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ABSTRACT: If we want to apply neural networks to categorical data, we must necessarily 
adopt a coding strategy. This is a common problem for many multivariate techniques and 
several approaches have been suggested. In this paper, a method is proposed to analyze 
categorical variables with high cardinality. An application to simulated data illustrates the 
interest of the proposal.
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1 Introduction

Several machine learning algorithms cannot handle directly categorical variables and,
in any case, categorical data can pose a serious problem if they have too many 
categories. Postal code is a good example of a categorical variable with high 
cardinality. This paper starts with some considerations on the currently used 
approaches, then an efficient encoding method is proposed for supervised neural 
networks when categorical variables with high cardinality need to be analyzed.

2 Approaches to quantify categorical features

Several methods have been proposed to encode categorical variables (a recent review
is Hancock et al. 2020). From our point of view, they can be classified as:
1- Methods that do not use the target variable. In this category we find rather crude 

methods, such as the Label Encoder or the Hashing Encoder. The quantifications 
obtained are essentially arbitrary.

2- Methods that use only the target variable. The Target Encoder (TE) replaces the 
categorical variable with the conditional means of the target variable. This 
method often produces data leakage, to limit this inconvenience the Leave one 
out Encoder or the Catboost Encoder have been proposed.

3- Methods based on One Hot Encoding (OHE). In this approach a new binary 
variable is introduced for each category, indicating the presence or absence of 
that category. The eventual exclusion of one category is due to the 

multicollinearity problem (the dummy variable trap), but applying machine
learning models, as the neural networks, it is necessary to include all the 
categories, otherwise we would never consider the omitted category.

3 Single and multiple quantifications by OHE

One Hot Encoding is the most used method. The coding in dummies does not depend 
directly on the target. Despite its great use, some drawbacks of OHE are well known:
the tendency of dummy variables to cause overfitting; the introduction of many new 
orthogonal variables, which can slow down or affect learning; memory problems.

The encoding of categorical variables has been extensively studied in the approach 
based on Optimal Scaling (OS, Gifi 1990) where the embedding of the categories in a 
p-dimensional space was proposed. Given a categorical variable X which can assume 
the values  1 2, ,..., ka a a , with k the number of categories, n the number of
observations, then  1 2, ,..., kG g g g= is the indicator matrix with dimension n × k. Let 
c a vector of k real values, the quantification of X is the vector:
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The values of c are the quantifications of the k categories and have to be estimated. 
The vector of the quantified data x is a linear combination of the indicator variables,
which are an orthogonal base of Rk, then is defined in a subspace of Rk. To obtain 
ordered quantifications in the OS, the order indicator matrices, with non-negativity 
constraints on the coefficients, can be used (Gifi 1990).

In expression (1) we considered a single quantification for a categorical variable. 
There are several reasons that may lead to consider two or more quantifications of the 
same variable (Di Ciaccio 2020). Considering a regressive problem, in OS 
(MORALS, Young et al. 1976) it is possible to obtain a multiple quantification by 
means of copies of the variables (Gifi 1990). After choosing the number p of 
quantifications, we can extend (1) as:
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In neural network applications, fixing a low p, equal to 2 or 3, is usually enough
for a good quantification of categorical variables even with high cardinality.

To introduce quantification (2) in a neural network it is necessary to define, for 
each categorical variable, a distinct input and a dense layer with p neurons without 
bias and with linear activation function. In the next layer the outputs, coming from all 
the variables, must be concatenated. For example, given 3 input categorical variables,
each with 100 categories, and one hidden layer containing 512 neurons, using this 
approach we must estimate (considering a regression problem and p=2) 4.697 weights. 
Given t=512, p=2, m=3, kj=100 for each j, the Neural Network can be written:
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where ( ). is the activation function of the hidden layer, r
jc is the quantification of 

the j-th variable on the r-th dimension. Conversely, in the classical OHE encoding:
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obtaining 154.625 weights to estimate.
Gj can be very big sparse matrices (sparsity equal to 1 1 jk− ), but we can avoid 

building such an inefficient coding estimating the dense matrix of quantifications Cj

of expression (3) without building the sparse matrix Gj.
In the first step, for a categorical variable X, the k-dimensional 'vocabulary' V of 

the categories have to be created and indexed. Then all the categories in the data will 
be substituted by the corresponding numerical index in the vocabulary, in a similar 
way to what the Label Encoder does. Call ia the modality assumed by the categorical 
variable, and [ ]iav the index in the vocabulary corresponding to this modality. The i-
th row of the ( )n p matrix of the quantified variable X can be expressed as:

[ [ ]]ii a=C vx (5)
Each line of the quantification matrix C can be seen as the p-dimensional 

representation of one category. Inspired by Natural Language Processing, Guo & 
Berkhahn's (2016) entity embedding technique takes a similar approach. To obtain the 
estimate of C in a supervised neural network, the gradient descent and the 
backpropagation can be used, where the matrix C is initialized with random values 
taken from a standardized normal and subsequently updated through an iterative 
procedure to minimize the loss function, which in the case of regression is the classic 
Sum of Square Error. We call this technique LEE, Low Embedding Encoder, and to
illustrate the proposed approach, a small simulation for a regression problem was 
build. Given three qualitative variables 1 2 3, ,X X X with 200 categories each (coded 
as the integers between 1 and 200), for each variable 20,000 observations were
extracted randomly from a uniform distribution, then Y was computed by the rules:
( 1 2X X and 3 100X  )→ ( )20,1.5Y N
( 1 2X X and 3 100X  )→ ( )10,1.5Y N else ( )1,1.5Y N

There are only 3 expected values 1 2 3( | , , )E Y x x x , i.e. (1, 10, 20), so an optimal 
regressive model should predict these values. Note that the expected value of Y
depends on the interaction of the three categorical variables and that the three 
conditional distributions of Y overlap in the tails. The dataset was then splitted as
training-set (50%) and test-set (50%). Regression algorithms such as MORALS or 
Regression Tree cannot make a satisfactory prediction on this data unless introducing
explicitly the interaction terms into the model, producing thousands of dummy 
variables. On the contrary, neural networks are able to autonomously detect the 
interactions, then a small neural network was chosen to predict the target Y in our 
simulation. The network includes an input layer, two hidden layers with 8 and 3 
neurons (elu activation function), and 1 output neuron with linear activation function. 
With the LEE approach, each categorical variable is considered a separate input and 
one dense layer with 2 neurons (p = 2) and no bias, for each categorical variable, is 
added to the input. If we want to avoid sparse matrices, an embedding layer can be

added, for each original categorical variable, using (5). It was also checked that the 
results obtained did not improve, on the test-set, by changing the size of the network 
or the number of iterations. Although the Target Encoder was applied also with a 
bigger neural network, with 32 neurons in each hidden layer, the result is very poor
even on the training-set, as this encoding prevents interactions from being identified.

Table 1. Comparison between three approaches

MSE - train MSE - test       n. parameters
OHE 2.11 6.18 4839
LEE 2.55 4.82 1287
Target Encoder 61.47 61.48 1217

Figure 1. OHE on the test-set Figure 2. LEE on the test-set

        

4 Conclusions
The proposed method LEE allows to apply neural networks to categorical variables 
with high cardinality, reducing the number of parameters and memory resources. The 
results obtained show an increased predictive capacity of the neural network thanks 
to the more efficient architecture.
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