely that users’ preferences will remain stable
over time, and the collected data becomes progressively obsolete as the interest
for the items evolve. In mHealth, or, more generally, in behavioural sciences, this
phenomenon, known as habituation, is a recognized pattern and modelling issue.

Habituation is a form of behavioral plasticity and learning defined as a decrement
in response as a result of repeated test stimulus (Bouton, 2007). In a text-messaging
app as the DIAMANTE app, sending the same message category or combination
(arm) repeatedly over time may eventually result in a decreased response of the app
user, thus, a reduced reward over time. Consequently, an arm which was optimal for
and individual over a certain number of initial days, might not be optimal anymore,
and the modelling procedure should be able to detect this distributional change. This
departure from the stationarity assumption, which has dominated much of the MAB
literature so far, raises fundamental questions as to how one should model temporal
uncertainty in rewards, and how to benchmark performance of candidate policies.
Existing bandit proposals include recovery bandits (Pike-Burke & Grunewalder, 2019;
Cella & Cesa-Bianchi, 2020), based on which the expected reward of each arm varies
according to some (unknown) function of the time since the arm was last played;
rested bandits (Gupta et al., 2011), which assumes that the time varying reward
probability follows a simple Brownian motion; rotting bandits (Levine et al., 2017),
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where each arm’s expected reward decays as a function of the number of times it
has been pulled.

We took a similar approach as in Levine et al. (2017) and modelled the outcome of
interest (daily steps change) as a function of the number of times since a text-message
category was not sent. Assuming again K different text-messages or arms, and a
fixed number of days T , in each of which only one of the available categories can be
sent. Now, for each text-message categories Aj , j = 1, . . .K and day t = 1, . . . , T ,
we denote by ZAj ,t the number of days since category Aj was last played, where
ZAj ,t ∈ Z = {0, . . . , Zmax} for a finite Zmax ∈ N. More specifically, at day t+ 1, we
have that for each Aj , j = 1, . . .K,

ZAj ,t+1 =
{

0 if At = Aj (or Aj,t = 1),
min{Zmax, ZAj ,t + 1} if At 6= Aj (or Aj,t = 0).

Aj,t is the dummy coded version of the message category representing whether
category Aj was chosen at time t: Aj,t = 1 means that on day t category Aj was
assigned (At = Aj), while Aj,t = 0 means that on day t a category different from Aj
was selected (At 6= Aj). Note that, as ZAj ,t depends on the past selected categories,
it is a random variable as well.

Let now Zt
.= (ZA1,t, . . . , ZAK ,t)

.= (Zmax − ZA1,t, . . . , Zmax − ZAK ,t), for t =
1, . . . , T , be the vector of these derived auxiliary variables, which we call habituation
or recovery context. The idea is that based on the closeness in time a certain
text-message category was sent the reward might be positively or negatively affected.
Particularly, with (negative) habituation, we refer to the case when sending the
same text-message consecutively may cause habituation and loss of its potential
effect in terms of step change. In this setting, a higher ZAj ,t represents a higher
degree of habituation at time t related to category Aj , indicating a higher loss
in terms of reward if the same message category is going to be sent, while a zero
value indicates that sending again that message is not going to be affected by a
habituation phenomenon. We hypothesize, in line with the behavioural literature,
that in a certain fixed number of episodes Zmax, if a specific text-message is not sent,
habituation due to that message will stop to occur.

Based on this reasoning, at time t, we model the daily step change of text-message
Aj as a linear function of this arm, of the time and/or action invariant context Xt

and of the related arm dependent contextual variable ZAj ,t, i.e.,

E[Yt|Xt, At = Aj , ZAj ,t] = f(Xt, Aj , ZAj ,t)Tβ, j = 1, . . . ,K.

Thus, the expected reward of every arm changes at each round t, and this change
depends on whether arm Aj was previously played and how many rounds ago. We
also included in the model other time-dependent contextual variables, in addition to
the time-independent baseline one, in order to account for the effect of time. Being
a multi-factorial trial we also examined interactions between the different message
categories and between them and the time variable.
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5.4 Statistical Analysis

Descriptive statistics of interest of the sample were reported in terms of means
and standard deviation for relevant continuous measurements and frequency and
percentage for categorical variables.

Multivariable regression analysis. To test the effectiveness of interventional
messages, we used the Generalized Estimating Equations (GEE) model (Liang &
Zeger, 1986), a widely used longitudinal data analysis method in mHealth (Bolger
& Laurenceau, 2013). GEE models represent an extension of generalized linear
models and quasi-likelihood estimation methods (McCullagh, 2018), and are designed
for analyzing clustered (or longitudinal) data which may be correlated within a
cluster (in our case the user) but are independent between clusters. We used the
geepack package in R (Halekoh et al., 2006), and employed an independent working
correlation structure (within clusters), taking into account the Quasi-Information
Criterion (QIC) method (Pan, 2001). In addition, when there are time-dependent
covariates, the GEE estimator was shown to be consistent under the independent
working correlation structure, and thus it is recommended as a “safe” analysis choice
(Pepe & Anderson, 1994).

Using GEE, we first examined the effect of sending any versus no message on
step change. As a second step, we also looked at a model evaluating the effect of
sending a feedback or motivational message, including the interaction between them,
to understand if and to which extent one of these components has effect on step
change. Third, we explored a model examining the effect of the different categories
of feedback (k = 4) and motivational (k = 5) text-messaging categories. All models
were adjusted for time (study day). In this study we primarily focused on the effect
of the messaging system and examined the effect of the time of day factor only as a
secondary aim.

In the main analyses, we included both the uniform random and Thompson
Sampling group to have an increased sample size. However, in the Thompson
Sampling group, after 2 weeks of micro-randomized messages, messages were no
longer delivered randomly, but via a learned policy mechanism, which could alter
results. Therefore, as a sensitivity analysis, we also re-ran all analyses while removing
the Thompson Sampling group.

Using GEE, as a secondary objective, we also assessed differences in overall change
in physical activity between the Thompson Sampling and the uniform random group,
adding the study group as an independent variable. We also examined the effect of
group membership on changes in PHQ-8 scores, GAD-7 scores and BAD-SF between
baseline and follow-up using a two-way repeated measures ANOVA. However, these
analyses were exploratory, as the groups were not randomized. Because we did not
perform randomization, we also did not assess the influence of socio-demographic
and baseline factors on the effect of the adaptive intervention (moderators of the
intervention) as originally planned.

Missing data. Being the outcome of interest defined as the difference in the step
count between two consecutive days, we first, excluded participants with less than
2 days of data. Then, a complete case analysis (based on the outcome variable
of interest) was carried out for evaluating the effectiveness of text-messages. As a
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sensitivity analysis, we also performed the analyses using missing-data imputation
on the reward variable.

We used multiple imputation as missing-data imputation technique. More
specifically, we employed multivariate imputation by chained equations, also called
fully conditional specification or sequential regression multiple imputation (Azur
et al., 2011). This method has emerged in the statistical literature as one principle
method of addressing missing data, and a dedicated package in R exists (Zhang,
2016). We used this package adapting the existing functions to our longitudinal
data.

Power analysis. Being an exploratory study, power analysis did non represent a
primary analysis of this work. However, in order to estimate an adequate sample size,
we originally conducted our power analysis based on a repeated-measures analysis.
For longitudinal data analysis one needs to conduct simulations and when we started
this study we had no prior data available to do so. Based on previous literature, we
expected that participants would show an increase of between 1000 and 2000 steps
over the whole study period (Harries et al., 2013; Walsh et al., 2016; Fukuoka et al.,
2019). Thus, hypothesizing an increase from 6000 to 7500 steps with a standard
deviation (SD) of 2000 steps, a correlation between measurements of 0.5, and aiming
for a power of 90%, we would have need 76 subjects.

After the end of the study, and based on data from the current participants, we
also applied the novel proposed GEE-type data power analysis method of Xu et al.
(2020). This method, indeed, required the average standardized effect sizes of the
intervention levels of motivational and feedback messages to calculate power. Even if
conducting such a post-hoc power analysis is not advisable, using this novel method,
specifically developed for mHealth MRTs, allowed as to obtain at least indicatively
an estimate of the power we would have for the analyses looking at the message
categories separately.

5.5 Study Results

Participants Data

The sample consisted of 103 students enrolled from September 12th 2019 to October
25th 2019, who did sign the informed consent, agreeing to participate to the study.
Of these, 7 participants did not receive the text-messages due to technical issues
(iOS updates, n = 5, or wrong language setting in the Google Play store, n = 2) and
3 received text messages, but never transmitted data back to our server. This left 93
participants for the analysis (see flowchart in Figure 5.1). Baseline characteristics of
the sample included in the analysis (n = 93) are shown in Table 5.3.

Overall, t = 670 (16%) days of observation with missing steps were recorded and
removed from the main analysis. On average, in 45 days of study, subjects received
a motivational message (M1, M2 or M3) on 27 days and a feedback message (F1,
F2, F3 or F4) on 30 days. System errors led to the messages not being sent out for
16% of the time, corresponding to the missing data amount. In these cases, subjects
did not receive any messages. We have kept these non-randomized days (t = 700
days) in the main analysis, coded these as the no message category (M0 and/or F0).
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This gives us a better understanding of the effect of the messages compared to not
sending any message. However, also we conducted a sensitivity analysis (reported
later in this section) removing the days in which subjects did not receive messages
because they were not directly randomized.

Baseline Covariate; n = 93
Gender; n (%)
Female 65 (69.9%)
Male 27 (29%)
Other 1 (1.1%)
Age; Mean (SD) 20.2 (2.47)
Ethnicity; n (%)
Asian or Pacific Islander 51 (54.8%)
Hispanic/Latino(a) 11 (11.8%)
Multi-ethnic 10 (10.8%)
White or Caucasian 19 (20.4%)
Refused 2 (2.2%)
Born in the US; n (%) 55 (59.1%)
Physical activity; n (%)
Engaging in regular physical activity last 6 months 48 (51.6%)
Wants to be more physically active 88 (94.6%)
Minutes of moderate/vigorous exercise/week∗; Mean (IQR) 150 [90, 171]
Psychological questionnaires; Mean (SD)
PHQ-8 (depressive symptoms) 5.61 (3.62)
GAD-7 (general anxiety) 4.73 (4.84)
BADS-SF 31.1 (8.33)

Table 5.3. Baseline characteristics of n = 93 analysed participants data: Mean (SD;
standard deviation) or Mean (IQR; interquartile range) for continuous variables, and n
(%) for categorical variables. PHQ-8: Patient Health Questionnaire-8, GAD-7: General
Anxiety Depression Scale-7, BAD-SF: Behavioral Activation for Depression Scale.
∗Measured by the International Physical Activity Questionnaire (IPAQ).

Multivariable Regression Analysis

Sending any text message versus no message. On days that any message was
sent (e.g. individuals either received a feedback or a motivation message or both)
versus no message, sending a message initially resulted in an increase in the change
of number of steps by 729 (p = 0.012, standardized effect size δ = 0.147). However,
this effect diminished linearly over time (trend-wise significant), with a decrease of
33 steps on average for each additional study day (p = 0.004, δ = −0.007, as shown
in Table 5.4). Here, we only include time as a linear term, studying its main effect
and interaction with the interventions (variables of interest). Additional analyses
reported in Appendix G suggest the time’s effect could be non-linear, meaning that
at the beginning of the study there is an increase in the outcome Y , but after a
while, increasing time will result in a decrease in Y (when the coefficient estimate
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Participants recruited for 
the study: n=104

• Declined participation: n=1
• Did not receive texting

intervention due to technical
problems: n = 7

• Received texting intervention,
but did not transmit data to
the server: n=3

Included in the analyses: n=93

Figure 5.1. Flowchart of DIAMANTE participants enrollment with exclusion reasons.

is negative, as in our case). However, when including the non-liner term in the
multivariable model with the intervention variables, results do not change.

Covariate Estimate 95% CI p-value
Message Sent 729 [163, 1295] 0.012
Study Day 27.4 [8.53, 46.4] 0.005
Message*Study Day −33.2 [−56,−10.4] 0.004

Table 5.4. Results of the GEE model studying effects of sending any versus no message on
steps change. CI: Confidence Interval, GEE: Generalized Estimating Equations.

Differences between motivational and feedback message. Sending a moti-
vational message trend-wise increased the change number of steps initially after
correcting for time and interactions between message categories (717 steps; p = 0.083,
δ = 0.144, see Table 5.5).

Covariate Estimate 95% CI p-value
Motivation 717 [−93.6, 1527] 0.083
Feedback −297 [−1089, 496] 0.463
Study Day 11.9 [−3.97, 27.9] 0.141
Motivation*Study Day −14.6 [−44.7, 15.6] 0.344
Feedback*Study Day −1.65 [−31.2, 27.9] 0.382
Motivation*Feedback −24.4 [−676, 627] 0.570

Table 5.5. Results of the GEE model studying effects of motivational and feedback message
on steps change. CI: Confidence Interval, GEE: Generalized Estimating Equations.

Different categories of motivational and feedback messages. In an ex-
ploratory manner, we also examined the effect of the different types of feedback
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and motivational messages. Overall, there was a trend of an increase in change of
steps from one day to the next when participants received a motivational message,
in particular a self-efficacy message (414 steps; δ = 0.083, p = 0.077, see Table 5.6)
that discusses the (mental) health benefits of physical activity, and an opportunity
message (410 steps; δ = 0.083, p = 0.089, see Table 5.6), that discusses finding
opportunities for exercise. There was a significant decrease when subjects received
a feedback message with the number of steps they walked yesterday (−665 steps;
δ = −0.134, p = 0.002, Table 5.6). After including all interactions, the positive effect
of motivation remained significant, but not feedback.

Covariate Estimate 95% CI p-value
M1. Capability/Self-belief 253 [−247, 753] 0.320
M2. Opportunity 414 [−45.4, 874] 0.077
M3. Motivation/Walk-benefit 410 [−63.2, 883] 0.089
F1. Reaching goal −147 [−703, 408] 0.603
F2. Steps walked yesterday −406 [−907, 95.5] 0.113
F3. Walked more/less than goal yester-
day

−126 [−579, 327] 0.585

F4. Steps walked yesterday, plus a posi-
tive/negative message

−665 [−1082,−247] 0.002

Study day 1.64 [−2.58, 5.85] 0.447
Table 5.6. Results of the GEE models studying the effects of different categories of feedback

and motivation on steps change. CI: Confidence Interval, GEE: Generalized Estimating
Equations.

Uniform Random vs Thompson Sampling group. Twenty-seven participants
(29% of the overall sample), enrolled after the October 20th 2019, received messages
chosen by the adaptive Thompson Sampling algorithm. Group membership (uniform
random or Thompson Sampling) did not have a significant effect on steps (−515, CI
= [−1536, 506], p = 0.32). The Thompson Sampling group was small compared to
the uniform random group (causing an imbalance between the two groups) and we
did not conduct a group randomization due to technical difficulties. RCTs with a
longer follow-up time therefore must be conducted to assess the added benefit of
Thompson Sampling for increasing physical activity. We are currentlyconducting a
larger RCT to examine this in a patient population (Aguilera et al., 2020).

Psychological Questionnaire Scores

The internal consistency of each of the questionnaires administered to students
showed acceptable-high reliability scores, as measured by the Chronbach’s α coeffi-
cient (Cronbach, 1951) at baseline assessment. A coefficient of 0.77, 0.93 and 0.80
was obtained for the PHQ-8, GAD-7 and BAD-SF, respectively. A total of 82 out of
93 subjects also provided follow-up data. PHQ-8 scores significantly increased from
baseline to follow-up (5.67 (SD = 3.72) to 8.35 (SD 3.40), p ≤ 0.001). There were no
significant changes in anxiety (4.66 (SD 4.79) to 5.84 (SD 4.72), p = 0.11) and be-
havioral activation scores (31.3 (SD = 8.57) to 29.2 (SD = 8.60), p = 0.12). Changes
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in scores did not differ between the uniform random and Thompson Sampling group
(all p’s ≥ 0.12).

Sensitivity Analyses

Multivariable regression analyses on the uniform random group only. As
a first sensitivity analysis, we repeated all the analyses focusing only on the uniform
random group (n = 66), for which stronger statistical properties are demonstrated
being a uniform and independent rule of assignment, thus not subject to bias due to
adaptive nature that characterizes the Thompson Sampling. We show and discuss
more in depth this issue in Chapter 4.

Similarly to the main results, sending a message initially resulted in a positive
effect on steps, but decreased over time. However, the effects were no longer
significant which could be due to decreased power. The positive effect on steps
seemed to be driven by motivational messages but this also lost significance after
adding interaction terms. The main categories showing significance were again a
opportunity message (a borderline p = 0.06 with an estimated coefficient of 517)
and a feedback message with the number of steps participants walked yesterday plus
a negative/positive feedback message (−541 steps, p = 0.03). All the results are
reported in Appendix H.

Missing data imputation. As we performed multiple imputation considering a
number of three imputations, we report results for all the imputed datasets (see
Appendix I. This will allow assessment of the robustness of the method, as well a
more exhaustive sensitivity analysis. Consistent with the main original findings (no
data imputation), sensitivity results with data imputation show the same directions
of effects. With respect to all the three different analysis we performed we can see
that:

1. In the assessment of single message categories (different feedback and mo-
tivational categories) generally the effect of the same categories resulted to
be statistically significant. The positive effects of the motivational messages
M3 and M2, and the negative effect of the feedback messages F4 were still
significant. In addition, imputing the missing data improved this significance,
showing lower p-values, and an additional significant message category, i.e.,
F2.

2. In the assessment of feedback and motivation messages without specifying each
category, we still had consistency in terms of direction of the effect, however
out of the three imputed datasets, only one resulted in a significant effect of
motivational message. The other two were not significant, but note that the
p-value in the original dataset was 0.08, thus only a borderline significance,
which is consistent with the average result of the three multiple imputations.

3. In the assessment of sending any message versus no message we still have a
significant result in one of the imputed datasets, consistent with our original
results. Our intuition behind the loss of significance in the other two imputed
datasets related to the distribution of the imputed datasets compared to the
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original ones: both absolute number of steps and step change had a higher
variability in the imputed datasets.

Post-hoc power analysis. Based on data from the current participants, the effect-
sizes for the motivational messages were respectively 0.0734, 0.121 and 0.1079, which
can be categorized into small (i.e., < 0.2) standardized effect size. In order to achieve
a power of at least 80% to detect these effect sizes, a minimum sample size 117, or a
minimum study period of 57 days with 93 participants, is required. In conclusion,
the current sample of 93 participants for 45 days would likely be sufficient to detect
larger standardized effect sizes, e.g., above 0.108 for each of the message levels, but
not small ones. This illustrates that we did not have sufficient power to detect these
effects of individual message categories.

GEE vs Mixed Models. In mobile-health longitudinal studies, the two major
and most common methods for analyzing data (whose potential correlation due to
repeated measurements should be taken into account during the statistical analyses),
are represented by GEE, which is a marginal (population-average) model, and the
linear (or generalized) mixed model (LMM) with fixed and random effects, which is a
conditional (subject-specific) model. The two approaches have thus different targets
for inferences (population vs subject level) and address subtly different questions
about longitudinal change. A fundamental difference between GEE and LMM is
the interpretation of model’s coefficients. Random effect models coefficients have
subject-specific interpretation in terms of change in the transformed mean response
for any individual. However, marginal models ignore such changes within subjects:
here, the regression coefficient describes how the average rates for any variable may
change in the study population.

In our study, we used the first approach (i.e., GEE) for several reasons. First,
because our primary analysis focused on the population-level effect of interventions,
not only for getting general insights on interventions effects, but also to derive
reasonable prior specification (of our parameters of interest) to be used in the main
DIAMANTE clinical study. Second, because several authors suggest that in general
the estimation-equation approach provides a more useful approximation of the truth
compared to mixed models (see e.g., Hubbard et al., 2010), that interpretation
from mixed models is more complicated in some settings Fitzmaurice et al. (2012),
and that a greater variability in the estimates (due to the heterogeneity among
individuals) characterises the latter. Finally, our preliminary results with an LMM
model suggested that for our outcome of interest (i.e., change in the steps change),
the random effect of study participants did not contribute to explain the total
variability (variance of the random effect ≈ 0), but estimates’ CIs were generally
wider (see Table 5.7 for a comparison with model in Table 5.6). We used the lmer
function of lme4 (Bates et al., 2014) R’ package. The extent of this subject variation
can thus be fully or virtually-fully explained by just the residual variance term
alone, so there is no enough additional subject-level variation to warrant adding a
subject-level random effect.

However, this is not true anymore when the absolute number of steps is taken as
dependent variable: in this case considering subject-levels is clearly important, as
they explain almost 50% of the variability in all the different multivariable models
considered in this study. Our interpretation is that the change in the number of
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Covariate Estimate 95% CI p-value
M1. Capability/Self-belief 253 [−229, 735] 0.304
M2. Opportunity 414 [−51.4, 880] 0.082
M3. Motivation/Walk-benefit 410 [−54.7, 874] 0.084
F1. Reaching goal −147 [−664, 369] 0.577
F2. Steps walked yesterday −406 [−917, 106] 0.121
F3. Walked more/less than goal yester-
day

−126 [−645, 393] 0.634

F4. Steps walked yesterday, plus a posi-
tive/negative message

−665 [−1183,−146] 0.012

Study day 1.64 [−11.8, 15.1] 0.812
Table 5.7. Results of the Linear Mixed Model studying the effects of different categories of

feedback and motivation on steps change. The random effect of study participants was
included in the model. CI: Confidence Interval.

steps (from one day to another) variable, compared to the absolute daily number of
steps, eliminates the individual baseline walking tendency.

For LMM, Qian et al. (2020) showed that standard software can be used to obtain
a valid estimate of the fixed effects if the time-varying covariates are independent of
the random effects parameters conditional on past history. When the time-varying
covariates are allowed to be endogenous (e.g., depending on the outcome process
or previous treatment assignments), estimation of the LMM fixed effect coefficients
may lead to bias because it no longer corresponds to the conditional interpretation
of the parameters (Pepe & Anderson, 1994). More recently, Hu et al. (2021) also
examine the conditions under which the LMMs work in the presence of time-varying
endogenous covariates, proposing an propose a variation of the LMM method that
jointly estimates the fixed effects and the random effects under a ridge-type penalty
on the latter.

5.6 Discussion

This study examined the effectiveness of motivational text-messages on changes in
daily steps in a student population. We found that receiving any text message versus
no message was initially associated with an increase in steps, but this effect was
weakened over time. Looking at the effect of the message categories separately, a
positive effect on physical activity seemed to be driven by the motivational messages
broadly, and not the text-messages that provided feedback on participants’ steps.

Of note, the effects we observed in the current study were small (Cohen’s
d < 0.2). A possible explanation for our small effects and overall lack in effect of
our messages over time is that the messages were not contextually (i.e., adapted to
participants’ daily contexts) and not personally (i.e., altered to fit with a person’s
personality profile) tailored enough. For instance, previous studies showed that
tailored messages, that adapt to time-varying factors such as time of day, day of week
and participants’ work schedules, are preferred by participants, and more effective
than generic messages (Lee et al., 2015b). For instance, Klasnja et al. (2015), using
an MRT design, found that contextually tailored walking suggestions increased
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bouts of physical activity. This MRT showed that sending multiple physical activity
text messages a day increased steps with an average of 496 daily (Klasnja et al.,
2015). Comparable to our study however, the effect of sending messages decreased
over the course of the study. Previous meta-analyses also showed that physical
activity interventions seem to be effective only on the short term (Romeo et al.,
2019). Although we had a low percentage of drop out (3%), participants may have
paid increasingly less attention to the messages as the study continued, leading to
messages losing their effects. Engaging users in digital interventions, especially when
they are unsupported, is one of the greatest challenges facing digital health today.
One difficulty with relying on text messages is that it is not possible to confirm if
individuals opened and read messages. Our previous work found that, when required
to respond to text-messages, 25% of the sample was disengaged, e.g., did not respond
to any of the messages (Figueroa et al., 2020). Future work should specifically focus
on how to measure and sustain engagement with texting interventions, that don’t
require a response, over time.

Our findings suggest that motivational messages may be more beneficial in in-
creasing physical activity than feedback messages, though they lost their effectiveness
over time and effects were small. Specifically, we found positive trend effects of
self-efficacy, which revolves around the belief that one is capable of behavior change,
and opportunity, the belief that one is capable of behavior change. Our results
suggest that these two behavior change categories may be more important than
messages about the benefits of exercise. University students, an educated sample,
may already be aware of the beneficial effects of exercise, thereby these messages
may be less impactful. Messages based on the COM-B framework may show some
effectiveness in motivating individuals for physical activity and could be a suitable
component within a physical activity intervention. Of note, when we removed days
that participants were not randomized, the positive effect of motivational messages
on step change was no longer significant. This may be due to reduced power to
detect small effects. Our results need to be confirmed by future work.

We found that feedback on individuals’ steps (whether they reached their goal
or not the previous day) may have no effect on step change, or even has a negative
effect. Results from systematic reviews showed that feedback should be actionable
(e.g. when, how and where can you exercise to reach your goal today) to be
effective (Schembre et al., 2018). Future interventions may benefit from providing
concrete actions a participant can undertake to reach their daily personal goals, in
addition to feedback on their number of steps or goal achievement. For example, an
app may provide information on how many steps individuals still need to walk that
day to reach their goal, and give them personalized suggestions, such as places to
exercise.

We did not observe any differences between the participants who received micro-
randomized messages, and participants who received messaging chosen by a rein-
forcement learning policy. The duration of our study may have been too short
for the algorithm to effectively start learning, especially given the limited number
of participants. Further, Thompson Sampling presents with challenges including
modeling the right reward function (outcome), low learning speed when data is
sparse and assessing the usefulness of contextual variables (Tewari & Murphy, 2017;
Liao et al., 2020). To date, mHealth studies using ML have shown some promising
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effects, but the number of studies is still too small for a rigorous evaluation of the
machine learning methods (Triantafyllidis & Tsanas, 2019).

It is important to note that our current multi-level micro-randomized trial design
(MLMRT) is intended to evaluate the effects of intervention components (in this
case types of messages), but not the effectiveness of the intervention as a whole.
The Thompson Sampling group was small (n = 27) and we did not conduct a group
randomization due to technical difficulties with the Thompson Sampling algorithm.
RCTs with a longer follow-up time therefore must be conducted to assess the added
benefit of Thompson Sampling for increasing physical activity. We are currently
conducting a larger RCT to examine this in a patient population (Aguilera et al.,
2020).

The nature of the college semester may also help to explain our finding of
increased depression scores from baseline to follow up. This finding was unexpected,
since previous work has found beneficial effects of physical activity interventions on
mental health in students (Pascoe et al., 2020). At the end of the study participants
might have experienced greater stress due to upcoming exams and thereby increased
depression symptoms. This may be another factor that led to reduced effectiveness
of the messages over time. Importantly, our findings underline that students are
a population particularly vulnerable for mental health issues, as corroborated by
previous work41. Students may need more tailored mental health support within
physical activity interventions to cope with the pressures of college life, especially
during exam periods.

Limitations. This sample consisted of a convenience sample (university students),
with various levels of baseline physical activity. Although the majority of the
participants indicated a wish to become more physically active, they might not all
have primarily joined the study to increase their physical activity. Thus, they may be
an under-motivated sample. Further, this study suffered from technical issues such
as system errors leading to not sending out messages and missing participant steps
because Internet connectivity was needed to pull participants’ steps from their phones.
Additionally, participants might not have always carried their phones, leading to
additional days with an unreliable estimate of steps. Further, our power analyses
showed that our sample size was too small to detect significance of the individual
levels of motivational and feedback messages (which was an exploratory analysis).
In addition, even though young adults tend to carry their phone with them for most
of their waking hours (Atas & Çelik, 2019), using phone built-in pedometers are
sensitive to errors, particularly when participants forget their phones (Duncan et al.,
2018), or carry their phones in their pocket (Silva et al., 2020). Further, we examine
the effects of the messages on steps over a 24 hour period. Because messaging times
were randomized, we expect that this is a well founded approximation of the effect
of the message on the daily steps. However, ideally we would have examined the
effect of messages within a certain number of hours. We collect data using in-built
phone pedometers to increase real world validity, but because of this we did not have
the fine grained data available, like the number of steps per minute. The nature of
our design therefore does not allow us to assess with certainty if the change in steps
was propelled by the message, or if there are carry-over effects of messages received
in the previous days.
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Chapter 6

RL for Optimizing MHealth
Applications: Lessons Learned
and Guidelines for Design
Decisions1

Abstract

Providing behavioral health interventions via smartphones allows these interventions
to be adapted to the changing behavior, preferences and needs of individuals. This can
be achieved through Reinforcement Learning (RL), a sub-area of machine learning.
However, many challenges could affect the effectiveness of these algorithms in the
real world. We share our experience and provide some guidelines for decision-making.
Using thematic analysis, we describe challenges, considerations and solutions for
algorithm design decisions, in a collaboration between health services researchers,
clinicians, statisticians and data scientists. We use the design process of an RL
algorithm for a mobile health study, DIAMANTE, for increasing physical activity
in underserved patients with diabetes and depression. Over the 1.5-year project,
we kept track of the research process using collaborative cloud Google Documents,
Whatsapp messenger and video teleconferencing. We discussed, categorized, and
coded critical challenges. We group challenges to create thematic topic process
domains. Nine challenges emerge, which we divide into 3 major themes: 1) Choosing
the model for decision-making, including appropriate contextual and reward variables;
2) How to deal with missing or incorrect data in real-time; 3) Weighing the algorithm
performance vs effectiveness/implementation in real world settings. The creation of
effective behavioral health interventions does not depend only on final algorithm
performance. Many decisions in the real world are necessary to formulate the design
of problem parameters to which an algorithm is applied. These considerations and
decisions must be documented and evaluated before and during the intervention
period, to increase transparency, accountability and reproducibility.

1Parts of the text of this chapter are extracted from the submitted/published manuscripts
coauthored by the candidate and listed on page vii.
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6.1 Introduction

Mobile health applications (apps) such as smartphone and text-messaging interven-
tions have proven effective in eliciting beneficial health outcomes, including better
mental health management (Firth et al., 2017a,b), weight loss (McCarroll et al.,
2017) and increased physical activity (Gal et al., 2018; Murray et al., 2017; Roberts
et al., 2017). However, only a small percentage of users use behavior change apps
over a long period of time (Baumel et al., 2019), and mobile applications have
not become part of routine medical care (Lyles et al., 2019; Rowland et al., 2020).
Engagement is particularly low for unsupported interventions (Weisel et al., 2019).

One explanation for low retention and declining effectiveness of apps, is that they
are not responsive enough to users’ changing needs. More recently, an increasing
interest in machine learning to optimize digital behavioral health interventions
has emerged. Delivery via smartphones allows to personalize these interventions
to individuals’ preferences and needs (Nahum-Shani et al., 2018). Using machine
learning, the content of interventions can also dynamically adapt with changes in
participant behavior over time, to maximize outcomes (Triantafyllidis & Tsanas,
2019).

Reinforcement Learning (RL), a subfield of machine learning, is a powerful
method to use in various healthcare settings because it can optimize sequences of
decisions (Rabbi et al., 2019; Yu et al., 2019b). Several studies have started using RL
for optimizing the delivery of text-messaging (Piette et al., 2015; Liao et al., 2020).
For example, using simulations, Piette et al. (2015) showed that RL to optimize text-
messaging for medication adherence could produce a 5− 14% increase in adherence,
could predict medication barriers, and detect when messages were sent too frequently.
RL algorithms for mobile health make predictions based on incoming participant
data, and use these to make decisions for individuals (e.g. what message should
the participant receive and when). As more information is collected over time, the
algorithm improves its predictions, hence makes more effective decisions. A previous
mobile health study elucidated that RL algorithms can learn new strategies over
time to maximize physical activity (Yom-Tov et al., 2017). The algorithm altered
its decision making strategy when participants changed their exercise behavior (e.g.
walked less) because the weather worsened (Yom-Tov et al., 2017).

However, the use of RL presents multiple challenges in the real world. A
systematic review on machine learning in mobile health (beyond solely RL) identified
only a few Randomized Controlled Trials (RCTs), the highest level of evidence in
clinical medicine (Sibbald & Roland, 1998), and a lack of studies in clinical practice
settings (Triantafyllidis & Tsanas, 2019). Guidelines for designing and using these
algorithms in clinical settings are needed. For instance, as opposed to simulation
studies, clinical studies may have unforeseen difficulties such as data errors, involve
a large interdisciplinary team, and need to be executed within a limited timeframe.

Outlining the challenges and decisions to make throughout the process of algo-
rithm development for a clinical RCT increases transparency, replicability and likely
outcomes of behavior health studies using RL. Further, identifying and solving issues
related to differences in scientific strategies of disciplines will help to increase the
productivity of interdisciplinary collaborations (Lach, 2014).

We recently started the Diabetes and Mental Health Adaptive Notification Track-
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ing and Evaluation (DIAMANTE) RCT: a smartphone application that uses RL to
optimize physical activity text-messaging in underserved patients with diabetes and
depression (Aguilera et al., 2020).

We analyzed study notes of a 1.5-year design process of implementing an RL
algorithm: a collaboration between computer scientists, behavioral scientists, physi-
cians, psychologists and statisticians. We discuss challenges of developing these
algorithms for mobile health in real world settings and the solutions we implemented.
This provides guidelines for decision-making, which can be used by other clinical
and healthcare researchers.

6.2 Material and Methods

The DIAMANTE Study. DIAMANTE is a 6-month physical activity text-
messaging study, which sends individuals motivational text-messages to help them
increase their physical activity. The DIAMANTE study is a randomized controlled
trial with three groups (uniform random, reinforcement learning, and a control
group). The study is registered on clinicaltrials.gov: NCT03490253 and a brief intro-
duction was given in Section 3.1 (see Figure 3.1). Phone-pedometers passively collect
daily step counts on participants’ personal phones. The study recruits low-income
English and Spanish speaking patients with depression and diabetes served in a
safety net setting. In a user centered design period, we developed our motivational
messages based on a Cognitive Behavioral Framework: Cognition, Opportunity,
Motivation and Behavior (COM-B; Michie et al., 2011). This process included
qualitative interviews, usability phases and crowdsourcing to categorize the messages.
Participants indicated liking the final set of messages in pilot phases. However, they
disliked messages that were perceived as repetitive, and suggested that personalized
advice would make the content stronger. In these phases we identified issues that
may harm user engagement related to missing data due to internet connectivity
problems, server errors in sending out messages, and participants’ low technical skills
to access the app on their phone and transmit their data.

Experimental factors and RL algorithm. Participants receive two messages
daily at approximately the same time. In the reinforcement learning group, the
algorithm evaluates each morning which messages, and delivered within what time
period, will likely increase steps for every participant in the upcoming day. In the
UR group, participants receive the same messages, but they are micro-randomized:
message categories and timing are delivered with equal probabilities instead of chosen
by a learning algorithm. Micro-randomization is different from regular randomization
where participants are randomized into intervention groups. In micro-randomization,
interventions (here text messages) are repeatedly (here daily) randomized within
participants.

The algorithm chooses the types of messages from different categories, their
frequency and delivery time period. The action space is defined by a 5× 4× 4× 2
factorial design: 5 intervention options for a feedback message and 4 intervention
options for a motivational message, including the “no-message” category, 4 different
time frames, and 2 social categories (individual or family). We assumed that our
reward variable, i.e., the daily change in steps, is a linear function of contextual
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variables, action variables and interactions between actions and action-contextual
variables. The model contains contextual variables for each participant. These
include time-fixed variables, such as demographics and clinical characteristics, and
time-varying variables, such as day of the week. There were 71 contextual variables
for each participant. Categorical contextual variables have been represented with
dummy variables (binary variables) as well, while all non-binary contextual variables
(such as age) have been normalized to a value between 0 and 1. Algoritms details
have already been reported in Section 5.3.

Data sources to identify challenges and solutions. To describe challenges
and solutions, we used study documents. Over the two years of the project, the
team kept track of the research process using a combination of Google Docs tools,
Whatsapp messenger communication and video conferencing (Zoom/Skype). Further,
the team convened to discuss, categorize, and code critical challenges and solutions
over the course of the study on numerous occasions. Field notes were taken, and
audiotapes of key discussions were recorded and subsequently transcribed and coded.
Challenges were grouped to create thematic topic process domains. Here, we review
the challenges encountered and the solutions devised when creating the DIAMANTE
algorithm.

6.3 Results: Potential Challenges and Solutions

Over the 1.5 year time period, the behavioral science team (Behavioral scientists,
physicians and psychologist from the University of California Berkeley and San
Francisco) met once per week. Additional meetings happened weekly with the App
developer from January 2019 onwards. Starting February 2019, the data science
team (computer scientists and statisticians from the University of Toronto, the
National University of Singapore and the Sapienza University of Rome) met with
members of the behavioral science team on a weekly basis until April 2020.

We coded 119 pages of notes and 82 pages of exported WhatsApp conversations.
Further, we transcribed around 7 hours of data of key meetings, using an online
automatic transcription service (otter.ai) combined with our own transcription where
the automatic transcription failed.

Nine challenges emerged which were divided into 3 major themes. We discuss
them below.

1. Choosing a learning algorithm. Standard RL algorithms may perform poorly
with the limited data collected in mobile health studies: treatment (here text-
messages) is provided up to a few times per day. We chose algorithms for contextual
multi-armed bandit (MAB) problems: a problem of deciding which arm of an
experiment to try, when the goal is maximizing reward from a distribution with
unknown parameters. A detailed description and analysis of these algorithms is
reported in Section 3.1.2. We used these algorithms based on our previous work and
because they might be particularly effective for mobile health (Rabbi et al., 2019;
Tewari & Murphy, 2017). MAB algorithms simultaneously attempt to acquire new
knowledge by exploring the different intervention options (here text-messages), and
optimize decision based on acquired knowledge (e.g. which text-message led to a
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positive reward before). Each intervention option is associated with a different reward
function, also depending on participant’s context: here participant characteristics
(e.g. age, gender) or daily time-varying variables (e.g. day of the week).

We proposed as adaptive strategy the contextual linear Thompson Sampling
algorithm illustrated in Section 3.1.2, Algorithm 4; and we decided to implement it
after first two weeks in which text-messages were sent uniform randomly (analogous
to an initial “burn-in” period, or, more appropriately, an “internal pilot” for acquiring
some prior data). The TS choice was motivated by several reasons. First, its empirical
and theoretical properties have been well-studied, showing great performances
(Chapelle & Li, 2011; Agrawal & Goyal, 2013). Second, it is computationally
efficient, thus particularly suitable for online learning (Russo et al., 2018). Third, it
represents a stationary randomized algorithm, and as such, its expected cumulative
regret never grows linearly with time, which may happen in any deterministic
stationary strategy (Russo et al., 2018). Finally, TS has been widely applied in
real-world applications, including mHealth (Liao et al., 2020), showing successful
results also with small amounts of data (Agrawal & Goyal, 2013).

MABs have been applied in fields including education research (Williams et al.,
2017) and mobile behavioral interventions including physical activity (Rabbi et al.,
2015) and sleep (Daskalova et al., 2020). Using simulations, we previously showed
that contextual MABs for educational technology interventions resulted in better
student outcomes than non-contextual MABs or randomization (Shaikh et al., 2019).

MAB algorithms have limitations. For instance, they are slow to adapt to chang-
ing circumstances due to external factors, including the weather or new illness (Rabbi
et al., 2019). Additionally, because they take only short-term rewards into account,
they are not optimal for maximizing long-term outcomes. However, we expect that
slight increases in walking from day to day, may result in changes in habits (Rabbi
et al., 2019), and thereby increases in overall steps over the duration of the study (6
months).

2. Variable selection. Contextual MABs formalize the reward model as a function
of both intervention and contextual variables, which can be used for personalization.
Thus, an adequate choice of the variables to be included in the model is crucial for
unbiasedly estimating parameters of interest and causal relationships. As shown in
Fig. 3.1, the DIAMANTE study collects a wealth of contextual variables at baseline,
but guidelines for choosing variables to include in the model are lacking. The action
space results in a high-dimensional space, where each arm is a combinations of all the
available factor levels. This is complicated by the presence of a high number of both
baseline and time-varying covariates, which may also interact with the interventions.

In the absence of reliable estimates at the start of the study (not enough data from
pilot phases), to avoid missing potential important variables, we initially considered
all arms, all baseline variables shown to be relevant in the literature, and included
also action-action and action-contextual interactions. Given this high-dimensionality,
we adopted a slightly different reward model from the one proposed in Algorithm
4, which may provide regularization by shrinking coefficients, and avoid overfitting
(Marquardt & Snee, 1975). The full model is illustrated in Section 5.3.

In addition, during the study, we do evaluate the model every 3 months to improve
performance through an iterative process. This includes assessing if we should remove
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certain terms from the regression model, i.e. based on high correlations, or choose a
different type of regression method (i.e. LASSO-related regression (Park & Casella,
2008), which automatically select variables by removing predictors from the model).
We expect that algorithm tweaks become less necessary as the study progresses.

3. Choosing the reward variable. There are no guidelines for choosing the
reward variable: the model’s outcome/feedback. Some studies using RL algorithms
use a reward of a 30-minute step count to increase short bouts of physical activity.
However, in the current study, we only send out messages at one time point per day.
In testing phases of our study, users indicated that receiving messages in the morning
motivated them to be active later in the day, varying with their schedules. Therefore,
we chose as proxy outcome variable for measuring physical activity the number of
steps (collected by the pedometer on participants’ personal phones). However, in
order to account for users’ baseline walking propensity, we decided to consider the
steps change from one day to another, within a time interval of 24 hours after an
intervention was sent, corresponding to the minimum amount of time between two
consecutive intervention options. Compared to the steps count, the steps change
measure also shows a closer Gaussian shape, assumed by our reward model. This
is a trade-off, as this longer time period could introduce noise, but a short time
window may miss meaningful activity. The reward thus depends on the purpose of
the study, as well as the wearable instrument. Future work should evaluate algorithm
performance for various types of reward variables.

Dealing with missing data in the reward variable. Many reinforcement-
learning algorithms that are deployed in the real world were trained on very big
datasets. In contrast, the average mobile health study has no more than 200 people.
Further, there is a high risk of missing or unreliable data because participants may
forget to carry their phones or their phones are not transmitting data. There are no
best practices on how to deal with these missing values (e.g. omit them from the
data-set, impute values etc.). There is a lack of mHealth studies which addressed
this problem, and, in an online experimental setting it is particularly relevant as it
may impact subsequent selection of interventions when reward is missing.

In our user testing phases, we noticed that technical errors led to participants at
times receiving messages that faultily stated that they had walked 0 steps. Our app
is unable to pull steps if the app is not consistently open in the background. Further,
if someone is not connected to the Internet (for instance, if they are out of data or
have their phone in airplane mode), the server is unable to pull the steps. As such,
the algorithm would also treat this measurement as a 0-step count, which could lead
to faulty decision-making of the algorithm. In addition, receiving faulty steps was
frustrating for participants. We therefore decided on the following approach to be
carried out online (during the interventions delivery):

• Don’t send users any feedback messages if we detect 0 steps;

• Code the 0 steps as NA in the training data set. The NA coding also avoids
potential bias which may arise in the estimation process when the step count
(or reward) is null due to missing data and not actual zero steps;
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• Use the last observation carried forward (LOCF; Hamer & Simpson, 2009)
technique for the primary analysis for dealing with missing reward data in this
case;

• Send participants a message (“Diamante has not received your activity, so
we’ll be unable to send any messages. Please open your app”) asking them to
go into the app;

• Contact participants by phone if we have not received any steps for more than
2 days.

As a sensitivity analysis, we also include multiple imputation of missing data, as
described in Section 5.4. However, we take an exploratory approach and perform
this analysis offline (after the collection of the data), rather that executing them
online and allowing the bandit algorithm to use the imputed data. Future work
should evaluate missing data imputation in the online learning process.

5. Addressing algorithm errors in real time In user-testing phases, we ran
into multiple technical errors. For instance, the app did not always collect steps
and messages sent by our online server were occasionally inconsistent with messages
registered in our data export file. To prevent these errors throughout the study we
took the following approach:

• The researchers receive an automated daily log of data errors (such as 0-step
measurements;

• Throughout the study, we compare the data export (which messages par-
ticipants received according to our analysis dataset) to both the messages
logged on our online server and the messages we receive ourselves, through our
enrollment in the program as a continuous internal test;

• We conduct preliminary checks of the data quality every 3 months. These
consist of checking for missing values, assessing micro-randomization errors
(e.g., check the uniform assignment in the UR group) and evaluating consistency
among collected data.

6. Speeding up learning with limited time available. The rate of algorithm
learning slows with sparse data. In our study, we only enroll approximately 10− 15
participants per month – and even fewer during the COVID-19 pandemic. To speed
up the learning of the algorithm, it is recommended to have prior knowledge to
inform the prior distributions of the algorithm. As this study was not designed with
a pre-period of large scale data collection, we started the adaptive assignment only
after an initial uniform random assignment of two weeks, for every participant in the
RL arm. This approach was demonstrated to effectively speed up the TS learning,
with priors informed by the acquired data, through simulation studies. Indeed,
uniform random data can be used to create informed prior distributions for the TS
condition. This way, algorithm decisions are based both on prior knowledge and
incoming data, which increases the speed of algorithm personalization (Russo et al.,
2018). We lacked recommendations on how long to collect uniform data before the
learning phase. Based on our experience, most participants who drop out do so in
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the first month. Therefore, we settled on only two weeks of uniform randomization
before switching to TS, to maximize the probability that most participants will
receive RL for at least 2 weeks. In simulation studies using pilot data from our user
design phases (n = 10), we confirmed that TS has a lower bias in estimation of
reward with an initial UR policy.

7. Choosing a comparison group. We originally planned to compare RL to an
arm with fixed content derived from the National Diabetes Prevention Program (Al-
bright & Gregg, 2013). In this case, participants receive one message a day with
a predefined content for a period of 6 months. Although this approach was most
comparable to existing health education interventions, we decided to cleanly evaluate
the effect of RL by changing the comparison group to uniform random. Both arms
receive the same types of messages, but uniform random picks the messages with
equal probability. The RL condition dynamically adapts treatment, allowing us to
assess if sending messaging using a RL decision making algorithm is superior to
choosing message categories and timings at random. In addition, we had a third
control group who downloaded the app on their phone, but did not receive any
messages except for a weekly mood message. This way, we could also compare the
effect of our messages to not receiving any messages.

8. Evaluating algorithm performance within an implementation study.
The DIAMANTE study is a hybrid effectiveness and implementation trial, set up to
ensure the effectiveness of the app in a real world setting. Hybrid designs combine
effectiveness and implementation research to reduce the time from initial concept
to a working product (Curran et al., 2012). This is important because traditional
designs often result in efficacious interventions that are not effective in real world
studies, particularly for digital interventions (Mohr et al., 2017).

Our team navigated between making decisions to optimize algorithm performance,
and maximize usability. For instance, sending message more than once a day with
shorter reward periods may improve algorithm performance (Liao et al., 2020; Yom-
Tov et al., 2017), but may also decrease user engagement (Eysenbach, 2006). Because
our target users did not frequently use apps or texting, and were therefore at higher
risk for dropout (Figueroa et al., 2020; Avila-Garcia et al., 2019; Nouri et al., 2019),
prioritized decisions that would benefit user engagement, where possible.

To further examine clinical effectiveness and implementation, we implemented a
three-arm trial design, including RL, uniform random and a control group to balance
the need of evaluating algorithm performance vs effectiveness and implementation
of the overall intervention. Doing so, we will also be able to evaluate the effect of
our text-messages irrespective of the use of RL, by comparing the uniform random
(micro-randomized) messages to the control group.

9. Limited time for algorithm development within the context of a clini-
cal trial. Typical RL-algorithm research involves several preparation phases, which
improve algorithm performance but may take years to complete before a clinical trial.
Here, we were only able to employ a preparatory phase of 9 months before the start
of the RCT. Most of the limited years of study funding were dedicated to the clinical
trial. Given the limited amount of time for research on algorithm performance, we:
1) conducted simulation studies for debugging and defining model parameters; 2)
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ran preliminary quality data checks on preliminary collected data from a different
population study (see Chapter 5); 3) analyzed the algorithm data from the study
team members and an initial small group of participants in a preliminary study. This
testing revealed crucial errors, which we could fix before deploying the algorithm.

6.4 Discussion

We described the challenges, decisions and solutions of designing RL algorithms to
personalize mobile health applications in real world settings, using the design process
of the DIAMANTE physical activity study as a motivating example. Qualitative
analyses from 1.5 years of study notes showed that the most important decisions and
challenges were related to the choice of the model and design variables for decision
making, handling missing data and algorithm errors in real time, and maintaining
a balance between intervention implementation and optimal model performance.
These issues need to be taken into account, and documented, during the design
process of RL algorithms for clinical studies.

Approach with multiple phases. Despite a limited time to develop our RL
algorithm, we employed a multi-phased approach. This included simulations studies,
pilot user testing and testing of the mobile application within our own study
team. We recommend that all researchers using RL or other types of machine-
learning to personalize digital health interventions employ multiple phases, which
can happen simultaneously, in preparation of a rollout with clinical participants.
This is crucial for identifying and fixing algorithm errors. Because of the complexity
of the design process, developing these models requires a multidisciplinary team,
with both deep technical expertise and profound knowledge of the clinical population
of interest. Further, the RL algorithm design process should not stop when the
clinical study starts. Instead, decisions should continuously be evaluated and
algorithm development should work through an iterative process. Frequent data
checks, automated reports about missing data, and internal testing are essential
throughout the study in its entirety.

Micro-randomization. Another important lesson is that an RL study must have
an adequate comparison condition, allowing to disentangle the performance of the
algorithm, and the characteristics of the digital intervention overall on clinical
outcomes. Such a comparison, as we choose here, is contrasting RL to uniform
random, in which messages are micro-randomized. This will allow us to quantify
the benefit of “adaptive tailoring” using RL. We also used a period of uniform
randomization for all participants to inform priors for the algorithm, with the aim to
speed up learning with sparse data, which is an important consideration for mobile
health. Researchers may also choose to include a period of micro-randomization
in order to determine decision rules (Klasnja et al., 2015), e.g. at when to send
messages based on participants’ availability (not performed in this study).

Increasing engagement through RL. The type and delivery frequency of text-
messages will adapt over time throughout the study based on data collected from
participants every day. This learning algorithm aims to maximize the outcome,
increases in steps, learning and updating over time based on incoming data. More



132
6. RL for Optimizing MHealth Applications: Lessons Learned and Guidelines

for Design Decisions

commonly, digital health studies only tailor their content in a user centered design
process to the needs, wishes and norms of a group of individuals. In this study we
both tailor the content as a whole through a UCD process, and the text-messaging
delivery on a daily basis using RL. We hypothesize that this approaches increases
participant engagement and thereby will be more effective. We will assess participant
engagement by examining the times they accessed the app and read the messages,
how they rated the app’s usability, and their qualitative opinions.

The importance of developing guidelines for machine learning in mobile
health A framework paper discussing the machine learning literature in health
argued that the field lacks transparency, clear reporting, exploration for ethical
concerns, and demonstrations of effectiveness (Vollmer et al., 2020). While several
studies have discussed RL algorithm performance for mobile health, for example
in simulations, less discussed all the steps needed to develop these algorithms for
clinical studies. Because this is a novel field, machine learning algorithms used
in applied health settings often undergo less scrutiny compared to other clinical
interventions (Vollmer et al., 2020). Additionally, because of the excitement around
artificial intelligence, some have warned that digital medicine must avoid a crisis of
reproducibility like found in other biomedical fields (Stupple et al., 2019). Recent
RCT reporting guidelines for AI studies for clinical decision-making have begun to
emerge (Liu et al., 2020). Here, we provide guidelines specifically for the algorithm
design part of mobile behavioral health studies.

We recommend that all studies using machine learning to optimize digital health
interventions document their decision making process and identify critical issues and
challenges they encountered. This further avoids the “black box” problem of not
knowing how and why algorithms are making decisions.

Issues around choosing a model for decision making also need to be explored
more. Here we chose an algorithm for contextual multi-armed bandit problems, as
this algorithm may be particularly suitable for mobile health studies. There is a lack
of research that compares the effectiveness of different RL models and assesses what
kind of problems within mobile health they should be applied to.

Similarly, we choose changes in daily steps as our reward. Other physical activity
studies using an RL algorithm have also used 30-minute steps after participants
received a motivational message (up to 5 times per day to increase short bouts
of physical activity; Liao et al. (2020)), and the increase in activity since the last
motivational text-message (Yom-Tov et al., 2017). Algorithm performance with
various reward functions also needs to be explored. Further, here we measured
steps using participants’ pedometers on their personal phones to facilitate real
world implementation. Using wristband accelerometer like fitbits may however to
more reliable data. Future implementation work should explore whether the use of
wristbands to measure physical activity is sustainable in low-income populations.

Strengths. To our knowledge, this is the first study to describe RL algorithm
design decisions in the context of a multi-disciplinary collaboration for mobile health
clinical studies in the real world. Notably, we conduct this work in a low-income
ethnic minority population for whom the greatest health disparities exist, yet where
novel methods are not often designed (Figueroa et al., 2020; Allen & Christie, 2016;
Schueller et al., 2019). This work brings the challenge of balancing decisions that
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boost algorithm performance, and those that maximize usability. Clinical studies
with low-income populations bring challenges related to data errors, low-tech skills of
users, working within a large interdisciplinary team, and a limited timeframe. Many
of these issues are less relevant in simulation studies or work with convenience samples.
This paper can be used as a framework of considerations for other interdisciplinary
teams working, or wanting to work, in this space.

Limitations. Researchers working with other populations and/or health problems
may encounter issues not described here. Further, we provide a framework of
decision-making, but because this is an evolving field, we cannot be certain that
our choices are optimal. Detailed analyses on the final dataset, in combination
with results from other studies, will provide these answers. Finally, here we did not
discuss consideration such as privacy and algorithm bias in detail, but these issues
must be further explored. Finally, user ratings and experiences of the content are
not included in the current algorithm. Future work should focus on incorporating
engagement into RL algorithms. Because user engagement can be quantified in
many different ways, future guidelines should also define consistent engagement
measurements for studies to be comparable.

Conclusion. Creating effective behavioral health interventions using RL involves
many decisions beyond evaluating algorithm performance. These considerations
need to be documented and evaluated before and during the intervention period
to increase transparency, accountability and replicability. As the application of
machine learning into digital healthcare interventions increases, we need effective
collaborations between different disciplines to do this work well in real-world settings.
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Chapter 7

General Discussion and
Conclusion

Reinforcement learning represents a powerful solution in a variety of healthcare
domains where problems have a sequential nature, and optimal decision making
requires a continuous interaction with the underlying domain’s process.

The first relevant domain deals with developing evidence-based adaptive inter-
ventions (AIs). Notably, as illustrated in Section 3.1, an extended body of statistical
literature has proposed RL as an alternative framework to standard statistical tech-
niques in AIs, starting from the pioneering works of Murphy (2003), Robins (2004)
and Murphy (2005b). While these originated within causal inference for developing
and estimating optimal dynamic treatment regimes (DTRs), more recently, an in-
creasingly active interdisciplinary area of research, consisting of computer scientists,
behavioural scientists and statisticians, started to use RL for constructing optimal
just-in-time adaptive interventions (JITAIs), i.e., AIs characterized by a continuous
learning with interventions tailored to users’ in-the-moment context or needs.

The second healthcare domain we identified, relates to the use of RL and multi-
armed bandit (MAB) strategies to adaptively design clinical trials - this is discussed
in Section 3.2. One example is given by response-adaptive randomization (RAR)
designs, which also have a long history in statistics starting with Thompson (1933)’s
work, but are gaining in popularity only recently due to their recongnized potential
for improvements in cost and efficiency over traditional designs (FDA, 2019). They
use data of previous cohorts to adapt allocation of patients in succeeding cohorts;
if a treatment showed more promising or informative results in prior patients, the
probability of being assigned to that treatment increases (Hu & Rosenberger, 2006).

Given the multidisciplinary nature of the use of RL in healthcare, the first
aim of this thesis was to provide a comprehensive review of the state-of-the-art
RL methodologies in the different applied domains, among which we identified the
area of developing AIs and designing adaptive clinical trials (CTs) as the most
effervescent. We started by formalizing the theoretical foundations of RL in a math-
ematical/statistical way, rather than the typical computer science characterization.
Then, in contrast with the current existing surveys, which focus exclusively on either
DTRs or mHealth JITAIs, or single areas of CTs designs, such as RAR, here, we
provided a unified view of all these areas, incorporating DTRs and JITAIs under the



136 7. General Discussion and Conclusion

unique area of AIs. We reported their main divergences and analogies, reviewing
both methodological and applied aspects.

From a methodological aspect, we noticed that in DTRs, the use of RL has
been extensively evaluated, and several surveys exist (Chakraborty & Moodie,
2013; Chakraborty & Murphy, 2014; Tsiatis et al., 2019). However, their clinical
application is still very limited; the majority of the existing studies use real-world
data as motivating or illustrative examples only. On the other hand, we identified
an opposite tendency in the development of JITAIs in mHealth. Here, the majority
of the surveys refer to real-world applications, generally targeting a specific problem
area, rather than a methodological work or review, which currently does not exist,
and in this work we aimed to fill the gap. In this case, we recognize that the
application area, mostly related to behavioural aspects rather than clinical, might
have less concerns in terms of treatment costs (compared to CTs), and the general
goal might be more focused on optimizing a proximal (behavioural) outcome, made
possible by the technological sophistication which allows managing and delivering
interventions in real time, without additional costs per intervention.

To illustrate the potential of JITAIs and RL in the emerging area of mHealth,
we reported details and results of a behavioural micro-randomized trial (MRT) we
carried out for promoting physical activity in a preliminary population of university
students (see Chapter 5). Using a dedicated mobile app, i.e., the DIAMANTE
app (Avila-Garcia et al., 2019), we examined the effectiveness of motivational text-
messages on changes in daily steps, and we found that receiving any type of text
message was associated with an increase in the number of steps. This study allowed
us to investigate the challenges and the decisions a practitioner has to face when
developing mHealth AIs. We discussed them in Chapter 6, along with the solutions
we proposed for both the design of the MRT and the design of the adaptive RL-based
algorithm. Qualitative analyses from 1.5 years of study notes, showed that the most
important decisions and challenges were: choosing of the model and design variables,
handling missing data, and maintaining a balance between intervention delivery and
optimal model performance. All these issues suggest that a higher synergy between
applied and theoretical sciences may improve the current state-of-the-art.

When the goal of an experiment goes beyond the pure reward maximization,
typical of many mHealth studies and the most common RL problem, other challenges
may arise, and these are particularly relevant in the context of medicine and CTs.
Taking up on the previously mentioned RAR designs, several RL classes of algo-
rithms such as MAB algorithms, have been demonstrated to be extremely useful for
adaptively assigning patients to interventions, in a way that an increasing number of
patients is randomized to the treatment that shows the best evidence-based outcome.
However, given that the main goal of randomized CTs is to draw conclusions about
the compared treatments, e.g., whether or not they differ from one another, this
potential benefit of, can only be accepted if we have guarantees in terms of statistical
inference and results generalizability. At the moment, there’s a lack of both insights
into how this algorithms perform in adaptively collected data, as well as which
statistical and inferential solutions should be adopted in this settings.

Motivated by the lack of insights and reliable guarantees for hypothesis testing
in adaptively collected data with MAB methods, through a simulation study in a
2-treatments setting (see Chapter 4), we showed that drawing conclusions using
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standard statistical hypothesis testing is a major problem: both with a frequentist
framework (standard Wald Z-test and Welch’s t-test) and a Bayesian framework
(Bayes factor), the resulted type-I error was remarkably inflated and power highly
reduced, compared to an uniform random assignment. These results are consistent
with findings from other studies (Villar et al., 2015a; Bowden & Trippa, 2017; Zhang
et al., 2020c; Yao et al., 2020). In an attempt to provide deeper insights into this issue,
and possibly propose solutions, we investigated the behaviour of MAB strategies
in single simulation trajectories and showed that common MAB algorithms such
as Thompson Sampling (TS), by searching for the best treatment with the aim to
maximize reward, tended to overestimate differences between treatments, stopping to
assign an inferior treatment, even when there was still significant uncertainty about
its mean outcome. This was true in cases of small difference between treatments, as
well as in cases when there were no underlying difference at all.

Based in the findings of our simulation studies, we explored two alternatives for
modifying the statistical test, by incorporating knowledge about the dependent data
collection process. However, while an improvement in the type-I error control was
reached, a terrific cost in terms of power was paid, meaning that these RL-based
adaptive data collection tendencies cannot be counteracted solely by changing the
way one analyzes the data. Motivated by this ineffective test statistic adjustments
results, bandit algorithm modifications were explored. First, we introduced the
novel problem of adding uniform random (UR) exploration to MAB algorithms,
based on the estimated loss of reward in cases where there may exists or not a true
treatment-means difference. Indeed, when the expected values of treatments are
similar, it is simultaneously true that the expected increase to reward from TS is
small and sampling treatments uniformly increases the power of detecting a difference
between treatments’ outcomes. Therefore, increases to power are favoured, at the
cost of less reward when effect sizes are small. Then, based on this novel framework,
we proposed a new version of TS, designed to increase UR exploration when there is
less evidence for a difference between treatments. The proposed strategy resulted in
a better balance of statistical power, type-I error and reward, compared to both UR
and standard TS allocation. Overall, these results and analysis suggest that there
remains a great deal for future work to explore how to effectively collect data such
that participants in experiments are able to benefit from accrued evidence, and the
collected evidence is such that researchers can draw correct conclusions about the
underlying properties of the compared interventions.

In conclusion, we hope that this work, by highlighting how balancing competing
objectives can be framed, and providing instances of solutions, may serve as moti-
vation for the broader endeavour of bridging the gap between reward-maximising
algorithms, such as RL methods, and scientific and generalizable knowledge. We
also strongly believe that RL offers a powerful solution in these areas, and we hope
that our contributions may incentivize a higher synergy and cooperation between
statistical and machine learning communities for supporting applied clinical or be-
havioural domains in carrying out real-world studies that may improve the quality
of interventions delivery. We also recognize that this cooperation is very timely due
to the spread of mHealth applications and adaptive experimentations, which need
to come with trustworthy and reproducible results in order to advance scientific
progress and knowledge.





139

Appendices

A Marginal Structural Models with IPW

MSMs, originally proposed for estimating the effect of static treatment regimes
(Robins, 2000), provide a powerful alternative to SNMMs for describing the causal
effect of a treatment (hence “structural”), and pertain to population-average effects
(“marginal” over covariates, baseline and time-varying, and/or intermediate out-
comes). Differently from the conditional approach of SNMMs, which models the
causal effect of a final blip as a function of the entire time-varying history (condition-
ing on that), the marginal approach of MSMs assumes models for the expectation of
a potential outcome under a specified unobserved DTR d, marginalizing over the
covariate history Vd = Ed[Y ] = E[Y d], or alternatively as a function of the baseline
covariates X0 only, i.e., Vd(X0) = Ed[Y |X0] = E[Y d|X0]. Most often, Vd is specified
as a linear combination of components of d, e.g., E[Y d] = f(d;θ) = α+ θd, with
d = (d0, . . . , dT ) = (a0, . . . , aT ) the full treatment history, Y d the potential outcome
that the subject would have observed under d, and θ a set of parameters. However,
recently, more flexible, spline-based models have been considered (Xiao et al., 2014).

Of the different available methods, including maximum likelihood (Daniel et al.,
2013) or targeted maximum likelihood estimation (Rosenblum & Van Der Laan, 2010)
that have been proposed to estimate MSMs, or their parameters θ, IPTW (Robins,
2000; Neugebauer et al., 2012) is the most commonly used. IPTW estimation
attempts to control for confounding through assigning each participant a weight.
The basic form of this weight for subject i at time t takes the form

wπt,i = 1∏t
τ=0 πτ (Aτ,i|Hτ,i)

,

where πt(a|h) = πt(Aτ,i = a|Hτ,i = h), so that the denominator is the probability
that the subject received the particular treatment history they were observed to
receive up to time t, given prior observed treatment and covariate histories.

Applying the terminal weights wT,i to each subject in the sample results in
a pseudo-population in which treatment is no longer affected by past covariates,
breaking the confounding; but crucially, the causal effect remains unchanged. Then
the parameters of the MSM coincide with those of the re-weighted observational
marginal model, which may be estimated using standard methods on the re-weighted
data. The resulting estimates are consistent under correct specification of the MSM
and non-zero denominators. Overall, MSMs estimation is typically performed in two
stages: in the first stage treatment weights are calculated; in the second stage the
outcome model is fitted.
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B Examples of Real-World DTRs Studies using RL

Reference Domain (Actions) RL Method Data Source

Zhao et al. (2009) Chemotherapy
dosage

Q-learning with
SVR & ERT ODE model

Hassani et al. (2010) Chemotherapy
dosage Q-learning ODE model

Ahn & Park (2011) Chemotherapy
drug-scheduling AC ODE model

Humphrey (2017) Chemotherapy
dosage

Q-learning
with CART,
RF & MARS

ODE model

Padmanabhan et al. (2017) Chemotherapy
dosage Q-learning ODE model

Zhao et al. (2011) Cancer therapy,
time

Q-learning
with SVR

ODE model
based on
real data

Fürnkranz et al. (2012)
Cheng et al. (2011)

Chemotherapy
dosage PI ODE model

Akrour et al. (2012)
Busa-Fekete et al. (2014)

Chemotherapy
dosage IRL & PS ODE model

Vincent (2014) Radiation therapy
scheduling

Q-learning,
TD(λ),
SARSA(λ), PS

Linear model
ODE model

Tseng et al. (2017) Radiation dose
escalation

Q-learning
with DL

Retrospective
data

Jalalimanesh et al. (2017b) Radiation dose
& fractionation Q-learning Agent-based

model

Jalalimanesh et al. (2017a) Radiation dose Q-learning Agent-based
model

Goldberg & Kosorok (2012) Cancer treatments Q-learning Linear model

Yauney & Shah (2018)
Chemotherapy
Radiotherapy
dosage

Q-learning ODE model

Table B.7. RL-based studies for developing optimal DTRs in Cancer. ODE: Ordinary
Differential Equation; SVR: Support Vector Machine; DL: Deep Learnig; AC: Actor
Critic; ERT: Extremely Randomized Trees; MARS: Multivariate Adaptive Regression
Spline; CART: Classification And Regression Tree; RF: Random Forest; IRL: Inverse
Reinforcement Learning; PS: Preference Learning; TD: Temporal Difference; SARSA:
State-Action-Reward-State-Action; PI: Policy Iteration
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C Existing RL-based R Packages for Developing DTRs

R Package Name Functions & Methods
DynTxRegime (Holloway et al., 2020) owl (Outcome Weighted Learning; Zhao

et al. (2012)); bowl (Backwards Outcome
Weighted Learning; Zhao et al. (2015);
rwl (Residual Weighted Learning; Zhou
et al. (2017)); qLearn (Q-Learning Algo-
rithm; Murphy (2005b)); iqLearn (Inter-
active Q-Learning; Laber et al. (2014b));
optimalSeq (Augumented Inverse Prob-
ability Weighting; Zhang et al. (2012b,
2013))

DTRreg (Wallace et al., 2020) method = "gest" (G-estimation; Robins
(2004)); method = "dwol" (Dynamic
Weighted Ordinary Least Squares;
Wallace & Moodie (2015); method =
"qlearn" (Q-learning; Murphy (2005b))

iqLearn (Linn et al., 2015) Interactive Q-Learning (Laber et al.,
2014b)

qLearn (Xin et al., 2012) Q-Learning (Murphy, 2005b)
GGQ (Ertefaie & Strawderman, 2018) -
code in Supplementary material
V-learning (Luckett et al., 2020) - code
based on optim function
Bayesian Machine Learning (Murray et al.,
2018) - code in Supplementary material

Table C.8
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D Bayes Factor Computation in a Two-Arms Binary-
Reward Setting

As discussed in Section 4.3.1, in the context of Bayesian inference, hypothesis testing
can be framed as a special case of model comparison where each model refers to
a hypothesis (Rubin, 1978). We assume we have two competing hypotheses, each
of which corresponds to a separate model: H0 is the model for the null hypothesis,
which here is that there is no difference in arm means, and H1 is the model for the
alternative hypothesis, which here is that there is some difference in arm means.
Bayesian hypothesis testing specifies separate prior probabilities P(H0) and P(H1)
for each hypothesis. Assuming that we do not have any prior knowledge on which
hypothesis may be more plausible, we take P(H0) = P(H1) = 0.5. Then, based on the
observed data D, we quantify the evidence in favour of the model H0 and compare
it to the evidence in favour of model H1 (or alternatively the evidence against H0).
For a given hypothesis H, under the Bayesian framework, this evidence is given
by the combination of the likelihood function for the observed data, say P(D|θ,H),
which depends on an unknown parameter θ, with each of the prior distributions of
the unknown parameter.

We give below details on the likelihood, priors and parameter of interest in
our specific two-arms binary setting. For each of the hypothesis-specific models,
averaging (i.e., integrating) the likelihood with respect to the prior distribution
across the entire parameter space yields the probability of the data under the model
and, therefore, the corresponding hypothesis. This quantity is more commonly
referred to as the marginal likelihood and represents the average fit of the model to
the data. The ratio of the marginal likelihoods for both hypothesis-specific models
is known as the Bayes factor, whose general formulation is given by

BF10 = P(D|H1)
P(D|H0) =

∫
Θ1

P(D|θ,H1)× P(θ1|H1)dθ1∫
Θ2

P(D|θ2, H0)× P(θ|H0)dθ2
,

with D being the observed data, and Θ1 and Θ2 the parameter spaces for model 1
and 2, respectively.

In the context of a two-arm case with binary rewards, the Bayes factor may
be computed in closed form by assuming a Binomial model for the reward and a
Beta prior for the unknown parameters of the Binomial distribution. More formally,
denoting again with A the arm and Y the reward, we model the conditional reward
for each arm as Y |A = k ∼ Binom(1, pk) and assume Beta prior distributions for
the unknown parameters pks, with k = {1, 2}, i.e., pk ∼ Beta(αk, βk). Conjugacy
allows us to compute the posterior distribution of the parameter in closed form.
After having observed a sample of size n = n1 + n2, with n1 and n2 the sample size
of arm 1 and arm 2, respectively, and S1 = ∑n1

i=1 Yi and S2 = ∑n2
i=1 Yi the number

of successes in each group, we have that pk|D ∼ Beta(αk + Sk, βk + nk–Sk), for
k = {1, 2}. Here, we consider a non-informative Beta prior distribution for both
arms, with α1 = α2 = 1 and β1 = β2 = 1, equivalent to a Uniform distribution
in [0, 1]. Comparing the competing hypothesis of no arms difference (H0) and an
actual arms difference (H1) requires comparing the marginal likelihood of a model
for which the parameters p1 and p2 are the same (thus, the arm means have a
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common probability p, i.e., the success rate distribution does not depend on the
arm group) and the marginal likelihood of a model for which the parameters p1 and
p2 are different (thus, each arm group has a different success rate). This leads to
a pooled prior and then pooled posterior distribution in case of model H0, and to
the product of two separate priors and then two separate posterior distribution for
model H1. More specifically, we have that

P(D|H0) = B(α1 + α2 + S1 + S2, β1 + β2 + n− S1 − S2)
P(D|H1) = B(α1 + S1, β1 + n− S1)×B(α2 + S2, β2 + n− S2),

where B denotes the Beta function.
Comparing these two quantities will give us the Bayes factor BF10, whose value

will give us the evidence against the null hypothesis H0, similar to hypothesis testing
in the frequentist setting. We consider two cutoffs for “rejecting” the null-hypothesis:
i) a threshold of 1, which is the more intuitive cut-point for selecting one of the
two models, ii) a threshold of 3. The choice of 3 is based on Jeffreys’ scales of
evidence for model selection (Jeffreys, 1961; Kass & Raftery, 1995), which considers
a BF10 > 3 as substantial evidence in favour of the alternative hypothesis.

E Sensitivity to Priors for TS

Figure E.1 presents results comparing Jeffreys’ prior to Beta(1, 1) prior in the
prior choice for the Beta-Binomial model of the TS algorithms. Jeffreys’ prior is a
non-informative prior (Jeffreys, 1961) which we use to assess the sensitivity of the
algorithm with respect to type-I error and power. In the Bernoulli reward setting
Jeffreys’ prior is equivalent to a Beta(1/2, 1/2). As we can see in Figure E.1, Jeffreys’s
prior doesn’t influence results substantively: the difference between Beta(1, 1) and
the Beta(1/2, 1/2) Jeffreys’ prior with respect to type-I error is no greater than 3%
(regardless of hypothesis test). Also, the difference in power doesn’t differ by more
than 5% (regardless of hypothesis test). Further prior sensitivity analysis for TS is
conducted by Rafferty et al. (2019). In particular, they examine the settings of prior
for an arm having a mean which is below, between, and above that of the true arm
expected reward in the context of two other statistical test. Priors above encourage
more exploration due to being more optimistic, whereas priors below encourage less.
The result is that having an optimistic prior will improve power and reduce type-I
error somewhat.
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Figure E.1. Type-I error and power for data collected using Thompson Sampling (TS)
with two different prior choices, i.e., Beta(1, 1), equivalent to a Uniform distribution
in [0, 1], and the Jeffreys’ prior, in this case a Beta(1/2, 1/2). Hypothesis testing are
based on a significance value α = 0.5 and are performed with different statistical tests:
1. Wald Z-test, 2. Welch’s t-test, 3. Bayes factor (BF) with cutoff 1, and 4. Bayes factor
(BF) with cutoff 3. Type-I error and power are also reported for the adjustments of the
Wald Z-test proposed in this work (IPW-adjusted Wald Z-test and TS-induced Wald
Z-test). Results are based on a sample size of n = 785 and a number of independently
simulated dataset of 5000.

F Sensitivity to Different Arm Means for TS-induced
Wald-Z Test

As discussed in Section 4.4, the TS-induced Wald-Z test proposals requires the
estimation of the empirical distribution of the Wald Z-test under the null hypothesis
when data are collected with TS, in order to estimated the critical values able to
control the type-I error. For the null hypothesis, the main text focuses on a case where
p1 = p2 = 0.50. Here, we examine whether a different scenario would have an impact
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on the distribution of the TS-induced Wald-Z test and other consequences on the
type-I error and power, or whether this would be relatively constant across varying
instantiations of the null hypothesis. We consider the case when p1 = p2 = 0.25.

Comparing hypothesis testing with data from p1 = p2 = 0.5 versus hypothesis
testing with data from p1 = p2 = 0.25, Figure F.1 demonstrates that results are very
similar: for Wald Z-test, Welch’s t-test, the Bayes factor, and the IPW-adjusted
Wald Z-test no type-I error value differ by more than 1%. For the TS-induced
Wald-Z test, we also see relatively similar performance to the equivalent version
in the main text: a type-I error of 5.2% for p1 = p2 = 0.25 compared to 4.5% for
p1 = p2 = 0.50.

However, one should notice that in both cases, we have assumed that the values
for the arm mean that is assumed by the algorithm-induced cutoff matches the true
values of the arm mean. However, this information is not known to the experimenter
ahead of time, and thus the TS-induced cutoffs may be set using a value that
doesn’t match the true rewards, even if some attempts are made to estimate the true
values such as by taking the overall average reward across all samples. Thus, we
also analysed the results of Wald’s Z-test with TS-induced cutoffs when the cutoff
simulations are based an incorrect arm mean; in particular, we chose the cutoffs
based on an assumption that p1 = p2 = 0.50, but in actuality, p1 = p2 = 0.25. We
found that type-I error is even better controlled, with a value of 5.0%, meaning that
higher mean rewarsd will result in more conservative cutoffs for controlling type-I
error, independently on the actual collected data.

G Non-linear Time Effect on the Steps-Change Vari-
able

Several authors, including an external reviewer of this thesis, Ken Cheung, suggest
that in mobile health application, time variables such as “Study Day” may have a
non-linear effect on the outcome variable of interest.

We explored the non-linear effect of time by running GEE models with a polyno-
mial relationship, first by adding a quadratic term for time (parabolic curve), and
then an additional a cubic term as well. Our results also suggests this non-linear
hypothesis, in which a quadratic effect of time resulted to be statistically significant.
Here we report the results of our GEE models with a focus on the time variable only.

Covariate Estimate Standard Error p-value
Study Day 1.20 2.17 0.58

Table G.8. Results of the GEE model studying the linear effect of time only on steps
change. GEE: Generalized Estimating Equations.

As shown in the above tables, the linear effect of time seems to be positive,
while the quadratic effect negative. Notably, with a second-order polynomial both
the linear and quadratic effect were significant (positive and negative estimate,
respectively), suggesting that at the beginning of the study there is an increase in
the steps change with increasing time, but after a while, increasing time will result
in a decrease in the steps change (negative coefficient estimate).
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Figure F.1. Examining type-I error with two different null hypothesis scenarios, i.e,
p1 = p2 = 0.5 and p1 = p2 = 0.25, with various hypothesis tests and the Thompson
Sampling (TS) allocation strategy. Results are based on a sample size of n = 785 and a
number of independently simulated dataset of 5000.

Covariate Estimate Standard Error p-value
Study Day 24.53 9.94 0.01
I(Study Day, including also a
quadratic effect of time. GEE: Gen-
eralized Estimating Equations.)

−0.51 0.20 0.01

Table G.8. Results of the GEE model studying the linear and quadratic effect of time on
steps change. GEE: Generalized Estimating Equations.

Including both linear and quadratic term for time in the other multivariate
models of interest did not change remarkably the final results, as shown in the tables
below.
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Covariate Estimate Standard Error p-value
Study Day 66.81 37.96 0.07
I(Study Day2) −2.74 1.84 0.13
I(Study Day3) 0.03 0.02 0.21

Table G.8. Results of the GEE model studying the linear, quadratic and cubic effect of
time on steps change. GEE: Generalized Estimating Equations.

Covariate Estimate Standard Error p-value
Message Sent 738.72 290.36 0.011
Study Day 55.82 17.06 0.001
I(Study Day2) −0.60 0.22 0.007
Message Sent*Study Day −34.38 11.88 0.003

Table G.8. Results of the GEE model studying effects of sending a message on steps change,
including also a quadratic effect of time. GEE: Generalized Estimating Equations.

Covariate Estimate Standard Error p-value
Motivation 723.50 412.68 0.079
Feedback −321.25 404.81 0.42
Study Day 42.45 15.32 0.005
I(Study Day2) −0.65 0.22 0.003
Motivation*Study Day −15.41 15.39 0.316
Feedback*Study Day −1.92 15.16 0.898
Motivation*Feedback 4.17 334.76 0.990

Table G.8. Results of the GEE model studying effects of motivational and feedback message
on steps change, including also a quadratic effect of time. GEE: Generalized Estimating
Equations.

Covariate Estimate Standard Error p-value
M1. Capability/Self-belief 262 255.18 0.304
M2. Opportunity 417 234 0.075
M3. Motivation/Walk-benefit 417 242 0.084
F1. Reaching goal −165 283 0.558
F2. Steps walked yesterday −416 255 0.103
F3. Walked more/less than goal yes-
terday

−142 230 0.536

F4. Steps walked yesterday, plus a
positive/negative message

−678 213 0.001

Study day 28.03 10.04 0.005
I(Study Day2) −0.57 0.20 0.005

Table G.8. Results of the GEE models studying the effects of different categories of
feedback and motivation on steps change, including also a quadratic effect of time. GEE:
Generalized Estimating Equations.

H Regression Analyses on the Uniform Random Group

As a sensitivity analysis for the text-messaging app study, we repeated all the
analyses focusing only on the uniform random group (n = 66), for which stronger
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statistical properties are demonstrated being a uniform and independent rule of
assignment, thus not subject to bias due to adaptive nature that characterizes the
Thompson Sampling. Results are reported in Tables H.8, H.8 and H.8.

Covariate Estimate 95% CI p-value
Message Sent 202 [−274, 679] 0.406
Study Day 10.5 [−4.83, 25.8] 0.180
Message*Study Day −12.3 [−31.1, 6.42] 0.197

Table H.8. Results of the GEE model studying effects of sending any versus no message
on steps change, based on the uniform random group only (n = 66). CI: Confidence
Interval, GEE: Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
Motivation 432 [−301, 1164] 0.248
Feedback −510 [−1224, 205] 0.162
Study Day 2.33 [−12.1, 16.8] 0.752
Motivation*Study Day −2.9 [−29.2, 23.4] 0.829
Feedback*Study Day 2.34 [−23.8, 28.5] 0.861
Motivation*Feedback 68.7 [−535, 672] 0.823

Table H.8. Results of the GEE model studying effects of motivational and feedback message
on steps change, based on the uniform random group only (n = 66). CI: Confidence
Interval, GEE: Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
M1. Capability/Self-belief 295 [−281, 871] 0.315
M2. Opportunity 517 [−24.6, 1060] 0.06
M3. Motivation/Walk-benefit 441 [−118, 1000] 0.122
F1. Reaching goal 76.1 [−554, 706] 0.813
F2. Steps walked yesterday −144 [−714, 426] 0.620
F3. Walked more/less than goal yester-
day

−151 [−653, 352] 0.556

F4. Steps walked yesterday, plus a posi-
tive/negative message

−540 [−1041,−40.7] 0.034

Study day −0.806 [−5.42, 3.81] 0.732
Table H.8. Results of the GEE models studying the effects of different categories of

feedback and motivation on steps change, based on the uniform random group only
(n = 66). CI: Confidence Interval, GEE: Generalized Estimating Equations.

Similarly to the main results, sending a message initially resulted in a positive
effect on steps, but decreased over time. However, the effects were no longer
significant which could be due to decreased power. The positive effect on steps
seemed to be driven by motivational messages but this also lost significance after
adding interaction terms. The main categories showing significance were again a
self-efficacy message (a borderline p = 0.07 with an estimated coefficient of 517) and
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a feedback message with the number of steps participants walked yesterday plus a
negative/positive feedback message (−541 steps, p = 0.03).

I Multivariable Regression with Missing Data Imputa-
tion

We used multiple imputation as missing data imputation technique. More specifically,
we employed multivariate imputation by chained equations, also called fully condi-
tional specification or sequential regression multiple imputation. This method has
emerged in the statistical literature as one principled method of addressing missing
data, and a dedicated package in R exists. As we performed multiple imputation
considering a number of three imputations, we report results for all the imputed
datasets. This will allow assessment of the robustness of the method, as well a more
exhaustive sensitivity analysis. Consistent with the main original findings, sensitivity
results with data imputation show the same directions of effects.

Covariate Estimate 95% CI p-value
Message Sent 381 [−1.82, 1044] 0.050
Study Day 5.96 [4.52, 41.3] 0.014
Message*Study Day −4.71 [−44.9,−2.28] 0.030

Table I.8. Results of the GEE model studying effects of sending any versus no message on
steps change, with data from the 1st imputed dataset. CI: Confidence Interval, GEE:
Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
Motivation 436 [50.1, 1576] 0.036
Feedback −749 [−1018, 394] 0.387
Study Day 2.21 [−4.04, 29.3] 0.137
Motivation*Study Day −1.06 [−39, 12.2] 0.304
Feedback*Study Day 0.02 [−22.9, 26.6] 0.882
Motivation*Feedback 63.5 [−938, 396] 0.426

Table I.8. Results of the GEE model studying effects of motivational and feedback message
on steps change, with data from the 1st imputed dataset. CI: Confidence Interval, GEE:
Generalized Estimating Equations.
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Covariate Estimate 95% CI p-value
M1. Capability/Self-belief 221 [−269, 711] 0.377
M2. Opportunity 482 [56, 908] 0.025
M3. Motivation/Walk-benefit 235 [−215, 686] 0.306
F1. Reaching goal −308 [−812, 195] 0.230
F2. Steps walked yesterday −450 [−871,−30] 0.035
F3. Walked more/less than goal yesterday −226 [−648, 197] 0.296
F4. Steps walked yesterday, plus a posi-
tive/negative message

−572 [−959,−185] 0.003

Study day 6.38 [−0.439, 13.2] 0.066
Table I.8. Results of the GEE models studying the effects of different categories of feedback

and motivation on steps change, with data from the 1st imputed dataset. CI: Confidence
Interval, GEE: Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
Message Sent 84.3 [−404, 572] 0.735
Study Day 10.1 [−7.8, 28] 0.269
Message*Study Day −9.37 [−31.4, 12.7] 0.404

Table I.8. Results of the GEE model studying effects of sending any versus no message on
steps change, with data from the 2nd imputed dataset. CI: Confidence Interval, GEE:
Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
Motivation 446 [−370, 1063] 0.343
Feedback −449 [−1167, 269] 0.221
Study Day 3.16 [−12.9, 19.2] 0.699
Motivation*Study Day 0.14 [−26.7, 27] 0.992
Feedback*Study Day 0.99 [−24.5, 26.5] 0.939
Motivation*Feedback −37 [−9.37, 597] 0.909

Table I.8. Results of the GEE model studying effects of motivational and feedback message
on steps change, with data from the 2nd imputed dataset. CI: Confidence Interval, GEE:
Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
M1. Capability/Self-belief 227 [−186, 740] 0.240
M2. Opportunity 381 [−24.6, 787] 0.065
M3. Motivation/Walk-benefit 287 [−148, 723] 0.196
F1. Reaching goal −270 [−759, 218] 0.278
F2. Steps walked yesterday −451 [−887,−15.7] 0.042
F3. Walked more/less than goal yester-
day

−287 [−696, 122] 0.169

F4. Steps walked yesterday, plus a posi-
tive/negative message

−764 [−1191,−336] < 0.001

Study day 3.85 [−2.77, 10.5] 0.255
Table I.8. Results of the GEE models studying the effects of different categories of feedback

and motivation on steps change, with data from the 2nd imputed dataset. CI: Confidence
Interval, GEE: Generalized Estimating Equations.
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Covariate Estimate 95% CI p-value
Message Sent 202 [−274, 679] 0.406
Study Day 10.5 [−4.83, 25.8] 0.180
Message*Study Day −12.3 [−31.1, 6.42] 0.197

Table I.8. Results of the GEE model studying effects of sending any versus no message on
steps change, with data from the 3rd imputed dataset. CI: Confidence Interval, GEE:
Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
Motivation 432 [−301, 1164] 0.248
Feedback −510 [−1224, 205] 0.162
Study Day 2.33 [−12.1, 16.8] 0.752
Motivation*Study Day −2.90 [−29.2, 23.4] 0.829
Feedback*Study Day 2.34 [−23.8, 28.5] 0.861
Motivation*Feedback 68.7 [−535, 672] 0.823

Table I.8. Results of the GEE model studying effects of motivational and feedback message
on steps change, with data from the 3rd imputed dataset. CI: Confidence Interval, GEE:
Generalized Estimating Equations.

Covariate Estimate 95% CI p-value
M1. Capability/Self-belief 249 [−193, 691] 0.269
M2. Opportunity 461 [67.4, 855] 0.021
M3. Motivation/Walk-benefit 473 [20.5, 925] 0.040
F1. Reaching goal −128 [−650, 393] 0.630
F2. Steps walked yesterday −451 [−911, 9.44] 0.054
F3. Walked more/less than goal yester-
day

−250 [−654, 154] 0.224

F4. Steps walked yesterday, plus a posi-
tive/negative message

−839 [−1228,−450] < 0.001

Study day 2.07 [−4.01, 8.15] 0.504
Table I.8. Results of the GEE models studying the effects of different categories of feedback

and motivation on steps change, with data from the 3rd imputed dataset. CI: Confidence
Interval, GEE: Generalized Estimating Equations.
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Urteaga, Iñigo, & Wiggins, Chris H. 2018. (sequential) importance sampling
bandits. arxiv preprint arxiv:1808.02933.

Valko, Michal, Korda, Nathaniel, Munos, Rémi, Flaounas, Ilias, &
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