
Controlled Query Evaluation in
Ontology-based Data Access?

Gianluca Cima1[0000−0003−1783−5605], Domenico Lembo1[0000−0002−0628−242X],
Lorenzo Marconi1, Riccardo Rosati1[0000−0002−7697−4958], and

Domenico Fabio Savo2[0000−0002−8391−8049]

1 Sapienza Università di Roma
{cima,lembo,marconi,rosati}@diag.uniroma1.it

2 Università degli Studi di Bergamo
domenicofabio.savo@unibg.it

Abstract. In this paper we study the problem of information disclo-
sure in ontology-based data access (OBDA). Following previous work
on Controlled Query Evaluation, we introduce the framework of Policy-
Protected OBDA (PPOBDA), which extends OBDA with data protec-
tion policies specified over the ontology and enforced through a censor,
i.e., a function that alters answers to users’ queries to avoid the dis-
closure of protected data. We consider PPOBDA systems in which the
ontology is expressed in owl 2 ql and the policies are denial constraints,
and show that query answering under censors in such a setting can be
reduced to standard query answering in OBDA (without data protection
policies). The basic idea of our approach is to compile the policies of
a PPOBDA system into the mapping of a standard OBDA system. To
this aim, we analyze some notions of censor proposed in the literature,
show that they are not suited for the above-mentioned compilation, and
provide a new definition of censor that enables the effective realization of
our idea. We have implemented our technique and evaluated it over the
NPD benchmark for OBDA. Our results are very promising and show
that controlled query evaluation in OBDA can be realized in the practice
by using off-the-shelf OBDA engines.

Keywords: Ontology-based Data Access · Information Disclosure ·
Data Protection · First-Order Rewritability

1 Introduction

Controlled Query Evaluation (CQE) is an approach to privacy-preserving
query answering that recently has gained attention in the context of ontolo-
gies [6,11,12,17]. In this paper, we consider the more general Ontology-based

? This work was supported by the EU within the H2020 Programme under the
grant agreement 834228 (ERC WhiteMec) and the grant agreement 825333 (MO-
SAICrOWN), by Regione Lombardia within the Call Hub Ricerca e Innovazione
under the grant agreement 1175328 (WATCHMAN), and by MUR (Ministero
dell’Università e della Ricerca), through PRIN project HOPE (prot. 2017MMJJRE).

2 G. Cima et al.

Data Access (OBDA) framework, where an ontology is coupled to external data
sources through a mapping [20,23], and extend OBDA with CQE features. In
this new framework, which we call Policy-Protected Ontology-based Data Access
(PPOBDA), a data protection policy is specified over the ontology of an OBDA
system in terms of logical statements declaring confidential information that
must not be revealed to the users. For instance, the following formula:

∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y)→ ⊥

says that the existence of an oil company issuing a license to another company
(to operate over its properties) is a private information.

More formally, we define a PPOBDA specification E as a quadruple
〈T ,S,M,P〉, where T is a Description Logic (DL) TBox [1], formalizing in-
tensional domain knowledge, S is the relational schema at the sources, M is
the mapping between the two, i.e., a set of logical assertions defining the se-
mantic correspondence between T and S, and P is the data protection policy
expressed over T . The components T , S, andM are exactly as in OBDA speci-
fications, and, as in standard OBDA, a user can only ask queries over the TBox
T . Then, query answering is filtered through a censor, i.e., a function that alters
the answers to queries, in such a way that no data are returned that may lead a
malicious user to infer knowledge declared confidential by the policy, even in case
he/she accumulates the answers he/she gets over time. Among possible censors,
optimal ones are preferred, i.e., those altering query answers in a minimal way.

Within this framework, we initially consider two different notions of cen-
sor, called censor in either CQ or GA, previously defined for CQE over DL
ontologies [12,17], and which can be naturally extended to PPOBDA. More pre-
cisely, given a PPOBDA specification E = 〈T ,S,M,P〉, an optimal censor in
CQ (resp., GA) for E is a function that, taken as input a database instance
D for the source schema S, returns a maximal subset C of the set of Boolean
conjunctive queries (resp., ground atoms) inferred by 〈T ,S,M〉 and D, such
that C ∪ T does not entail information protected by the policy. Since in general,
for such notions of censor, several of these maximal sets (incomparable to each
other) exist, for both cases we define query answering under optimal censors in
PPOBDA as a form of skeptical reasoning over all such sets, in the line of [17].

Our basic idea to solve query answering under censors is to transform a
PPOBDA specification E into a classical OBDA specification J (i.e., without
policies), in such a way that, whatever database D instantiates the source schema
S, query answering under censors in E over D is equivalent to standard query
answering in J over D. In this transformation, we require that J has the same
TBox of E , so that this reduction is transparent to the user, who can continue
asking to J exactly the same queries he/she could ask to E . We also impose
that J maintains the same source schema as E , since, as typical in OBDA, the
data sources to be accessed are autonomous, and cannot be modified for OBDA
purposes. Moreover, we aim at a transformation that is independent from the
underlying data and from the user queries, so that it can be computed only
once, at design-time. This enables us to use off-the-shelf OBDA engines, like

Controlled Query Evaluation in Ontology-based Data Access 3

Mastro3 or Ontop4 to realize CQE in OBDA. The problem we study can be
thus summarized as follows: Given a PPOBDA specification E = 〈T ,M,S,P〉,
construct an OBDA specification J = 〈T ,S,M′〉 such that, for any database D
for S, conjunctive query answering under censors in E over D is equivalent to
standard conjunctive query answering in J over D.

We investigate the above problem for the relevant case in which the TBox is
expressed in DL-LiteR, the DL underpinning owl 2 ql [18], the standard profile
of owl 2 designed for ontology-based data management and prominently used
in OBDA, and the policy is a set of denial assertions, i.e., conjunctive queries for
which an empty answer is imposed due to confidential reasons (as in our initial
example). Our contributions are as follows.

– We introduce the framework for PPOBDA (Section 4).
– We show that the problem above defined has in general no solution when

censors in either CQ or GA are considered. We in fact prove this result for
an empty TBox, and thus it holds for TBoxes in any DL, and not only for
owl 2 ql ones (Section 5).

– To solve this issue, we propose a further, semantically well-founded approxi-
mated notion of censor, which we call IGA censor. Intuitively, an IGA censor
for a PPOBDA specification E is a function that, for any database D instanti-
ating the source schema S of E , returns the intersection of the sets of ground
atoms computed by the optimal censors in GA for E applied to D. We
then provide an algorithm that solves our problem for owl 2 ql PPOBDA
specifications under IGA censors. (Section 6)

– We provide an experimental evaluation of our approach. We have imple-
mented our algorithm in Java, and tested it over the OBDA NPD bench-
mark [15], whose TBox has been suitably approximated from owl 2 to
owl 2 ql. We have compared query answering in the case in which no data
protection policy is specified (i.e., in standard OBDA) with query answering
under IGA censors for an increasing number of policy assertions. We have
used Mastro as OBDA engine. Our results show that the cost of the off-line
transformation performed by our tool is negligible, and answering queries in
the presence of a data protection policy in our approach does not cause a
significant overhead with respect to the case without policy (Section 7).

2 Related Work

Existing OBDA solutions do not provide any explicit support to the protection
of confidential data, and the research has so far produced only initial theoretical
contributions in this direction. In [3], the authors study the problem of deter-
mining whether information that is declared confidential at the sources through
a protection policy, as in CQE, can be inferred by a user on the basis of the
answers to the queries posed over the OBDA system, assuming that he/she is

3 http://obdasystems.com/mastro
4 https://ontop-vkg.org/

http://obdasystems.com/mastro
https://ontop-vkg.org/

4 G. Cima et al.

knowledgeable about the OBDA specification. Both [3] and the present paper
focus on the role of the mapping in filtering data coming from the sources with
respect to a declarative data protection policy. However, we consider the policy
expressed over the TBox of the OBDA specification and look at the mapping as
a means to enforce data protection, whereas in [3] the policy is declared at the
source level and the mapping is seen as a potential cause for secret disclosure.
Possible disclosure of confidential source-level information has also been studied
in [2,19,8], in the context of data integration or exchange, possibly in the pres-
ence of integrity constraints at the sources. In these works, the integrated target
schema is a flat relational one, thus not an expressive TBox, as in OBDA, and
secrets are specified in terms of queries over the sources, thus not policies over
the target schema, as in our framework. Also, the focus is on disclosure analysis
and not confidentiality enforcement.

Initially, CQE has been studied in the context of propositional theories under
closed world assumption (see, e.g., [21,4]), thus in a framework substantially
different from ours. The more recent works on CQE over DL ontologies are
instead closer to our research. In [6], the authors propose a method for computing
secure knowledge views over DL ontologies in the presence of user background
knowledge and investigate the computational complexity of the approach for
ontologies and policies specified in various expressive DLs. In [11], the authors
generalize the CQE paradigm for incomplete databases proposed in [5], and study
CQE for owl 2 rl ontologies and policies represented by a set of ground atoms.
The same authors continued their investigation in [12], for ontologies and policies
specified in Datalog or in one of the owl 2 profiles [18], mainly focusing on the
problem of the existence of a censor under two incomparable different notions
of censors. In [17], the authors revisited CQE as the problem of computing the
answers to a query that are returned by all optimal censors, which is also the
approach we adopt in this paper. However, like all the above mentioned papers
on CQE over ontologies, [17] does not consider OBDA mappings.

We finally point out that forms of privacy-preserving query answering over
DL ontologies have been studied also, e.g., in [10,22], but not according to the
CQE approach, or in an OBDA context.

3 Preliminaries

We use standard notions of function-free first-order (FO) logic and relational
databases. We assume to have the pairwise disjoint countably infinite sets ΣR,
ΣT , ΣC , and ΣV for relational database predicates, ontology predicates, con-
stants (a.k.a. individuals), and variables, respectively.

Ontologies. With FO we indicate the language of all FO sentences overΣT ,ΣC ,
and ΣV . An FO ontology O is a finite set of FO sentences, i.e., O ⊆ FO. With
Mod(O) we denote the set of the models of O, i.e., the FO interpretations I such
that φI (i.e., the interpretation of φ in I) evaluates to true, for each sentence
φ ∈ O. We say that O is consistent if Mod(O) 6= ∅, inconsistent otherwise,
and that O entails an FO sentence φ, denoted O |= φ, if φI is true in every

Controlled Query Evaluation in Ontology-based Data Access 5

I ∈ Mod(O). The set of logical consequences of an ontology O in a language
L ⊆ FO, denoted clL(O), is the set of sentences in L entailed by O.

Queries. A query q is a (possibly open) FO formula φ(~x), where ~x are the free
variables of q. The number of variables in ~x is the arity of q. We consider queries
over either relational databases or ontologies. Given a query q of arity n over a
database D, we use Eval(q,D) to denote the evaluation of q over D, i.e., the set
of tuples ~t ∈ Σn

C such that D |= φ(~t), where φ(~t) is the sentence obtained by
substituting ~x with ~t in q.

A conjunctive query (CQ) q is an FO formula of the form ∃~y.α1(~x, ~y)∧ . . .∧
αn(~x, ~y), where n ≥ 1, ~x is the sequence of free variables, ~y is the sequence of
existential variables, and each αi(~x, ~y) is an atom (possibly containing constants)
with predicate αi and variables in ~x∪~y. Each variable in ~x∪~y occurs in at least
one atom of q. Boolean CQs (BCQs) are queries whose arity is zero (i.e., BCQs
are sentences). The length of a CQ q is the number of its atoms. The set of certain
answers to a CQ q of arity n over an ontology O is the set cert(q,O) of tuples
~c ∈ Σn

C such that O entails the sentence ∃~y.α1(~c, ~y) ∧ . . . ∧ αn(~c, ~y). As usual,
when a BCQ q is entailed by O, i.e., O |= q, we may also say cert(q,O) = {〈〉},
i.e., the set of certain answers contains only the empty tuple, cert(q,O) = ∅,
otherwise.

For ease of exposition, in our technical development we will focus on the
entailment of BCQs from DL ontologies. However, our results can be straight-
forwardly extended to non-Boolean CQs through a standard encoding of open
formulas into closed ones. In the following, we denote by CQ the languages of
BCQs, and by GA the language of ground atoms, i.e., BCQs with only one atom
and no variables, both specified over ΣT , ΣC , and ΣV .

OWL 2 QL and DL-LiteR. We consider ontologies expressed in DL-LiteR [7],
i.e., the DL that provides the logical underpinning of owl 2 ql [18]. DLs are
decidable FO languages using only unary and binary predicates, called concepts
and roles, respectively [1]. Concepts denote sets of objects, whereas roles denote
binary relationships between objects. A DL ontology O is a set T ∪A, where T is
the TBox and A is the ABox, specifying intensional and extensional knowledge,
respectively. A TBox T in DL-LiteR is a finite set of axioms of the form: B1 v
B2, B1 v ¬B2, R1 v R2, and R1 v ¬R2, where each Ri, with i ∈ {1, 2}
is an atomic role Q ∈ ΣT , or its inverse Q−; each Bi, with i ∈ {1, 2} is an
atomic concept A ∈ ΣT , or a concept of the form ∃Q or ∃Q−, i.e., unqualified
existential restrictions, which denote the set of objects occurring as first or second
argument of Q, respectively. Assertions of the form B1 v B2 and R1 v R2

indicate subsumption between predicates, those of the form B1 v ¬B2 and
R1 v ¬R2 indicate disjointness between predicates. An ABox A is a finite set
of ground atoms, i.e., assertions of the form A(a), Q(a, b), where A,Q ∈ ΣT ,
and a, b ∈ ΣC . The semantics of a DL-LiteR ontology O is given in terms of FO
models over the signature of O in the standard way [7].

OBDA. An OBDA specification is a triple J = 〈T ,S,M〉, where T is a DL
TBox over the alphabet ΣT , S, called source schema, is a relational schema over
the alphabet ΣR, and M is a mapping between S and T .

6 G. Cima et al.

The mapping M is a finite set of mapping assertions from S to T . Each of
these assertions m has the form φ(~x) ; ψ(~x), where φ(~x), called the body of m,
and ψ(~x), called the head of m, are queries over S and T , respectively, both with
free variables ~x. We consider the case in which φ(~x) is an FO query, and ψ(~x) is
a single-atom query without constants and existential variables (i.e., each m is
a GAV mapping assertion [14]). This is the form of mapping commonly adopted
in OBDA, and a special case of the W3C standard R2RML [13].

In the above definition, we have assumed that the source database directly
stores the identifiers (e.g., the URIs) of the instances of the ontology predicates.
However, all our results hold also when such identifiers are constructed in the
mapping using the database values, as usual in OBDA [20] and in R2RML.

The semantics of J is given with respect to a database instance for S, called
source database for J . Given one such database D, the retrieved ABox for J
w.r.t. D, denoted ret(J , D), is the ABox that contains all and only the facts
ψ(~t) such that ψ(~x) occurs in the head of some mapping assertion m ∈M, and
~t is a tuple of constants such that ~t ∈ Eval(φ(~x), D), where φ(~x) is the body
of m. Then, a model for J w.r.t. D is a model of the ontology T ∪ ret(J , D).
The set of models of J w.r.t. D is denoted by Mod(J , D). Also, we call (J , D)
an OBDA setting and say that (J , D) is inconsistent if Mod(J , D) = ∅, and
denote by (J , D) |= α the entailment of a sentence α by (J , D), i.e., the fact
that αI is true in every I ∈ Mod(J , D).

4 Framework

We start by introducing the formal notion of policy-protected OBDA specifi-
cation. Our framework is a generalization to the OBDA context of the CQE
framework for DL ontologies provided in [9,17].

We first define a denial assertion (or simply a denial) as an FO sentence of
the form ∀~x.φ(~x) → ⊥, such that ∃~x.φ(~x) is a BCQ. Given one such denial δ
and a DL ontology O, then O ∪ {δ} is a consistent FO theory if O 6|= ∃~x.φ(~x),
and is inconsistent otherwise. We then give the following definition.

Definition 1 (PPOBDA specification). A policy-protected ontology-based
data access (PPOBDA) specification is a quadruple E = 〈T ,S,M,P〉 such that
〈T ,S,M〉 is an OBDA specification, and P is a policy, i.e., a set of denial
assertions over the signature of T , such that T ∪ P is a consistent FO theory.

Example 1. Consider the following PPOBDA specification E = 〈T ,S,M,P〉,
where

T = { OilComp v Comp, ∃IssuesLic− v Comp, ∃PipeOp v Pipeline,
∃PipeOp− v Comp }

S = {company, license, operator}
M = {m1: ∃y.company(x, y) ; Comp(x), m2: company(x,‘oil’) ; OilComp(x),

m3: license(x, y) ; IssuesLic(x, y), m4: operator(x, y) ; PipeOp(x, y) }
P = { d1: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y)→ ⊥,

d2: ∀x, y.PipeOp(x, y) ∧OilComp(y)→ ⊥}

Controlled Query Evaluation in Ontology-based Data Access 7

In words, the TBox T specifies that oil companies (concept OilComp) are a
special kind of companies (concept Comp) and that companies can issue licenses
(role IssuesLic) to other companies (over their properties) and be operators (role
PipeOp) of pipelines (concept Pipeline). The schema S has three tables, each
with two columns: company, which contains data about companies and their
type, license, which contains data about license issuance, and operator, which
contains operators of pipelines. The policy P specifies as confidential the fact
that an oil company issues a license to a company, and the fact that an oil
company is the operator of a pipeline. ut

The semantics of a PPOBDA specification E = 〈T ,S,M,P〉 coincides with
that of the OBDA specification 〈T ,S,M〉, and thus we naturally extend to
PPOBDA the notion of source database D, retrieved ABox (denoted ret(E , D)),
set of models (denoted Mod(E , D)), and setting (denoted (E , D)).

We now give a notion of censor in PPOBDA that is parametric with respect to
the language L used for enforcing the policy (similarly to [17]). In the following,
given a TBox T , with L(T) we denote the subset of L containing all and only
the sentences specified only over the predicates occurring in T and the constants
in ΣC . For instance, with FO(T) we denote the set of FO sentences having the
above mentioned characteristics. Moreover, given a database D, with LD we
denote the formulas in L mentioning only constants in D.

Definition 2 (censor in L). Given a PPOBDA specification E = 〈T ,S,M,P〉
and a language L ⊆ FO(T), a censor for E in L is a function cens(·) such that,
for each source database D for E, returns a set cens(D) ⊆ LD such that:

(i) (〈T ,S,M〉, D) |= φ, for each φ ∈ cens(D), and
(ii) T ∪ P ∪ cens(D) is a consistent FO theory.

We call L the censor language.

Given two censors cens(·) and cens′(·) for E in L, we say that cens′(·) is more
informative than cens(·) if:

(i) for every database instance D for E , cens(D) ⊆ cens′(D), and

(ii) there exists a database instance D′ for E such that cens(D′) ⊂ cens′(D′).

Then, a censor cens(·) for E in L is optimal if there does not exist a censor
cens′(·) for E in L such that cens′(·) is more informative than cens(·). The set of
all optimal censors in L for a PPOBDA specification E is denoted by L-OptCensE .

In this paper, we consider censors in the languages CQ(T) and GA(T), i.e.,
we instantiate L in Definition 2 to either the language of BCQs or the language
of ground atoms, respectively, both over the predicates occurring in T . These are
the censor languages studied in [17] over DL ontologies. In the following, when T
is clear from the context, we simply denote them as CQ and GA, respectively.

Example 2. Consider the PPOBDA specification E of Example 1, and let cens1
be the function such that, given a source database D for E , cens1(D) is the set
of ground atoms clGA(T ∪ A1), where A1 is the ABox obtained from ret(E , D)
by adding the assertion Comp(c) and removing the assertion OilComp(c), for

8 G. Cima et al.

each individual c such that T ∪ ret(E , D) |= (OilComp(c)∧∃x.IssuesLic(c, x)∧
Comp(x)) ∨ (∃x.PipeOp(x, c) ∧ OilComp(c)). It is easy to verify that cens1 is
an optimal censor for E in GA, i.e. cens1 ∈ GA-OptCensE . ut

For censors in CQ and GA we define the following entailment problems.

Definition 3. Given a PPOBDA specification E = 〈T ,S,M,P〉, a database
instance D for S, and a BCQ q, we consider the following decision problems:

(CQ-Cens-Entailment): decide whether T ∪ cens(D) |= q for every cens ∈
CQ-OptCensE . If this is the case, we write (E , D) |=cqe

CQ q.

(GA-Cens-Entailment): decide whether T ∪ cens(D) |= q for every cens ∈
GA-OptCensE . If this is the case, we write (E , D) |=cqe

GA q.

Our ultimate goal is to solve the above problems by reducing them to classical
entailment of BCQs in OBDA. To this aim, we define below the notion of query
equivalence under censor between PPOBDA and OBDA specifications.

Definition 4 (query equivalence). Given a PPOBDA specification E =
〈T ,S,M,P〉 and an OBDA specification J = 〈T ,S,M′〉, we say that E and
J are query-equivalent under censors in CQ (resp. GA) if for every database
instance D for S and every BCQ q, (E , D) |=cqe

CQ q (resp. (E , D) |=cqe
GA q) iff

(J , D) |= q.

Based on the above definition, we can decide CQ-cens-entailment of a BCQ
q from a PPOBDA E coupled with a source database D for S by constructing
an OBDA specification J such that E and J are query-equivalent under censors
in CQ and checking whether (J , D) |= q (analogously for GA-cens-entailment).
We remark that, besides the policy, the mapping is the only component in which
E and J differ (see also Section 1). Intuitively,M′ in J implements a censor (in
either CQ or GA) for E .

5 Inexpressibility results

In this section, we start investigating how to reduce query entailment in
PPOBDA to query entailment in OBDA, based on the query equivalence defini-
tion given in the previous section.

Before proceeding further, we notice that, given a PPOBDA specification
E = 〈T ,S,M,P〉, a natural question is whether the OBDA specification J =
〈T ,S,M〉, i.e., obtained by simply eliminating the policy P from E , is query-
equivalent to E under censors in either CQ or GA. In other terms, one might
wonder whether the mapping M is already realizing a filter on the data such
that denials in P are never violated by the underlying data retrieved through
M, whatever source database for J is considered5. If this would be the case,
the entailment problems we are studying would become trivial. However, since

5 Note that this is not the problem studied in [3] (see also the discussion in Section 2).

Controlled Query Evaluation in Ontology-based Data Access 9

the bodies of mapping assertions are FO queries, to answer the above question
we should decide entailment in FO, which is an undecidable problem.

The following result says that, under censors in CQ, constructing an OBDA
specification query-equivalent to E is in general not possible, already for the
case of a TBox that does not contain axioms. As a consequence, entailment
of BCQs under censors in CQ cannot be solved through transformation in a
query-equivalent OBDA specification, whatever logic is used for the TBox.

Theorem 1. There exists a PPOBDA specification E = 〈T ,S,M,P〉 with T =
∅ for which there does not exist an OBDA specification J such that E and J are
query-equivalent under censors in CQ.

Proof. Consider the PPOBDA specification E = 〈T ,S,M,P〉 such that T = ∅,
S contains the binary relation T , where T ∈ ΣR, M = {T (x, y) ; Q(x, y)},
where Q ∈ ΣT , and P = {∀x .Q(a, x) → ⊥, ∀x .Q(x, a) → ⊥}, where a
belongs to ΣC . Assume that J is an OBDA specification such that E and J
are query-equivalent under censors in CQ, and let M′ be the mapping of J .
Consider now the case when the source database D consists of the fact T (a, a).
First, it is immediate to see that, given the policy P, no BCQ mentioning the
individual a can belong to any censor cens(·) in CQ-OptCensE . Then, since a
is the only individual appearing in D, it follows that no BCQ mentioning any
individual can belong to any censor cens(·) in CQ-OptCensE . This implies that
the mapping M′ of J cannot retrieve any instance from D, i.e., ret(J , D) is
empty, and therefore no BCQ is entailed by (J , D). On the other hand, the
OBDA setting (〈T ,S,M〉, D) infers purely existential BCQs. For instance, all
the BCQs expressing existential cycles of any length over the role Q, that is all
the queries of the form ∃x0, . . . , xn .Q(x0, x1)∧Q(x1, x2)∧ . . .∧Q(xn, x0), where
n ∈ N. All such queries can be positively answered by the PPOBDA setting
(E , D) without revealing a secret: so, all such queries belong to every censor
cens(·) in CQ-OptCensE . Since they are not entailed by (J , D), this contradicts
the hypothesis that E and J are query-equivalent under censors in CQ, thus
proving the theorem. ut

Hereinafter, we focus on DL-LiteR PPOBDA specifications, i.e., whose TBox
is expressed in the logic DL-LiteR. The following theorem states that the same
issue of Theorem 1 arises also under censors in GA.

Theorem 2. There exists a DL-LiteR PPOBDA specification E for which there
does not exist an OBDA specification J such that E and J are query-equivalent
under censors in GA.

Proof. From Theorem 6 in [17], it follows that, for DL-LiteR PPOBDA specifica-
tions, GA-Cens-Entailment is coNP-hard in data complexity. Instead, standard
conjunctive query entailment for OBDA specifications with a DL-LiteR TBox is
in AC0 in data complexity [20]. This clearly shows the thesis. ut

10 G. Cima et al.

6 Embedding a policy into the mapping

Towards the identification of a notion of censor that allows us to always transform
a PPOBDA specification E into a query-equivalent OBDA one, we define below
a new notion of censor that suitably approximates censors for E in GA.

Definition 5 (Intersection GA censor). Given a PPOBDA specification
E = 〈T ,S,M,P〉, the intersection GA (IGA) censor for E is the function
censIGA(·) such that, for every database instance D for S, censIGA(D) =⋂

cens∈GA-OptCensE
cens(D).

Example 3. Let E be the PPOBDA specification of Example 1, and let
D = {company(c1, ‘oil’), company(c2, ‘oil’), company(c3, ‘oil’), license(c1, c4),
operator(p1, c2)} be a source database for E . One can verify that censIGA(D) =
{Comp(c1), Comp(c2), Comp(c3), OilComp(c3), Comp(c4), P ipeline(p1)}. ut

Notice that, differently from the previous notions of censors, the IGA censor
is unique. Then, given a source database instance D for E and a BCQ q, IGA-
Cens-Entailment is the problem of deciding whether T ∪censIGA(D) |= q. If this
is the case, we write (E , D) |=cqe

IGA q.
The following proposition, whose proof is straightforward, says that IGA-

Cens-Entailment is a sound approximation of GA-Cens-Entailment.

Proposition 1. Given a PPOBDA specification E, a source database D for E
and a BCQ q, if (E , D) |=cqe

IGA q then (E , D) |=cqe
GA q.

We naturally extend Definition 4 to IGA censors. Given a PPOBDA speci-
fication E = 〈T ,S,M,P〉 and an OBDA specification J = 〈T ,M′,S〉, we say
that E and J are query-equivalent under IGA censor if for every source database
D for E and every BCQ q, (E , D) |=cqe

IGA q iff (J , D) |= q.
We now prove that every DL-LiteR PPOBDA specification E admits an

OBDA specification J that is query-equivalent under IGA censor to E , and
provide an algorithm to build J . The intuition behind our algorithm is as fol-
lows. For any source database D, we want that ret(J , D) does not contain all
those facts of ret(E , D) that together with the TBox T lead to the violation of
the policy P. At the same time, we want this elimination of facts to be done
in a minimal way, according to our definition of IGA censor. Thus only “really
dangerous” facts have to be dropped from ret(E , D). These facts actually belong
to at least one minimal (w.r.t. set containment) ABox A such that T ∪A∪P is
inconsistent. Note that in this case, for each fact α ∈ A there is at least a censor
cens(·) ∈ GA-OptCensE such that cens(D) does not contain α. Therefore α does
not belong to the set censIGA(D), where censIGA(·) is the IGA censor for E .

Identifying such facts is easier if we can reason on each denial in isolation.
For this to be possible, the policy P must enjoy the following property: for every
denial δ ∈ P, every minimal (w.r.t. set containment) ABox A such that {δ} ∪
T ∪A is inconsistent is also a minimal ABox such that P ∪T ∪A is inconsistent.
This is, however, not always the case. Consider, e.g., the policy P = {∀x.A(x)∧

Controlled Query Evaluation in Ontology-based Data Access 11

B(x)→ ⊥;∀x.A(x)→ ⊥}. The ABox {A(d), B(d)} is a minimal ABox violating
the first denial, but is not a minimal ABox violating P, since {A(d)} violates the
second denial (in this example T = ∅). We thus first transform P into a policy
P ′ enjoying the above property.

To this aim we introduce the notion of extended denial assertion (or simply
extended denial), which is a formula of the form ∀~x.φ(~x)∧¬π(~x)→ ⊥ such that
∃~x.φ(~x) is a BCQ and π(~x) is a (possibly empty) disjunction of conjunctions of
equality atoms of the form t1 = t2, where t1 and t2 are either variables in ~x or
constants in ΣC . An extended policy is a finite set of extended denials.

Definition 6. Given a policy P and an extended policy P ′. We say that P ′ is
a non-redundant representation of P if the following conditions hold: (i) for
every ABox A, P ∪ A is inconsistent iff P ′ ∪ A is inconsistent; (ii) for every
extended denial δ′ occurring in P ′, every minimal ABox A such that {δ′} ∪A is
inconsistent is also a minimal ABox such that P ∪ A is inconsistent.

One might think that computing a non-redundant representation of P means
simply eliminating from P each denial δ such that P \{δ}∪T |= δ. In fact, only
eliminating denials that are (fully) logically inferred by other denials (and the
TBox) is not sufficient, since some redundancies can occur for specific instantia-
tions of the denials. For example, δ1 = ∀x, y.Q(x, y) ∧ C(y)→ ⊥ is not inferred
by δ2 = ∀x.Q(x, x) → ⊥, but it becomes inferred when x = y. This implies
that a minimal violation of δ1 where the two arguments of Q are the same (e.g.,
{Q(a, a), C(a)}) is not a minimal violation of {δ1, δ2} (since Q(a, a) alone is al-
ready a violation of δ2). A non-redundant representation of this policy would
be {δ′1, δ2}, where δ′1 = ∀x, y.Q(x, y) ∧ C(y) ∧ ¬(x = y)→ ⊥. Our algorithm to
compute a non-redundant policy P ′, called policyRefine, takes into account also
this situation, applying a variant of the saturate method used in [16] to solve a
similar problem in the context of consistent query answering over ontologies.

Hereinafter, we assume that P has been expanded w.r.t. T , that is, P contains
every denial δ such that P ∪T |= δ. In this way, to establish non-redundancy we
can look only at P, getting rid of T . To expand the policy, we use the rewriting
algorithm perfectRef of [7] to reformulate (the premise of) denials in P with
respect to the assertions in T .

Example 4. Consider the same PPOBDA specification E of Example 1. By
rewriting each denial in P w.r.t. T through perfectRef6, we obtain the following
set of denials.

d1: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧ Comp(y)→ ⊥
d2: ∀x, y.PipeOp(x, y) ∧OilComp(y)→ ⊥
d3: ∀x, y.OilComp(x) ∧ IssuesLic(x, y) ∧OilComp(y)→ ⊥
d4: ∀x, y.OilComp(x) ∧ IssuesLic(x, y)→ ⊥
d5: ∀x, y, z.OilComp(x) ∧ IssuesLic(x, y) ∧ PipeOp(z, y)→ ⊥

Intuitively, perfectRef adds to the original denials d1 and d2 the new denials
d3, d4 and d5, obtained by rewriting the atom Comp(y) in d1 according to

6 For details on perfectRef, we refer the reader to [7].

12 G. Cima et al.

Algorithm 1: PolicyEmbed

input: a DL-LiteR TBox T , a mapping M, a policy P;
output: a mapping M′;
1) let P̂ be the expansion of the policy P w.r.t T ;

2) P ′ → policyRefine(P̂);
3) M′ ← ∅;
4) for each atomic concept C do
5) ψ ← addPolicyConditions(C(x),P ′);
6) φp ← expand(C(x), T);
7) φn ← expand(ψ, T);
8) M′ ←M′ ∪ {unfold(φp ∧ ¬φn,M) ; C(x)}
9) for each atomic role Q do
10) ψ ← addPolicyConditions(Q(x, y),P ′);
11) φp ← expand(Q(x, y), T);
12) φn ← expand(ψ, T);
13) M′ ←M′ ∪ {unfold(φp ∧ ¬φn,M)) ; Q(x, y)}
14) returnM′;

the inclusions OilComp v Comp, ∃IssuesLic− v Comp, and ∃PipeOp− v
Comp, respectively (for d4, perfectRef also unifies two atoms having IssuesLic
as predicate). It is easy to verify that d1, d3 and d5 are implied by d4, and thus
must be discarded. So, the non-redundant policy P ′ contains only d2 and d4. ut

Algorithm 1 shows our overall procedure, called PolicyEmbed. Steps 1 expands
the input policy P into the policy P̂ by using perfectRef(P, T). Step 2 produces
the non-redundant policy P ′ by means of policyRefine(P̂). Then, the algorithm
constructs one mapping assertion for each ontology predicate. We discuss steps
4-8 for concepts (steps 9-13 for roles are analogous).

The algorithm addPolicyConditions(C(x),P ′) constructs an FO query ψ ex-
pressing the disjunction of all BCQs corresponding to the premise of a denial δ ∈
P ′ such that C(x) unifies with an atom of δ. For instance, if P ′ contains ∀x.C(x)∧
D(x)→ ⊥ and ∀x, y.C(x) ∧Q(x, y) ∧ E(y)→ ⊥, addPolicyConditions(C(x),P ′)
returns ((∃x.C(x) ∧D(x)) ∨ (∃x, y.C(x) ∧Q(x, y) ∧E(y))). This is actually the
union of all the conditions that lead to the generation of dangerous facts for C.

Then, the algorithm expand(ϕ, T) rewrites every positive atom α occur-
ring in the formula ϕ according to the TBox T . More precisely, the expansion
expand(C(x), T) of a positive concept atom is the disjunction of the atoms of the
form A(x) (resp. ∃y.Q(x, y), ∃y.Q(y, x)), where A is an atomic concept (resp. Q
is an atomic role), such that T |= A v C (resp. T |= ∃Q v C, T |= ∃Q− v C).
For example, if T infers A v C and ∃Q v C, then expand(C(x), T) returns
C(x) ∨ A(x) ∨ ∃y.Q(x, y). The expansion expand(Q(x, y), T) of a role atom is
defined analogously. Finally, the expansion expand(ϕ, T) of an arbitrary formula
ϕ is obtained by replacing each occurrence of a positive atom α in ϕ with the
formula expand(α, T).

Controlled Query Evaluation in Ontology-based Data Access 13

At step 8, the mapping is incremented with the mapping assertion for C. The
function unfold realizes a typical unfolding for GAV mapping [23]. The presence
of (the expansion of) the subformula ψ in ¬φn guarantees that no fact causing
a violation of a denial involving C is retrieved.

Example 5. In our ongoing example, PolicyEmbed(T ,M,P) returns

M′ = { m1: ∃y.company(x, y) ; Comp(x),
m′1: company(x,‘oil’) ; Comp(x),
m′′1 : ∃x.license(x, y) ; Comp(y),
m′′′1 : ∃x.operator(x, y) ; Comp(y),
m′2: company(x,‘oil’) ∧ ¬((∃y.company(x,‘oil’) ∧ license(x, y))∨

(∃z.operator(z, x) ∧ company(x,‘oil’))) ; OilComp(x),
m′3: license(x, y) ∧ ¬(license(x, y) ∧ company(x,‘oil’)) ; IssuesLic(x, y)
m′4: operator(x, y) ∧ ¬(operator(x, y) ∧ company(x,‘oil’)) ; PipeOp(x, y)
m′5: ∃y.operator(x, y) ; Pipeline(x) }

For the database instance D for S provided in Example 3, one can verify
that censIGA(D) = ret(〈T ,S,M′〉, D). ut

PolicyEmbed can be used to realize a PPOBDA-OBDA transformation.

Theorem 3. Let E = 〈T ,S,M,P〉 be a DL-LiteR PPOBDA specification, and
let J be the OBDA specification 〈T ,S,M′〉, where M′ is the mapping returned
by PolicyEmbed(T ,M,P). Then, J is query-equivalent to E under IGA censor.

Proof. Let D be a source database for S. We prove the theorem by showing that
ret(J , D) is equal to censIGA(D), where censIGA(·) is the IGA censor for E .

We start by showing a lemma that is crucial for this proof. From now on,
we denote by A the ABox ret(〈T ,S,M〉, D), i.e., the ABox retrieved from
D through the initial mapping M. Moreover, we denote by A′′ the ABox
ret(〈T ,S,M′′〉, D), where M′′ is the mapping obtained from the algorithm by
discarding the formulas φn, i.e., when unfold(φp ∧ ¬φn,M) is replaced with
unfold(φp,M) in steps 8 and 13 of the algorithm.

The next lemma follows easily from the definition of the algorithm expand:

Lemma 1. A′′ = clGA(T ∪ A).

Informally, the lemma states that the “positive” part of the mapping com-
puted by the algorithm retrieves from D exactly the set of ground atoms deriv-
able by the TBox T from the ABox A retrieved from D through M.

In the following, we prove that every concept assertion C(a) belongs to
ret(J , D) iff C(a) belongs to censIGA(D) (the proof for role assertions is analo-
gous). From now on, φp and φn denote the formula computed for C(x) at step
6 and step 7 of the algorithm, respectively.

First, assume that the concept assertion C(a) belongs to ret(J , D) but does
not belong to censIGA(D). Then, there exists a censor cens′(·) in GA for E such
that C(a) 6∈ cens′(D). Now, there are two possible cases:

14 G. Cima et al.

(i) C(a) 6∈ clGA(T ∪ A). In this case, by Lemma 1 it follows that C(a) 6∈ A′′,
hence unfold(φp,M) (that is, the positive part of the mapping for the concept
C in M′) is false in D for x = a, and therefore C(a) does not belong to
ret(J , D);

(ii) C(a) belongs to a minimal violation of P in clGA(T ∪A): then, from Defini-
tion 6 it follows that there exists a denial δ in P ′ such that C(a) belongs to a
minimal violation of δ in clGA(T ∪A). Consequently, from the definition of
the algorithms addPolicyConditions and expand it follows that unfold(φn,M)
(that is, the negative part of the mapping for the concept C in M′) is true
in D for x = a, and therefore C(a) does not belong to ret(J , D).

Conversely, assume that the concept assertion C(a) belongs to censIGA(D)
but does not belong to ret(J , D). Then, the mapping for the concept C in M′
is false for x = a. Now, there are two possible cases:

(i) unfold(φp,M) is false in D for x = a. This immediately implies by Lemma
1 that C(a) 6∈ clGA(T ∪ A): hence, in every censor cens′ in GA for E ,
C(a) 6∈ cens′(D), and therefore C(a) 6∈ censIGA(D);

(ii) unfold(φn,M) is true in D for x = a. From the definition of the algorithms
addPolicyConditions and expand, this immediately implies that there exists
δ ∈ P ′ such that C(a) belongs to a minimal violation of δ in clGA(T ∪ A):
then, from Definition 6 it follows that C(a) belongs to a minimal violation
of P in clGA(T ∪ A). Consequently, there exists a censor cens′ in GA for E
such that C(a) 6∈ cens′(D), and therefore C(a) 6∈ censIGA(D). ut

7 Experiments

In this section, we report the results of the experimentation we carried out us-
ing the NPD benchmark for OBDA [15]. The benchmark is based on real data
coming from the oil industry: the Norwegian Petroleum Directorate (NPD) Fact-
Pages. It provides an owl 2 ontology, the NPD database, the mapping between
the ontology and the database, an RDF file specifying the instances of the on-
tology predicates, i.e., the retrieved ABox of the OBDA setting, and a set of
31 SPARQL queries. We remark that we tested non-Boolean CQs adapted from
this set (details later on).

For our experimentation, we produced an approximationin owl 2 ql of the
owl 2 benchmark ontology. Moreover, we made use of the benchmark RDF file
containing the retrieved ABox to populate a relational database constituted by
unary and binary tables (a unary table for each concept of the ontology and a
binary table for each role and each attribute). Finally, we specified a mapping
between the ontology and this database. In this case, the mapping in simply a
set of one-to-one mapping assertions, i.e., every ontology predicate is mapped
to the database table containing its instances. This kind of OBDA specification,
with the simplest possible form of mapping assertions, allowed us to verify the
feasibility of our technique for data protection, leaving aside the impact of more
complex queries in the mapping.

Controlled Query Evaluation in Ontology-based Data Access 15

In the resulting OBDA setting, the TBox comprises 1377 axioms over 321
atomic concepts, 135 roles, and 233 attributes. There are in total 2 millions of
instances circa, which are stored in a MySQL database of 689 tables.

We specified a policy P constituted by the following denials:

d1: ∀d, l.DevelopmentWellbore(d) ∧ developmentWellboreForLicence(d, l)∧
ProductionLicence(l)→ ⊥

d2: ∀d, t, w, b, q, f.Discovery(d) ∧ dateIncludedInField(d, t) ∧ containsWellbore(b, w)∧
wellboreForDiscovery(w, d) ∧ ExplorationWellbore(w) ∧ quadrantLocation(b, q)∧
explorationWellboreForField(w, f)→ ⊥

d3: ∀c, w.WellboreCore(c) ∧ coreForWellbore(c, w) ∧DevelopmentWellbore(w)→ ⊥
d4: ∀c, f, d.Company(c) ∧ currentFieldOperator(f, c) ∧ Field(f)∧

includedInField(d, f) ∧Discovery(d)→ ⊥
d5: ∀w, e, f, l.belongsToWell(w, e) ∧ wellboreAgeHc(w, l) ∧ drillingFacility(w, f)∧

ExplorationWellbore(w)→ ⊥
d6: ∀f, p, l.Field(f) ∧ currentFieldOwner(f, p) ∧ ProductionLicence(p)
∧licenseeForLicence(l, p)→ ⊥.

As queries, we considered nine (non-Boolean) CQs from the ones provided
with the NPD benchmark. Strictly speaking, some of these queries in the bench-
mark are not CQs, since they use aggregation operators, but we extracted from
them their conjunctive subqueries. The resulting queries are reported below.

q3 : ∃li.ProductionLicence(li) ∧ name(li, ln) ∧ dateLicenceGranted(li, d)∧
isActive(li, a) ∧ licensingActivityName(li, an)

q4 : ∃li, w.ProductionLicence(li) ∧ name(li, n)explorationWellboreForLicence(w, li)∧
dateWellboreEntry(w, e)

q5 : ∃le, li, c.licenseeForLicence(le, li) ∧ ProductionLicence(li) ∧ name(li, ln)∧
licenceLicensee(le, c) ∧ name(c, n) ∧ dateLicenseeValidFrom(le, d)

q9 : ∃li, w.ProductionLicence(li) ∧ name(li, n) ∧ belongsToWell(w,we)∧
explorationWellboreForLicence(w, li) ∧ name(we,wn)

q12 : ∃w, lu, c.wellboreStratumTopDepth(w, st) ∧ wellboreStratumBottomDepth(w, sb)∧
stratumForWellbore(w, u) ∧ name(u, n) ∧ inLithostratigraphicUnit(w, lu)∧
name(lu, un) ∧WellboreCore(c) ∧ coreForWellbore(c, u) ∧ coreIntervalTop(c, ct)∧
coreIntervalBottom(c, cb)

q13 : ∃wc,we, c.WellboreCore(wc) ∧ coreForWellbore(wc,we) ∧ name(we,wn)∧
Wellbore(we) ∧ wellboreCompletionYear(we, y) ∧ drillingOperatorCompany(we, c)∧
name(c, cn)

q14 : ∃we, c.Wellbore(we) ∧ name(we, n) ∧ wellboreCompletionYear(we, y)∧
drillingOperatorCompany(we, c) ∧ name(c, cn)

q18 : ∃p,m, f, op.productionYear(p, ‘2010’) ∧ productionMonth(p,m)∧
producedGas(p, g) ∧ producedOil(p, o) ∧ productionForField(p, f) ∧ name(f, fn)∧
currentFieldOperator(f, op) ∧ Field(f) ∧ shortName(op, ‘statoil petroleum as’)

q44 : ∃y, f, c.wellboreAgeTD(w, a) ∧ explorationWellboreForField(w, f)∧
wellboreEntryYear(w, y) ∧ Field(f) ∧ name(f, fn) ∧ coreForWellbore(c, w)

We executed each query in seven different settings, in each of which we con-
sidered an incremental number of denials in the policy among those given above.
For each setting, we computed a new mapping through a Java implementation
of the algorithm illustrated in Section 6. So, in the first setting, we used the
mapping computed by considering the empty policy P∅; in the second one, we

16 G. Cima et al.

q3 [5] q4 [4] q5 [6] q9 [5] q12 [10] q13 [7] q14 [5] q18 [9] q44 [6]

Policy res time res time res time res time res time res time res time res time res time

P∅ 910 4789 1558 4625 17254 4545 1566 4648 96671 7368 22541 6410 141439 20150 339 6933 5078 4179

P1 910 3871 1558 4111 17254 4782 1566 4401 96671 7133 22541 6886 130341 15544 339 6128 5078 4078

P2 910 4154 880 4078 17254 4628 888 4204 96671 6852 22541 5007 126679 16566 339 5887 12 4413

P3 910 4080 880 4189 17254 4902 888 3953 96641 7746 15340 5623 124248 16807 339 5873 12 4653

P4 910 4419 880 4089 17254 5015 888 4487 96641 7836 15340 6011 124248 17393 339 6893 12 4318

P5 910 5548 880 4373 17254 6224 888 4422 96641 8683 15340 6499 123816 20116 339 7201 12 4491

P6 910 4309 880 4029 14797 5189 888 4785 96641 8297 15340 6796 123816 17513 339 6176 12 4475

Table 1: CQE test results. The “res” columns contain the size of the results while the
“time” columns contain the query evaluation times in milliseconds.

considered the policy P1 containing only the denial d1; in the third one, we
considered the policy P2 containing the denials d1 and d2; and so on. For each
query, we report in Table 1 the size of the result and the query evaluation time,
columns “res” and columns ”time” in the table, respectively. The number in
square brackets near each query name indicates the length of the query.

For our experiments, we used the OBDA Mastro system, and a standard
laptop with Intel i5 @1.6Ghz processor and 8Gb of RAM.

Values in Table 1 show the effect of the policy on the size of the result of the
queries. Specifically, we have that the queries q0, q3, and q18 are not censored
in any of the considered settings. The answers to the queries q4, q9, and q44 are
affected by the introduction of the denial d2 in the policy, while the denial d3
alters the answers of the queries q12 and q13. Some answers to the query q5 are
cut away by the introduction of the denial d6 in the policy. Moreover, the query
q14 is affected by the denials d1, d2, d3, and d5. Finally, the denial d4 alters
no queries. Notably, although the policy alters the query results, one can see
that the execution time is only slightly affected. This suggests that our proposed
technique can be effectively used for protecting data in OBDA setting.

8 Conclusions

Our current research is mainly focused on modifying the user model formalized in
our framework to capture richer data protection scenarios. In particular, the user
model we adopted (which we inherited from previous works on CQE over ontolo-
gies) assumes that an attacker has only the ability of making standard inference
reasoning on the ontology and the query answers. Under these assumptions, data
declared as confidential are certainly protected in our framework. We are also
investigating more expressive forms of policy. Finally, while our experimental
evaluation clearly shows the practical feasibility of our approach, we still have
to consider the issue of optimization of our algorithms and implementation.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2nd edition, 2007.

Controlled Query Evaluation in Ontology-based Data Access 17

2. M. Benedikt, P. Bourhis, L. Jachiet, and M. Thomazo. Reasoning about disclosure
in data integration in the presence of source constraints. In Proc. of IJCAI, pages
1551–1557, 2019.

3. M. Benedikt, B. Cuenca Grau, and E. V. Kostylev. Logical foundations of infor-
mation disclosure in ontology-based data integration. AIJ, 262:52–95, 2018.

4. J. Biskup and P. A. Bonatti. Controlled query evaluation for known policies by
combining lying and refusal. AMAI, 40(1-2):37–62, 2004.

5. J. Biskup and T. Weibert. Keeping secrets in incomplete databases. Int. J. of
Information Security, 7(3):199–217, 2008.

6. P. A. Bonatti and L. Sauro. A confidentiality model for ontologies. In Proc. of
ISWC, volume 8218 of LNCS, pages 17–32, 2013.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

8. R. Chirkova and T. Yu. Exact detection of information leakage: Decidability and
complexity. Trans. Large Scale Data Knowl. Centered Syst., 32:1–23, 2017.

9. G. Cima, D. Lembo, R. Rosati, and D. F. Savo. Controlled query evaluation in
description logics through instance indistinguishability. In Proc. of IJCAI, pages
1791–1797, 2020.

10. B. Cuenca Grau and I. Horrocks. Privacy-preserving query answering in logic-based
information systems. In Proc. of ECAI, pages 40–44, 2008.

11. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled
query evaluation over OWL 2 RL ontologies. In Proc. of ISWC, pages 49–65, 2013.

12. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled
query evaluation for datalog and OWL 2 profile ontologies. In Proc. of IJCAI,
pages 2883–2889, 2015.

13. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language.
W3C Recommendation, W3C, Sept. 2012.

14. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan
Kaufmann, 2012.

15. D. Lanti, M. Rezk, G. Xiao, and D. Calvanese. The NPD benchmark: Reality
check for OBDA systems. In Proc. of EDBT, pages 617–628, 2015.

16. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-
tolerant query answering in ontology-based data access. J. of Web Semantics,
33:3–29, 2015.

17. D. Lembo, R. Rosati, and D. F. Savo. Revisiting controlled query evaluation in
description logics. In Proc. of IJCAI, pages 1786–1792, 2019.

18. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2
Web Ontology Language profiles (second edition). W3C Recommendation, W3C,
Dec. 2012.

19. A. Nash and A. Deutsch. Privacy in GLAV information integration. In Proc. of
ICDT, pages 89–103, 2007.

20. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

21. G. L. Sicherman, W. de Jonge, and R. P. van de Riet. Answering queries without
revealing secrets. ACM Trans. Database Syst., 8(1):41–59, 1983.

22. P. Stouppa and T. Studer. Data privacy for ALC knowledge bases. In Proc. of
LFCS, pages 409–421, 2009.

23. G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-
kharyaschev. Ontology-based data access: A survey. In Proc. of IJCAI, pages
5511–5519, 2018.

	Controlled Query Evaluation in Ontology-based Data Access

