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1 Introduction

Given a non-empty open bounded domain Ω ⊂ ℝn, n ≥ 2, we consider the free boundary problem

mΛ := min{JΛ(u) := ‖∇u‖∞ + Λ|{u > 0}| : u ∈ Lip1(Ω)}, (P)Λ

where Λ is a positive constant, |{u > 0}| denotes the Lebesgue measure of the set {x ∈ Ω : u(x) > 0}, and

Lip1(Ω) := {u ∈ W1,∞(Ω) : u ≥ 0 in Ω, u = 1 on ∂Ω}. (1.1)

This may be viewed as the supremal version of the Alt–Caffarelli minimization problem, which for p-
growth energies reads

min{∫
Ω

|∇u|p dx + Λ|{u > 0}| : u ∈ W1,p(Ω), u = 1 on ∂Ω}. (1.2)

In both the minimization problems (P)Λ and (1.2), the free boundary is given by the set

F(u) := ∂{u > 0} ∩ Ω.

Clearly, the free boundary will be non-empty only if the parameter Λ is taken sufficiently large so that the
measure term becomes active in the competition between the two addenda in the energy functional. The
gradient termmakes the difference: the integral functional appearing in (1.2) is converted into the supremal
functional ‖∇u‖∞ in (P)Λ.

Problem (1.2) has a long history: starting from the groundbreaking paper [1], where it was introduced in
the linear case p = 2, it has been widely studied in later works for any p ∈ (1, +∞) (see for instance [8, 12,
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13, 17]). In particular, the topic which has been object of a thorough investigation is the regularity of the free
boundary, which has been settled to be locally analytic except for aHn−1-negligible singular set [1, 13].

Among the motivations behind problem (1.2), of chief importance is that its minimizers solve for a suit-
able constant c > 0 the “Bernoulli problem for the p-Laplacian”, namely,

{{{
{{{
{

∆pu = 0 in {u > 0} ∩ Ω,
u = 1 on ∂Ω,
|∇u| = c on ∂{u > 0} ∩ Ω.

(1.3)

This overdetermined system, which is named after Daniel Bernoulli (in particular, from his law in hydrody-
namics), hasmany physical and industrial applications, not only in fluid dynamics, but also in other contexts
such as optimal insulation and electro-chemical machining. For a more precise description of the applied
side, including several references, see [15, Section 2].

In our recent paper [11], we have studied the existence and uniqueness of solutions to the following
“Bernoulli problem for the∞-Laplacian”:

{{{
{{{
{

∆∞u = 0 in {u > 0} ∩ Ω,
u = 1 on ∂Ω,
|∇u| = λ on ∂{u > 0} ∩ Ω.

(1.4)

Among further recent works about free boundary value problems ruled by the infinity Laplacian, let us
quote [2, 3].

Recall that the∞-Laplacian is the degenerated nonlinear operator defined by

∆∞u := ∇2u∇u ⋅ ∇u for all u ∈ C2(Ω).

It is well known since Bhattacharya, DiBenedetto and Manfredi [7] that solutions to

∆∞u = 0 (1.5)

must be intended in the viscosity sense since the differential operator is not in divergence form. Moreover, it
is a widely recognized fact that (1.5) may be seen as the fundamental PDE of the calculus of variations in L∞,
i.e., an analogue of the Euler–Lagrange equation when considering variational problems for supremal func-
tionals, the simplest of which is the L∞-norm of the gradient. Indeed, as proved by Jensen [16], a function u
is a viscosity solution to (1.5) in an open set A under a Dirichlet boundary datum g ∈ C0(∂A) if and only if
it is an absolutely minimizing Lipschitz extension of g (this property, usually shortened as AML, means that
u = g on ∂A and, for every U ⋐ A, u minimizes the L∞-norm of the gradient on U among functions v which
agree with u on ∂U). After Jensen, variational problems for supremal functionals have been object of several
works, among which we quote, with no attempt of completeness, [4–6, 9].

In this perspective, the aim of the present work is to investigate the variational side of problem (1.4),
which is precisely the new free boundary problem of supremal type (P)Λ.

Our results are presented in the next section, which is divided into three parts:
∙ In Section 2.1, we study the existence and uniqueness of non-constant solutions to (P)Λ on convex

domains (see Theorems 1 and 8). In particular, we introduce the “variational∞-Bernoulli constant”

ΛΩ,∞ := inf{Λ > 0 : (P)Λ admits a non-constant solution}, (1.6)

and we give a geometric characterization of it, involving the family of parallel sets of Ω. This formula is
obtained with the help of the Brunn–Minkowski inequality and allows to explicitly compute the value of
ΛΩ,∞, at least for simple geometries. In particular, if we compare ΛΩ,∞ with the “∞-Bernoulli constant”,
defined in [11] by

λΩ,∞ := inf{λ > 0 : (1.4) admits a non-constant solution},

it turns out that ΛΩ,∞ ≥ λΩ,∞; the computation on balls reveals that the inequality can be strict.
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Still using its geometric characterization, we prove that ΛΩ,∞ satisfies an isoperimetric inequality,
namely, that it is minimal on balls under a volume constraint (see Theorem 6). This was inspired by
a result in the same vein by Daners and Kawohl [12] for the variational p-Bernoulli constants associated
with problem (1.2).

∙ In Section 2.2, we elucidate the relationship between solutions to problem (P)Λ and solutions to the
Bernoulli problem (1.4) for the ∞-Laplacian by showing they are closely related to each other. More
precisely, we answer the following natural questions (see Propositions 9 and 10):
(Q1) Let Λ ≥ ΛΩ,∞ so that problem (P)Λ admits a non-constant solution.

Does a solution to problem (P)Λ solve problem (1.4) for some λ?
(Q2) Let λ ≥ λΩ,∞ so that problem (1.4) admits a non-constant solution.

Does a solution to problem (1.4) solve problem (P)Λ for some Λ?
∙ In Section 2.3, we show that problem (P)Λ can be obtained not merely in a heuristic way, but by per-

forming a rigorous passage to the limit as p → +∞ in a family of minimum problems of the Alt–Caffarelli
type for energies with p-growth (see Theorem 11). This result, which is somehow highly expected, is not
straightforward. In fact, the passage to the limit as p → +∞ in problems of type (1.2) (suitably rescaled)
provides a minimization problem with gradient constraint, similarly to what was shown by Kawohl and
Shahgholian [17] for exterior Bernoulli problems. In order to arrive at problem (P)Λ, one needs to perform
a further minimization with respect to an additional parameter which plays the role of a multiplier for
the gradient constraint.

The proofs of the results described above are given respectively in Sections 3, 4 and 5.

2 Results

2.1 Analysis of problem (P)Λ

Amajor role in our study is played by the parallel sets of Ω andby the functions vr defined for every r ∈ [0, RΩ]
(with RΩ := inradius of Ω) respectively by

Ωr := {x ∈ Ω : dist(x, ∂Ω) > r},

vr(x) := [1 −
1
r
dist(x, ∂Ω)]+, x ∈ Ω. (2.1)

Clearly, for every r ∈ (0, RΩ], we have

vr ∈ Lip1(Ω), ‖∇vr‖∞ = 1r , {vr > 0} ∩ Ω = Dr := Ω \ Ωr ,
where Lip1(Ω) is the set of functions defined in (1.1). (To be precise, we consider any function u ∈ Lip1(Ω) as
a Hölder continuous function in Ω since u − 1 ∈ W1,p

0 (Ω) for every p > 1.)
We are going to provide an explicit characterization for the variational infinity Bernoulli constant intro-

duced in (1.6) and show that, for Λ ≥ ΛΩ,∞, non-constant solutions are precisely of the form (2.1).
Throughout the paper, we assume with no further mention that

Ω is an open bounded convex subset ofℝn , n ≥ 2.

Moreover, since Ω will be fixed, for simplicity in the sequel, we simply write Λ∞ in place of ΛΩ,∞.
Theorem 1 (Identification of Λ∞). There exists a unique value r∗ in the interval (0, RΩ) such that

|∂Ωr∗ |
|Ωr∗ | = 1

r∗ , (2.2)

and the variational infinity Bernoulli constant Λ∞ defined in (1.6) agrees with

Λ∗ := 1
r∗|Ωr∗ | .
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More precisely,
∙ (P)Λ uniquely admits the constant solution u ≡ 1 for Λ < Λ∗;
∙ (P)Λ admits the constant solution u ≡ 1 and the non-constant solution vr∗ for Λ = Λ∗;
∙ (P)Λ does not admit the constant solution u ≡ 1 and admits the non-constant solution vrΛ for Λ > Λ∗, where

rΛ is the smallest root of the equation 1
r2|∂Ωr | = Λ.

Moreover, for Λ ≥ Λ∗, any non-constant solution v to (P)Λ has the same Lipschitz constant and the same posi-
tivity set, i.e., it satisfies

‖∇v‖∞ = 1
rΛ

and {v > 0} = DrΛ (2.3)

(where rΛ∗ = r∗).
Remark 2 (Computation of mΛ). The above result implies in particular that the infimum mΛ of problem (P)Λ
can be explicitly computed as

mΛ =
{
{
{

Λ|Ω| if Λ ≤ Λ∞,
1
rΛ + Λ|DrΛ | if Λ ≥ Λ∞.

Remark 3 (Infinity harmonic solution to (P)Λ). For every Λ ≥ Λ∞, among solutions to (P)Λ, there is exactly one
which is infinity harmonic in its positivity set, namely the infinity harmonic potential wrΛ of DrΛ , defined as
the unique solution to the Dirichlet boundary value problem

{{{
{{{
{

∆∞wrΛ = 0 in DrΛ ,
wrΛ = 1 on ∂Ω,
wrΛ = 0 on ∂ΩrΛ .

(2.4)

Indeed, if (P)Λ admits an infinity harmonic solution, it agrees necessarily with wrΛ because its positivity set
is uniquely determined by (2.3). To see that wrΛ is actually a solution to (P)Λ, we observe that it has the
same positivity set as vrΛ , and a Lipschitz constant not larger than vrΛ (because wrΛ has the AML property
mentioned in the introduction). Hence, we necessarily have JΛ(vrΛ ) = JΛ(wrΛ ), yielding optimality.

Below, we give the explicit expression of Λ∞ for some simple geometries (the ball in any space dimension
and the square in dimension 2), and we show that it enjoys a nice isoperimetric property.

Example 4 (Ball). Let Ω = BR ⊂ ℝn be the n-dimensional open ball of radius R centered at the origin. Then
RΩ = R, and

ψ(r) := |∂BR−r|
|BR−r| = n

R − r
, r ∈ [0, R).

The unique solution to the equation ψ(r) = 1
r is r
∗ = R

n+1 , and hence
Λ∞(BR) = 1

r∗|Ωr∗ | = 1
κnr∗(R − r∗)n = (n + 1)n+1κnnnRn+1 (κn := |B1|).

In particular, for n = 2, we get
Λ∞(BR) = 27

4πR3
.

Example 5 (Rectangle). Let n = 2 and Ω = Qa,b := (0, a) × (0, b), with 0 < b ≤ a. In this case, RΩ = b2 , and

ψ(r) := |∂Qa−r,b−r|
|Qa−r,b−r| = 2 a + b − 4r

(a − 2r)(b − 2r) , r ∈ [0, b2 ).

The unique solution to the equation ψ(r) = 1
r in the interval [0,

b
2 ) is

r∗ = a + b − √a2 + b2 − ab6
In particular, for the square Qa := Qa,a, we get r∗ = a6 , and hence

Λ∞(Qa) = 27
2a3

.
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Theorem 6 (Isoperimetric inequality). Denoting by Ω∗ a ball with the same volume as Ω, it holds
Λ∞(Ω) ≥ Λ∞(Ω∗),

with equality sign if and only if Ω is a ball.

Remark 7. As mentioned in the introduction, a result analogous to Theorem 6 has been obtained in [12] for
a variational Bernoulli constant related to the Alt–Caffarelli minimization problems for p-growth energies.
We wish to point out that Theorem 6 cannot be obtained simply by passing to the limit as p → +∞ in the
isoperimetric inequality by Daners and Kawohl. After the discussion in Section 2.3, we will be in a position
to give more details in this respect (see Remark 12).

We now turn our attention to the uniqueness of solutions to problem (P)Λ. To that aim, we introduce the
singular radius of Ω, defined as

rsing := dist(Σ, ∂Ω),

where Σ denotes the cut locus of Ω (i.e., the closure of the set of pointswhere the distance from ∂Ω is not differ-
entiable). Accordingly, since the mapR : Λ 󳨃→ rΛ (with rΛ defined as in Theorem 1) turns out to be monotone
decreasing from [Λ∗, +∞) to [r∗, 0) (see Lemma 16 below), the value

Λsing := R−1(rsing)
is uniquely defined.

We point out that the radius rsing may be smaller or larger than r∗ according to the domain under consid-
eration (and consequently Λsing may be larger or smaller than Λ∞ = Λ∗). For instance, in dimension n = 2, if
Ω = BR (the ball of radius R), it holds

rsing = R > r∗ = R3 ;
on the other hand, if Ω = Qa (the square of side a), we have

rsing = 0 < r∗ = a6 .
We are now in a position to discuss the uniqueness of solutions to (P)Λ.

Theorem 8 (Uniqueness threshold). We have the following:
∙ If Λsing ≤ Λ∞, then (P)Λ admits a unique solution (given by vrΛ ) if and only if Λ > Λ∞.
∙ If Λsing > Λ∞, then (P)Λ admits a unique solution (given by vrΛ ) if and only if Λ ≥ Λsing.

2.2 Relationship with the∞-Bernoulli problem

We now examine the link between solutions to (P)Λ and solutions to (1.4). A first glance in this direction
has been already given in Remark 3. A more precise answer to the questions (Q1) and (Q2) stated in the
introduction is contained in the next two statements.

Proposition 9 (Solutions to (P)Λ versus solutions to (1.4)). Let Λ ≥ Λ∞. Among solutions to problem (P)Λ,
there is exactly one which solves (1.4) (for λ = 1

rΛ ); it is given by the infinity harmonic potential wrΛ of DrΛ .
In particular, when (P)Λ admits a unique solution, this one solves (1.4) (for λ = 1

rΛ ), and it is given by wrΛ = vrΛ .

Proposition 10 (Solutions to (1.4) versus solutions to (P)Λ). Let λ ≥ R−1Ω . Among solutions to problem (1.4),
there is one which solves (P)Λ if and only if

λ ≥ 1
r∗ . (2.5)

In this case, such solution is given by wrΛ , with rΛ = 1
λ , and agrees with vrΛ if and only if

λ ≥ max{ 1r∗ , 1
rsing
}.
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2.3 Approximation by minima of p-energies

We now show that problem (P)Λ arises through an asymptotic analysis as p → +∞ of problems of type (1.2).
Let Λ ≥ Λ∞ be fixed. For every λ > 0 and p > 1, let us consider the minimization problem

min{Jp,λΛ (u) : u ∈ W
1,p
1 (Ω)}, (2.6)

where the functionals Jp,λΛ are defined by

Jp,λΛ (u) :=
1
p ∫

Ω

(
|∇u|
λ )

p
dx + λ + p − 1

p
Λ|{u > 0}| for all u ∈ W1,p

1 (Ω) := 1 +W
1,p
0 (Ω).

Incidentally, let us recall from [13] that a solution toproblem (2.6) exists, is non-negative in Ω and satisfies the
overdetermined boundary value problem (1.3) with c = λΛ1/p (provided the Neumann boundary condition
on the free boundary is interpreted in a suitable weak sense).

If, for a given λ > 0, we consider a sequence of solutions (upj ,λ)j to problem (2.6) for p = pj → +∞, it is
not difficult to see that, up to passing to a (not relabeled) subsequence, the functions upj ,λ converge uniformly
in Ω to a function uλ which is infinity harmonic in its positivity set and solves the variational problem

min{JλΛ(u) : u ∈ Lip1(Ω)}, (2.7)

the functionals JλΛ being defined on Lip1(Ω) by

JλΛ(u) :=
{
{
{

λ + Λ|{u > 0}| if ‖∇u‖∞ ≤ λ,
+∞ otherwise.

(2.8)

The proof of this fact, which will be detailed in Section 5 (see Lemma 20), is similar to the one given by
Kawohl and Shahgholian in the paper [17], where they deal with the asymptotics as p → +∞ of exterior
p-Bernoulli problems. (Indeed, by computing a Γ-limit, they arrive precisely at a minimum problem with
gradient constraint analogue to (2.7), in which they fix Λ = 1.)

Now we observe that the functionals JλΛ are related to JΛ by the equality

JΛ(u) = inf
λ>0 JλΛ(u) for all u ∈ Lip1(Ω) (2.9)

(and actually, the above infimum can be equivalently taken over λ ≥ 1
RΩ since, for every u ∈ Lip1(Ω) with

‖∇u‖∞ < 1
RΩ , it holds |{u > 0}| = |Ω|).

The validity of (2.9) is precisely the reason why we put the constant addendum λ into the expression of
the functionals Jp,λΛ ; it canbe interpreted as a sort of Lagrangemultiplier for the gradient constraint ‖∇u‖∞ ≤ λ
which appears when passing to the limit at fixed λ.

In the light of (2.9), it is now natural to guess how the value of mΛ can be obtained from Jp,λΛ in the limit
as p → +∞; one has to take a double infimum, over u ∈ W1,p

1 (Ω) and over λ ≥ 1
RΩ .

Theorem 11 (p-approximation). Let Λ ≥ Λ∞. Then
lim
p→+∞ inf

λ≥1/RΩ inf
u∈W1,p

1 (Ω) Jp,λΛ (u) = mΛ . (2.10)

Remark 12. The variational p-Bernoulli constant Λp considered by Daners and Kawohl in [12] agrees with
the infimum of positive λ such that problem (2.6) (with Λ = 1) admits a non-constant solution. In the limit
as p → +∞, Λp does not converge to Λ∞ (in fact, in [11], we proved that limp→+∞ Λp = 1

RΩ ), and this is pre-
cisely the reason why, as mentioned in Remark 7, Theorem 6 cannot be obtained by passing to the limit as
p → +∞ in the isoperimetric inequality proved by Daners and Kawohl in [12]. In view of Theorem 11, one
should not be surprised by the missed convergence of Λp to Λ∞. Indeed, (2.10) suggests that, in order to find
a p-approximation of Λ∞, one should consider rather the constants Λ̃p defined as the infimum of positive Λ
such that the problem

inf
u∈W1,p

1 (Ω) inf
λ≥1/RΩ Jp,λΛ (u)
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admits a non-constant solution. Indeed, a straightforward formal computation shows that

inf
λ≥1/RΩ Jp,λΛ (u) =

p + 1
p
‖∇u‖p/(p+1)Lp(Ω) + p − 1p Λ|{u > 0}| → JΛ(u) as p → +∞.

3 Proof of the results in Section 2.1

To start, we establish a simple existence result.

Lemma 13 (Existence of solutions to (P)Λ). Problem (P)Λ admits a solution for every Λ > 0.

Proof. Let Λ > 0 and let (uj) ⊂ Lip1(Ω) be aminimizing sequence for JΛ. Clearly, it is not restrictive to assume
that JΛ(uj) ≤ JΛ(1) = Λ|Ω|, so that ‖∇uj‖∞ ≤ Λ|Ω| for every n. Hence, the sequence (uj) is equi-Lipschitz. Since
uj = 1 on ∂Ω for every n, by Ascoli–Arzelá’s theoremwe deduce that there exist a subsequence (not relabeled)
and a function u ∈ Lip1(Ω) such that uj → u uniformly in Ω.

Since, for all j ∈ ℕ,
|uj(x) − uj(y)| ≤ ‖∇uj‖∞|x − y| for all x, y ∈ Ω,

passing to the limit, we get

|u(x) − u(y)| ≤ (lim inf
n→+∞ ‖∇uj‖∞)|x − y| for all x, y ∈ Ω

so that ‖∇u‖∞ ≤ lim inf j ‖∇uj‖∞.
Moreover, since uj(x) → u(x) for every x ∈ Ω, it is easy to verify that

χ{u>0}(x) ≤ lim inf
j→+∞ χ{uj>0}(x),

and hence, by Fatou’s lemma, we deduce that

|{u > 0}| = ∫
Ω

χ{u>0} ≤ lim inf
j→+∞ ∫

Ω

χ{uj>0} = lim inf
j→+∞ |{uj > 0}|.

In conclusion, JΛ is lower semicontinuouswith respect to theuniformconvergence, andhence u is aminimum
point for JΛ.

We establish now the first part in the statement of Theorem 1.

Lemma 14. There exists a unique value r∗ in the interval (0, RΩ) satisfying equality (2.2).Moreover, the function
r 󳨃→ r|Ωr| attains its unique maximum on [0, RΩ] precisely at r∗:

max[0,RΩ](r|Ωr|) = r∗|Ωr∗ |.
Remark 15. In the proof of Lemma 14 below (and also of the subsequent Lemma 16), we heavily make use of
the Brunn–Minkowski inequality for the volume functional of the parallel sets Ωr, and for their surface area
measure as well. This motivates the convexity assumption made on the domain Ω.

Proof of Lemma 14. Let us prove the following claim:

ψ(r) := |∂Ωr|
|Ωr|

, r ∈ [0, RΩ), is continuous and increasing, and lim
r→RΩ−ψ(r) = +∞.

In fact, by the Brunn–Minkowski inequality, the functions r 󳨃→ |Ωr|1/n, r 󳨃→ |∂Ωr|1/(n−1) are concave in
[0, RΩ]. (Here and in the following, |∂Ωr| denotes the (n − 1)-dimensional Hausdorffmeasure of ∂Ωr.) Hence,
ψ is continuous in [0, RΩ), and the composition r 󳨃→ log|Ωr| = n log|Ωr|1/n is concave in the same interval.
In particular, since d

dr |Ωr| = −|∂Ωr|, we conclude that

ψ(r) = − d
dr

log|Ωr|
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is increasing in [0, RΩ). Finally, from the isoperimetric inequality, we have

ψ(r)n = |∂Ωr|
n

|Ωr|n
=
|∂Ωr|n
|Ωr|n−1 ⋅ 1

|Ωr|
≥
|∂B1|n

|B1|n−1 ⋅ 1
|Ωr|
→ +∞, r → R−Ω .

The claim follows. As a consequence, there exists a unique value r∗ ∈ (0, RΩ) such that
|∂Ωr|
|Ωr|
<
1
r

for all r ∈ (0, r∗), |∂Ωr|
|Ωr|
>
1
r

for all r ∈ (r∗, RΩ). (3.1)

Finally, in order to determine the maximum of the function φ(r) := r|Ωr| on [0, RΩ], we compute its first
derivative

φ󸀠(r) = |Ωr| − r|∂Ωr| = φ(r)(1r − |∂Ωr||Ωr| ).
By (3.1), it holdsφ󸀠(r) > 0 for r ∈ (0, r∗) andφ󸀠(r) < 0 for r ∈ (r∗, RΩ), and henceφ attains its strictmaximum
at r∗.
In the next lemma, which is the key step towards the completion of the proof of Theorem 1, we study the
behavior of the function

fΛ(r) := JΛ(vr) − JΛ(1), r ∈ (0, RΩ], (3.2)

where vr is defined by (2.1), and we analyze in particular the value of

μΛ := min(0,RΩ] fΛ(r).
Lemma 16. There exist two values 0 < Λ󸀠 < Λ∗, with

Λ∗ := 1
r∗|Ωr∗ | ,

with r∗ given by Lemma 14, such that the following holds:
(a) For every Λ ∈ (0, Λ󸀠], the function fΛ is strictly monotone decreasing (in particular, μΛ = fΛ(RΩ) = 1

RΩ > 0).
(b) For every Λ ≥ Λ󸀠, there exist points 0 < rΛ ≤ ρΛ < RΩ such that

rΛ󸀠 = ρΛ󸀠 , Λ 󳨃→ rΛ strictly decreasing, Λ 󳨃→ ρΛ strictly increasing,
f 󸀠Λ(rΛ) = f 󸀠Λ(ρΛ) = 0, f 󸀠Λ(r) > 0 ⇐⇒ r ∈ (rΛ , ρΛ).

In particular, for Λ = Λ󸀠, the map fΛ admits a flex at rΛ󸀠 = ρΛ󸀠 , whereas, for every Λ > Λ󸀠, fΛ admits a local
minimum at rΛ and a local maximum at ρΛ.

(c) For every Λ ∈ (0, Λ∗), it holds μΛ > 0 (and μΛ = min{ 1RΩ , fΛ(rΛ)}).
(d) For every Λ ≥ Λ∗, it holds μΛ = fΛ(rΛ) ≤ 0, and μΛ = 0 if and only if Λ = Λ∗.
Remark 17. By inspection of the proof of Lemma 16 given hereafter, it turns out that, for every Λ ≥ Λ󸀠, the
radius rΛ can be identified as stated in Theorem 1, namely as the smallest root in (0, RΩ] of the equation

1
r2
= Λ|∂Ωr|.

Proof of Lemma 16. A direct computation shows that

JΛ(vr) = ‖∇vr‖∞ + Λ(|{vr > 0}|) = 1r + Λ(|Ω| − |Ωr|), r ∈ (0, RΩ],

and hence
fΛ(r) =

1
r
− Λ|Ωr|, f 󸀠Λ(r) = − 1r2 + Λ|∂Ωr|, r ∈ (0, RΩ].

We have
f 󸀠Λ(r) > 0 ⇐⇒ n−1√Λ|∂Ωr| > r−2/(n−1).

Since, by the Brunn–Minkowski theorem, the map r 󳨃→ n−1√|∂Ωr| is decreasing and concave in [0, RΩ],
whereas r 󳨃→ r−2/(n−1) is decreasing and convex in (0, RΩ], there exists a unique Λ󸀠 > 0 such that (a) and (b)
hold.
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Figure 1: Plot of the map fΛ when Ω is the unit two-dimensional ball, for Λ = Λ󸀠 ≃ 1.07 (top), Λ = Λ∗ ≃ 2.15 (center)
and Λ = 3 (bottom)

Observe that f0(r) = 1
r is positive andmonotone decreasing in (0, RΩ], whereas, for every r ∈ (0, RΩ), the

map Λ 󳨃→ fΛ(r) is affine with strictly negative slope. By continuity, there exists a value Λ∗ > Λ󸀠 such that
min

r∈(0,RΩ] fΛ(r) > 0 for all Λ < Λ∗, min
r∈(0,RΩ] fΛ∗ (r) = 0, min

r∈(0,RΩ] fΛ(r) < 0 for all Λ > Λ∗.
Moreover, if r∗ ∈ argmin fΛ∗ , then the pair (r∗, Λ∗) satisfies the conditions

fΛ(r) = 0, f 󸀠Λ(r) = 0,
i.e.,

1
r
− Λ|Ωr| = 0, −

1
r2
+ Λ|∂Ωr| = 0.

From the first equation, we have Λ = (r|Ωr|)−1; substituting into the second equation, we get the condition
|∂Ωr|
|Ωr|
=
1
r
. (3.3)

By Lemma 14, there exists a unique r∗ ∈ (0, RΩ) satisfying (3.3) so that Λ∗ = (r∗|Ωr∗ |)−1.
The properties stated in (c) and (d) follow.

Example 18. When Ω = BR ⊂ ℝn, for r ∈ (0, R], we have

fΛ(r) =
1
r
− κnΛ(R − r)n , f 󸀠Λ(r) = − 1r2 + nκnΛ(R − r)n−1.

An explicit computation gives

Λ󸀠 = 14( n
n − 1)

n−1
Λ∗,

where the value of Λ∗ has already been computed in Example 4.
The graphof fΛ in the case n = 2and R = 1, for the three choices Λ = Λ󸀠 ≃ 1.07, Λ = Λ∗ ≃ 2.15 and Λ = 3,

is shown in Figure 1.

Proof of Theorem 1. The existence of a unique value r∗ satisfying (2.2) has already been proved in Lemma14.
Let now Λ > 0. By Lemma 13, the functional JΛ admits a minimizer v ∈ Lip1(Ω). Since v = 1 on ∂Ω and
|v(x) − v(y)| ≤ ‖∇v‖∞|x − y| for every x, y ∈ Ω, we observe that

{v > 0} ⊇ Dr with r := 1
‖∇v‖∞ . (3.4)

In particular,
if ‖∇v‖∞ < 1

RΩ
, then {v > 0} = Ω. (3.5)

Then we distinguish two cases.
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∙ If ‖∇v‖∞ < 1
RΩ , thenwe conclude that necessarily v ≡ 1 and Λ ≤ Λ

∗ by (3.4), for otherwise JΛ(vrΛ ) < JΛ(1)
by Lemma 16.

∙ If ‖∇v‖∞ ≥ 1
RΩ , let r :=

1‖∇v‖∞ ∈ (0, RΩ]. The function vr, defined in (2.1), has the same Lipschitz constant
as v. Moreover, since {vr > 0} = Dr, by (3.5), we deduce that JΛ(vr) ≤ JΛ(v). Since v is a minimizer, then
equality must hold, and hence {v > 0} = Dr.

Then, recalling the definition (3.2) of the function fΛ, we have

min(0,RΩ] fΛ ≤ fΛ(r) = JΛ(vr) − JΛ(1) = JΛ(v) − JΛ(1) ≤ min(0,RΩ] fΛ .
Hence, we have min(0,RΩ] fΛ = JΛ(v) − JΛ(1) ≤ 0. By Lemma 16, this implies that Λ ≥ Λ∗, and r = rΛ.

From the above analysis, it follows that Λ∞ = Λ∗ and that, for every Λ ≥ Λ∗, vrΛ is a non-constant solution
to (P)Λ (and any other non-constant solution has the same Lipschitz constant and the same positivity set
as vrΛ ).

Proof of Theorem 6. By Theorem 1, Lemma 14 and the explicit computation in Example 4, we have to prove
that

max
r∈[0,RΩ] r|Ωr| ≤ κnnnRn+1(n + 1)n+1 , with R = ( |Ω|κn

)
1/n

.

By the Brunn–Minkowski inequality, the function γ(r) := |Ωr|1/n is concave in [0, RΩ], and hence we have
γ(r) ≤ γ(0) + rγ󸀠+(0), i.e.,

|Ωr|1/n ≤ |Ω|1/n − rn |Ω|−1+1/n|∂Ω| or |Ωr| ≤ |Ω|(1 −
r
n
|∂Ω|
|Ω| )

n
for all r ∈ [0, RΩ].

(For related inequalities, see [10, § 3].) Hence,

r|Ωr| ≤ r|Ω|(1 −
r
n
|∂Ω|
|Ω| )

n
=: φ(r) for all r ∈ [0, RΩ].

It is easy to check that φ attains its maximum at r0 := n
n+1 |Ω||∂Ω| , and hence

max[0,RΩ]φ = φ(r0) = nn+1
(n + 1)n+1 ⋅ |Ω|2|∂Ω| .

By the isoperimetric inequality and the definition of R, we have

|Ω|2
|∂Ω| = |Ω|

(n+1)/n |Ω|(n−1)/n
|∂Ω| ≤ κ

(n+1)/n
n Rn+1 1

nκ1/nn = κnRn+1n
,

with equality if and only if Ω is a ball, and finally,

max
r∈[0,RΩ] r|Ωr| ≤ φ(r0) ≤ κnnnRn+1(n + 1)n+1 ,

with equality if and only if Ω is a ball.

Proof of Theorem 8. We are going to prove the following two facts:
(a) If Λ ≥ Λ∞ and Λ < Λsing, there are at least two distinct solutions.
(b) If Λ > Λ∞ and Λ ≥ Λsing, there is a unique solution.
Let us check first that the statement easily follows from (a) and (b).
∙ Case Λsing ≤ Λ∞. If there is a unique solution, it must be Λ > Λ∞ (otherwise, both vr∗ and the constant

function 1 are solutions). Vice versa, if Λ > Λ∞, by (b), there is a unique solution.
∙ Case Λsing > Λ∞. If there is a unique solution, it must be Λ ≥ Λsing (otherwise, by (a), there would be at

least two solutions). Vice versa, if Λ ≥ Λsing, by (b), there is a unique solution.
Let us now prove (a). Let Λ ≥ Λ∞ and Λ < Λsing. Then, recalling from Lemma 16 that the map Λ 󳨃→ rΛ is
monotone decreasing, we infer that rΛ > rsing so that vrΛ is not everywhere differentiable in DrΛ . On the other
hand, the functionwrΛ definedby (2.4), which is aminimizer of JΛ byCorollary 3, is differentiable everywhere
in DrΛ (see [14]). Hence, we have at least two different solutions, vrΛ and wrΛ .
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Finally, let us prove (b). Let Λ > Λ∞ and Λ ≥ Λsing. Since Λ > Λ∞, by Theorem 1, any solution v satisfies
{v > 0} ∩ Ω = DrΛ . Let us prove that v = vrΛ .

Assume by contradiction that there exists a point x ∈ DrΛ such that v(x) ̸= vrΛ (x). Since rΛ ≤ rsing, the dis-
tance function dist( ⋅ , ∂Ω) from the boundary of Ω is differentiable everywhere in DrΛ . Therefore, the point x
admits a unique projection y ∈ ∂Ω such that |x − y| = dist(x, ∂Ω). Setting ν := x−y|x−y| and yt := y + tν, we have

yt ∈ DrΛ for all t ∈ (0, rΛ), z := yrΛ ∈ ∂ΩrΛ .

Since vrΛ (z) = v(z) = 0, if v(x) > vrΛ (x), then we would have

v(x) − v(z) > vrΛ (x) − vrΛ (z) =
|x − z|
rΛ

, (3.6)

and hence ‖∇v‖∞ > 1
rΛ , a contradiction. Similarly, if v(x) < vrΛ (x), since vrΛ (y) = v(y) = 1, thenwewould have

v(y) − v(x) > vrΛ (y) − vrΛ (x) =
|x − y|
rΛ

, (3.7)

and again ‖∇v‖∞ > 1
rΛ , a contradiction.

Notice that, to obtain the last equality in formulas (3.6) and (3.7), we have used the identity

dist(ξ, ∂Ω) = rΛ − |ξ − z|

holding for every ξ in the segment [y, z] because dist( ⋅ , ∂Ω) is differentiable in DrΛ for rΛ ≤ rsing.

4 Proofs of the results in Section 2.2

Before giving the proofs of Propositions 9 and 10, we need to recall a result from our paper [11] about the
Bernoulli problem (1.4) on convex domains (therein, also the more general case of non-convex domains is
considered).

We first resume a few preliminary definitions. A solution u to (1.4) is called non-trivial if the set {u = 0}
has non-empty interior. Given r ∈ (0, RΩ), we define wr as the infinity harmonic potential of Ωr, namely the
unique solution to

{{{
{{{
{

∆∞wr = 0 in Dr := Ω \ Ωr ,
wr = 1 on ∂Ω,

wr = 0 in Ωr .

Finally, still for r ∈ (0, RΩ), we introduce the subset of Dr defined by

D̂r := ⋃
y∈∂Ωr{]y, z[ : z ∈ Π∂Ω(y)},

where ]y, z[ denotes the open (i.e., without the endpoints) segment joining y to z, and Π∂Ω(y) denotes the set
of projections of y onto ∂Ω.

Theorem 19 (See [11]). The following statements hold.
(a) For every λ > 1

RΩ , the function w1/λ is the unique non-trivial solution to problem (1.4); moreover, it satisfies
the estimates

1 − λ dist(x, ∂Ω) ≤ w1/λ(x) ≤ λ dist(x, ∂Ω1/λ) in D1/λ , with equalities in D̂1/λ .
(b) For every λ ∈ (0, 1

RΩ ], problem (1.4) does not admit non-trivial solutions.

Proof of Proposition 9. From Corollary 3, we know that, for every Λ ≥ Λ∞, the infinity harmonic potential
wrΛ of DrΛ is a solution to problem (P)Λ. Moreover, by Theorem 19, the function wrΛ solves problem (1.4)
(for λ = 1

rΛ ).

Authenticated | ilaria.fragala@polimi.it author's copy
Download Date | 8/16/19 1:59 PM



12 | G. Crasta and I. Fragalà, On the supremal version of the Alt–Caffarelli minimization problem

In order to prove that there are no other solutions to (P)Λ which solve (1.4), it is enough to recall that the
positivity set of any solution to problem (P)Λ is given by DrΛ (cf. (2.3) in Theorem 1); since clearly a solution
to (P)Λ needs to be infinity harmonic in its positivity set in order to solve (1.4), it agrees necessarily with wrΛ .

Finally, sincewe know fromTheorem1 and fromCorollary 3 that vrΛ andwrΛ are both solutions to (P)Λ, in
case of uniqueness, we conclude that vrΛ = wrΛ ; moreover, from the first part of the statement already proved,
we deduce that such function solves (1.4) (for λ = 1

rΛ ).

Proof of Proposition 10. By Proposition 9, among solutions to problem (P)Λ, there is one which solves prob-
lem (1.4) (for λ = 1

rΛ ) if and only if Λ ≥ Λ∞ (and in this case, it is given precisely by the functionwrΛ ). Then it is
enough to observe that, by the continuity and decreasing monotonicity of the mapR : Λ 󳨃→ rΛ, the condition
Λ ≥ Λ∞ is equivalent to (2.5) (being λ = 1

rΛ ).
The last part of the statement follows from Theorem 19, combined with the fact that D̂r = Dr holds if and

only if r ≤ rsing.

5 Proofs of the results in Section 2.3

Let Λ ≥ Λ∞. As explained in Section 2.3, our first step towards the proof of Theorem 11 is the study of the
asymptotics of a sequence of solutions to problem (2.6), for a fixed λ, in the limit as p = pj → +∞.

To that aim, it is useful to notice preliminarily that the minimum of the functionals JλΛ defined in (2.8)
can be explicitly computed as

min
Lip1(Ω) JλΛ = {{{λ + Λ|Ω| if λ ∈ [0, 1

RΩ ),
λ + Λ|D1/λ| if λ ≥ 1

RΩ .
(5.1)

Indeed, if λ < 1
RΩ , then {u > 0} = Ω for every u ∈ Lip1(Ω)with ‖∇u‖∞ ≤ λ; on the other hand, for λ ≥ 1

RΩ , argu-
ing as in the proof of Theorem 1, we see that a minimizer is given by the function v1/λ = [1 − λ dist( ⋅ , ∂Ω)]+.

Figure 2 represents the plot of the map λ 󳨃→ min JλΛ when Ω is the unit two-dimensional ball, for three
different values of Λ.

Lemma 20 (Convergence of minimizers at fixed λ). Let Λ ≥ Λ∞. Let (upj ,λ)j be a sequence of solutions to prob-
lem (2.6) for a given λ > 0 and p = pj → +∞. Then, up to passing to a (not relabeled) subsequence, we have

upj ,λ ⇀ uλ weakly in W1,q(Ω) for all q > 1, upj ,λ → uλ uniformly in Ω, (5.2)

where uλ is a solution to problem (2.7) and is infinity harmonic in its positivity set.

2 4 6 8
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10

Figure 2: Plot of the map λ 󳨃→ min JλΛ in (5.1) when Ω is the unit two-dimensional ball, for Λ = Λ󸀠 ≃ 1.07 (top),
Λ = Λ∗ ≃ 2.15 (center) and Λ = 3 (bottom)

Authenticated | ilaria.fragala@polimi.it author's copy
Download Date | 8/16/19 1:59 PM



G. Crasta and I. Fragalà, On the supremal version of the Alt–Caffarelli minimization problem | 13

Furthermore,
∙ if λ ∈ [0, 1

RΩ ), then u
λ ≡ 1 and upj ,λ ≡ 1 for j large enough;

∙ if λ ≥ 1
RΩ , then

{uλ > 0} = D1/λ ∪ ∂Ω, ‖∇uλ‖∞ = λ.
Before the proof of Lemma 20, we make a useful observation.

Remark 21. For every u ∈ W1,p
1 (Ω) and every fixed λ, the map p 󳨃→ Jp,λΛ (u) is monotone non-decreasing. We

omit the proof of this property, which can be found in [17, Proposition 1]. Moreover, it is readily checked that
the limit as p → +∞ of Jp,λΛ (u) is given precisely by the number JλΛ(u) ∈ [0, +∞] defined in (2.8).

Proof of Lemma 20. Since

1
p ∫

Ω

(
|∇up,λ|
λ )

p
dx + λ ≤ Jp,λΛ (u

p,λ) ≤ Jp,λΛ (1) = λ +
p − 1
p

Λ|Ω| ≤ λ + Λ|Ω|,

weget ‖∇up,λ‖p ≤ λ(pΛ|Ω|)1/p. For everyfixed exponent q ∈ (1, +∞), by theHölder inequality, for every p > q,
it holds

‖∇up,λ‖q ≤ ‖∇up,λ‖p|Ω|
p−q
pq ≤ λ(pΛ|Ω|)

1
p |Ω|

p−q
pq = λ(pΛ)

1
p |Ω|

1
q ≤ C, (5.3)

where C > 0 is a constant independent of p.
Therefore, the family (up,λ)p is uniformly bounded inW1,q(Ω) for every q > 1.Using adiagonal argument,

we can construct an increasing sequence pj → +∞ satisfying (5.2) for some uλ. Moreover, from (5.3), we
deduce that ‖∇uλ‖∞ ≤ λ. Since uλ = 1 on ∂Ω, we conclude that uλ ∈ Lip1(Ω) and ‖∇uλ‖∞ ≤ λ.

The fact that uλ is∞-harmonic in its positivity set is a standard consequence of the fact that the functions
upj ,λ are pj-harmonic in their positivity set, with pj → +∞; see, for instance, the arguments in [18, proof of
Theorem 1].

Let us prove that uλ is aminimizer of JλΛ in Lip1(Ω). Let us fix ε > 0. Since upj ,λ → uλ uniformly in Ω, there
exists an index jε ∈ ℕ such that

|{uλ > 0}| ≤ |{upj ,λ > 0}| + ε for all j > jε;

moreover, for every j > jε, we have

Jpj ,λΛ (u
pj ,λ) ≥ λ +

pj − 1
pj

Λ|{upj ,λ > 0}|.

So we obtain

Jpj ,λΛ (u
λ) ≤

1
pj
|{uλ > 0}| + λ +

pj − 1
pj

Λ|{uλ > 0}|

≤
1
pj
|Ω| + λ +

pj − 1
pj

Λ(|{upj ,λ > 0}| + ε)

≤
1
pj
|Ω| + Jpj ,λΛ (u

pj ,λ) + Cε.

For every u ∈ Lip1(Ω), passing to the limit as j → +∞ (cf. Remark 21), we obtain

JλΛ(u
λ) = lim

j→+∞ Jpj ,λΛ (u
λ) ≤ lim inf

j→+∞ Jpj ,λΛ (u
pj ,λ) ≤ lim inf

j→+∞ Jpj ,λΛ (u) = J
λ
Λ(u)

so that uλ is a minimizer of JλΛ in Lip1(Ω).
If λ ∈ [0, 1

RΩ ), then u
λ ≡ 1 (because uλ is∞-harmonic in Ω,with uλ = 1 on ∂Ω). Since upj ,λ → 1 uniformly

for j large enough, then {upj ,λ > 0} = Ω, and hence upj ,λ ≡ 1.
It remains to prove that, for λ ≥ 1

RΩ , the positivity set {u
λ > 0} coincides with D1/λ ∪ ∂Ω, and ‖∇uλ‖∞ = λ.

Since ‖∇uλ‖∞ ≤ λ, we have {uλ > 0} ⊇ D1/λ ∪ ∂Ω. On the other hand, since uλ is a minimizer of JλΛ in Lip1(Ω),
it minimizes |{u > 0}| among all functions u ∈ Lip1(Ω)with ‖∇u‖∞ ≤ λ, which implies (by taking the competi-
tor v1/λ) that |{uλ > 0}| ≤ |D1/λ|. We infer that {uλ > 0} = D1/λ ∪ ∂Ω.

Finally, as a consequence of (5.1) and the equality {uλ > 0} = D1/λ ∪ ∂Ω, we obtain ‖∇uλ‖∞ = λ.
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Proof of Theorem 11. Observe that the limit as p → +∞ in (2.10) does exist, thanks to Remark 21. Let up,λ
and uλ be as in Lemma 20.

For every λ ≥ 1
RΩ , let v1/λ(x) := [1 − λ dist(x, ∂Ω)]+, x ∈ Ω. Clearly,
{v1/λ > 0} ∩ Ω = D1/λ = {uλ > 0} ∩ Ω, |∇v1/λ| = λ a.e. in D1/λ

so that Jp,λΛ (u
λ) ≤ Jp,λΛ (v1/λ). Observe that

Jp,λΛ (v1/λ) = 1p |D1/λ| + λ + p − 1p Λ|D1/λ| ≤ 1p |Ω| + λ + Λ|D1/λ|. (5.4)

Hence,
inf

λ≥1/RΩ Jp,λΛ (u
p,λ) ≤ inf

λ≥1/RΩ Jp,λΛ (u
λ) ≤ inf

λ≥1/RΩ Jp,λΛ (v1/λ) ≤ 1p |Ω| + 1
rΛ
+ Λ|DrΛ |. (5.5)

Notice carefully that, in the last inequality above, we have exploited the assumption Λ ≥ Λ∞, and we
have used Lemma 16 (in particular, the definition of rΛ given therein, and part (d) of the statement).

In view of the upper bound obtained in (5.5), and taking into account that Jp,λΛ (u
p,λ) > λ for every λ > 0,

we see that the infimum w.r.t. λ in (2.10) can be taken for λ ∈ I = [ 1RΩ , CΛ], being CΛ := |Ω| + 1
rΛ + Λ|DrΛ |.

From the explicit form of Jp,λΛ (v1/λ) in (5.4), we also get
Jp,λΛ (v1/λ) ≥ p − 1p (λ + Λ|D1/λ|) ≥ p − 1p ( 1rΛ + Λ|DrΛ |),

which, together with (5.4) and (5.5), gives

lim
p→+∞ inf

λ≥1/RΩ Jp,λΛ (v1/λ) = 1
rΛ
+ Λ|DrΛ |. (5.6)

Let (λk) ⊂ I be an enumeration of the rational points in I. Since the map λ 󳨃→ Jp,λΛ (u) is continuous, it is
easy to check that

inf{Jp,λΛ (u
p,λ) : λ ≥ 1

RΩ
} = inf{Jp,λkΛ : k ∈ ℕ} for all p > 1.

Using Lemma 20 and a diagonal argument, we can construct a sequence pj → +∞ such that, for every q > 1,
for j → +∞,

upj ,λk ⇀ uλk weakly inW1,q(Ω), upj ,λk → uλk uniformly in Ω for all k ∈ ℕ.

For every j ∈ ℕ, let us choose kj ∈ ℕ such that

inf{Jpj ,λΛ (u
pj ,λ) : λ ≥ 1/RΩ} ≤ J

pj ,λkj
Λ (u

pj ,λkj ) +
1
pj
. (5.7)

Upon extracting a further subsequence (not relabeled), we can assume that λkj → λ ∈ I and that (again using
Lemma 20)

upj ,λ ⇀ uλ weakly inW1,q(Ω), upj ,λ → uλ uniformly in Ω.

Claim. For every ε > 0, there exists jε ∈ ℕ such that

|{uλkj > 0}| = |D1/λkj | ≤ |{upj ,λkj > 0}| + ε for all j ≥ jε .

Proof of the claim. Let j0 ∈ ℕ be such that

|D1/λkj | ≤ |D1/λ| + ε2 for all j ≥ j0. (5.8)

Since upj ,λ → uλ uniformly in Ω, there exists jε ∈ ℕ, jε ≥ j0, such that

|D1/λ| = |{uλ > 0}| ≤ |{upj ,λ > 0}| + ε2 for all j ≥ jε . (5.9)

From (5.8) and (5.9) the claim follows.
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Let us fix ε > 0. Using the claim, for every (p, λ) = (pj , λkj ) with j ≥ jε, we have

Jp,λΛ (u
p,λ) ≥ λ + p − 1

p
Λ(|D1/λ| − ε),

and hence

Jp,λΛ (u
p,λ) ≤ Jp,λΛ (u

λ) ≤ Jp,λΛ (v1/λ) = 1p |D1/λ| + λ + p − 1p Λ|D1/λ| ≤ 1p |Ω| + p − 1p Λε + Jp,λΛ (u
p,λ).

Finally, from (5.6) and (5.7), we conclude that (2.10) holds.
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