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Enceladus has been identified as one of the most interesting targets for future space 

missions after plume ejecta were discovered in the Tiger Stripes region. Many concepts, 

aiming to search for habitable zones beyond Earth, require passing through this plume to 

collect samples of the ejecta. This orbit design is not a trivial task due to the vicinity of 

Enceladus to Saturn, which causes non-negligible third body perturbations and strongly 

deflects the orbit of a spacecraft around Enceladus. In this paper we address this problem by 

extensively studying the Circular Restricted Three Body Problem and linearly stable Halo 

orbits passing close over Enceladus’ South Pole. Some resonance solutions are then 

evaluated considering the elliptical problem and, finally, a preliminary validation is given by 

integrating the spacecraft in a model based on latest planetary/satellite ephemerides. 

 

I. Introduction 

Discovered in 1789 by the astronomer Frederick William Herschel [1], Enceladus is the sixth-largest and second-
nearest moon of Saturn. Named after the Greek mythological giant Enkélados, it is one of the most reflective bodies 

of the Solar System, as a result of the fresh and clear ice dominating its surface. In fact, due to its reflectivity, this 
icy moon has an estimated surface temperature of around –200° Celsius. [2] 

A. Historical context 

The first close-up images of Enceladus were made by the U.S. Voyager program [3], with the intent of studying 
the outer Solar System, based on two space probes: Voyager 1 and Voyager 2. An initial characterization of 
Enceladus’ surface started in November 1980 with Voyager 1 performing a fly-by maneuver at a distance of around 

202040 km [4]. Almost one year after, in August 1981, the spacecraft Voyager 2 passed much closer, at around 
87010 km [5], therefore it acquired higher resolutions images of its ‘young’ surface. Indeed, those images presented 
a surface with different regions, as also heavily cratered at mid/high-norther latitude regions.  

It was only in February 2005 that the Cassini–Huygens space research mission [6] made its first close encounter 
with Saturn’s moon, as collaboration between National Aeronautics and Space Administration (NASA), European 
Space Agency (ESA) and Italian Space Agency (ASI). NASA’s Cassini probe unveiled many mysteries, and soon it 

revealed that Enceladus is an active moon that hides a global ocean of liquid salty water beneath it s crust [7]. The 
magnetometer aboard the spacecraft showed a strange anomaly [8], similar to an atmospheric plume originating 
from the moon, pushing against Saturn’s magnetic field. The latter motived multiple fly-by maneuvers between 
2005 and 2015, thus yielding to significant discoveries, e.g. traces of hydrocarbons venting from the geologically 
active South Polar Region [9].  
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The south polar terrains revealed, as described in Ref. [10], a landscape “littered with house-sized ice boulders, 
carved by tectonic features unique to Enceladus and almost entirely free of impact crates”. So-called tiger stripes 
were identified as four sub-parallel, linear depressions flanked on each side by low ridges. The Composite Infrared 
Spectrometer (CIRS [11]) on-board instrument detected thermal emission in these areas, providing means to detect 

possible endogenic activities, almost 25 years after the thermal radiation measurements provided by Voyager 2. In 
addition to that, with its third fly-by, completed on the 14

th
 of July 2005 [2], the atmospheric plume at a distance of 

around 170 km was (for the first time) analyzed by Cassini’s Ion and Neutral Mass Spectrometer (INMS [12]). More 
than a decade later, in October 2015, with a much deeper fly-by maneuver (below 50 km) Cassini was capable of re-
analyzing the plume’s composition and identifying unambiguously both hydrogen and methane contents as evidence 
of the (possible) habitability of the internal sea. [13] 

These discoveries have triggered several investigations on designing novel mission concepts in order to perform 
similar fly-by operations and/or with the objective of analyzing in-situ composition of the ejected plume. Indeed, 
many new concepts have been proposed since 2006, while in particular two proposals have been presented for the 
NASA New Frontiers program 5 [14], within the theme “Ocean Worlds”. The first one is the Enceladus Life Finder 
(ELF [15]), as an astrobiology orbiter to Enceladus, and the second one is the Enceladus Life Signatures and 
Habitability (ELSAH [16]). Unfortunately, both were not selected, whereas the Dragonfly concept [17] was assigned 

as New Frontiers Mission planned for 2034. Supposedly, the latter will send a mobile rotorcraft on the surface of 
Titan, the largest moon of Saturn, with the objective of understanding its organic and methanogenic cycle, as it 
relates to prebiotic chemistry [18]. More and more new concepts are being continuously proposed, especially 
targeting Europa, Jupiter’s moon, and indeed Enceladus.  

According to the Planetary Science Decadal Survey (2013-2022) defined in 2011 [19], the unanswered question 
is if “beyond Earth, are there contemporary habitats elsewhere in the solar system with necessary conditions, organic 

matter, water, energy, and nutrients to sustain life, and do organisms live there now?”. Recent discoveries regarding 
the ingredients of amino acids within the plumes compound at Enceladus have been made (see Ref. [20]), and a fifth 
New Frontiers Announcement of Opportunity is expected to be released in few years from now. 

B. Research problem heritage 

Nowadays, one of the main challenges for a potential exploration of Saturn’s system is given by the complicated 
orbital dynamics modeling needed to reduce substantially overall mission’s costs. In this context, costs refer to 

propulsive maneuvers for trajectory corrections or, more simply, to delta-v budget required for different mission’s 
operations. In particular, the long journey from Earth to Saturn Orbit Insertion (SOI) has been long investigated for 
more than 40 years now, whereas a first fly-by [21] was performed by NASA’s Pioneer 11 robotic space probe 
already back in September 1979. The power availability is certainly one of the major limitations for the exploration 
of outer planets (and their satellites), while more recently a re-discussion took place over the possible adoption of 
fission power in future space missions in support to deep space navigation and exploration. [22] 

In general, optimization of delta-v budget could lead to a longer time-of-flight, which has been briefly examined 
in Ref. [23], thus presenting several design options defined with an arrival date spanning between 2032 and 2040. 
Moreover, similar aspects were already investigated [24,25] by the Jet Propulsion Laboratory (JPL) at the beginning 
of 2010 in support to the SS2012 Planetary Science Decadal Survey. In Ref. [24], three key operational phases were 
identified with a preliminary estimation of 8.5 years to reach the SOI, exploiting Venus fly-by maneuvers, and an 
additional 3.5 years to reach the Enceladus Orbit Insertion (EOI) again making use of Saturn’s moons’ close fly-bys.  

In the current research work we will not consider aspects such as the transfer from Earth to SOI, and/or from SOI 
to EOI. However, it should be underlined that those are critical aspects of any space mission design, while few 
alternative designs of trajectory for EOI were also extensively studied in Ref. [26], making use of the gravity-assists 
of low-mass Saturnian moons Rhea, Dione and Tethys. Indeed, the investigation proposed here focuses on possible 
trajectories to enable science-based operations and further investigation of plume ejecta in the tiger stripes region 
near Enceladus’ South Pole. These trajectories are so defined based on linear stability criteria and few additional key 

parameters relevant for an ideal space sample-retrieval mission by means of a low-altitude flying orbiter. 
The orbital stability around a planetary satellite has been studied for long time, as both analytical and numerical 

approaches have been usually employed (see Ref. [27]). Some complications arise from the moment that analytical 
solutions are not easily accessible when considering the dynamical motion under the influence of a third body. In 
particular, for systems with the orbiting (planetary) satellite mass substantially smaller than the main planet’s mass 
(e.g. Enceladus versus Saturn or Europa versus Jupiter), a possible option is to consider the Hill problem as limit 

version of the well-known Restricted 3 Body Problem (R3BP [28]). Even so, the model adopted suffers of many 
non-negligible effects, such as the non-spherical gravity perturbations caused by both primary (here Saturn) and 
secondary (here Enceladus) masses and/or relativistic corrections. 
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A first complete assessment of possible science orbits was performed by Russel and Lara (see Ref . [29]), based 
on a Hill model where J2-effects were taken into account, along with other higher-order terms. In that work, the 
orbits, previously generalized to several planetary satellite systems by Sheeres et al. [27], were extensively discussed 
and investigated for the Saturn-Enceladus system. In this way, the definition of resonance (periodic, stable) solutions 

was possible in view of near-polar excursions for plume experiments. High-inclination trajectories were identified 
within a Hill problem, later numerically continued in order to consider Enceladus oblateness effects. In addition to 
that, their stability was assessed over a six months period involving also Saturn J2-effects as well as for main gravity 
accelerations from Sun, Jupiter and Titan, the largest moon in the Saturnian system. 

The aforementioned (stable) solutions were later extended in Ref. [30], aiming to very-low-altitude and very-
high-inclination trajectories in order to enable geodesy science at Enceladus. Nonetheless, no oblateness effects 

were considered, (poorly) justified by the uncertain nature of the J2-parameters for this Saturn’s icy moon. In that 
research work, most of the trajectories orbiting around the secondary mass (here Enceladus) were considered at an 
altitude of 21km, whereas no other solutions, e.g. Halo family of trajectories, were deeply analyzed. 

The applicability of Halo solutions, as suggested in Ref. [29] is therefore investigated here, along with other 
well-known continuous families of periodic solutions existing in the Circular R3BP (CR3BP). Their linear stability 
is an important indicator of the local behavior, especially due to the so-called unstable manifolds [31] that represent 

an obstacle, if not properly considered, to station-keeping maneuvers in low-cost missions. The extension of those 
continuous families into the Elliptical R3BP (ER3BP) is possible only when resonance conditions are maintained 
[32], while the bifurcation of periodic solutions in the ER3BP is also discussed. In this model, the eccentricity of the 
secondary mass can be taken into account for a better design of future science orbits. Validat ion and discussion of 
these periodic (resonance) solutions is based on few preliminary simulations performed by making use of a more 
accurate dynamical model [33]. 

C. Paper structure 

In Sect. II, the principal methodologies are presented, and the mathematical background for both the Circular and 
the Elliptical R3BP is given. A brief discussion on existing periodic solutions takes place here; moreover some 
periodicity conditions are briefly delineated. In Sect. III, the process of generation of periodic orbits is introduced 
for both R3BPs. In Sect. IV, the main results relative to the CR3BP for the Saturn-Enceladus system are presented 
and discussed. Main insights on the linear stability of those solutions are given making use of Dynamical System 

Theory (DST), while additional operational constrains on these closed trajectories are also introduced. In Sect. V, 
the analysis of the ER3BP is given together with a validation making use of a more realistic simulation setup, e.g. 
considering an ephemeris model. Last, within Sect. VI, the principal conclusions of this research work are given 
along with recommendations for future work. 

 

II. Methodology 

Most of the methodologies here presented are taken from Ref. [34]. When considering dynamical systems with 
three bodies, e.g. a planet, its satellite and an orbiting spacecraft, the latter usually has a negligible impact on the 
orbital motion of the two celestial bodies. In this case we refer to a restricted three-body problem [28], therefore 
both two masses, still described here as point-like, will orbit around the system’s barycenter following trajectories 
defined by a Kepler-like model [35]. Without external forces, their motion is so defined by specific curves bounded 
within a planar plane, which mostly depends upon the initial conditions. However, it should be clear that the solution 

here refers to the barycenter of the entire system. At the same time, a very similar solution to this 2-Body Problem 
(2BP) can be expressed in terms of relative distance, therefore being modeled as a so-called Kepler problem.  

In the R3BP, even if the perturbation due to the secondary mass on the primary one is small, it still shall be taken 
into account [35]. When considering a bounded motion, i.e. elliptic trajectories, we can define an invariant plane and 
an orthogonal direction, the latter aligned with the angular momentum vector of the system. As a consequence, a 
rotating system can be so constructed (see Figure 1), where the 𝑥-axis is aligned with the direction from the primary 

to the secondary mass, the 𝑧-axis is orthogonal to this fixed plane and the 𝑦-axis completes the right-hand system. 
As stated, the origin of this synodic system corresponds to the barycenter. 

At this point two cases should be discussed. In fact, the orbital motion defined by Saturn and Enceladus around 
their mutual barycenter could be modeled as an Ellipse or a Circle, leading to the ER3BP or CR3BP, respectively. 
Even if the Elliptical case is more accurate, in general is also much more complicated due to an explicit time -
dependency in the differential equations of the spacecraft (S/C) motion. We define the S/C dynamics in the synodic 
system, where Saturn is given as 𝑷𝟏 = [𝑥1,0,0], Enceladus as 𝑷𝟐 = [𝑥2 ,0,0] and the S/C as 𝑷𝟑 = [𝑥, 𝑦, 𝑧].  
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Figure 1: The synodic barycentric reference frame used for the Circular and Elliptical R3BP. In magenta the 

Lagrange points of the CR3BP have been illustrated. For graphical purposes, dimensions of Enceladus (and 

L1/L2 distances) are enlarged by a factor 50. Note that the rotation around the 𝒛-axis is counterclockwise. 

It can be shown, following Ref. [34], that three second-order non-linear Ordinary Differential Equations (ODEs) 
are retrieved. Those equations, considering all derivatives with respect to time 𝑡 ∈ ℝ, are given as 

𝑑2

𝑑𝑡2
(
𝑥
𝑦
𝑧
) ≡ (

�̈�
�̈�
�̈�
) = −𝜇1 ∙

𝒓𝟏𝟑
𝑟13
3 −𝜇2 ∙

𝒓𝟐𝟑
𝑟23
3 −(

−2𝜔 ∙ �̇�
+2𝜔 ∙ �̇�
0

) + (
𝜔2 ∙ 𝑥
𝜔2 ∙ 𝑦
0

) − (
−𝛼 ∙ 𝑦
+𝛼 ∙ 𝑥
0

) (1) 

with 𝜇1,𝜇2 ∈ ℝ as standard gravitational parameters for Saturn and Enceladus, respectively. Moreover, we have the 

angular velocity of the system given as 𝜔 = 𝜔(𝑡) ∈ ℝ, which is time-varying for the elliptical case. It follows here 
the definition of an angular acceleration, expressed as 𝛼 = 𝛼(𝑡) ∈ ℝ. The distances 𝒓𝟏𝟑,𝒓𝟐𝟑 refer to vectors going 

from the masses’ position vectors 𝑷𝟏, 𝑷𝟐 to the spacecraft position vector 𝑷𝟑 at a certain instant.  
 The reader should be aware that the expressions for 𝜔 and 𝛼 are well-defined, as computed from the Kepler 

motion of the two masses. These two equations are given in Ref. [35], and after few manipulations we can write 

𝜔 =
𝑑𝜃

𝑑𝑡
= 𝑛 ∙

(1 + 𝑒 ∙ cos𝜃)2

(1− 𝑒2)3/2
 (2) 

𝛼 =
𝑑𝜔

𝑑𝑡
= 𝜓 ∙ 𝜔2 , ∀𝜓 = −

2𝑒 ∙ sin𝜃

1 + 𝑒 ∙ cos 𝜃
 (3) 

with 𝜃 ∈ ℝ as true anomaly, increasing counterclockwise, while other orbital parameters are 𝑒 ∈ ℝ as eccentricity 

and 𝑛 ∈ ℝ as mean angular motion of the rotating system. As known, for the circular case we have that 𝜔 = 𝑛, 
meanwhile 𝛼 = 0 since the synodic system rotates uniformly around the 𝑧-axis. The mean motion of the system can 

be also expressed by Kepler's Third Law [36], so inversely proportional to the orbital period 𝑇 ∈ ℝ, such that 

𝑛 =
2𝜋

𝑇
≡ √

𝜇1+ 𝜇2
𝑎12

 (4) 

where 𝑎12 ∈ ℝ is the semi-major axis of the Keplerian orbit of the secondary mass (Enceladus) around the primary 

one (Saturn). At this point we can firstly present the dynamical model for the CR3BP, in order to later extend it to 
the elliptical case (ER3BP), without any constrains on the aforementioned Kepler parameters. 
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A. Circular Restricted 3 Body Problem (CR3BP) 

 A simple manipulation allows writing the previous ODEs in a non-dimensional form, where we define a spatial 
unit as 𝑎12, a temporal unit as 𝑛−1 and, last, a mass unit as 𝑀𝑡𝑜𝑡 = 𝑀1+𝑀2. It follows (in Ref. [34]) that the orbital 

period is now expressed as 𝑇 = 2𝜋, and 𝜇1+𝜇2 = 1. Moreover, considering the notation 𝜇 = 𝜇2, we can also write 
𝜇1 = 1 − 𝜇, while the last term (related to the angular acceleration) cancels out in Eq. (1). It follows that 

{
  
 

  
 �̈� = 𝑥 − (1 − 𝜇) ∙

(𝑥 + 𝜇)

𝑟1
3 −𝜇 ∙

(𝑥 + 𝜇 − 1)

𝑟2
3 +2�̇�

�̈� = 𝑦 ∙ [1 −
1 − 𝜇

𝑟1
3
−
𝜇

𝑟2
3
] − 2�̇�

�̈� = −𝑧 ∙ [
1− 𝜇

𝑟1
3 −

𝜇

𝑟2
3]

 (5) 

 The previous set of differential equations is autonomous [37], meaning that it does not have an explicit 
dependency upon a time-like parameter. In addition to that, it can be shown that within such non-dimensional form, 
the time-like parameter is actually the true anomaly 𝜃, since it holds that 𝜃 = 𝑛 ∙ 𝑡, given 𝑡0 = 0. As also visible in 

Eq. (5), for some specific initial conditions the motion is defined (see Ref. [38]) by three groups of solutions: 
1) Equilibrium solutions, i.e. critical points of the ODEs; 
2) Periodic solutions, usually characterized by a specific periodicity interval (or period); 
3) Integral manifolds, as a set of defined trajectories within the phase-space of the dynamical system. 

 These results have been well-known for several decades, while extensive and more comprehensive analyses can 
be found in Ref. [28]. The existence of five equilibrium points, all lying within the invariant plane, is due to Euler 
and Lagrange (see Ref. [39]) for the so-called collinear and equilateral points, respectively. The three collinear 
points

3
, as shown in Figure 1, lie over the 𝑥-axis and are known for their linear instability. The latter means that the 

initial small perturbation to an equilibrium solution will most likely leads to trajectories following the invariant 
manifolds of such dynamical system. This could be taken as an advantage in some cases, since these trajectories can 
be exploited for a low-cost transfer within the same system or even between different ones. [40] 
 A very important result of past researches is given in Ref. [41], with two theorems linked to symmetries found in 
these equations of motion. The first theorem, called the “Irreversibility Theorem”, states that if a trajectory is 
physically possible in the xyz-space, then the reverse trajectory is not physically possible. This was already observed 

in Ref. [42], since the Lagrangian is not invariant to this type of “transformation”, therefore reverse trajectories are 
not admitted in the CR3BP. A second theorem, named the “Theorem of Image Trajectory”, defines three additional 
symmetric trajectories, given a first one physically possible. Two trajectories, symmetric with respect to the 𝑥-axis 
and the 𝑥𝑧-plane, flow in the opposite sense of the original one. The last one, with respect to the 𝑥𝑦-plane, can be 

observed in Eq. (5) by performing the simple change of variables 𝑧∗ = −𝑧, without varying its expression. 

 When looking at the periodic motion, especially in a neighborhood of collinear equilibrium points, it follows that 
for closed trajectories crossing the 𝑥𝑧-plane to be periodic, they should have at least two orthogonal passes such that 
their symmetric reverse orbit exists [44]. This is an important aspect exploited in the selection of initial conditions 
for the generation of periodic solutions, and it does not depend upon the system selected but holds valid for any 

CR3BPs. The symmetry with respect to the 𝑥𝑦-plane is also fundamental, and very relevant for the existence of a 
southern and a northern Halo family of periodic solutions at the collinear L-points. 

B. Periodic motion near the L-points in the CR3BP 

 The aforementioned proprieties of the CR3BP allow having insights on the different behaviors of trajectories in 

the phase-space of the system. Moreover, the use of dynamical system theory has made possible in the past decades 
to analyze periodic solutions more accurately. This type of trajectories is clearly more suitable for space mission 
operations given its repetitive pattern, while potentially reducing station-keeping costs for keeping the spacecraft 
within its nominal (or operative) mission trajectory.  
 When looking at the collinear L-points, it is know that their local dynamics in the six-dimensional phase-space is 
not linearly stable. Nonetheless, under the assumption of a linearized motion, two different mono-parametric 

Lyapunov families of solution can be defined. These ones are theoretically bounded within an in-plane and an out-
of-plane distinctive motion, while always characterized by a different pulsation, for any 𝜇-value selected. [45] 

                                                             
3
 As mentioned in the text, the collinear points were firstly discover by L. Euler in 1767 with “De moto rectilineo 

trium corporum se mutuo attrahentium”, but usually referred to as Lagrange points, or also L-points. [43] 
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 The reader shall be aware that periodic solutions are not the only ones suitable for a space mission design. In 
fact, also quasi-periodic trajectories (e.g. Lissajous or Quasi-Halo orbits) have been extensively investigated (see 
Ref. [46]), and numerically computed in a very efficient way by means of multiple Poincaré sections [47]. In this 
contribution quasi-periodic solutions have not been considered, mostly due to more complications arising in the 

assessment of their linear stability. The latter can be investigated by means of an analysis of characteristic 
multipliers. These are eigenvalues of the State Transition Matrix (STM) propagated along the selected periodic 
trajectory. In this case we refer more correctly to it as “Monodromy matrix” (or M-matrix), which provides good 
insights on the behaviors of small initial displacements after a complete revolution of the orbit. [34] 
 The concept of orbital stability, strongly relevant for the definition of the most suitable orbits, is quite different 
from the simple definition of Lyapunov stability applied to the periodic motion. The latter concerns the local 

boundedness of perturbed solutions near the reference periodic one. For the orbital stability however, this condition 
can also be evaluated with respect to some (local) fixed points, e.g. considering multiple (repetitive) intersections in 
a Poincaré section. In some literature (see Ref. [38]), the group of intersections is called Poincaré Map, or First 
Recurrence Map. The displacements from the periodic solution are then evaluated within this (arbitrary) section.  
 The first approach, based on the M-matrix analysis, has been employed here, considering the following: 

1) The CR3BP is a Hamiltonian system, therefore it has a structure denoted as symplectic and it will always 

present pairs of reciprocal eigenvalues (or characteristic multipliers). 
2) The M-matrix has real values, and so the complex eigenvalues 𝜆𝑖 ∈ ℂ can be found in quadruplets. 
3) The M-matrix associated with periodic solutions will always have at least one real 𝜆1 = +1, meanwhile an 

additional 𝜆2 = +1 will also exists due to the first (symplectic) property. 
 The four remaining eigenvalues define the linear stability of each periodic solution, while their respective 

eigenvectors define indeed particular (admitted) directions of motions. Considering the four complex eigenvalues of 
the M-matrix, we can end up with three different orders of instability: 0

th
-order instability when |𝜆𝑖| = 1 for all the 

four remaining 𝑖-eigenvalues, a 1
st

-order or 2
nd

-order instability when one pair or two pairs of complex eigenvalues 

do not lie on the unit circle. Once again, the aforementioned symplectic property assures that if there is a |𝜆| < 1, so 
attracting a nearby trajectory to the periodic solution, there will be also a |𝜆| > 1, thus defining a direction of 

instability. The latter is indeed an unstable manifold that could lead the S/C far away from our preferred solution. It 
follows that this closed trajectory is less likely suitable as a nominal science orbit, and most probably leads to a high 
station-keeping cost for corrective maneuvers. 
 The preferred orbits seem to be the ones presenting 0

th
-order instability, at least as a first guess. An additional 

consequence of the Hamiltonian form of the equations (see previous Point 3) is that there is always (at least) one 
direction involving another periodic trajectory. In short, for each periodic solution there will always be another one 
in the immediate vicinity and with slightly different initial conditions. This feature of the CR3BP assures continuity 
in each family of periodic solutions, and in principle this allows having an infinite number of candidate solutions for 
the exploration of Enceladus. We continue discussing the generation of some families of periodic solutions.  

III. Generation of periodic orbits 

The examination of the local behavior of collinear Lagrange points (here considering only L1/L2, since closer to 

the secondary mass) can provide a first-order approximation of the dynamical motion admitted at L-points. Once 
moving far enough from these equilibrium points, the linearized approach cannot properly describe all admitted 
trajectories and different techniques shall be employed. The Centre Manifold Reduction, or normal form scheme, 
has been given in Ref. [48] as a semi-analytic approach to this problem, whereas here we will consider an alternative 
technique. The method of strained coordinates, also known as Linstedt-Poincaré method [49], is principally focused 
on periodic solutions in a perturbed differential system defined by a (supposedly small) scalar parameter 𝜖 > 0.  

 The LP method was applied in Richardson’s paper [50] in order to find a third-order analytic approximation to 
period motion around collinear Lagrange points. The CR3BP system is so linearized around each L-points and small 
parameters are defined in terms of amplitude of the (bounded) oscillations around each equilibrium point. As noted, 

this third expansion made it already possible to approximate the well-known Halo orbital motion, as a bifurcation 
from the aforementioned in-plane Lyapunov family of solutions. [34] 
 We refer the reader to Ref. [34] for more details on the algorithm definition for the generation of three families of 
periodic solution around L1/L2 points of the Saturn-Enceladus CR3BP. Three families are considered, being  

1) The Horizontal Lyapunov (H-Lyap) family, arising from the linear in-plane motion at the L-points; 
2) The Vertical Lyapunov (V-Lyap) family, arising from the linear out-of-plane motion at the L-points; 
3) The Halo family, which consists of both a Northern (N-Halo) and a Southern (S-Halo) group due to the 

third symmetry previously introduced. 
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 Given a certain 𝜇-value, and after selecting one of the three families, the third-order analytical approximation is 

computed for a certain L-point. In this way two initial conditions are found, relative to two periodic solutions near 
the selected Lagrange point. Those guesses are corrected with a Differential Correction (DC) algorithm, originally 
adopted in Ref. [51] for the generation of Halo trajectories in the Earth-Moon CR3BP. The DC-algorithm is seen as 
a single shooting method, generalized and well-described in Ref. [45], thus making use of the STM to correct the 
initial conditions. The latter, as graphically represented in Figure 2, concern two position’s components within the 

𝑥𝑧-plane and an orthogonal shooting velocity. Each initial condition, or IC, is defined as 𝑿𝟎 = {𝑥0 ,0, 𝑧0,0, 𝑣𝑦0 , 0}. 

 

 

Figure 2: The graphical representation of single shooting method applied to correct initial conditions that are 

associated to a closed trajectory. As described in the text, this “shooting condition” generally lies within the 

𝒙𝒛-plane, with an orthogonal velocity vector in one of the two intersections with this symmetry plane. 

 The use of two solutions 𝑿𝟎
𝑰  and 𝑿𝟎

𝑰𝑰 allows defining a third guess by numerical continuation, which can follow 

two different strategies: a natural parameter or a pseudo-arclength approach. The former will add a step-size to one 
of the shooting components (e.g. preferably as Δ𝑥0) and use this initial guess within a DC-algorithm, while the other  

method (here adopted) updates all components for the third guess as follows 

𝑿𝟎
𝑰𝑰𝑰 = 𝑿𝟎

𝑰𝑰 + 𝚫𝑿𝟎, ∀𝚫𝑿𝟎 = 𝑿𝟎
𝑰𝑰 −𝑿𝟎

𝑰  (6) 

 In this way, the guess is more accurate and the DC-algorithm converges in a smaller number of iterations [52], 

whereas general polynomial extrapolations (using more ICs) can be used, as given in Ref. [53]. A few conditions are 
checked in order to assure the periodicity, where assuming a period 𝑇 ∈ ℝ we can define a threshold for the 
displacement after one revolution (ideally zero for a perfectly periodic trajectory). This threshold is set for both 
position (Δ𝑃𝑚𝑎𝑥) and velocity (Δ𝑉𝑚𝑎𝑥) displacements at 𝑡 = 𝑇 for an initial time 𝑡0 = 0, such that 

√[𝑥(𝑇)− 𝑥0]
2+ [𝑧(𝑇)− 𝑧0]

2 ≤ Δ𝑃𝑚𝑎𝑥, |𝑣𝑦(𝑇) − 𝑣𝑦0| ≤ Δ𝑉𝑚𝑎𝑥, (7) 

The target orbital period is not fixed, while later updated with the DC-algorithm. In addition to such “closing 
conditions”, the so-called “eigenvalues condition” is also considered, following Ref. [34]. 
 The analysis of linear stability by checking the eigenvalues of the Monodromy matrix enables a further 
validation of this periodicity. In fact, for any periodic trajectory, two eigenvalues are constrained to be real and equal 
to +1. It follows that, if no eigenvalues are found with this value (discarding small numerical errors), then the 
solution is not considered periodic and the algorithm stops the generation of new members within the family. At the 

end of the iterative process, a discrete sample of members from each continuous family of periodic solutions is 
obtained and the linear stability, orbital period, energy level and geometric characteristic can be evaluated. 
 As mentioned, the symplectic nature of the CR3BP puts constrains on the existence of periodic solutions, mostly 
found in continuous families. In each family, the local behavior (here intended as linear stability) can be different 
when considering different members, while the change in order of stability is different once considering alternative 
𝜇-values. In Ref. [53] different values are considered, as several families considered also show a bifurcation in the 𝜇-

parameter. This was a known result also for the equilateral L-points, where the linearly stable nature of L4/L5 is 
limited to 𝜇-values smaller than the so-called Routh critical value [54], approximately equal to 𝜇𝑅 = 0.03852. 
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 However, for practical applications it should be noted that variations of the 𝜇-parameters (given as a fraction of 

the secondary mass over the system’s total mass) are usually negligible. For example, when taking into account 
Enceladus venting activity, from a theoretical point of view it should be considered that the mass of the system is 
changing in time, as also its 𝜇-value. This variation is extremely insignificant, while also possible uncertainties 
(whether small) in the 𝜇-value will not sufficiently affect the design of suitable orbital solutions. This aspect is most 

likely relevant for binary systems, e.g. considering S/C rendezvous close to a contact binary asteroid system [55]. 
 For what concerns the Saturn-Enceladus R3BP system, there are many model deviations from an ideal CR3BP 
scenario. Indeed, as also mentioned in Ref. [29], the oblateness effects of both Saturn and Enceladus can play a 
substantial role in the orbital motion of a spacecraft. In addition to that, Enceladus has a non-negligible eccentricity 

in its Kepler motion around Saturn, in general given approximately
4
 as 0.0047. 

A. Resonance solutions in the ER3BP 

 The definition of the Elliptical R3BP is conceptually very similar to what seen from Eq. (1), thus considering a 
non-zero angular acceleration of the system. Here we follow the formulation given in Ref. [34], with the definition 
of a time-rescaling with respect to the 𝜃-parameter (as for the CR3BP) and a “pulsating” reference frame. The 

former simply considers time-derivatives with respect to 𝜃 ∈ ℝ as the new time-like parameter of this differential 
system. The time-rescaling of derivatives for a certain state-vector 𝑸 ∈ ℝ6 is based on the chain’s rule such that 

𝑑𝑸

𝑑𝑡
=
𝑑𝑸

𝑑𝜃
∙
𝑑𝜃

𝑑𝑡
≡
𝑑𝑸

𝑑𝜃
∙ 𝜔, ∀𝜔 = 𝜔(𝜃) (8) 

𝑑2𝑸

𝑑𝑡2
=
𝑑

𝑑𝑡
[
𝑑𝑸

𝑑𝜃
∙ 𝜔] =

𝑑

𝑑𝜃
[
𝑑𝑸

𝑑𝜃
∙ 𝜔] ∙ 𝜔 ≡

𝑑2𝑸

𝑑𝜃2
∙ 𝜔2 +

𝑑𝑸

𝑑𝜃
∙
𝑑𝜔

𝑑𝜃
∙ 𝜔 (9) 

leading in a more compact notation to 

�̇� = 𝑸′ ∙ 𝜔(𝜃), �̈� = [𝑸′′ +𝑸′ ∙ 𝜓] ∙ 𝜔2(𝜃) (10) 

with the prime-notation for derivatives with respect to the 𝜃-parameters, the dot-notation otherwise. Moreover, the 𝜓 

parameter was already defined in Eq. (3), and it plays a role in the definition of Lagrange points. The definition of a 
pulsating frame was already suggested in Ref. [28], and has several advantages since Lagrange points can be easily 
defined (actually numerically the same as the CR3BP) and new symmetry constrains arise in the ER3BP. 
 The pulsating frame is such that the spatial unit is now the instantaneous distance 𝑟12 = 𝑟12(𝜃) between the 

primary and the secondary masses. It follows that the new coordinates for the S/C position are the followings 

𝑷3
∗ =

𝑷𝟑
𝑟12(𝜃)

, ∀𝑟12(𝜃) = 𝑎12 ∙
(1 − 𝑒12

2 )

1 + 𝑒12 ∙ cos𝜃
 (11) 

with the original vector  𝑷𝟑 = [𝑥3 ,𝑦3, 𝑧3] now defined (in the pulsating system) as 𝑷𝟑
∗ = [𝑥3

∗ ,𝑦3
∗ ,𝑧3

∗]. Also the S/C 

velocity in this frame will be expressed differently, where making use of both Eq. (8) and Eq. (11) we can write 

𝑑𝑷3
∗

𝑑𝜃
=
𝑑

𝑑𝜃
[
𝑷𝟑

𝑟12(𝜃)
] = …=

𝑷𝟑
′

𝑟12(𝜃)
+ 𝑷3

∗ ∙
𝜓

2
 (12) 

 We leave to the reader the proof of these relations, as also available in Ref. [34], while here we only provide the 
expression for retrieving the shooting velocity starting with the ICs computed in the ER3BP, such as 

𝑑𝑷𝟑
𝑑𝑡

≡ �̇�𝟑 = 𝑟12(𝜃) ∙ 𝜔(𝜃) ∙ [
𝑑𝑷𝟑

∗

𝑑𝜃
−𝑷3

∗ ∙
𝜓

2
] (13) 

and it should be noted that the auxiliary variable 𝜓 is zero for 𝜃 values such that sin𝜃 = 0. As verification, for the 

CR3BP case the transformation is always found (still considering a dimensional form) as follows 

�̇�𝟑 = 𝑎12 ∙ 𝑛 ∙
𝑑𝑷𝟑

∗

𝑑𝜃
≡ 𝑎12 ∙ 𝑛 ∙

𝑑

𝑑𝜃
[
𝑷𝟑
𝑎12

] = 𝑛 ∙ 𝑷𝟑
′  (14) 

                                                             
4
 The approximate planetary data is available at "Enceladus: Facts & Figures". Solar System Exploration, National 

Aeronautics and Space Administration, August 12
th

, 2013. Retrieved online on December 1
st
, 2019. 
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 The final expression of the pulsating (time re-scaled) differential system for the ER3BP is summarized such as 

{
 
 
 

  
 
𝑑2𝑥∗

𝑑𝜃2
= +

1

1 + 𝑒12 ∙ cos𝜃
[𝑥∗ − (1 − 𝜇) ∙

(𝑥∗+ 𝜇)

𝑟∗1
3 −𝜇 ∙

(𝑥∗ +𝜇 − 1)

𝑟∗2
3 ] + 2 ∙

𝑑𝑦∗

𝑑𝜃

𝑑2𝑦∗

𝑑𝜃2
= +

𝑦∗

1 + 𝑒12 ∙ cos𝜃
∙ [1−

1− 𝜇

𝑟∗1
3 −

𝜇

𝑟∗2
3]− 2

𝑑𝑥∗

𝑑𝜃


𝑑2𝑧∗

𝑑𝜃2
= −

𝑧∗

1 + 𝑒12 ∙ cos𝜃
∙ [
1− 𝜇

𝑟∗1
3 −

𝜇

𝑟∗2
3 + 𝑒12 ∙ cos𝜃]

, ∀𝑟∗𝑖 =
𝑟𝑖

𝑟12(𝜃)
 (15) 

where the existence of equilibrium points within the ER3BP (for this formulation) is visible since the expression in 
the parenthesis on the right side is algebraically equivalent to the one given in Eq. (5) for the CR3BP. It is also clear 

that this formulation holds only for (positive) eccentricity values below 1, while in the limit case for 𝑒12 = 0 we get 
back the same dynamical system of the CR3BP. To observe that this is a non-autonomous differential system since it 
explicitly depends upon the main time-like parameter, here being the 𝜃-variable. 

 The existence of a periodic solution for this system requires that the shooting condition is fixed at a time 

𝜃0 = 𝑘 ∙ 𝜋, ∀𝑘 ∈ ℤ(integer) (16) 

with 2𝜋 still being the orbital period of Enceladus around Saturn considering an elliptical trajectory. Such a new 
requirement on the symmetry of trajectories leads to an “Elliptic Periodicity Criterion”, formulated in Ref. [56] as an 
extension of the “Strong Periodicity Criterion”, firstly formulated for the planar-ER3BP in Ref. [57]. In general, the 
condition to have a periodic solution is to have its period in resonance with the motion of the two main masses. With 

N as number of revolutions for Enceladus, and M as number of revolutions for the S/C, we need that  

𝑇𝐶 = 2𝜋 ∙
𝑁

𝑀
, ∀{𝑁,𝑀} ∈ ℤ+ (positiveintegers) (17) 

where 𝑇𝐶 is the period of the closed trajectory in the CR3BP, while the period of the possible resonance trajectory is  

𝑇𝐸 = 𝑀 ∙ 𝑇𝐶 ≝ 2𝜋 ∙𝑁 (18) 

 The candidate resonance solutions from the CR3BP are so found within the continuous family, e.g. retrieving 
with a spline interpolation the ICs of orbits closest to the target resonance one. This gives us approximated shooting 

conditions that can be processed by a modified DC-algorithm (see Section 4.4.2 in Ref. [34]), which will not 

consider anymore the period as uncertain but will try to correct the previous vector 𝑿𝟎
𝐌𝐍 relative to an MN-orbit. 

 A small remark is given here in support to an efficient orbit design and extension of orbits to the ER3BP, from 
the moment that numerical problems could arise in the computation of less stable orbits. As mentioned, many 

periodic solutions can have very unstable manifolds in their neighborhood and due to limited numerical precision 
the initial conditions could degenerates very quickly after few revolutions. As consequence of this, in general it is 
convenient to select orbits with zeroth-order (linear) stability, and the divergence behavior of solutions is strongly 
mitigated as it will be shown in the next section. 
 The extension of resonance solutions (only periodic trajectories surviving in the ER3BP) makes use again of a 

numerical continuation scheme. We start with the initial vector 𝑿𝟎
𝐌𝐍, corrected by the modified DC-algorithm, and 

we gradually increase the eccentricity value. At each step we follow the same procedure as for the CR3BP, while the 
first eccentricity is set really small to use the pseudo-length approach for the initialization of new initial conditions 
in the ER3BP. The eccentricity is also a bifurcation parameter for 𝑒12→ 0, and two periodic solutions are possible 

depending upon the initial shooting time, being 𝜃0 = 0 or 𝜃0 = 𝜋. In addition to that, depending on M, for each 
shooting time we can have two different situations, which have been summarized in Table 1. 

Table 1: Four cases are given when extending a resonance solution into the ER3BP, depending on the value of 
M. Starting in the CR3BP, if M is even then the bifurcation depends on which 𝒙𝒛-intersection is considered, 

so having a different shooting sign. If M is odd then the bifurcation depends upon the initial shooting time 𝜽𝟎. 

Family Type M-value 𝜽𝟎-value 𝒓𝟏𝟐(𝜽𝟎) 𝒚-shooting for L1 / L2 

Left-group Even 0 Peri-apsis Positive / Negative 

Right-group Even 0 Peri-apsis Negative / Positive 

Apo-group Odd 𝜋 Apo-apsis Positive / Positive 

Peri-group Odd 0 Peri-apsis Positive / Positive 
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IV. Results in the CR3BP model 

At this point we can introduce the results for the Saturn-Enceladus system, but firstly the main orbital parameters 
are provided and briefly discussed. In support to defining a more realistic scenario, both the planetary and the 
satellite ephemeris are taken from NASA's Navigation and Ancillary Information Facility (NAIF [58]). In particular, 

the data refers to the latest Saturnian satellite ephemeris from the Saturn Global Fit
5
, here named SAT425, which 

refers to the JPL Development Ephemeris number 438 (DE438). The latter is based on DE430 documented within 
the JPL Interplanetary Network Progress Report 42-196 [59]. 

From the satellite ephemeris file (SAT425), the standard gravitational parameters for Enceladus and Saturn are 
taken, along with main relevant orbital parameters of the system. For the scope of this work, we have retrieved 20 
years of data, spanning from 2030 to 2050, which seems reasonable for a future space exploration mission in the 

Saturnian system. Following literature guidelines, as given in Sect. I (see Ref. [23-24]), we consider here a possible 
mission arriving at Enceladus Insert Orbit in November 2040. This should be considered simply as a case study for 
the science orbit design exercise introduced in this research work. 

In Figure 3 the relevant orbital parameters are given as variations from the mean values taken over a two weeks 
period, starting on the 15

th
 of November 2040. During this time span, Enceladus completes more than 10 full 

revolutions around Saturn, given its orbital period approximately equal to 33 hours. The variations in the semi-major 

axis (distance between Saturn and Enceladus for the CR3BP) are quite small and limited within few kilometers. As a 
consequence of this, the orbital period is also quite stable. It is visible, as also well-known in literature [60], that the 
orbital eccentricity has very large displacements with respect to the 14-days mean value.  

An evaluation of the data over the entire 2040 showed also a positive drift for the eccentricity parameter, which 
is around 271 parts per billion for each Enceladus revolution. In fact, Enceladus is trapped in an orbital resonance 
with Dione which excites its orbital eccentricity. It is damped by tidal forces, tidally heating its interior and driving 

the geological activity [61]. In Table 2, the principal parameters for the Saturn-Enceladus system have been 
summarized 

 

 

Figure 3: The variations of four orbital quantities are given with respect to their mean value (continuous red 

line) computed over a two weeks period starting on the 15
th

 of November 2040. The dashed lines in red color 

represent the standard deviation of these quantities considering the two weeks period. Data has been taken 

from the SAT425/DE438 ephemeris, while we refer the reader to the text for more details. 

                                                             
5
 The official description is available at https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/sat425.cmt, 

uploaded on the 28th of August 2019. 
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Table 2: The main parameters retrieved from the SAT425/DE438 ephemeris file as described in the text. Both 

the mean value and the standard deviation are given considering two different time spans, both having a 

sampling time of 1 minute. The values for the 2 weeks period have been used for all the calculations. 

Standard gravitational parameter Units Reference value used (SAT425/DE438) 

Enceladus (#602) km3s−2    7.210561107781245 

Saturn (#699) km3s−2    3.793120627544314e7 

Orbital parameter over 1 year in 2040 Units Mean value Standard deviation 

Saturn-Enceladus radial distance m 238038774.031 809456.395 

Semi-major axis m 238411336.318 3154.260 

Eccentricity 10−3 4.935884 1.103842 

Orbital Period s 118760.47 2.36 
Orbital parameter over 2 weeks from 15/11/2040 Units Mean value Standard deviation 

Saturn-Enceladus radial distance m 238021103.842 815646.625 

Semi-major axis m 238411468.296 3206.122 

Eccentricity 10−3 4.985714 1.105758 

Orbital Period s 118760.57 2.40 

  
 The time-variations of mean elements represent a non-negligible problem, and most likely it will lead to some 
model’s displacements with respect to both CR3BP and ER3BP. A non-dimensional gravitational parameter 𝜇 is 

then computed starting from values in Table 2, so being equal to 

𝜇 = 1.90095713928102 ∙ 10−7 (19) 

Without loss of generality, the semi-major axis and eccentricity values considered for the CR3BP and ER3BP 
are the mean values computed over the two weeks, so having 𝑎12 = 238411468.296 and 𝑒12 = 0.004985714. 

A. Periodic solutions for the CR3BP at L1/L2 

 As visible in Figure 4, three families are generated for each Lagrange points near Enceladus. In the two plots, 
the Horizontal Lyapunov (in red), the Vertical Lyapunov (in green) and the Northern Halo family are shown. The 
Northern Halo family is symmetric with respect to the 𝑥𝑦-plane, therefore a Southern Halo family could be obtained 
by changing the sign for the 𝑧-variable, as it was described within Sect. II. 

 

 

Figure 4: The graphical representations of periodic solutions found in each family near L1/L2 equilibrium 

points. In red Horizontal Lyapunov, in green Vertical Lyapunov and in blue the Northern Halo family. The 

initial conditions (lying within the 𝒙𝒛-plane) are separated by around 190 km between members in the plots. 
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The members of each family in Figure 4 have been sampled from a continuous family generated with small 
position displacements over the 𝑥𝑧-plane. As stated, the numerical continuation over a small interval makes sure that 

the new ICs are close enough to the ideal ones. In this simulation periodic solutions are “shifted” by 4e-7 (in the 
non-dimensional representation) on the 𝑥𝑧-plane, which is equivalent to having member-solutions that are separated 
by almost 100 meters difference. This result follows the conversion of the length unit, in this case referring to the 

semi-major axis value of the Saturn-Enceladus system. In Figure 4 a single orbit every 1000 members has been 
illustrated for graphical clarity, therefore the 𝑥𝑧-distance between consecutive ICs in those plots is around 95 km. 

What is remarkable is that the entire analysis over the CR3BP does not require the knowledge on the numerical 
value of semi-major axis, so it holds for systems with a very similar non-dimensional 𝜇-parameter. The linear 

stability is analyzed looking at the characteristic multipliers of the periodic solutions. As mentioned, those are the 
eigenvalues of the Monodromy matrix propagated along a certain periodic trajectory, which was previously found 
with the DC-algorithm.  

The symplectic nature of the CR3BP has been already discussed, while it is also visible in the existence of 

reciprocal values within Figure 5. In each plot a family of solutions is considered, and the absolute value of the 
characteristic multipliers is shown. It should be noted that two of those eigenvalues are real and equal to +1, while 
the others are complex-valued. In this work we will not further discuss the orbital properties linked with the complex 
part and its geometrical meaning, along with bifurcations along each family. The latter has been deeply investigated 
in Ref. [34] for the Earth-Moon CR3BP and it is not so much relevant for the scope of this research work. 

 

 

Figure 5: The analysis of linear stability for the six families of periodic solutions has been shown based on the 

absolute values of their characteristic multipliers. For each value larger than 1, there is always a reciprocal 

value due to the symplectic nature of the CR3BP. See text for more details on this analysis. 

 
As visible in Figure 5, most of the members in each family present a 1

st
-order and/or 2

nd
-order linear stability. In 

fact only for the Halo case we have a small region with zeroth-order stability. To be more precise, a threshold shall 
be defined due to the fact that at bifurcations points, where the stability orders change, it is very difficult to well -
define whether numerical errors are actually affecting the computation. A condition has been defined here such that 
when |𝜆𝑖| > 1.001, then the instability order is increased. In Figure 6, the previous plots for the Halo family (for L1 

and L2) have been reproduced with a different scale to inspect the small zeroth-order instability region found. 
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Figure 6: The modules of each characteristic multiplier for the Halo family at L1 (TOP) and L2 (BOTTOM) 

are shown near the value one. The zeroth-order instability region is discussed in more details within the text. 

 
It is visible that the zeroth-order instability region (Figure 6) has still some characteristic multipliers with module 

slightly larger than one. Moreover, close to members 9300-9350 we have also a peculiar behavior, with a bifurcation 
that increases the order of instability. The latter is a Period-Doubling (or Flip) bifurcation where a new periodic 

solution can arise with a period twice as the original period (see Ref. [34]). 
 

 

Figure 7: Periodic trajectories of the Halo family at L1 are propagated over 22 days, and their radial distance 

from Enceladus is shown. It should be observed that the Member #11700 is the only one having zeroth-order 

instability, therefore its periodic behavior perfectly holds for the entire simulation period. 
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In this research the zeroth-order instability is further discussed since most likely leading to much more stable 
orbits that could be exploited for science operations in support to the exploration of the Saturn’s icy moon. A last 
small analysis, presented in Figure 7, shows some members of the Halo family at L1 propagated for 22 days (or 16 
Enceladus revolutions) under the CR3BP dynamics. The radial distance from Enceladus is shown and it is visible 

that the Member #11700, which was the only one with zeroth-order instability, performs better in terms of orbit’s 
repeatability. The other periodic solutions found were either crashing into Enceladus, or diverging in the unstable 
manifolds mentioned before. 

Before discussing the existence of resonance solutions within this (linearly) stable set of solutions, it is important 
to add some constrains to the mission design problem here discussed. In fact, some of those solutions are actually at 
a radial distance (from Enceladus’ center-of-mass) that is smaller than Enceladus’ radius. Another aspect concerns 

the robustness of this periodic trajectory, where clearly uncertainty in the dynamics parameters could further limit 
the applicability of missions flying at extremely low altitudes (e.g. hundreds meters over the tiger stripes region). 

In Figure 8 the members of the Southern Halo family (at L1/L2) with zeroth-order instability have been shown in 
green color, while in black color we have members at the edges (i.e. bifurcations) of this set of solutions. It can be 
observed that solutions are really close to the Enceladus South Polar region, which is of high interest to the scientific 
community due to cry-volcanic activity at the Tiger Stripes region. Nonetheless, not all solutions are feasible since 

some of them are actually colliding with Enceladus surface. The continuity of this set of (spectrally) stable solutions 
allows finding infinite trajectories, at least when considering a dynamics described by the CR3BP. 

 

 

Figure 8: The graphical representation of the geometry for all periodic solutions having zeroth-order 

instability in the Southern Halo family at the L1/L2 points. Note that same results hold for the Northern Halo 

family, but those ones are not so interesting since performing fly-bys maneuvers on the northern hemisphere, 

where cry-volcanic activity is absent or less evident than activity in the Tiger Stripes region. 

At this point we can consider the members of the Southern Halo family that have zeroth-order instability, being 
the member-sets {11380-11998} and {11359-11978} for L1 and L2, respectively. 
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V. Resonance solutions in the ER3BP 

 Considering here the set of solutions previously described, it is possible to investigate their orbital motion in 
terms of periodicity. In particular for both Halo families (at L1 and L2) we consider the minimum altitude over the 
Enceladus surface modeled as a sphere of 252.1 km radius. This assumption is not actually correct and the three 

body-axes of this icy moon are known to be different. Nonetheless, for the purpose of this analysis, we will consider 
such a simplified spherical model to further discuss the set of linearly stable solutions.  
 In Figure 9, the altitude over Enceladus is plotted against the orbital period expected for each Halo trajectory. In 
addition to that, some resonance periods have been highlighted, referring to the fraction with respect to the orbital 
revolution of Enceladus around Saturn (see Table 2). It is interesting to note that the Southern Halo periodic solution 
proposed by Russell and Lara [29], with a period of around 723 minutes, lies at the boundary of this set containing 

periodic stable solutions with zeroth-order instability.  
 The combinations of N and M defined in Eq. (18) are here limited since for high values of N we have a much 
longer orbital period for the S/C, a factor that can limit the rate of passages over the Tiger Stripes region. Moreover, 
also from a computational point of view, the convergence of the numerical continuation to the ER3BP depends on 
the integration period. For resonance solutions with N large, the period will be large and most likely will be unstable 
during the correction step with the modified DC-algorithm. We limit N ≤ 10 revolutions (almost two weeks). 

 

 

Figure 9: The altitude of linearly stable periodic solutions in the Southern Halo family is given considering 

Enceladus as a sphere with 252.1 km of mean radius. The minimum altitude is compared against the orbital 

period of each solution, and resonance candidates hitting the satellite’s surface have been colored in black. 

The most suitable resonance solutions for both Halo families at L1 and L2 are the ones with revolution period as 
{6/17, 5/14, 9/25, 4/11}. The resonance solution {7/20} is controversial due to the fact that it theoretically could 
hold for the Halo family at L1, thus substantially depending on the actual geometry of Enceladus. The latter has 
been here simplified but further investigations could allow assessing the feasibility of its use. Another aspect to be 
considered is that in the formulation used here, CR3BP and ER3BP models do not take into account oblateness 
effects. Those perturbations are fundamental and will largely affect the orbital motion, especially for closed 

trajectories with an altitude below 34 km. 
In Table 3, the shooting conditions for these four resonance solutions are given for both L1 and L2, thus 

referring to non-dimensional coordinates of the CR3BP relative to this specific 𝜇-value. Moreover, the approximate 
minimum altitude is shown for each solution considering only feasible trajectories that will not impact with 

Enceladus’ surface. 
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Table 3: The initial conditions are given for the four resonance Halo solutions that have been identified in the 

zeroth-order instability region near Enceladus. The resonance parameters N and M are listed, as described in 

the text, along with an approximated altitude over the Enceladus mean radius (here 252.1 km). 

Altitude \ Halo L1 N M Shooting 𝑥0 [-] Shooting 𝑧0 [-] Shooting 𝑣𝑦0 [-] 

∼ 31.351km 4 11 0.999937552716232 -0.00118728429669647 -0.0168276813565369 

∼ 23.076km 9 25 0.999950255760693 -0.00115314021509136 -0.0171124618144835 

∼ 16.616km 5 14 0.999959473680921 -0.00112638778947355 -0.0173426273074953 

∼ 7.180km 6 17 0.999971870847787 -0.00108717260003120 -0.0176923529120416 

Altitude \ Halo L2 N M Shooting 𝑥0 [-] Shooting 𝑧0 [-] Shooting 𝑣𝑦0 [-] 

∼ 29.352km 4 11 1.000062853735440 -0.00117884381145460 0.0168877463349484 

∼ 21.167km 9 25 1.000050323704250 -0.00114508450748597 0.0171721668270576 

∼ 14.778km 5 14 1.000041224007450 -0.00111863600970700 0.0174020137465557 

∼ 5.447km 6 17 1.000028974373470 -0.00107987055384213 0.0177511922561054 

 
 Before the extension of a resonance solution into the ER3BP, its linear stability can be checked over the 
expected period 𝑇𝐸  relatively to the Elliptic case, as given in Eq. (18). Moreover, from a stability point of view, the 

characteristic multipliers can be still analyzed for this solution, but they will be computed over M revolutions since 
this is the period needed by that solution to be valid within the ER3BP model (see Ref. [34]). Considering the largest 
eigenvalues (in magnitude) for the CR3BP, it follows that for the ER3BP we have 

|𝜆𝑀𝐴𝑋|𝐸𝑅3𝐵𝑃 = (|𝜆𝑀𝐴𝑋|𝐶𝑅3𝐵𝑃)
𝑀 (20) 

and this can confirm what stated regarding the (linear) stability of solution with a very long period. Especially when 
considering numerical errors, an eigenvalue with a module exceeding “one” by 0.001 will approximately be M times 
larger in the ER3BP. This is a rule of thumb that can be proved by making use of the previous Eq. (20). For what 
concerns the previous solutions, it is found that the largest eigenvalue’s module exceeds “one” by 

 2.5e-03 (L1) and 3.6e-03 (L2) for the N4M11 resonance orbit; 

 3.1e-11 (L1) and 5.9e-03 (L2) for the N9M25 resonance orbit; 

 3.7e-12 (L1) and 7.9e-11 (L2) for the N5M14 resonance orbit; 

 1.6e-04 (L1) and 2.0e-11 (L2) for the N6M17 resonance orbit. 

B. Elliptic Halo solutions in the ER3BP 

The two resonance solutions for N = 5 and M = 14 have been tested, where the periodicity holds for hundreds of 
revolutions, therefore being a perfect candidate for the numerical continuation into the ER3BP. Given that M is 

even, it follows from Table 1 that this solution bifurcates into a left-Halo and right-Halo periodic trajectory within 
the ER3BP. In fact, considering for the elliptic case the orbital period 𝑇𝐸  in Eq. (18), we see that the initial condition 
at 𝑒 = 0 is the same whether we starts at 𝜃0 = 0 or 𝜃0 = 𝜋. The same is not true for cases when M is odd, thus 

leading to the so-called apo-Halo and peri-Halo solutions. [34] 
The two solutions (left/right) depends upon the initial condition starting within the 𝑥𝑧-plane. The initial time is 

still set as 𝜃0 = 0 for both cases, while the shooting point can be found in each of the two intersections of  the Halo 

family previously generated. The symmetry with respect to the 𝑥𝑦-plane is still valid and both Southern/Northern 

solutions are admitted. In our case, we focus on the Southern type for the mission constrains discussed before, and 
so we continue considering for each L-point two shooting conditions. The latter are then numerically continued till 
reaching the eccentricity mean value that has been given in Table 2. 

The numerical continuation of the N5M14 resonance solution shows a very different behavior when starting at 
the intersection closer or farther from Enceladus (see Figure 8). In fact in the bifurcation, also the instability order 
changes and this can lead to a divergence of the modified DC-algorithm. Nonetheless, a solution for each Lagrange 

point was found, being part of the left-group since having a positive and negative shooting 𝑣𝑦0 velocity for L1 and 

for L2, respectively. In Table 4 the conditions for the generation of the left-Halo (Southern) solution are given and 
compared (in non-dimensional units) to the respective shooting conditions found in the CR3BP. To observe that 
these results refers to a specific 𝜇-value here adopted, as also the fact that resonance conditions changes depending 

on the revolution period between primary and secondary masses. This dependency makes the ER3BP no more 
independent from the semi-major axis value that was not considered at all in the CR3BP model. 
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Table 4: The shooting conditions are given in non-dimensional coordinates for the Southern Halo family with 

resonance N5M14 in the CR3BP. In the ER3BP the family bifurcates, and here the two left-Halo solutions 

(for L1 and L2) are given. Initial time for these conditions is 𝜽𝟎 = 𝟎, so when Enceladus is at the perigee. 

L-point Model Family Shooting 𝑥0 [-] Shooting 𝑧0 [-] Shooting 𝑣𝑦0 [-] 

L1 CR3BP Halo + 0.997477387363711 – 0.0048864999370884 + 0.0053770757276075 

L1 ER3BP Left-Halo + 0.997517723018798 – 0.0047932140335318 + 0.0055207157334874 

L2 CR3BP Halo + 1.002503133204690 – 0.0048942604359270 – 0.0053471516259500 

L2 ER3BP Left-Halo + 1.002453755567898 – 0.0047714680888800 – 0.0055303171375790 

 
At this point, we present a brief analysis performed using an ephemeris model in order to assess the feasibility of 
such solutions in a more realistic scenario. 

C. Validation of the solutions using an ephemeris model 

The resonance solutions discussed so far have been integrated by using a precise orbit  integrator. In the 
simulation setup we considered only Saturn and Enceladus as point masses with the standard gravitational 
parameters as listed in Table 2, i.e. the spacecraft has only two gravity nodes. As mentioned, the DE438 has been 
used for the planetary ephemerides, while the SAT425 has been used for the Saturn satellite ephemerides.  

We have firstly verified that considering relativistic effects and gravitational attraction from other bodies in the 
Solar System has a negligible impact on the propagation of the orbit for the time-span of interest. On the other hand, 

the oblateness of both Saturn and Enceladus can have a significant effect on orbital stability. In particular, Saturn 
has a large value of J2, in the spherical harmonic gravity expansion, equal to 16290.573 ± 0.028e-6 and to 5435.2 ± 
34.9 for Saturn and Enceladus, respectively [62]. Higher orders of the gravity spherical harmonic expansion are 
expected to be negligible. Anyhow, a careful analysis is needed in order to assess the stability considering also the 
oblateness perturbations.   

In the realistic scenario we compare the effects of a shooting condition violating constrains on the shooting time, 

here being 𝜃0 = 0 for all solutions. It follows that we should start at a point where Enceladus is at the perigee of the 
quasi-Keplerian motion described around Saturn. The starting time for the simulation found on the 15

th
 of November 

was set at around 00:04:45 (Barycentric Dynamical Time, or TDB), while we tested the same solution for a different 

starting time. In particular, we considered an initial time for Enceladus at its apogee during the same day (at around 
16:32:59 TDB) in order to highlight possible effects on the solution for the ER3BP. 

The results are given for the left-Halo solution at L1, with similar results as for the solution at L2. As it can be 
noted, the adoption of an ephemeris model destroys pretty quickly the periodicity, while surely the same exact initial 
condition behaves much differently when constrains on the shooting time is not fulfilled. This can be physically 
explained by the fact that the shooting velocity in Table 4 refers to a rotating frame and the angular velocity in the 

ER3BP can change substantially when the eccentricity is large enough. This is directly visible in the Eq. (2), while 
in the Figure 10 the S/C radial distance from Enceladus is represented for visualizing this added instability.  

 

 

Figure 10: Results of simulations in a realistic scenario using the ephemerides model, where we compare the 

same initial condition for the left-Halo solution at L1 for two shooting times respectively as 𝜽𝟎 = 𝟎 (LEFT) 

and 𝜽𝟎 = 𝝅 (RIGHT). The radial distance from Enceladus, and its periodicity, is represented over time. 
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VI. Conclusions 

In this research work we have analyzed linearly stable orbits around the Saturn’s moon Enceladus. The interest 
about the exploration of this moon has increased after the discovery of the plume ejecta by the Cassini mission. 
Several mission scenarios have been investigated in the past, and many more concepts are most likely going to be 

proposed in the next few years, following the recent discoveries at the so-called Tiger Stripes region. The mission 
design is not trivial, while complicated by the unstable dynamics near Enceladus. In fact, the vicinity of Saturn, 
being much heavier, causes large perturbations to the S/C motion. The latter was studied by considering solutions 
orbiting around Enceladus, mostly in resonance with its orbital motion around Saturn. 

The analysis presented here started with an analysis of the Saturn-Enceladus system based a CR3BP model, 
which assumes that the two celestial bodies orbit around their mutual barycenter in circular trajectories. Several 

families of solutions can be found near the equilibrium points of the system, especially looking at the L1/L2 points 
that are less than 1000 km away from Enceladus. The continuity of these families is guaranteed by the symplectic 
nature of the problem, therefore having an infinite set of possible trajectory for the mission orbit design. The latter 
has been considered in support to low-altitude fly-by operations in order to sample material ejected at the Tiger 
Stripes region, near the Enceladus South Pole.  

The spectral stability has been studied, showing that only suitable solutions are all part of the Halo family, more 

precisely the Southern Halo one. The latter exist at both L1 and L2 points, while having similar characteristics and 
treated in the past researches by using a Hill model. We considered an analysis on members of this family generated 
near the Lagrange points and numerically continued till reaching Enceladus surface. 

The linearly stable region has also favorable geometric characteristics since very close to the surface of 
Enceladus, here assumed as a sphere-shaped body. Nonetheless, within this set of periodic solutions, some of the 
trajectories have been identified as in resonance with Enceladus motion around Saturn. This fact is relevant due to 

the fact that in the elliptic problem those resonance solutions hold, while the continuity of each periodic family is 
destroyed. Some of these resonance solutions are discarded since impacting with Enceladus surface, while four 
different resonance orbits were identified.  

Considering one of the previous solution, here being defined a N5M14 (N as Enceladus revolutions, M as S/C 
revolutions), the analysis of its linear stability showed favorable characteristics for being extended to the ER3BP 
model. The latter is again based on a numerical continuation in the eccentricity parameter, while a bifurcation of the 

solutions has been also discussed. The selected orbits can be found as a Left-Halo or Right-Halo solution, the former 
being more stable and so further discussed in this work. 

The solution is then analyzed with a precise orbit integrator making use of latest planetary and satellite 
ephemeris. In this way, it can be noted that the conditions defined by the ER3BP are really important for achieving 
more reliable periodic solutions. Moreover, differently from an ideal ER3BP model, the large time-variations of the 
eccentricity (due to resonance effects with another Saturn’s satellite, here Dione) lead to unstable orbits. This time-

variation should be taken into account and investigated in future researches by developing an ER3BP model that 
takes into accounts these non-negligible effects. 
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