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Abstract 

The work proposes an optimization procedure for the design of a nonlinear dissipative cou-
pling device of two oscillators subjected to stochastic dynamic excitation. Two simple oscilla-
tors connected by Bouc-Wen type hysteretic device describe the system. Zero-mean filtered 
white noise is the base excitation. The knowledge of the stationary response variances, evalu-
ated by equivalent linearization permits to define the optimization problem to design the de-
vice. Finally, Monte Carlo simulations using filtered white noise and natural earthquake 
records at different levels of seismic magnitude conclude the evaluation of the procedure effi-
cacy. 
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1 INTRODUCTION 

One of the mainly target pursued by structural design methods is to obtain a solution that 
assure an optimal performance. Structural optimization procedures are often proven to be an 
efficient tool to balance different competing design objectives [1]. Moreover, several loads 
that have to be taking into account in the structural design process are stochastic and dynamic 
in nature (like wind and seismic actions) but usually analyses related to optimization tech-
niques are based on dynamic excitation represented by equivalent static load [2]. Many of re-
search works on structural optimization have been driven using Monte Carlo simulations that, 
of course, can be time consuming and computationally demanding because several simula-
tions are required to get converged response statistics [3]. However, scientific papers have 
applied random vibration theory to solve structural optimization problems. Some examples 
are reported in [4], [5] where the aim of the authors is to optimize elements’ size for a linear 
five-story shear structure subject to stochastic seismic ground motion. This work propones the 
optimization of the nonlinear stochastic responses of a simple model composed by two linear 
oscillators linked by a dissipative element [6]. A depth analysis of synthetic and analytical 
systems could be very useful for both to explain experimental phenomena and to develop de-
sign procedures [7], [8]. 

2 NONLINEAR ANALYTICAL MODEL 

Let to consider a simple nonlinear analytical model composed by two simple oscillators 
coupled by a nonlinear dissipative devise as reported in Figure 1. They have mass Mi and 
stiffness Ki (i = 1,2) and, moreover, are linked together by a dissipative element. Indicating 
with U1 and U2 the relative displacements and F the force delivered by the damper, the equa-
tions of motion of the two-degree-of-freedom model, shown in Figure 1, are governed by the 
following system: 

 1 1 1 1 1

2 2 2 2 2
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where dot indicates the derivative with respect to time t. Then, defining the subsequent di-
mensionless variables and parameters 
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where L is a convenient reference length,  and  are the mass and frequency ratio between 
the uncoupled oscillators, the expression of the dimensionless equations of motion written in 
the synthetic matrix form can be derived: 

 Mu Ku r MΓd gf u      (3) 

In such system u is the displacements vector while M and K are the mass and stiffness matri-
ces. Moreover, the vectors r and  have been introduced to allocate the control and external 
forces. The scalar variable gu  represents the seismic ground acceleration. The form of these 
parameters will be the following: 
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Figure 1: Nonlinear analytical model of two coupled oscillators. 
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After formulating the linear system, the nonlinear equation of motion can be generated con-
sidering a hysteretic behavior for the dissipative force of the damper. The new nonlinear sys-
tem looks as following: 
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where looking to the restoring force can be recognized two component related to the linear 
part modelled as a Kelvin-Voigt model (linear spring and viscous element arranged in parallel) 
while the nonlinear one is regulated by an adjunct variable z and moreover the coefficient  is 
the post- to pre- yield stiffness ratio for the damper. The linear matrices describing the dissi-
pative constitutive law assume the following form: 

 ,d dK C
   
   

    
        

 (6) 

where  and  are the dimensionless parameters for spring and dashpot whose form is: 

 2
1 1 1 1

,
2

K C

M M
 

 
   (7) 

in which K and C are the elastic and viscous coefficient, respectively. 
The dynamic evolution of the variable z is described by a Bouc-Wen model where the coeffi-
cients b and b control the shape of the hysteresis loop, A the restoring amplitude and n the 
smooth transition from elastic to plastic response (for large values of n the model tends to an 
elasto-plastic behavior). 

3 NONLINEAR STOCHASTIC RESPONSE BY EQUIVALENT LINEARIZATION 

It is well-known that for a state-space model the linear stationary stochastic response can 
be evaluated through the covariance matrix . Indeed, assuming a system written in state-
space formulation as in the following: 
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 x A x B w   (8) 

where w is a zero-mean stationary Gaussian process, A and B are the state-space matrices, x 
the state-space vector, usually composed by the displacement and velocity of the system, the 
stationary stochastic responses can be obtained solving the following equation [9]: 

 20 AΓ Γ A B BS    (9) 

which is the well-known Lyapunov equation in the unknown covariance matrix. The variable 
S is the power of the white noise spectral density. It right to remember that the covariance is 
defined as: 
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It contains in the main diagonal the expected values of the displacements and velocities (i.e. 
variances and standard deviations) while out of diagonal are located the mixed expected val-
ues.  
The nonlinear stochastic response can be well approximate by an equivalent linear system that 
will allows to easily and quickly evaluate the nonlinear solution solving the previous Lyapun-
ov equation. The evolution of the variable z can be reproduced by the following first-order 
differential equation: 

 0eq eqz C u K z     (11) 

where 2 1u u u     . 
In [9] the authors evaluated the equivalent of Ceq and Keq for Bouc-Wen model in the special 
case n = 1 
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Assuming a Gaussian excitation, the equivalent terms can be assessed through second mo-
ments: 
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where E( )  is the expectation operator while  represents the standard deviation. Moreover, 
expression for a general case of 1n   can be found in Giaralis and Spanos [10]. 
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3.1 Structural responses 

Defining the state-space vector as 

 T T T
s [ ]x u u z   (16) 

the equivalent linear system given putting together the Eq. (5a) and Eq. (11) and subjected to 
a stochastic excitation assumes the following form: 

 s s s

s s s

x A x B

y C x D

w

w

 

 


 (17) 

The state-space matrices As and Bs look as: 
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s s
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 (18) 

The matrices related to the output y, Cs and Ds, can be defined to contain arbitrary infor-
mation about the system (generally Ds = 0). 
Based on this linearized process, a reasonable evaluation of the nonlinear stochastic response 
can be carried out solving the Lyapunov equation through an iterative procedure since the 
equivalent coefficients, Ceq and Keq, depend by the standard deviations. 
The robustness of this procedure has been preliminary carried out comparing the results ob-
tained with the linearized procedure and direct integration for a nonlinear oscillator. In this 
case the hysteretic component of the restoring force is described through a Bouc-Wen model. 
The equation of motion looks as following: 
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 (19) 

In the below Figure 2 are illustrated two direct integration analyses related to two cases with 
low and high noise power. Indeed, in the Tables 1 and 2 are reported the results of the stand-
ard deviations evaluated with both methods, direct integration and linearized procedure, for 
 

 
Figure 2: Direct Integration of the nonlinear oscillator. Parameters: 2 1.35, 0.05, 0.05      , Bouc-Wen: 

0.5, 0.5, 1, 1b b n A     . Noise Power: (a), (b), (c) S = 0.01; (d), (e), (f) S = 1. 
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Method S = 0.01 S = 0.03 S = 0.10 S = 0.50 S = 1.00 
Direct Integration 0.0220 0.0378 0.0671 0.1477 0.2054 

Linearized procedure 0.0221 0.0376 0.0670 0.1440 0.2011 
Table 1: Standard deviations of the nonlinear oscillator in terms of displacements varying the noise power S. 

 
Method S = 0.01 S = 0.03 S = 0.10 S = 0.50 S = 1.00 

Direct Integration 0.0220 0.0378 0.0671 0.1477 0.2054 
Linearized procedure 0.0221 0.0376 0.0670 0.1440 0.2011 

Table 2: Standard deviations of the nonlinear oscillator in terms of velocities varying the noise power S. 

displacements and velocities. The accord appears quite good even for high values of the noise 
power. 

3.2 Stochastic excitation modelled as filtered white noise 

The stochastic excitation can be represented as a filtered white noise described, for exam-
ple, through a Kanai-Tajimi filter: 
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The Kanai-Tajimi model is a white noise random process ( )w t  passed through a second-order 
filter, g  and g  are the site natural frequency and damping of the soil. The latter are proper-
ties that depend by local site conditions, seismic hazard maps, etc. [11]. 
The Eq. (20) can be written in the state-space formulation: 

 
( )x A x B

C x
f f f f

g f f

w t

u

 






 (21) 

where x f  is the filtered state vector while the matrices Af, Bf, and Cf are chosen to represent 
the characteristic of the excitation. 
The combined representation between system and excitation can be obtained through an aug-
mented state vector given by 

 
TT T

sx x xa f     (22) 

and so, combining together the equation of the structural system (Eq. 17) and the ones for the 
loading model (Eq. 20), both written in the state-space formulation, it is possible to get a new 
form of the augmented system: 

 
( )a a a a

s a a
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y C x
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
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 (23) 

where the new expression of the augmented state-space matrices is the following 

  , ,s s f

a a a s s f

f f

A B C 0
A B C C D C

0 A B
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 (24) 
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The enlarged dynamical system permits to evaluate the stochastic structural response, taking 
into account the soil interaction. 

3.3 Structural optimization formulation  

The optimization problem is formulated as follows: 
 
find the design variables  T

1 2
n

Nθ R     such that it is minimized the objective 
function ( )J θ . The optimization procedure will have to respect also the requirements of a 
constraint function given by 

 ,min,

s

1, 2,
E[ ( , )] 0, 1, 2,

j j

k

j N

G k my θ

  
  




 (25) 

where ,minj  represents the lower bound of the jth design variable while s( , )kG y θ  is the kth 
constraint function in the optimization procedure. 
In general, in dealing with an optimization analyses different performance competing objec-
tives should be minimized. For example, in the control design the optimal simultaneous re-
duction of both displacements and absolute accelerations is a target practically impossible to 
reach. For this reason, in the research will be introduced a Pareto optimal front that will con-
stitute a tool for multi-objective optimization and decision making. This optimal frontier is 
defined by the following expression 

 P (1 ) ( ) ( )dipl accJ J Jθ θ       (25) 

in which   is a parameter that provides a tradeoff between two competing objective. It will be 
included between 0 and 1. When 0   only the optimization of the displacements will be 
take into account while for 1   will be optimize only the accelerations. When (0,1)   the 
resulting target will be a linear combination of both performance objectives. 

4 CONCLUSIONS 

The paper propones an iterative procedure to evaluate the nonlinear response of a simpli-
fied model subject to stochastic excitation. The procedure is also suitable for a filtered white 
noise excitation that takes into account the soil interaction. The main findings permit to de-
velop a design method for hysteretic device based on multi-objective optimization based on a 
Pareto optimal frontier. 
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