
applied  
sciences

Article

Nonlinear Dynamic Response of Ropeway Roller Batteries via
an Asymptotic Approach

Andrea Arena

����������
�������

Citation: Arena, A. Nonlinear

Dynamic Response of Ropeway

Roller Batteries via an Asymptotic

Approach. Appl. Sci. 2021, 11, 9486.

https://dx.doi.org/10.3390/

app11209486

Academic Editor: Angelo Luongo

Received: 17 September 2021

Accepted: 7 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Structural and Geotechnical Engineering, Sapienza University of Rome, 00184 Rome, Italy;
andrea.arena@uniroma1.it; Tel.: +39-06-44585-885

Abstract: The nonlinear dynamic features of compression roller batteries were investigated together
with their nonlinear response to primary resonance excitation and to internal interactions between
modes. Starting from a parametric nonlinear model based on a previously developed Lagrangian
formulation, asymptotic treatment of the equations of motion was first performed to characterize
the nonlinearity of the lowest nonlinear normal modes of the system. They were found to be
characterized by a softening nonlinearity associated with the stiffness terms. Subsequently, a direct
time integration of the equations of motion was performed to compute the frequency response curves
(FRCs) when the system is subjected to direct harmonic excitations causing the primary resonance
of the lowest skew-symmetric mode shape. The method of multiple scales was then employed to
study the bifurcation behavior and deliver closed-form expressions of the FRCs and of the loci of the
fold bifurcation points, which provide the stability regions of the system. Furthermore, conditions
for the onset of internal resonances between the lowest roller battery modes were found, and a 2:1
resonance between the third and first modes of the system was investigated in the case of harmonic
excitation having a frequency close to the first mode and the third mode, respectively.

Keywords: ropeways; nonlinear dynamics; asymptotic analysis; primary resonances; internal resonances

1. Introduction

Aerial ropeways are transportation systems which are becoming increasingly popular
in recent years, not only in mountain regions with ski resorts and in sightseeing areas,
but also in urban environments [1]. Two criteria can be used to classify ropeway systems,
namely, the number of cables, and the operating mode. In this work, attention is focused
on monocable ropeways, in which the vehicles are fixed on a single propelling cable. The
cable travels continuously in a loop at a uniform speed and passes across the supporting
towers, equipped with an ensemble of rollers, which facilitate a smooth cable transit across
the tower where a change of slope occurs. Investigating the static and dynamic response
of these multibody systems is challenging, and the literature on this topic is limited and
mainly focused on the dynamic response of the vehicles under the ropeway operating
condition [2,3]. Some works [4–6] investigated the dynamic behavior of carrying hauling
ropes, dealing with the study of the effects of moving loads in an existing ropeway system,
while [7] investigated the nonlinear coupling between the motion of the hauling cable and
the swaying dynamics of the cabins in bi-cable circulating gondola ropeway systems. They
show that these systems depend on the track inclination. A recent work [8] presented
a computational approach for determining the initial tension of the carrying cable of a
bi-cable ropeway under an in-service moving load, and to investigate the influence of
nonlinear effects on the displacement state and axial forces. Furthermore, a theoretical
model that solves the minimization of aerial ropeway vehicle oscillations, induced as the
vehicle passes over a support, was proposed in [9], and then experimentally validated by
the same authors in [10].

On the other hand, little attention was paid to the study of the local dynamic inter-
actions taking place between the vehicle, the cable, the roller battery, and the supporting
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tower; few works have investigated these aspects [11]. A nonlinear model of compression
roller batteries, used as a starting point for the studies proposed in the present work, was
first developed in [12,13]. In such works, experimental tests were also carried out on an
operating ropeway, so as to identify the modal characteristics of the system by adopting
the Enhanced Frequency Domain Decomposition method, and to validate the analytical
model by comparing the experimental dynamic responses with the numerical simulations.
The model was further extended in [14,15] to include a passive vibration control system
made by a group of linear or hysteretic vibration absorbers to mitigate the accelerations of
roller batteries in cableways caused by vehicle transit.

To the best of the author’s knowledge, there are no publications dealing with the char-
acterization of the nonlinear dynamic behavior of the ropeways roller batteries or aimed
at investigating their dynamic response to periodic excitations. The present work aims
at filling the lack of knowledge regarding the characterization of the nonlinear dynamic
features of roller battery systems and to investigate the effects of the periodic excitations
induced by the moving cable that may give rise to resonance phenomena and nonlinear
modal interactions. These phenomena were studied in the past in different mechanical
systems, such as cranes [16–19], tethering [20], pendulum systems [21,22], piezoelectric
beams [23,24], and plates [25,26], or, more generally, in slender structures possessing strong
geometric nonlinearities [27–29]. Such nonlinearities can affect the dynamic response
of highly deformable structural elements and can be suitably exploited for practical ap-
plications, as it was largely demonstrated in the literature [30–33]. Within this context,
the asymptotic approach proved to be a suitable method to investigate the dynamics of
nonlinear mechanical systems. This approach allows us to perform sensitivity analyses
on the effect of the system parameters on the nonlinear dynamic response by determining
closed-form expressions of the bifurcation response.

By employing the method of multiple scales [34–36], the asymptotic frequency re-
sponse analyses were conducted in the present work, together with a deep discussion
of the meticulously derived analytical treatment to highlight the scenarios of nonlinear
interactions between the external excitation and the modes of the system. Furthermore,
a thorough bifurcation analysis, carried out via path-following of the fixed points of the
modulation equations shed light onto several interesting features of the roller battery single-
and coupled-mode responses.

2. Nonlinear Dynamic Characterization

The proposed mechanical model of compression roller batteries is based on the for-
mulation proposed, for the first time, in [13], which includes finite kinematics, for the
description of the rollers and the vehicle motions, and obtains the nonlinear equations of
motion via an energetic approach. In such a model, the mechanical system is represented
by an assembly of four mechanical subsystems, namely, the hoisting beam supporting the
roller battery, the roller battery, the elastic cable traveling across the ropeway and, finally,
the cabin attached to the cable. The cable is modeled as a one-dimensional pre-stressed
string. On the other hand, the roller battery is a mechanism made of eight rollers rigidly
connected to each other by means of hierarchical balancers rotating around moving hinges
and positioned symmetrically with respect to a connection point with the hoisting beam.
The latter is modeled as an equivalent one-dimensional Euler-Bernoulli beam, while the
cabin behaves like a pendulum with the support point fixed to the moving cable.

The whole modeling procedure, including all relevant details of the underlying com-
plex mechanical behavior, such as the effects of the vehicle grip on the rollers or the periodic
forcing caused by the interwire spacing on the outer layer of the monocable rope, was
derived and extensively discussed in [13]. Therefore, the author of the present work will
refer to the equations and mechanical parameters of the case-study roller battery reported
in the above mentioned work. Since, in this paper, only the nonlinear dynamic behavior
of the roller battery system is investigated and characterized, the presence of the cabin is
neglected. Therefore, the mechanical formulation, reduced to the dynamic configuration
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considered in this work, is briefly summarized, and all the relevant equations are reported
in the next sections.

2.1. Kinematic Descriptors

The kinematics are described in the plane containing the direction collinear with the
cable configuration as well as the vertical direction. In particular, two fixed frames are
introduced, namely, the frame

(
e0

1, e0
2
)

with origin in C and oriented as the horizontal
and vertical directions, respectively. The frame (e1, e2), centered in C and oriented along
the roller battery in the inclined direction, thus rotated with respect to the fixed (global)
frame by ϕR (see Figure 1). The geometric parameters characterizing the reference config-
uration of the roller battery, the cable, the cabin, and the grip are shown in Figure 1. In
particular, along the direction e1, dC denotes the distance between C and Bk (k = 1, 2), dB
is the distance between Bk and Aj, and dA represents the distance between Aj and each
of the two corresponding roller-cable contact points Pi. Similarly, the distances hC, hB,
and hA represent the distances along e2 between the mentioned hinges. The parameters
characterizing the reference geometry of the cable are the side lengths LS1 and LS2 (i.e., the
distances of the two supports from the first and last rollers P1 and P8, respectively).
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Figure 1. (Top) Geometric characteristics of the roller battery system in compression towers.
(Bottom) Degrees-of-freedom and FE discretization (i.e., diamonds symbols).

The roller battery degrees of freedom (DOFs) are the rotations θAj(t), θBk (t), and θC(t),
about the hinges Aj, Bk, and C, respectively. Therefore, the current configuration of the
roller battery can be described by the vectors rPi (t), rAj(t), rBk (t), and rC(t) which provide,
at time t, the positions of the cable contact points Pi (i = 1, . . . , 8) and of the hinges Aj
(j = 1, . . . , 4), Bk (k = 1, 2) and C, respectively, or by the displacement vectors of the above
mentioned points, that is, uBk (t), uAj(t), and uPi (t), respectively.

To discretize the time- and space-dependent function v(s, t) representing the vertical
displacement of the centerline hoisting cantilever beam, having length Lhb, the Galerkin
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method is adopted by considering a suitable number of trial functions to approximate the
dynamics of the beam-like subsystem. In particular, the lowest Nb mode shapes the φb(s) of
the cantilever beam, which are employed to discretize the beam deflection in space, while
qb(t) (b = 1, . . . , Nb) represent the time-dependent generalized coordinates, hence, the
beam deflection can be written as v(s, t) ≈ ∑Nb

b=1 φb(x)qb(t), and the vertical displacement
of point C turns out to be vC(t) = v(Lhb, t).

On the other hand, due to the multiple contact points Pi (i = 1, . . . , 8) between the
cable and roller battery, the cable discretization is carried out according to the finite element
(FE) technique. In particular, ne = 20 finite elements are used to discretize the cable
length such that each contact point Pi coincides with a finite element node while the cable
support points are the boundary nodes. First-order Lagrangian polynomials are employed
to approximate the cable transversal displacement and to describe the kinematic function
we(ζ, t) in the eth element. The latter can be written as we(ζ, t) = Ne(ζ)Te X(t), where the
subscript e indicates the element, ζ is the local arclength, Ne(ζ) is the 1× 2 vector collecting
the shape functions of each element, X(t) = [p1(t), . . . , pne+1(t)]

> is the vector of the nodal
degrees of freedom, having size (ne + 1)× 1, and Te is the 2× (ne + 1) extraction matrix.
Finally, due to the cable fixed boundary conditions, it turns out that p1(t) = pne+1(t) = 0.

The unilateral contacts at points Pi (i = 1, . . . , 8) between the rollers and the cable are
modeled by introducing fictitious springs collocated at each point Pi. These springs behave
as internal elastic constraints whose stiffness Ki is suitably tuned in order to simulate a
quasi-rigid behavior.

2.2. Nonlinear Equations of Motion

The equations governing the motion of the roller battery system, including the interac-
tion between the hoisting beam and the cable are derived via the Euler-Lagrange approach.
To this end, the potential and kinetic energies of the beam and cable are first calculated
together with the potential energy of the fictitious springs and the kinetic energy of the
rollers to calculate the Lagrangian of the system, from which the nonlinear equations of
motion of the roller battery are obtained. In particular, the potential energy of the hoisting
beam and the cable can be expressed as:

Ub(t) =
1
2

∫ Lhb

0
∂ssv(s, t)EIhb∂ssv(s, t)ds ,

Uc(t) =
1
2

X(t)>Kc X(t) ,
(1)

respectively, where ∂s represents the partial differentiation with respect to the beam ar-
clength s (with origin at the beam clamped cross section), EIhb is the hoisting beam flexural
stiffness, while Kc, incorporating the cable pretension N0, is the global stiffness matrix of
the cable. The energy stored by the fictitious springs connecting the cable and the rollers is
computed as follows:

U f ict(t) =
1
2

8

∑
i=1

Ki∆Li(t)2 , (2)

where ∆Li(i) = uPi (t) · e2 − we,i(t) is the relative displacement along the roller local
direction e2 (corresponding to the transverse direction of the cable) and we,i(t) is the cable
displacement at the node corresponding to the ith roller.

On the other hand, the hoisting beam and the cable kinetic energy contributions to the
dynamics of the system are given by:

Tb(t) =
1
2

∫ Lhb

0
∂tv(s, t)ρAhb∂tv(s, t)ds ,

Tc(t) =
1
2

Ẋ(t)>Mc Ẋ(t) ,
(3)
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respectively, where ∂t and the overdot represent partial and total differentiation with
respect to time t, respectively. ρAhb is the hoisting beam mass per unit length, while Mc,
includes the cable mass per unit length ρAc, is the global mass matrix of the cable. Finally,
the kinetic energy possessed by the rollers can be calculated as:

TR(t) =
1
2

8

∑
i=1

mPi ṙPi · ṙPi +
1
2

4

∑
j=1

mAj ṙAj · ṙAj +
1
2

2

∑
k=1

mBk ṙBk · ṙBk +
1
2

mtb(v̇(Lhb, t))2, (4)

where mPi , mAj , and mBk are the equivalent masses of the roller battery lumped at Pi, Aj,
Bk, respectively, and mtb is part of the mass of the roller battery, acting at C. Finally, the
stored and the kinetic energies of the overall system are given by:

U (t) = Ub(t) + Uc(t) + U f ict(t),

T (t) = Tb(t) + Tc(t) + TR(t).
(5)

The simplifications made in the model formulation proposed in [13] include the
assumption of considering the cable as a straight, prestressed string. Nevertheless, when
crossing the roller battery system, the cable is subject to a small curvature due to the
slight change in slop of the cable passing from the first to the last roller. Although this
simplification does not imply relevant errors in the description of the dynamic behavior
of this system (as demonstrated by the comparison with experimental results in [13]), the
actual cable curvature generates a force acting on each roller transversally to the cable
direction. Moreover, since the cable is made by an assembly of wires wound around its
axis to study the effects of the interwire periodicity when the cable travels at the speed Vc,
harmonic forces orthogonal to the cable are considered to act on each roller. In particular,
by denoting Lper with the interwire distance of the outer cable layer, the periodic forces
arising from the cable curvature will exhibit a circular frequency given by Ω = 2πVc/Lper
and can be expressed as Fi(t) = F e2 cos Ωt (i = 1, . . . , 8), assuming that the maximum
amplitude F of the force is the same at each roller.

The motion equations are then obtained via a Lagrangian approach. In particular, by
introducing the Rayleigh dissipation function, and by calculating the Lagrangian of the
system L(t) = T (t)−U (t), the equations of motion can be written as:

d
dt

(
∂L
∂ẋl

)
− ∂L

∂xl
+ dl ẋl = Fl(t) , (6)

where l = 1, . . . , Ns and Ns = 7 + ne− 1 + Nb is the total number of DOFs of the system,
dl is the linear viscous damping coefficient associated with the lth DOF, d

dt represents total
differentiation with respect to time t, and xl is the lth generalized coordinate extracted out
of the Ns × 1 vector x(t) collecting the system degrees of freedom, namely, x(t) =

[
θA1(t)

θA2(t) θA3(t) θA4(t) θB1(t) θB2(t) θC(t) p2(t) . . . pne(t) q1(t) . . . qNb(t)
]> (see [13,14] for

further details). Finally, in Equation (6), Fl(t) represents the lth Lagrangian component
of the periodic excitation Fi(t) acting at the ith roller (i = 1, . . . , 8) and is calculated as:

Fl(t) = ∑8
i=1 Fi(t) ·

∂rPi
∂xl

.

2.3. Nondimensional Vector Form of the Equations of Motion

The equations of motion are then nondimensionalized by adopting the characteristic

time tc =
√

ρAhbL4
hb/EIhb and the equivalent beam span Lhb as the characteristic length,

respectively. The latter can be used for the nondimensionalization of the systems geometric
parameters, and for the unknown generalized coordinates corresponding to p2, . . . , pne
and q1, . . . , qNb , respectively. Furthermore, it turns out that fc = ρAhbL2

hb/t2
c can be used to

nondimensionalize the forces acting in the system: in this case, the nondimensional maxi-
mum force acting on each roller can be calculated as λ = F/ fc. The numerical simulations
are then carried out considering ne = 20 finite elements for the cable discretization and
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Nb = 4 trial functions for the hoisting beam discretization; therefore, the system dynamics
are described by Ns = 30 DOFs. The geometric and mechanical properties of the roller
battery considered in this work are taken in consonance with the data reported in [13].

The equations of motion reported in Equation (6) involve strongly nonlinear functions
of the system DOFs (i.e., nonlinear combinations of trigonometric functions); nevertheless,
their time integration can be quite easily performed by using well-established numerical
integration schemes. On the other hand, their analytical treatment requires an asymptotic
expansion of the nonlinear functions present in Equation (6). Since the system investigated
includes only geometric nonlinearities, the most relevant effects of these nonlinearities
are given by the approximating second- and third-order polynomial terms. Therefore, a
third-order Taylor expansion of Equation (6) was performed, and the obtained system
of nondimensional nonlinear equations of motion can be conveniently recast in vector
form as:

M ẍ + C ẋ + K x + i2(x, ẍ) + d2(ẋ, ẋ) + g2(x, x)

+ i3(x, x, ẍ) + d3(x, ẋ, ẋ) + g3(x, x, x) + f0 cos Ωt = 0,
(7)

where x is the Ns × 1 vector collecting the Ns generalized coordinates, while M, C, and K
are the Ns × Ns mass, viscous damping, and stiffness matrices of the system, respectively.
Moreover, f0 is the Ns × 1 vector of the nondimensional amplitudes of the external exci-
tation, while io, do, and go (o = 2, 3), are the inertial, velocity-proportional, and stiffness
Ns × 1 nonlinear operators of oth order, respectively, arising from the system geometric
nonlinearities. Finally, 0 is the Ns × 1 null vector and the natural initial conditions are
considered (i.e., x(0) = 0, and ẋ(0) = 0, respectively).

3. Modal Characterization

Eigenvalue analysis is first performed to characterize the fundamental modes of the
system. By linearizing Equation (7), i.e., setting io = do = go = 0 (o = 2, 3), neglecting the
forcing term and the linear viscous damping force (i.e., setting f0 = 0 and C = O, being O
the Ns × Ns null matrix), the homogeneous system of linear equations governing the free
undamped oscillations of the system assumes the classical form:

M ẍ + K x = 0 . (8)

The Ns eigenvalues of Equation (8) provide the natural frequencies ωs (s = 1, . . . , Ns) of
the system and the corresponding eigenvectors, conveniently normalized, deliver the Ns
mode shapes of the roller battery. In particular, by referring to the Ns× 1 vectors and natural
frequencies of the mth and nth modes of the system, i.e., (ψψψm, ωm) and (ψψψn, ωn), respectively,
the following relationships are satisfied: ψψψ>mM ψψψn = δmn and ψψψ>mK ψψψn = ω2

mδmn, being δmn
the Kronecker delta. The lowest eight nondimensional circular frequencies of the system are
reported in Table 1 and the corresponding mode shapes of the roller battery are displayed
in Figure 2.

Table 1. Lowest eight nondimensional circular frequencies.

Mode s 1 2 3 4

ωs 0.376 0.581 0.734 0.96

Mode s 5 6 7 8

ωs 1.02 1.109 1.163 1.757
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Mode 7 Mode 8

Figure 2. Shapes of the lowest eight linear normal modes of the roller battery system.

Interesting considerations emerge from the analysis of the ratios between the lowest
frequencies of the system. Figure 3 reports the ratios between the frequencies of modes
(2, 3, 4, 5, 6, 7, 8) with respect to the lowest frequency ω1 (Figure 3a) and of the modes
(3, 4, 5, 6, 7, 8) with respect to the second frequency ω2 (Figure 3b), respectively. As shown
in Figure 3a, the frequency of the third roller battery mode is close to twice the frequency
ω1 of the lowest mode while the sixth and seventh modes have frequency three times ω1.
The same integer ratios occur between the frequency of the seventh and eighth modes
with respect to the frequency ω2 of the second mode, i.e., 2:1 and 3:1 ratio, respectively, as
shown in Figure 3b. When in a nonlinear dynamical system, the frequencies of two modes
are in an integer ratio with each other, then the internal exchange of energy between the
modes involved may occur, leading the system to dynamic interactions, i.e., the so-called
internal resonances [34–36].

(a)

2 3 4 5 6 7 8

1

2

3

4

Mode s

s
/
1

(b)

3 4 5 6 7 8

1

2

3

Mode s

s
/
2

Figure 3. Ratios of the lowest eight frequencies of the system with respect to (a) the lowest frequency
ω1 and (b) the second frequency ω2. Red and blue bars and dashed lines indicate 2:1 and 3:1
ratios, respectively.

It is a matter of fact that the internal resonances may more easily be activated between
modes having lower frequencies, such as in the case of the mechanical system investigated,
shown by the first and third mode of the roller battery (see red bar and red line in Figure 3a).
Therefore, when the frequency Ω of the cable-induced harmonic excitation is close to the
frequency of the system, primary resonance may occur; furthermore, if the latter is a
multiple or an integer ratio of the frequency of a different mode then internal resonance
may also take place.

In the system investigated in this work, the cable-induced periodic excitation has
a frequency dependent on the cable speed which never exceeds the nondimensional
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value of 2.8× 10−2 in the ropeway studied here; this value corresponds to a maximum
nondimensional excitation frequency Ω = 7.5. This means that low cable speeds may
generate periodic excitations inducing primary resonance in all of the lowest eight modes
investigated. After characterizing the nonlinearity of the lowest modes of the system, the
focus will be devoted to the analysis of the primary resonance of the lowest mode (i.e.,
Ω ≈ ω1). Moreover, it will be shown that when Ω ≈ ω1, then 2:1 internal resonance
with mode three may take place only for very high excitation amplitudes. On the other
hand, the threshold for the activation of two-to-one internal resonance between mode three
and mode one when the periodic excitation has frequency Ω ≈ ω3 is calculated, and the
nonlinear frequency response curves of the resonating modes are determined for a selected
value of the excitation amplitude.

4. Asymptotic Solution of the Equations of Motion

The method of multiple scales [34–36] is adopted to first characterize the nonlinearity
of the system modes and then to study the bifurcation scenarios due to direct harmonic
excitations to obtain closed-form expressions of the stable and unstable branches of the
FRCs, together with the continuation of the fold bifurcation points.

By letting ε denote a small nondimensional parameter representing the norm of the
deviation of the current roller battery configuration from its reference state, a third-order
expansion of the solutions of Equation (7) is sought in the form:

x(t) = ε x1(t0, t2) + ε2 x2(t0, t2) + ε3 x3(t0, t2), (9)

where t0 is the nondimensional fast time scale and t2 is the slow time scale in which the
nondimensional time derivative can be written as d/dt = ∂0 + ε2∂2, with ∂0 = ∂/∂t0
and ∂2 = ∂/∂t2, respectively, while d2/dt2 = ∂2

0 + 2∂0∂2ε2 + ε4∂2
2, with ∂2

0 = ∂2/∂t2
0,

∂2 = ∂2/∂t2
2, and ∂0∂2 = ∂2/∂t0∂t2, respectively.

The perturbation treatment requires a preliminary rescaling of the viscous damping
force and of the excitation term; therefore, since the nonlinearities of the system are
such that resonant terms are generated at the cubic order. The linear viscous damping
force is assumed to appear at the third order; this, analytically implies a re-scaling of the
viscous damping matrix as C = ε2C, while the forcing term is rescaled so that f0 = ε3f0.
Substituting Equation (9) into Equation (7), and retaining only the terms up to order ε3, the
following hierarchy of linear problems is obtained by equating to zero the coefficients of
like powers of ε:

order ε

M ∂2
0x1 + K x1 = 0, (10)

order ε2

M ∂2
0x2 + K x2 = −g2(x1, x1)− d2(∂0x1, ∂0x1)− i2(x1, ∂2

0x1), (11)

order ε3

M ∂2
0x3 + K x3 =− C ∂0x1 − D̂ ∂0∂2x1 − ĝ1,2(x1, x2)− g3(x1, x1, x1)

− d̂1,2(∂0x1, ∂0x2)− d3(x1, ∂0x1, ∂0x1)

− î1,2(x1, ∂2
0x2)− î2,1(x2, ∂2

0x1)− i3(x1, x1, ∂2
0x1)− f0 cos Ωt,

(12)

where D̂ is a Ns × Ns matrix of constant terms, while ĝ1,2, d̂1,2, î1,2, and î2,1 are stiffness,
velocity-proportional, and inertial third-order operators, respectively; which, in turn, are
functions of the first- and second-order solutions.

4.1. Nonlinearity of the Lowest Normal Modes

By setting f0 = 0 and C = O in Equation (12), it is possible to study the nonlinearity
of the roller battery nonlinear normal modes by solving, in cascade, the hierarchy of per-



Appl. Sci. 2021, 11, 9486 9 of 23

turbation problems given by Equations (10)–(12). In particular, to study the nonlinearity of
the mth mode, the general solution of the ε-order problem, Equation (10), can be written as:

x1(t0, t2) = Am(t2)ψψψm ei ωmt0 + Ãm(t2)ψψψm e−i ωmt0 , (13)

where Am(t2) and Ãm(t2) are the complex and complex-conjugate amplitudes of the mth
mode, respectively. The non-resonant terms are present in the second-order problem;
therefore, after substituting the first-order solution (13) into Equation (11), the solution of
the inhomogeneous ε2-order problem can be expressed in the form:

x2(t0, t2) = x̂2,1 A2
me2iωmt0 + x̂2,2 Am Ãm + x̂2,3 Ã2

me−2iωmt0 , (14)

where the vector x̂2,r (r = 1, 2, 3) is the linear combination of the Ns modes of the system,
that is: x̂2,r = ∑Ns

s=1 ar,sψψψs. The solution given by Equation (14) is substituted into the
ε2-order problem and Equation (11) is then projected into the modal space through the
Ns-by-Ns modal matrix Ψ, whose sth column is the vector ψψψs (i.e., the sth mode), as:

Ψ>M ∂2
0x2 + Ψ>K x2 = Ψ>r2 , (15)

where r2 = −g2(x1, x1)− d2(∂0x1, ∂0x1)− i2(x1, ∂2
0x1) is the vector collecting the second-

order inhomogeneous terms. By then equating the coefficients of terms having the same
frequency in Equation (15), it is possible to calculate the 3Ns coefficients ar,s and find the
second-order solution x2.

First- and second-order solutions given by Equations (13) and (14), respectively, are
then substituted into the ε3-order problem. The singularity generated by the secular
terms exhibited in the third-order problem can be removed by enforcing solvability condi-
tions [35]. To this end, by now introducing the general solution of the adjoint homogeneous
problem of Equation (12):

x∗0 = i ωmψψψm e−i ωmt0 + cc, (16)

where cc stands for complex-conjugate, the solvability condition is enforced by requir-
ing the orthogonality between (16) and the inhomogeneous term (right-hand side) in
Equation (12) as:

ωm
2π

∫ 2π
ωm

0
x∗0
>r3 dt0 = 0, (17)

where:
r3 =− D̂ ∂0∂2x1 − ĝ1,2(x1, x2)− g3(x1, x1, x1)

− d̂1,2(∂0x1, ∂0x2)− d3(x1, ∂0x1, ∂0x1)

− î1,2(x1, ∂2
0x2)− î2,1(x2, ∂2

0x1)− i3(x1, x1, ∂2
0x1).

(18)

Equation (17), which annihilates the secular terms arising in r3, governs the modula-
tion in time t2 of the amplitudes Am and Ãm through to the following equations:

2 i ωm∂2 Am + 8 ωmΓm A2
m Ãm = 0, 2 i ωm∂2 Ãm − 8 ωmΓm Am Ã2

m = 0, (19)

where Γm = Γm(ωm) is a strongly nonlinear function of the frequency ωm of the mth mode
and of the systems mechanical parameters.

After removing the secular terms, the solution of the inhomogeneous third-order
problem can be calculated as:

x3(t0, t2) = x̂3,1 A3
me3iωmt0 + x̂3,2 Ã3

me−3iωmt0 , (20)

where the vector x̂3,r (r = 1, 2) is expressed, again, as a linear combination of the Ns modes
of the system, that is: x̂3,r = ∑Ns

s=1 br,sψψψs. The solution given by Equation (20) is substituted
into the ε3-order problem and Equation (12) is then projected into the modal space as:
Ψ>M ∂2

0x3 + Ψ>K x3 = Ψ>r3. By then equating the coefficients of terms having the same
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frequency, it is possible to calculate the 2Ns coefficients br,s and find the second-order
solution x3.

To study the nonlinearity of the mth normal mode, the complex amplitudes are
expressed in polar form as Am(t2) = 1

2 am(t2)ei θm(t2) and Ãm(t2) = 1
2 am(t2)e−i θm(t2), re-

spectively, where am(t2) is the real amplitude and θm(t2) is the phase of the mth nonlinear
normal mode. The polar form is then substituted into the modulation equations (19). Fur-
thermore, the separation of the real and imaginary parts yields the following differential
relationships in terms of the real amplitude and the phase of the mth mode:

∂2am = 0, ∂2θm = Γm a2
m . (21)

By defining the relative phase γm(t2) = σt2 − θm(t2), with σ being a detuning param-
eter, it turns out that the fixed points of the dynamic system are obtained when ∂2am = 0
and ∂2γm = 0; therefore, the detuning can be calculated from Equation (21) as σ = Γm a2

m
and the frequency of the mth nonlinear normal mode can be expressed in terms of the real
modal amplitude am as:

ωnl
m = ωm + Γm a2

m. (22)

The function Γm is also known as the effective nonlinearity coefficient of the mth mode:
when Γm > 0, the nonlinearity is hardening, while, when Γm < 0, it is softening.

One-Mode Projection of the Nonlinear Equations of Motion

The nonlinearity of the mth normal mode can be qualitatively investigated by neglect-
ing the contribution of the remaining Ns − 1 modes in the reconstruction of the second- and
third-order solutions given by Equations (14) and (20). This approach, although simplified,
creates a better understanding of the role of the system mechanical parameters into the
effects of the geometric nonlinearity of the system. To this end, the solution of Equation (7)
is expressed as x = ψψψm qm(t), where qm(t) is the mth generalized coordinate. Equation (7)
is then projected into the mth mode by pre-multiplying it by ψψψ>m to obtain the mth nonlinear
modal equation in the form:

q̈m + cm q̇m + ω2
mqm + ci2qm q̈m + cd2q̇2

m + ck2q2
m

+ ci3q2
m q̈m + cd3qm q̇2

m + ck3q3
m + fm cos Ωt = 0,

(23)

where cm = ψψψ>mC ψψψm is the modal damping coefficient, fm = ψψψ>mf0 is the modal component
of the excitation term, and:

ci2 = ψψψ>mi2(ψψψm, ψψψm), cd2 = ψψψ>md2(ψψψm, ψψψm), ck2 = ψψψ>mg2(ψψψm, ψψψm),

ci3 = ψψψ>mi3(ψψψm, ψψψm, ψψψm), cd3 = ψψψ>md3(ψψψm, ψψψm, ψψψm), ck3 = ψψψ>mg3(ψψψm, ψψψm, ψψψm),
(24)

are the second- and third-order inertial, velocity-proportional, and stiffness modal coeffi-
cients, respectively.

The same asymptotic procedure, based on the method of multiple scales, can be used to
investigate the nonlinearity of the mth mode through the nonlinear equation of motion (23),
whose solution is sought in the form qm(t) = ε qm,1(t0, t2) + ε2qm,2(t0, t2) + ε3qm,3(t0, t2).
Therefore, after rescaling the excitation term as fm = ε3 fm and the modal viscous damping
force as cm q̇m = ε2cm q̇m, the lowest three perturbation problems can be written as:

∂2
0qm,1 + ω2

mqm,1 =0,

∂2
0qm,2 + ω2

mqm,2 =− ck2q2
m,1 − cd2(∂0qm,1)

2 − ci2qm,1∂2
0qm,1,

∂2
0qm,3 + ω2

mqm,3 =− cm∂0qm,1 − 2 ∂0∂2qm,1 − 2 ck2qm,1qm,2 − 2 cd2∂0qm,1∂0qm,2

− ci2

(
qm,2∂2

0qm,1 + qm,1∂2
0qm,2

)
− ck3q3

m,1 − cd3qm,1(∂0qm,1)
2

− ci3q2
m,1∂2

0qm,1 − fm cos Ωt.

(25)
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To study the nonlinearity of the mth mode the excitation term is set to zero, i.e., fm = 0,
and the modal viscous damping is neglected, i.e., cm = 0.

The solution of the first-order problem can be written as qm,1 = Am(t2)eiωmt0 +
Ãm(t2)e−iωmt0 , while the solution of the second-order problem, which does not show
resonant terms, is given in the form:

qm,2 =
ck2 − (cd2 + ci2)ω

2
m

3 ω2
m

Am(t2)
2e2 iωmt0 −

2
[
ck2 + (cd2 − ci2)ω

2
m
]

ω2
m

Am(t2)Ãm(t2)

+
ck2 − (cd2 + ci2)ω

2
m

3 ω2
m

Ãm(t2)
2e−2 iωmt0 .

(26)

At the third order, the singularity generated by the resonant terms is removed when
the modulation equations, having the same form of Equation (19), hold; although, in this
case, the nonlinearity coefficient of the mth mode has the simpler expression:

Γm(ωm) = −
10c2

k2+[(10cd2−11ci2)ck2−9ck3]ω
2
m+(4c2

d2−3cd3−7cd2ci2+c2
i2+9ci3)ω

4
m

24 ω3
m

. (27)

After removing the secular terms by superimposing Equation (19), the solution of the
inhomogeneous third-order problem can be written as:

qm,3 = q̂3,1 A3
me3 iωmt0 + q̂3,2 Ã3

me−3 iωmt0 , (28)

and can be substituted into the inhomogeneous third-order problem; then, by equating the
coefficients of terms having the same frequency, it is possible to calculate the unknown
coefficients of Equation (28), which turn out to be q̂3,1 = q̂3,2 = q̂3(ωm), where:

q̂3(ωm) =
2c2

k2−[(6cd2+7ci2)ck2−3ck3]ω
2
m+(4c2

d2−3cd3+9cd2ci2+5c2
i2−3ci3)ω

4
m

24 ω4
m

. (29)

To study the nonlinearity of the mth normal mode and express the complex amplitudes
in polar form, substitute their expressions into the modulation equations and separate
the real and imaginary parts; this furnishes differential relationships in terms of the real
amplitude and the phase of the mth mode in the same form of Equation (21). By introducing
the relative phase γm(t2), the fixed points are obtained when ∂2am = 0 and ∂2γm = 0;
hence, the frequency of the mth nonlinear normal mode can be expressed in terms of
the real modal amplitude am and through the effective nonlinearity coefficient given by
Equation (27) as: ωnl

m = ωm + Γm a2
m.

The backbone curves of the lowest four nonlinear normal modes, that is, the nonlinear
relationships between the modal amplitude am and the detuning σ (where σ = ωnl

m −ωm),
are shown in Figure 4a. The dashed lines in Figure 4a indicate the backbones calculated
by adopting the one-mode projection, while solid lines refer to the solution obtained
by using the full modal basis discretization. As shown in the figure, the differences
between the curves obtained with the two approaches are more evident for the lowest
skewsymmetric mode (red lines) and the lowest symmetric mode (blue lines). Nevertheless,
as shown in Figure 4b,c, the shapes of the corresponding modes are less influenced by the
modal discretization.

Figure 5 reports the values of the coefficients of the nonlinear terms of Equation (23)
for the lowest four modes. It is shown that all coefficients of the quadratic terms are
negative. On the other hand, the inertial and velocity-proportional coefficients of the cubic
terms are positive for all modes, while the coefficient of the stiffness cubic term is always
negative. Moreover, the coefficients of the stiffness terms are orders of magnitude higher
than the inertial and velocity-proportional coefficients. This indicates that the nonlinearity
of the roller battery is mainly governed by the stiffness terms while the nonlinear effects
provided by the inertial and velocity-proportional terms are negligible. This is further
confirmed by the values of the nonlinearity coefficients Γm reported in Table 2. In the latter
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are the values of Γm of the lowest four modes calculated by considering the contribution
of: (i) all types of nonlinearity, (ii) the inertia-associated nonlinearity (i.e., by setting
cd2 = cd3 = ck2 = ck3 = 0), (iii) the velocity-associated nonlinearity (i.e., by setting
ci2 = ci3 = ck2 = ck3 = 0), (iv) the stiffness-associated nonlinearity (i.e., by setting
ci2 = ci3 = cd2 = cd3 = 0), respectively.

The results reported in Table 2, clearly show that the stiffness-related nonlinearity is
predominant since the effective nonlinearity coefficient Γm is an order of magnitude higher
with respect to the associated nonlinearity of the inertia and velocity-proportional terms.
On the other hand, it is shown that the velocity-proportional nonlinear terms confer to the
system a hardening nonlinear behavior (i.e., Γm > 0).

(a)

-0.02 -0.015 -0.01 -0.005 0
0

1

2

3

4

5

σ

a
m

(b)

(c)

Figure 4. (a) Backbones of the lowest four nonlinear normal modes. (b) Shape of the first and
(c) second normal modes at σ = −0.01; one-mode projection (dashed lines) vs. full modal basis
discretization (solid lines).

Table 2. Nonlinearity coefficient Γm of the lowest four nonlinear normal modes (m = 1, . . . , 4): effect
of the nonlinearity type.

All Inertia Velocity Stiffness

Γ1 −8.58× 10−3 −2.12× 10−4 7.00× 10−5 −8.44× 10−3

Γ2 −6.19× 10−2 −1.52× 10−3 5.04× 10−4 −6.09× 10−2

Γ3 −1.08× 10−1 −1.36× 10−3 4.52× 10−4 −1.07× 10−1

Γ4 −8.46× 10−1 −2.29× 10−2 7.55× 10−3 −8.31× 10−1
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Figure 5. Coefficients of the inertial (ci2 and ci3), velocity-proportional (cd2 and cd3), and stiffness
nonlinear terms (ck2 and ck3), of the lowest four modes.

5. Cable Motion-Induced Resonances

In this section the nonlinear dynamic response of roller batteries subjected to periodic
excitation provided by the forces induced by the moving cable will be investigated. In
particular, the focus is first devoted to the analysis of the primary resonance of the lowest
mode (i.e., when Ω ≈ ω1); then, the two-to-one internal resonance between the first
and third mode will be investigated when Ω ≈ ω1 and when Ω ≈ ω3, respectively.
To this end, the asymptotic approach presented in Section 4 based on the full modal
discretization for the evaluation of the second- and third-order solutions (see Section 4.1),
is adopted to calculate the nonlinear frequency response curves and the stability regions of
the dynamic responses.

5.1. Primary Resonance

First- and second-order solutions of the hierarchical systems of equations, Equations (10)
to (12), are given by Equations (13) and (14), respectively. The latter are then substituted
into the ε3-order problem Equation (12) and the singularity generated by the secular terms
can be removed by enforcing the solvability condition. To this end, after introducing the
general solution of the adjoint homogeneous problem (i.e., Equation (16)), the orthogonality
between (16) and the inhomogeneous term (right-end side) in Equation (12) is enforced as:
ωm
2π

∫ 2π
ωm

0 x∗0
>r3 dt0 = 0, where:
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r3 =− C ∂0x1 − D̂ ∂0∂2x1 − ĝ1,2(x1, x2)− g3(x1, x1, x1)

− d̂1,2(∂0x1, ∂0x2)− d3(x1, ∂0x1, ∂0x1)

− î1,2(x1, ∂2
0x2)− î2,1(x2, ∂2

0x1)− i3(x1, x1, ∂2
0x1)− f0 cos Ωt.

(30)

To investigate the primary resonance of the mth mode, the frequency of the excitation
term is expressed as Ω = ωm + ε2σ, with σ as a detuning parameter. Moreover, to
make use of complex algebra, cos Ωt = 1

2 ei ωmt0+i σ t2 + cc; then, at the third order, the
singularity generated by the resonant terms is removed when the following modulation
equations hold:

2 i ωm∂2 Am + i ωmCm Am + 8 ωmΓm A2
m Ãm + 1

2F0ei σ t2 = 0,

2 i ωm∂2 Ãm + i ωmCm Ãm − 8 ωmΓm Am Ã2
m − 1

2F0e−i σ t2 = 0,
(31)

where, Cm = Cm(ωm) and F0 = F0(λ, ωm) are strongly nonlinear functions of the linear
frequency of the mth mode. Note that, in case of the one-mode projection of the equations
of motion, it turns out that Cm ≡ cm, F0 ≡ fm, and Γm is given by Equation (27).

By expressing the complex amplitudes in polar form and separating the real and
imaginary parts, the modulation equations in terms of the real amplitude and phase read:

am∂2θm − Γma3
m −

F0

2 ωm
cos γm = 0,

∂2am + 1
2Cmam +

F0

2 ωm
sin γm = 0.

(32)

By solving Equation (32) for ∂2am and ∂2θm and introducing the relative phase γm(t2) =
σ t2 − θm(t2), the fixed points can be sought to impose ∂2am = 0 and ∂2γm = 0, respec-
tively. By solving the ensuing equations in terms of cos γm and sin γm, and enforcing
the trigonometric identity, the frequency-response function providing the nonlinear rela-
tionship between the real amplitude am and frequency detuning σ can be obtained in its
implicit form as:

G(am, σ) =
ω2

ma2
m

F 2
0

[
C2

m + 4
(

Γma2
m − σ

)2
]
− 1. (33)

The equation that allows for describing the bifurcation behavior of the system is given
by G(am, σ) = 0; moreover, from the stationarity of G(am, σ) with respect to am it is possible
to calculate the loci of the fold bifurcation points as the four non-trivial solutions of the
equation ∂amG(am, σ) = 0, that is:

aF
m(2,3,4,5)

= ±

√
4 σ±

√
4 σ2 − 3 C2

m
6 Γm

, (34)

with aF
m(1)

being the trivial solution (i.e., aF
m(1)

= 0).
Finally, after removing the secular terms by means of Equation (31), the solution

of the inhomogeneous third-order problem can be calculated as x3 = x̂3,1 A3
me3iωmt0 +

x̂3,2 Ã3
me−3iωmt0 , where the vectors x̂3,r (r = 1, 2) are expressed, again, as a linear combination

of the Ns modes of the system, that is: x̂3,r = ∑Ns
s=1 br,sψψψs. The third-order solution is then

substituted into the ε3-order problem and it is then projected into the modal space as:
Ψ>M ∂2

0x3 + Ψ>K x3 = Ψ>r3. By then equating the coefficients of terms having the same
frequency, it is possible to calculate the 2Ns coefficients br,s and find the second-order
solution x3.

Thereafter, the nonlinear equations of motion of the system expressed by Equation (6)
are numerically integrated in time by using the built-in NDSolve algorithm present in the
software Mathematica [37]. For each simulation, at a selected excitation frequency Ω, the
maximum integration time was set to tmax = 500(2π/Ω) , where (2π/Ω) is the excitation
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period, while the time step was ∆t = (2π/Ω)/40. At steady-state, the state vector (x,
ẋ) was saved and assigned as the initial condition for the time integration run with the
subsequent Ω. Finally, backward and forward frequency sweeps were performed so as to
calculate the numerical FRCs.

Figure 6 shows the frequency response curves in terms of the vertical component
(i.e., along the direction e2) of the nondimensional displacement vectors u of points P8,
A2, B1, and C, respectively, when Ω ≈ ω1. The comparison between numerical time
integration (gray dots) and the third-order asymptotic solution obtained via the method
of multiple scales (solid and dashed lines) shows a very good agreement in most of the
range of stable solutions. The asymptotic analysis allowed us to investigate the unstable
solutions (dashed lines) and calculate the threshold values of amplitude and frequency,
where fold bifurcation occurs (i.e., at the boundary between solid and dashed lines). The
analysis was performed for a value of the nondimensional maximum amplitude of the
periodic force λ = 8.27× 10−3, so as to show the softnening nonlinearity of the dynamic
response. The value of the forcing amplitude is almost two orders of magnitude lower
than the characteristic force of the system. This means that moderately high values of the
forcing term can also induce a nonlinear resonance response of the system.
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Figure 6. Primary resonance: frequency response curves of the vertical displacements of points
(a) P8, (b) A2, (c) B1, and (d) C. Solid and dashed lines refer to the stable and unstable branches,
respectively, evaluated via asymptotic approaches, while dots indicate the results of the numerical
time integration. Configurations at Ω = 0.3623 in the multistability range: (e) low-amplitude
response, (f) high-amplitude response.

Figure 7a shows the FRCs in terms of the modal amplitude am for two values of
the modal damping coefficient Cm for the case m = 1. In particular, Cm was rescaled
through a nondimensional coefficient ξ as Cm = ξ Cm and the cases of ξ = 1 and ξ = 0.5
are considered. This rescaling allowed us to perform a parametric study on the effect of
damping on the nonlinear resonance response. In Figure 7a we report the regions collecting
the unstable solutions in the plane (Ω, am) (i.e., blue and black shaded surfaces). The
latter are bounded by the curves enveloping the fold bifurcation points and provided
by Equation (34). The loci of the fold bifurcation points are then plotted in Figure 7b for
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several values of the modal damping coefficient by varying the rescaling coefficient ξ in
the range [0, 1], showing how instable regions reduce large values of ξ and demonstrating
the stability effect of damping in the nonlinear dynamic response of the roller battery.

(a)
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Figure 7. (a) FRCs of the modal amplitude am (case m = 1) and stability regions for two different
values of the coefficient ξ which rescales the damping; the dotted line indicates the backbone of the
mode m = 1. (b) Loci of the fold bifurcation points for ξ = (0, 0.2, 0.4, 0.6, 0.8, 1).

5.2. Two-to-One Internal Resonance

In this section, we investigate the phenomenon of the two-to-one internal resonance
between two modes of the roller battery occurring when one mode of the system undergoes
primary resonance due to the periodic excitation of the moving cable.

Without loss of generalization, the two resonant modes are indicated as mode m and
mode n, respectively, and the corresponding frequencies have a ratio close to two (i.e.,
ωn ≈ 2ωm). Two case-studies are investigated, namely, the case when the frequency Ω
of the periodic excitation is near the frequency of the mode m (i.e., primary resonance of
mode m, with Ω ≈ ωm), and the case when Ω ≈ ωn (i.e., primary resonance of mode n),
respectively. As mentioned in Section 3, 2:1 internal resonance is possible in the mechanical
system studied in this work since the frequencies of the third and first mode have a ratio
close to two.

The two-to-one internal resonance is caused by the quadratic nonlinearities of the
system; therefore, the asymptotic treatment of Equation (7) starts by seeking its solution in
the form:

x(t) = ε x1(t0, t1) + ε2 x2(t0, t1) (35)

where t0 is the nondimensional fast time scale and t1 is the slow time scale in which the
nondimensional time derivative can be written as d/dt = ∂0 + ε∂1, with ∂0 = ∂/∂t0 and
∂1 = ∂/∂t1, respectively, while d2/dt2 = ∂2

0 + 2∂0∂1ε+ ε2∂2
1, with ∂2

0 = ∂2/∂t2
0, ∂2

1 = ∂2/∂t2
1,

and ∂0∂1 = ∂2/∂t0∂t1, respectively.
In this case, the resonant terms are generated at the quadratic order, therefore, the

viscous damping force and excitation need to be rescaled so as to appear at the second
perturbation order; hence, we set C = ε C and f0 = ε2f0, respectively. By now substituting
Equation (35) into Equation (7), and retaining only terms up to order ε2, the following
hierarchy of linear problems is obtained by equating to zero the coefficients of like powers
of ε:

order ε

M ∂2
0x1 + K x1 = 0, (36)

order ε2

M ∂2
0x2 + K x2 =− C ∂0x1 − g2(x1, x1)

− d2(∂0x1, ∂0x1)− i2(x1, ∂2
0x1)− f0 cos Ωt.

(37)
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In the case of two interacting modes (i.e., mode m and mode n), the general solution
of the ε-order problem (36) can be written as:

x1(t0, t1) = Am(t1)ψψψm ei ωmt0 + An(t1)ψψψn ei ωnt0 + cc, (38)

where Am(t1) and An(t1) are the complex amplitudes of the mth and the nth mode, respec-
tively, while cc stands for complex conjugate. The first-order solution to Equation (38) is
then substituted into the ε2-order problem. The singularity generated by the secular terms
exhibited in the second-order problem can be removed by enforcing solvability conditions.
By introducing the mth and nth general solutions of the adjoint homogeneous problem of
Equation (37) we get:

x∗m = i ωmψψψm e−i ωmt0 + cc, (39)

x∗n = i ωnψψψn e−i ωnt0 + cc, (40)

the solvability condition is enforced by requiring the orthogonality between (39) and (40)
and the inhomogeneous term (right-end side) in Equation (37) as:

ωm
2π

∫ 2π
ωm

0
x∗m
> r̂2 dt0 = 0, ωn

2π

∫ 2π
ωn

0
x∗n
> r̂2 dt0 = 0, (41)

where r̂2 = −C ∂0x1 − g2(x1, x1)− d2(∂0x1, ∂0x1)− i2(x1, ∂2
0x1)− f0 cos Ωt.

To express the closeness of the two interacting frequencies, the detuning parameter σ2
is introduced so that ωn = 2ωm + ε σ2. On the other hand, the primary resonance condition
between the periodic force and the modes m and n is achieved when Ω = ωm + ε σ1 and
Ω = ωn + ε σ1, respectively, with σ1 being a further detuning parameter. Thus, substituting
the external and internal resonance conditions into Equation (41), it is possible to obtain
the modulation equations for the amplitudes Am and An (and their complex conjugates)
for both cases of Ω ≈ ωm and Ω ≈ ωn, respectively.

Finally, after removing the secular terms, the solution of the second-order inhomoge-
neous problem can be calculated as:

x2 =x̂2,1 A2
me2iωmt0 + x̂2,2 A2

ne2iωnt0 + x̂2,3 Am Aneiωmt0+iωnt0 + x̂2,4 Ãm Ane−iωmt0+iωnt0

+ x̂2,5 Am eiωmt0 + x̂2,6 An eiωnt0 + x̂2,7 Am Ãm + x̂2,8 An Ãn + x̂2,9 eiΩt0 + cc,
(42)

where the vector x̂2,r is expressed as a linear combination of the Ns modes of the system,
that is: x̂2,r = ∑Ns

s=1 ar,sψψψs. Note that, the terms proportional to x̂2,4, x̂2,5, x̂2,6, x̂2,9, and their
complex conjugates, respectively, are orthogonal to the general solutions (39) and (40) of
the adjoint homogeneous problem of Equation (37). Therefore, although present in r̂2,
these terms vanish when the solvability condition given by Equation (41) is enforced. The
second-order solution is substituted into the ε2-order problem which is then projected into
the modal space as: Ψ>M ∂2

0x2 + Ψ>K x2 = Ψ> r̂2. Finally, by equating the coefficients
of terms having the same frequency, it is possible to calculate the coefficients ar,s of the
second-order solution.

5.2.1. The Case of Ω ≈ ωm

In the case of primary resonance on mode m (i.e., Ω ≈ ωm), the modulation equations
of the amplitudes Am and An have the following form:

2 i ωm∂1 Am + i ωmĈm Am − (α1 + α2ω2
m)Ãm An ei σ2 t1 −Fm ei σ1 t1 = 0,

2 i ωn∂1 An + i ωnĈn An − ( 1
2 α1 +

1
8 α2ω2

n)A2
m e−i σ2 t1 = 0,

(43)

where α1 and α2 are positive coefficients, while Ĉm >, Ĉn > 0 are the components of
the damping coefficients in the modulation equation of Am and An, respectively, while
Fm > 0 is the component of the excitation amplitude in the modulation equation of Am.
By expressing the complex amplitudes in polar form as Am = 1

2 amei θm , An = 1
2 anei θn ,
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introducing the relative phases γ1 = σ1t1 − θm and γ2 = σ2t1 − 2θm + θn, and substituting
the polar form into Equation (43). Separating the real and imaginary parts yields the
four differential equations governing the slow modulation of the real amplitudes and the
relative phases. Then, the fixed points can be calculated by setting ∂1am = 0 = ∂1an and
∂1γ1 = 0 = ∂1γ2, respectively, and the bifurcation equations can be written as:

Ĉmamωm − 1
2

(
α1 + α2ω2

m

)
aman sin γ2 − 2Fm sin γ1 = 0,

Ĉnanωn +
1
4

(
α1 +

1
4 α2ω2

n

)
a2

m sin γ2 = 0,

σ1amωm + 1
4

(
α1 + α2ω2

m

)
aman cos γ2 +Fm cos γ1 = 0,

σ2amanωmωn +
[

1
2

(
α1 + α2ω2

m

)
ωnama2

n − 1
8

(
α1 +

1
4 α2ω2

n

)
ωma3

m

]
cos γ2

+ 2Fmanωn cos γ1 = 0.

(44)

The system of four nonlinear algebraic equations (44) can be solved for selected
values of the detuning parameters, σ1 and σ2, and in terms of the nondimensional forcing
amplitude λ (embedded in the coefficient Fm) to obtain the force response curves shown
in Figure 8a. It is interesting to note that, in the case of primary resonance on mode m
(i.e., Ω ≈ ωm), a 2:1 internal resonance involving large amplitude oscillations of mode n
arises for values of the nondimensional excitation amplitude λ orders of magnitude higher
with respect to the value of the amplitude used in Section 5.1 (i.e., λ = 8.27× 10−3), to
investigate the primary resonance of the mth mode. As shown in Figure 8b, only at very
large values of λ is it possible to obtain frequency response curves involving comparable
amplitudes of oscillation of the two resonating modes, am and an, respectively (i.e., coupled-
mode oscillations). In this circumstance, the modal amplitudes are two orders of magnitude
higher, with respect to the case of primary resonance of mode m with no internal resonance.
In the case considered (i.e., λ = 2.5), the FRCs of amplitudes am and an have a specular
behavior with respect to the detuning σ1 (i.e., the curves are symmetric with respect to
the axis σ1 = 0). Moreover, stable (solid lines) and unstable (dashed lines) responses are
obtained in a short range of the detuning parameter around the value σ1 = 0, while, in
a larger range of positive and negative values of the detuning parameter σ1, multistable
responses are found. Here the stability of the dynamic response is ascertained by the study
of the eigenvalues of the Jacobian matrix of Equation (44).
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Figure 8. (a) Force response curves of the amplitude am (black line) and an (gray line) when σ1 = 0 and
σ2 = 0. (b) Frequency response curves of the amplitude am (black line) and an (gray line) when σ2 = 0
and λ = 2.5. Solid lines indicate stable responses while dashed lines indicate unstable responses.

On the other hand, in the range of low values of the excitation amplitude λ, internal
resonance induces negligible oscillation amplitudes of mode n, as shown in Figure 9a. In
particular, at λ = 8.27× 10−3 (dashed vertical line) an is more than one order of magnitude
lower than am, as shown in Figure 9b where it is reported that the ratio between the
amplitude am of the mode directly excited, and the amplitude an of the internally resonant
mode. The study conducted allows the claim that, although the third and first mode of
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the roller battery investigated are internally resonant, in the case of periodic excitation
of the first mode, the amplitude of the forcing term must be enormously high to activate
appreciable oscillations of the third mode.
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Figure 9. (a) Force response curves of the amplitude am (black line) and an (gray line), when σ1 = 0
and σ2 = −0.018 in a lower range of force amplitudes λ. (b) Ratio between the amplitudes am and an

varying λ. The dashed vertical line indicates the value of λ adopted in Section 5.1.

For the sake of rigor, it is worth noting that the ratio between the frequency of
the third and first mode of the roller battery is not exactly equal to two. In particular,
ωm = ω1 = 0.376 and ωn = ω3 = 0.734; this implies that, in the case-study investigated
σ2 = −0.018 (i.e., ω3 = 2ω1− 0.018). Therefore, the force response curves and the FRCs are
slightly different with respect to the perfectly resonant case (σ2 = 0), although the dynamic
behavior does not change appreciably. As shown in Figure 10a, the range of λ, inducing
comparable amplitudes am and an in the coupled-mode oscillations, is the same of the case
when σ2 = 0, while in Figure 10b it is shown how the nontrivial detuning σ2 implies a loss
of symmetry in the FRCs, although the nonlinear behavior is qualitatively the same as the
case when σ2 = 0.

an

am

(a)

0 1 2 3 4
0

0.5

1

1.5

2

a
m
,
a
n
×
1
0
2

am

an

(b)

-0.05 -0.025 0 0.025 0.05
0

2

4

6

8

1

a
m
,
a
n
×
1
0
2

Figure 10. (a) Force response curves of the amplitude am (black line) and an (gray line) when σ1 = 0
and σ2 = −0.018. (b) Frequency response curves of the amplitude am (black line) and an (gray line)
when σ2 = −0.018 and λ = 2.5. Solid lines indicate stable responses while dashed lines indicate
unstable responses.

5.2.2. The Case of Ω ≈ ωn

In the case of the primary resonance on mode n (i.e., Ω ≈ ωn), the modulation
equations of the amplitudes Am and An have the following form:

2 i ωm∂1 Am + i ωmĈm Am − (α1 + α2ω2
m)Ãm An ei σ2 t1 = 0,

2 i ωn∂1 An + i ωnĈn An − ( 1
2 α1 +

1
8 α2ω2

n)A2
m e−i σ2 t1 −Fn ei σ1 t1 = 0,

(45)

where Fn > 0 is the component in the modulation equation of An of the amplitude of the
periodic excitation. By introducing the polar form, the relative phases γ1 = σ1t1 − θn and
γ2 = σ2t1− 2θm + θn, substituting the polar form into Equation (45), and separating the real
and imaginary parts yields the four differential equations governing the slow modulation
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of the real amplitudes and relative phases. Finally, the fixed points can be calculated by
setting ∂1am = 0 = ∂1an and ∂1γ1 = 0 = ∂1γ2, respectively, and the bifurcation equations
can be written as:

Ĉmamωm − 1
2

(
α1 + α2ω2

m

)
aman sin γ2 = 0,

Ĉnanωn +
1
4

(
α1 +

1
4 α2ω2

n

)
a2

m sin γ2 − 2Fn sin γ1 = 0,

σ1anωn +
1
8

(
α1 +

1
4 α2ω2

n

)
a2

m cos γ2 +Fn cos γ1 = 0,

σ2anωmωn +
[

1
2

(
α1 + α2ω2

m

)
ωna2

n − 1
8

(
α1 +

1
4 α2ω2

n

)
ωma2

m

]
cos γ2

−Fnωm cos γ1 = 0.

(46)

The force response curves shown in Figure 11a can be calculated by solving the
system of four nonlinear algebraic equations (46) for selected values of the detuning
parameters σ1 and σ2 and in terms of the nondimensional forcing amplitude λ (embedded
in the coefficient Fn). Solid and dashed lines indicate stable and unstable responses,
respectively, and the stability is ascertained by monitoring the eigenvalues of the Jacobian
matrix of the Equation (46). Figure 11a displays a paradigmatic behaviour in the context
of 2:1 internal resonances for a variety of nonlinear systems, the so-called saturation
phenomenon. The response of the directly excited mode grows linearly up to a threshold
excitation amplitude λ∗ past which the single-mode response becomes unstable in favour
of a two-mode response. The directly excited response (i.e., the amplitude an) saturates at
a constant value, while the amplitude of the internally resonant mode (i.e., the amplitude
am) grows nonlinearly with the excitation amplitude. In Figure 11b,c the bifurcation
scenarios are shown through the FRCs calculated at two different values of the excitation
amplitude λ (i.e., at λ = 0.21 and λ = 8.27× 10−3, respectively). These are obtained
by path-following the fixed points of the modulation equations (46) and the stability of
the system is monitored by checking the eigenvalues of the Jacobian matrix. Figure 11c,
obtained for the value of λ < λ∗, shows the FRC of the single-mode response (i.e., am = 0,
an 6= 0) in which the only nontrivial amplitude is that of the mode directly excited by the
periodic force (gray line).

The force response curves and the frequency response curves depicted in Figure 11
are obtained for σ1 = 0 and for a perfect tuning among the frequencies of the resonant
modes, i.e., σ2 = 0, while Figure 12a shows the force response curves in the case of
negative detuning (i.e., σ2 = −0.018), which characterizes the system investigated in this
work. As seen in the case illustrated in the previous section (i.e., Ω ≈ ωm), when the
primary resonance involves the higher frequency mode (i.e., Ω ≈ ωn), the frequency
response curves are symmetric with respect to the detuning parameter σ1, while losing
their symmetry when σ2 6= 0 (as shown in Figure 12b). From the bifurcation analyses
conducted for both cases (σ2 = 0 and σ2 = −0.018, respectively) it turns out that, as
expected [34], at point A and C (A′ and C′), the single-mode response (am = 0, an 6= 0)
becomes unstable. Fold bifurcation occurs at points B and B′, respectively; between those
two points, the two-mode response (am 6= 0, an 6= 0) shows multistability. Finally, points D
and D′ represent the boundaries of the detuning parameter σ1, outside which, the response
is always a single-mode stable solution.
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Figure 11. (a) Force response curves of the amplitude am (black line) and an (gray line) when σ1 = 0
and σ2 = 0. Frequency response curves of the amplitude am (black line) and an (gray line) when
σ2 = 0 and (b) at high excitation amplitude λ = 0.21 (c) at a low excitation amplitude λ = 8.27× 10−3.
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Figure 12. (a) Force response curves of the amplitude am (black line) and an (gray line) when σ1 = 0
and σ2 = −0.018. (b) Frequency response curves of the amplitude am (black line) and an (gray line)
when σ2 = 0 and at high excitation amplitude λ = 0.21.

6. Conclusions

In this work, the nonlinear dynamic behavior of roller batteries was characterized,
investigated, and discussed for the first time in the literature. An accurate analytical
treatment of the equations of motion was proposed to highlight the nonlinearities of the
system and the method of multiple scales was employed to deliver closed-form expressions
of the roller battery nonlinear dynamic responses. The nonlinearity of the lowest normal
modes of the system was clearly identified and showed to be of the softening type. The
simplification of the asymptotic treatment, obtained through the one-mode projection of
the equations of motion, shed light onto the effects of the system nonlinearities and to
prove that the stiffness nonlinearities govern the dynamic behavior of the roller battery.

The effects of the periodic direct excitation deriving from the cable motion were
investigated by studying the primary resonance of the lowest normal mode of the roller
battery. It was shown that, for moderately high values of the excitation, the nonlinear
response was multistable in a wide range of excitation frequencies. The analytical results
were also validated through numerical time integration of the nonlinear equations of
motion. Moreover, the instability regions, whose boundaries were analytically obtained
in closed form, were parametrically investigated so as to discuss the role of the structural
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damping, and for demonstrating that higher values of the damping coefficient reduce the
region where unstable responses occur.

Furthermore, the modal characterization of the system allowed us to discover the
potential scenarios of modal interactions and to investigate the phenomenon of internal
resonance between two modes having frequency ratios close to two (i.e., the third and first
mode) both in the case of primary resonance of the lowest mode and of the higher mode,
respectively. A stability analysis of the fixed points of the modulation equations for the
two mode amplitudes and phases allowed us to describe the bifurcation scenarios both for
the single-mode and the coupled-mode responses. It was shown that, although internal
resonances were possible in the system, in order to cause large-amplitude coupled-mode
oscillations, the amplitude of the periodic excitation must be orders of magnitude higher
and sufficient to induce large oscillations in the primary resonance of the lowest mode.
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