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Abstract—With the aim of maximizing profits of specific
business applications, economics, and sometimes reliability and
environmental constraints, have been widely guiding developers
when designing microgrids. However, mathematical indicators
alone, yet relevant, may not be able to fully capture the sociopo-
litical and geographical circumstances under which developers
operate, especially in rural areas of developing countries. In this
paper, we propose a methodology for obtaining microgrid designs
that not only achieves the traditional economic-efficient optimal
solution but also suggests multiple design options that increase
the eligibility for developers, which can select an option given
their particular circumstances. Based on a consolidated heuristic
method, Particle Swarm Optimization, our algorithm identifies
several design options of the microgrid’s components, by using an
iterative approach that stores the simulations occurring in each
iteration. The results from an illustrative numerical case study
highlight that significantly different designs can lead to similar
values of the objective function, i.e. investment and operational
costs. Our proposed methodology is of particular interest for
developers, who have the opportunity to choose among a set of
different technological solutions, but similar in economic terms.

Index Terms—Rural electrification; mini-grid; multi-objective;
multiple sizing choices; post-processing

I. INTRODUCTION

Microgrids are promising solutions to enhance the quality of
power systems and foster the penetration of renewable sources
in developed countries [1], [2], as well as to trigger the socio-
economic progress in developing countries by enabling reliable
electrification in far communities where extending the national
grid would be too expensive [3]. While the microgrid sector
in developed countries is significantly growing, investors in
the rural electrification sector still heavily rely on grants or
are reluctant to enter the market, since significant risks are
not rewarded by adequate profits [4], [5]. While the revenue
stream for a renewable project in a developed country is
usually known, especially where auctions or feed-in-tariff take
place [6], the project sustainability of a rural microgrid is
questionable as the revenues usually depend on the energy
consumption and the community behavior, which are typically

very uncertain, given that new consumers have often never
used electricity.

Economics have traditionally been used in most of the
optimization algorithms [7], [8], even when reliability [9],
[10], environmental [11], [12], socio-political [13] or technical
[14], [15] considerations have also been included. Neverthe-
less, representing the challenging and particular circumstances
under which microgrid developers operate is difficult and
traditional techniques, such as optimizing a single indicator
[7], often based on economics like the Net Present Cost (NPC)
or Net Present Value (NPV) [16], fails.

Despite this, economics-based optimization algorithms have
usually been proposed for designing microgrids, isolated or
interconnected to the main power system [7], [10], [17]. For
example, Mixed-Integer Linear Programming (MILP) has been
widely used in the literature for optimizing both the sizing
[18] and operation [19] of power systems. Although proved
to converge towards the global solution, the computational
requirements of MILPs may be considerable, depending on
the complexity and time horizon [20], and simplifications
are needed when problems are non-linear. On the other
hand, heuristic approaches can easily handle complex non-
linear problems and achieve the solution much faster than
traditional programming techniques [21], like MILPs. Authors
in [21] compared the solutions after using Particle Swarm
Optimization (PSO) and MILP-based approach. Even though
the solutions were similar, the computational requirements
with PSO were more than halved than with MILP. In [22],
authors compared a home-energy management system, with a
formulation based on Genetic Algorithm (GA), another heuris-
tic approach, which turned out to achieve similar solutions
of the MILP formulation, but in 10% of the computational
time. This evidence has led to extensively accept heuristic
algorithms.

However, both heuristic and traditional linear optimization
techniques focus on optimizing a specific mathematical objec-
tive function, which is basically pure economics and disregards
the multiple intangible features a microgrid investment is



composed of. In fact, beyond economics, social and political
concerns play a relevant role [3], [5], [23], as well as technical
aspects do. The reliability or the uncertainty in the lifespan of
components can affect the final decision; so it happens that a
sub-optimal solution A, slightly worse in terms of objective
function with respect to another design B, could be preferred
by the investor, due to factors difficult to be valued and
included into the optimization algorithm. In this regard, private
developers can benefit from methodologies providing multiple
sizing outputs, as done by commercial tools, like HOMER
[24], yet in a limited manner. Few methodologies have been
proposed to tackle this topic, to the best of authors’ knowledge.

In this study, we propose a methodology that enables
developers to choose among multiple design options related to
an off-grid microgrid. While our approach can be generalized
to any heuristic algorithm, PSO is used as an example to
minimize the NPC of the system. In every iteration of the
PSO, the intermediate results elaborated by the algorithm are
stored, and when the PSO converges, the collected information
is post-processed with the aim of compiling multiple design
options. By doing so, developers can select the best suited
option for their investment, without significantly affecting the
optimality of the solution.

In Section II, the sizing technique is explained, including
the novel post-processing methodology. Section III illustrates
the numerical case study and Section IV describes the results.
Finally, conclusions are discussed.

II. THE MULTI-SOLUTION SIZING TECHNIQUE

As depicted in Fig. 1, the proposed sizing technique is
composed by an optimization based on an iterative heuristic
approach coupled with a post-processing phase, which ana-
lyzes the simulated results from the optimization. The sizing
technique is similar to other approaches (see [21]), with the
difference that during each iteration all the processed infor-
mation is stored and used, when the optimization algorithm
converges, as described below.

A. The optimization algorithm

The optimization phase is based on a heuristic iterative
algorithm that aims at minimizing the NPC of the system that
includes the investment costs (CAPE X)), operating expenses
(OPEX,) and residual value (RES,) of the investment at
the end of the project lifetime, as detailed in (1), where d
represents the discount rate and N7 corresponds to the lifetime
of the project in years. OPEX considers the fuel expenses, the
maintenance of the components and the equivalent cost of the
Energy-Not-Served (ENS). The RES of each component is
calculated as the investment cost multiplied by the fraction of
the remaining lifetime of such component.

X CAPEX, + OPEX, — RES,
(1+a)?

min NPC = (1)
y=0

The system is supposed to be operated using the load
following strategy, selected because it represents a state-of-

the-art approach for current microgrids [21], [25]. The use
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Fig. 1: The proposed sizing method.

of other alternatives, like predictive methodologies, can lead
to reduce the NPC of the system at the cost of higher
computational requirements; however, the optimal designs of
the major components obtained with the two approaches are
similar [21]. Therefore, in this activity, we decided to focus
on the load-following strategy, given its simplicity and wide
use in rural microgrids.

Given its long-proved use in power systems [21], [26], [27],
PSO has been used in this study as the heuristic solver for
the considered microgrid. As depicted in Fig. 1, the PSO
iteratively draws P different design scenarios (100) of the
components of the system, also referred to as particles, based
on the solution of the previous iterations. Then, the yearly
system operation corresponding to each particle is simulated
using the load-following strategy, and the objective function
is finally calculated. Conversely to standard approaches [21],
during the iterative procedure, the intermediate results are
stored to be used later in the post-processing phase. Aiming
to reduce the computational burden, the stored information is
reduced to the size of the components and the value of the
objective function. The PSO algorithm converges when the
objective function does not change beyond a given threshold
(0.1%) within a preset number (20) of iterations.
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Fig. 2: The topology of the microgrid.

B. The post-processing phase

As shown in Fig. 1, the data relevant to the particles sim-
ulated during the PSO optimization are post-processed when
the PSO converges. In particular, only the design scenarios
within a preset optimality tolerance are selected. Subsequently,
their major characteristics are shown by means of color maps
that highlight to developers various design options with signif-
icantly different characteristics in terms of size of components,
ENS and initial investment, while maintaining very close
values of the objective function. More in detail, the following
steps were taken:

1) Selection of particles within a preset NPC tolerance with
respect to the minimum NPC achieved with the PSO.

2) Calculation of desired quantities of interest for the
developer, i.e. ENS and CAPEX.

3) Data interpolation using the cubic method (e.g. as pro-
vided by MATLAB).

4) Display of results.

III. CASE STUDY

The proposed case study is based on a hybrid microgrid to
be installed in Soroti, Uganda, composed by one photovoltaic
(PV) plant, one battery storage, one inverter, one battery
converter, one diesel generator and its fuel tank. As shown
in Fig. 2, the PV and battery are coupled at the DC busbar,
while the diesel generator and the inverter supply power to the
load at the AC busbar, as is in typical microgrid of developing
countries.

The community is composed by 100 households and some
commercial activities, whose typical load profile shown in
Fig. 3 was estimated with the procedure described in [28], in
which a Monte Carlo method draws the entire yearly profile
by using a hourly Gaussian probability density function. The
yearly peak power is around 80-86kW. The renewable energy
production has been estimated using the methodology detailed
in [29] and with the Graham model [30], [31], both tailored
using the data of the close weather station in Kitale, Kenya,
as information for Soroti was limited.

The cost function of the components of the microgrid
reflects the economies of scale and volume (2) whose coeffi-
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Fig. 3: The load profile.

TABLE I: Cost parameters of the main components.

Asset () | Sporom oo i UMy Lifeime
PV 1 kW 800 1 16 25y
Battery 1 kWh 925 1 3 3000 eq.cyc.
Bat. conv. 1 kW 1258 0.5 2 15y
Inverter 1 kW 1887 0.5 2 15y
Fuel gen. 1 kW 1013 0.8 0.058/kW/h 30000h
Fuel tank 1 liter 522 045 0.15 25y

cients are detailed in Table I. Eq. (2) is modeled by using
the reference cost C; o of the component i with capacity
S0 and the effects of the economies of scale are modeled
with parameter (3;, which describes the cost reduction with
respect to the capacity S; of the each component. The table
also reports the lifetime and the specific maintenance expense
for each asset. The efficiency of the inverter is 96% and the
roundtrip efficiency of the battery, including the converter, is
92%. The diesel generator operates between 10% and 100%
of the rated power, with a maximum efficiency of 33%. The
fuel price is 0.9$/1 and the load curtailment cost is 1$/kWh.

N\ B
CAPEX, = Zci,o ( SS : ) )
- 4,0

The logistics of the fuel generator are also considered: when
the fuel stored in the tank falls below 20% of the rated
capacity, a refill is requested for the missing quantity (80%).
The time required for the arrival of the truck is modeled using
a Weibull function whose 50% and 90% percentiles are 4 and
7 days respectively, but no refill can occur within the following
24 hours after the request. The lifetime of the project is 15
years and the discount rate is 8%.

The proposed approach is applied to this case study with
two possible values of the optimality tolerance on NPC: 1%
and 5%.

IV. RESULTS

The results of the proposed procedure are shown in Fig. 4
and Fig. 5, corresponding to NPC tolerance of 1% and 5%,
respectively. The figures show the values of the objective
function (NPC), the size of the main components, the ENS
and the initial investment, corresponding to the many size
configurations sampled by the PSO procedure. In particular,
the red dots in the images indicate directly the raw simulation
points collected by the PSO procedure, whereas the color maps
show their interpolation using a cubic fit. Table II details
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TABLE II: Optimal solution calculated by the PSO.

NPC PV Batt Inv.  DCDC Conv  Diesel Tank
k$ kW kWh kW kW kW 1
456 174 557 92 70 18 455

the objective function and the optimal size of components
calculated by the PSO optimization.

Fig. 4a and Fig. 5a show the value of NPC corresponding
to the different size scenarios sampled by the PSO procedure
(red points), respectively within 1% and 5% NPC tolerance,
combined with the corresponding battery capacity and rated
power of the PV plant. Obviously, with 1% tolerance the post-
processing procedure selects a lower number of points, yet
close to the optimal solution corresponding to 456 k$ of NPC.
Despite this, it is clear that the objective function is very flat.
In fact, the designs leading to similar values of the objective
function spread over a wide range, up to +10-25%, depending
on the case. This suggests that developers can benefit from
having different design options with various characteristics,
as calculated with our proposed method.

In contrast to the PV panel and the battery, shown in Fig. 4a
and Fig. 5a, the variability of the inverter, whose design is
depicted in Fig. 4c and Fig. 5c, is much more limited: the
images are very flat and the size is always close to the peak
demand. In fact, when the generator is not committed, the
demand has to be supplied by the PV system or the battery
through the inverter. If the capacity of the inverter is limited
with respect to the actual demand, the diesel generator has to
step in or ENS is generated. On the other hand, the peak
demand occurs only few hours in a year, thus sizing the
inverter for the peak power or beyond may lead to increase
the NPC, since the savings related to a lower fuel consumption
or load curtailment may not cover the investment costs of the
additional capacity of the inverter. Moreover, the costs related
to the inverter are limited in terms of NPC, thus suggesting that
the optimal design of the inverter does not affect significantly
the objective function. The sizing of the tank, though not
reported in the figures, is similar to the inverter one. However,
it is more jagged on the image, since the impact of the tank
on the NPC is low. That is, a larger tank sizes does not affect
consistently the objective function.

The size of the diesel generator, reported in Fig. 4b and
Fig. 5b respectively for the case of 1% and 5% NPC tolerance,
tends to increase as the sizes of the PV plant and of the battery
decrease. Similarly, also the fuel consumption increases as
shown in Fig. 4d and Fig. 5d. In fact, the lower capacity of
the PV plant or of the battery, the lower amount of renewable
energy produced or stored; therefore, the diesel generators
step in more often to limit the load curtailment (Fig. 4e
and Fig. 4e). Given the cost parameters of the case study,
the ENS is always negligible, often below 1%, while the
diesel generation can increase even up to about 10% when
the renewable energy production is low.

However, when the sizes of the battery and of the PV plant
increase, the CAPEX of the system significantly increases

(Fig. 4f and Fig. 5f), whereas the ENS and the fuel con-
sumption decrease. On the other hand, increasing the size of
the components above the optimal solution does not reduce
adequately the fuel costs or ENS (Fig. 4a and Fig. 5a), in fact
NPC increases for large capacities of battery and PV plant.
Thanks to the proposed image-aided approach, developers can
better understand the shape of the objective functions, so they
can select designs suited for their specific project.

V. CONCLUSIONS

This paper proposes a methodology to augment the design
options for microgrid projects by using a heuristic iterative
approach combined with a post-processing analysis. During
the iterations of the heuristic optimizer, the tested size configu-
rations are stored. When the optimization algorithm converges,
all configurations with an objective function within a preset
tolerance from the optimal solution are selected and their
characteristics are illustrated by means of color maps. The
methodology has been applied to a case study of a rural
microgrid in Uganda. Within the goal of minimizing the NPC,
a sensitivity analysis on the optimality tolerance of the post-
processing method was also considered.

The results show that several design options can lead to
similar values of the NPC, thus confirming that the objective
function is very flat nearby the optimal solution. Although the
considered post-processing tolerances are very low in terms
of NPC (no greater than 5%), the variability of the sizes of
the battery and the PV plant is consistent, up to +20 — 30%.
Even if the impact in terms of NPC is low, the different size
scenarios affect other characteristics of the investment, such as
the use of fuel-fired generators and the amount of the initial
investment, which are easily revealed thanks to the proposed
post-processing analysis.

As the circumstances where developers participate are varie-
gated and diverse, traditional mathematical objective functions
may fail to capture all details. Our proposed approach can
support the decision-making in these contexts and provide
reliable and complete information to develop profitable mi-
crogrid investments. Future developments of this research
activity will consider the automatic clustering of the different
design options, to also highlight the most repeated and, hence,
promising options.
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