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Abstract
Objective
To assess the functional effects of a variant, c.89 G > A (p.Arg30Gln), in the transient receptor
potential melastatin 8 (TRPM8) cold-sensing, nonselective cation channel, which we have
previously identified in a patient with familial trigeminal neuralgia.

Methods
We carried out Ca2+ imaging and whole-cell patch-clamp recording.

Results
The TRPM8 mutation enhances channel activation, increases basal current amplitude and
intracellular [Ca2+] in cells carrying themutant channel, and enhances the response tomenthol.

Conclusions
We propose that Arg30Gln confers gain-of-function attributes on TRPM8, which contribute to
pathogenesis of trigeminal neuralgia in patients carrying this mutation.
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Trigeminal neuralgia (TN) is a unique pain disorder in which
affected individuals suffer from paroxysms of severe pain in
the distribution of the trigeminal nerve, i.e., over the face,
usually with onset in older adults.1 The disorder is often
unilateral, and in many cases, although not all, it is associated
with neurovascular compression of the trigeminal root.2 Al-
though most cases of trigeminal neuralgia are sporadic, fa-
milial occurrence has been reported.3–5 Di Stefano et al.6

recently reported a positive family history for 12 patients with
trigeminal neuralgia within a series of 88 patients enrolled
consecutively for assessment at a specialized neuropathic pain
center. The occurrence of familial TN suggests a genetic
contribution to this disorder. Whole-exome sequencing of
genes within the electrogenisome known to be expressed
within trigeminal ganglion revealed multiple variants of ion
channels including sodium channels, potassium channels,
chloride channels, calcium channels, and transient receptor
potential (TRP) channels in the genomes of these familial
patients with TN,6 but the possible contribution of these
variants to TN must be empirically assessed. Here, we use
Ca2+ imaging and whole-cell patch clamp to assess a variant in
the transient receptor potential melastatin 8 (TRPM8) cold-
sensing, nonselctive cation channel, c.89 G > A (p.Arg30Gln),
in a patient with familial trigeminal neuralgia. We demonstrate
that this TRPM8 mutation displays multiple gain-of-function
characteristics including enhanced channel activation, in-
creased basal current amplitude and intracellular [Ca2+] in
cells carrying the mutant channel, and enhanced response to
menthol. We suggest a model in which these gain-of-function
attributes contribute to the pathogenesis of trigeminal
neuralgia.

Methods
Patient
The patient was a 61-year-old woman with severe attacks of
unilateral facial pain, beginning at the age of 60, triggered by
chewing, talking, and light touch of the nasal wing (case 1 in
DiStefano et al., 20206). Two brothers also had a history of
trigeminal neuralgia. MRI revealed neurovascular compres-
sion with atrophy and dislocation of the trigeminal root.
Oxcarbazepine provided pain relief. The study was approved
by the Ethic Committee of Sapienza University (reference
649/17). Written informed consent was obtained from the
participant.

DNA analysis revealed that this patient and her older brother,
also carrying a diagnosis of trigeminal neuralgia, share a 9-bp
duplication (c.642_650dup; 27/190,394 on gnomAD v2) in

potassium channel geneKCNC3 and a synonymous splice site
variant (c.1467 G > A; 3/250,442 on gnomAD v2) inKCND2
predicted to reduce splicing efficiency using Alternative Splice
Site Predictor (wangcomputing.com/assp/) and Human
Splicing Finder (umd.be/HSF/). The patient carried a novel
missense variant c.1489 G > A (p.Gly497Ser) in KCNH2 and
a rare missense variant c.6032 G > A (p.Arg2011Gln; 4/
282,448 on gnomAD v2) in CACNA1D.6 Notably, the patient
was heterozygous for a variant, c.89 G > A (p.Arg30Gln; 9/
282,688 on gnomAD v2), in TRPM8. Given the expression of
TRPM8 within trigeminal ganglia7–9 and reported association
of TRPM8 with pain,10–12 we asked whether this variant
might produce any functional changes in the TRPM8 channel
or within cells expressing it.

Plasmid, Cell Culture, and Transfection
Patch-clamp studies were carried out in human embryonic
kidney (HEK) 293 cells transiently transfected with vectors
that encode human TRPM8 or the Arg30Gln variant (re-
ferred to in the single letter amino acid code R30Q herein-
after). The wild-type TRPM8 plasmid was obtained from
GenScript, in which the insert was cloned in-frame with 2A-
GFP at the C-terminus of the channel in the vector
pcDNA3.1. The single TRPM8-2AGFP transcript is trans-
lated into the separate channel protein and the transfection
marker GFP protein.13,14 The R30Qmutation was introduced
into the TRPM8 channel using QuikChange Lightning site-
directed mutagenesis (Agilent Technologies). For heterolo-
gous expression, cells were plated in 6-well cell culture dishes
with 2-mL growth medium (DMEM, 10% FBS, 2 mM L-
glutamine, 2 U/mL penicillin, and 2 mg/mL streptomycin)
24 hours before transfection. Transfection was performed
using the Lipofectamine LTX Reagent (Invitrogen) as pre-
viously described.15

Electrophysiology
Patch-clamp recordings of HEK293 cells were carried out at
room temperature using an EPC-9 amplifier (HEKA Elek-
tronik, Lambrecht, Germany) controlled by PatchMaster
software (HEKA Elektronik, Lambrecht, Germany). Patch-
clamp electrodes were pulled and fire polished to 4.0 ± 0.5
MΩ resistance when filled with intracellular solution using a
DMZ-Universal Puller (Zeitz Instruments, Munich, Ger-
many). An AgCl wire was used as a reference electrode. To
elicit I-V whole-cell currents, repetitive 400 ms voltage ramps
(at 2 seconds intervals) from −100 to +100 mV were applied,
from a holding potential of 0 mV. Currents were sampled at
20 kHz and digitally filtered at 2.9 kHz. For statistical analysis,
the currents were normalized to cell capacitance. Solutions
were applied to the cells via a custom-built gravity-fed

Glossary
DMEM = Dulbecco's Modified Eagle's Medium; EGTA = ethylene glycol tetraacetic acid; FBS = fetal bovine serum; GFP =
green fluorescent protein; HEPES = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HEK = human embryonic kidney;
TN = trigeminal neuralgia; TRPM8 = transient Receptor Potential Melastatin 8.
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perfusion system, connected by a 5-way manifold, to a RC25
perfusion chamber (Warner Instruments, Hamden, CT). For
whole cell recordings, the standard extracellular solution had
the following composition (in mM): 150 NaCl, 5 KCl, 1
MgCl2, 1.8 CaCl2, 10 glucose, and 10 HEPES, buffered at pH
7.4 with NaOH. The osmolarity of this solution was 320 ± 5
mOsm/kgH2O. The intracellular solution had the following
composition (in mM): 140 CsCl, 0.3 CaCl2, 2 MgATP, 10
EGTA and 10 HEPES, adjusted to pH 7.2 with CsOH (290 ±
5 mOsm).

To analyze the effects of the mutation R30Q on the voltage
dependence of TRPM8, we applied voltage step protocols
from −100 to +200 mV. At each data point, we calculated G/
Gmax, where Gmax is the maximal steady state conductance
in the presence of 1 mM menthol. Therefore, we fit the G/
Gmax values using a Boltzmann function of the form:
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where z is the gating charge, V is voltage, V1/2 is the voltage for
half-maximal activation, kB is the Boltzmann constant, and T
is the absolute temperature. For simplicity, we assume for our
calculations a two-state model of channel gating.16

Ca2+ Imaging
Loading of the HEK293 cells with Fura2-AM was achieved at
room temperature in a Krebs medium with 5 μM fura-2-AM
and 0.01% pluronic acid for 1 hours [Ca2+]i was measured in
10–15 individual cells for each experiment using an alternative
excitation of Fura2-AM (0.5 Hz) at 340 and 380 nm using a
Lambda DG-4 Ultra High Speed Wavelength Switcher (Sut-
ter Instrument, Novato, CA). Images were acquired with a
Zeiss Axiocam camera coupled to a 510-nm emission filter
and analyzed with Axiovision software. Ca2+ imaging experi-
ments were performed in a Krebs solution (NaCl 135 mM,
KCl 5.9 mM, MgCl2 1.2 mM, CaCl2 1.8 mM, HEPES
11.6 mM, glucose 11.5 mM, pH 7.35).

Data Availability
The raw data are available upon request.

Results
To investigate the effect of the R30Q variant on TRPM8
activity, wild-type andmutant human TRPM8were expressed
in HEK293 cells. In cultured cells transiently transfected with
either wild-type or R30Q TRPM8 channels, exposure to
100 μM menthol, added in the bath at the time indicated by
the arrow and continuously perfused until the end of the
experiment, evoked a robust increase in intracellular calcium,
measured as a change in the Fura-2 fluorescence signal ratio
(figure 1, A and B). In comparison with cells expressing wild-
type TRPM8, the R30Q mutation yielded a larger Ca2+ in-
crease in response to menthol (figure 1C). Moreover, the

initial Fura-2 fluorescence signal ratio, which reflects the basal
intracellular [Ca2+], was slightly but significantly higher in
cells expressing R30Q compared with the wild-type TRPM8
(figure 1D). In vitro cotransfections of mutant and wild-type
to model in vivo heterozygosity revealed a slight increase of
Ca2+ uptake in response to menthol (Supplementary figure
1A, links.lww.com/NXG/A359) and a significant increase of
basal Ca2+ (Supplementary figure 1B, links.lww.com/NXG/
A359) compared to wild-type TRPM8 transfected cells.

To further characterize the R30Q mutation under basal
conditions, we recorded steady-state evoked currents during
voltage steps from −100 mV to +200 mV from a holding
potential of 0 mV (figure 2A). The basal current amplitude of
the R30Q mutant was significantly higher compared with
TRPM8 wild-type at potentials greater than 150 mV (figure
2B). Normalized conductance for each cell, referred to as G/
Gmax, was plotted for the given voltages and fitted with a
Boltzmann function (figure 2C), Gmax being the maximal
steady state conductance in the presence of 1 mM menthol.
We found that the R30Q mutation left-shifted the activation
curve toward physiologic voltages, from 153 ± 8 mV to 115 ±
5 mV (**p < 0.01, unpaired Student’s t test). Because saturating
effects in the presence of 1 mM menthol could not be
obtained for the R30Q mutant, values for V1/2 and slope
factor should be considered as approximates.

Finally, because menthol is well-known to be an agonist for
TRPM8, we tested menthol-induced responses of mutant and
wild-type TRPM8 channels using patch clamp recordings.
Menthol at nonsaturating concentration of 100 μM32 evoked
robust currents with strong outward rectification in cells
expressing both R30Q and wild-type TRPM8 (figure 2, D and
E). The current is characterized by a reversal potential near
0 mV, suggesting that TRPM8 is a nonselective Ca2+ channel.
In particular, when activated, it allows the entry of Na+ and
Ca2+ ions into the cell. At positive membrane potential (+80
mV) the amplitude of the current in response to 100 μM
menthol was significantly higher in R30Q transfected cells
compared with wild-type TRPM8 expressing cells (figure 2F).

Discussion
Trigeminal neuralgia is characterized by recurrent excruciat-
ing pain in affected individuals, which is thought to arise from
episodes of hyperactivity of primary trigeminal afferents.17–19

Despite intense study, the pathophysiologic basis of this tri-
geminal ganglion neuron hyperexcitability remains in-
completely understood. Trigeminal neuralgia is unilateral, and
in many cases, although not all cases, it is associated with
neurovascular compression of the trigeminal root.2

Although trigeminal neuralgia tends to occur in a sporadic
manner, familial occurrence has been reported.3–5 Together
with the occurrence of trigeminal neuralgia in the absence of
neurovascular compression, the occurrence of familial
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trigeminal neuralgia supports a genetic contribution to this
pain disorder. Here, we build on a study which demonstrated
positive family history for 12 subjects, within a series of 88
patients with trigeminal neuralgia.6 Whole-exome sequencing
of genes within the electrogenisome of trigeminal ganglion
neurons demonstrated variants of ion channels including so-
dium channels, potassium channels, chloride channels, cal-
cium channels, and TRP channels.

In addition, to a mutation of TRPM8, the patient de-
scribed in this report carried a rare missense variant c.6032
G > A (p.Arg2011Gln) in CACNA1D. Gain-of-function
mutations of CACNA1D, encoding pore-forming Cav1.3
α1-subunit, have been reported to contribute to primary
aldosteronism, seizures, and multiple psychiatric and
neurologic syndromes.20,21 The current patient also car-
ried rare variants in 3 potassium channel genes, consisting
of a 9-bp duplication (c.642_650dup) in KCNC3, a syn-
onymous splice site variant (c.1467 G > A) in KCND2
predicted to reduce splicing efficiency, and a novel mis-
sense variant p.1489 G > A (p.Gly497Ser) in KCNH2.
Among these potassium channel genes, KCND2 encodes
Kv4.2, a rapidly inactivating voltage-gated potassium

channel, and Kv4.2 knockout mice display increased
neuronal excitability and hypersensitivity to nociceptive
stimuli.22 Missense variants of KCND2 gene have been
found possibly associated with infantile-onset severe re-
fractory epilepsy23 and persistent breast pain after breast
cancer surgery.24 Loss-of-function mutations of KCNC3,
encoding Kv3.3, have been linked to cerebellar ataxia,
accompanied with hyperreflexia, deep sensory loss, sei-
zures, involuntary movement, and cognitive
impairment,25,26 whereas loss-of-function mutations of
KCNH2, encoding Kv11.1, are found in approximately
30% of patients with Long QT syndrome.27,28 Within
transcriptome data sets of mouse or human trigeminal/
dorsal root ganglion, RNA expression levels of KCNC3,
KCNH2, and CACNA1D were higher than for KCND2,
but no linkage or association between the former 3 genes
and pain had been described.29–31 (Supplementary table 1,
links.lww.com/NXG/A359). Nevertheless, we can not
exclude a contribution of these variants to trigeminal
neuralgia.

In this study, we focused on a mutation in TRPM8, a gene
of which is known to be expressed in the trigeminal and

Figure 1 The TRPM8-R30Q Enhances Calcium Entry in Response to Stimulation by Menthol

Average changes in the Fura-2 ratio of human embryonic kidney 293 cells transfected with wild-type TRPM8 (A) and R30Q mutant (B), in the continued
presence of menthol (100 μM; arrow indicates time of addition). (C) Average increase in Fura-2 ratio in response to menthol (100 μM) in nontransfected cells
(NT), wild-type TRPM8, and R30Q transfected cells (n = 10 experiments, 4 transfections). *p < 0.05, unpaired Student’s t test. (D) Basal fura-2 ratio in wild-type
TRPM8 and R30Q mutant transfected cells (n = 15 experiments, 4 transfections). *p < 0.05, unpaired Student t test. TRPM8 = transient receptor potential
melastatin 8.
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dorsal root ganglia.7–9 TRPM8 is an outwardly rectifying
nonselective Ca2+ channel, first characterized as a neuronal
detector of cold.32,33 It is activated by cold temperatures
(<26°C) and compounds that produce a cooling sensation
such as menthol, icilin, and eucalyptol.33,34 TRPM8 is also

activated by voltage. In the absence of chemical agonists or
at high temperature, the channel is gated by strong de-
polarizations. In contrast, cold temperature or agonist
application shift the steady-state activation curve of
TRPM8 to more negative potentials, increasing the open

Figure 2 Voltage-Clamp Recordings Show Increased Basal Activity of TRPM8-R30Q Channels

(A) Representative whole-cell current traces through wild-type TRPM8 and R30Q transfected cells, in response to the indicated voltage step protocol. (B)
Steady state current-voltage relationships of the basal whole-cell currents for wild-type TRPM8 and R30Q mutant (n = 12, **p < 0.01, ***p < 0.001, 2-way
analysis of variance with Bonferroni post hoc test). (C) Steady-state activation curves of wild-type TRPM8 and R30Q transfected cells. The normalized
conductance (G/Gmax) was plotted against voltage and fittedwith a Boltzmann function, giving rise to V1/2 and slope factor as follows: TRPM8, 153 ± 8mV and
30 ± 3mV (n = 12 cells, 3 transfections); R30Q, 115 ± 5mV and 28 ± 2mV (n = 12 cells, 3 transfections). **p < 0.01, unpaired Student’s t test. (D) Representative
time courses (left) recorded at +80 mV and −80 mV (black and grey curves, respectively) and I-V traces (right) of whole cell currents through wild-type TRPM8
transfected cells, in the presence of 100 μMmenthol, at the indicated time intervals. (E) Same as D), except that time courses and I-V traces are recorded from
R30Q transfected cells. (F) Pooled data of whole-cell current (at +80mV and −80mV) evoked by 100 μMmenthol, fromwild-type TRPM8 and R30Q transfected
cells. Each column represents mean ± SEM of n = 8 cells, 3 independent experiments. *p < 0.05 (unpaired Student’s t-test). TRPM8 = transient receptor
potential melastatin 8.
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probability of the channel at physiologic membrane
potentials.35,36

Although the role of TRPM8 as cold transducer is well-
established, its role in pain sensation is not clear. In fact it is still
under debate whether TRPM8 amplifies and/or reduces pain
sensation. A number of studies suggest that the activation of
TRPM8 exaggerates pain sensation.11,12 In support of these re-
sults, selective TRPM8 antagonists reduced chronic pain and
allodynia in animal models.10,37 In contrast, other studies report
that TRPM8 agonists have analgesic properties.38,39 A possible
explanation for these apparently disparate results, where the
activation of TRPM8 seems to cause cold pain after injury while
simultaneously reducing mechanical and heat pain, could be that
TRPM8-expressing afferent fibers have the ability to either en-
hance or attenuate pain, but the outcome is determined by
context.40

We studied the effect of the substitution of the Arg30, lo-
cated in the N-terminus, by glutamine on the biophysical
properties of TRPM8. Our results indicate that the R30Q
mutation in TRPM8 enhances channel activation, increases
basal current amplitude and intracellular [Ca2+] in cells
carrying the mutant channel, and enhances the channel
response to menthol. Interestingly, coexpression of mutant
and wild type to model in vivo heterozygosity revealed a
significant increase of basal Ca2+ suggesting a dominant
effect of the R30Q mutation. It was previously observed
that deletion and substitution of the first 40 residues yiel-
ded TRPM8 channels with augmented responses to cold
and menthol.41 In particular, electrophysiologic analysis of
the S26P and S27P mutants revealed that the enhanced
sensitivity to agonists was related to a strong leftward shift
in the voltage dependence of activation. Because this
phenotype occurs only when a proline is introduced,
without a significant effect of alanine or aspartate muta-
tions, the authors suggest that the augmented response of
the channels is because of the alteration of the structure of
TRPM8. They speculated that in wild-type TRPM8 chan-
nels, the interaction of the N-terminal region with other
TRPM8 domains or with a partner protein reduces channel
activity. As a consequence, specific deletion or substitution
of the first 40 amino acids of TRPM8 could compromise
the interaction with modulatory proteins or internal re-
gions that constitutively inhibits TRPM8 function. In the
light of our findings, we can hypothesize that a mutation of
the Arg30, which is close to Ser26 and Ser27 residues, could
alter the stability of the N-terminus of TRPM8, similarly, to
the effect observed for S26P and S27P mutations, leading to
its gain-of-function enhancement.

Small persistent Na+ currents42 are known to trigger re-
verse Na+/Ca2+ exchange that can lead to increased in-
tracellular Ca2+, which can produce axonal injury43; gain-
of-function mutations of Na+ channels impair axonal in-
tegrity and ionic homeostasis in vitro44,45 and have been
linked to painful human neuropathies.46,47 Although the

predicted increase in intracellular Ca2+ resulting from the
R30Q mutation at physiologic membrane potentials
would be expected to be small, there is evidence that the
cumulative effects of small increases in intracellular Ca2+

can predispose axons to time-dependent injury, i.e., adult-
onset axonal disease.48 Consistent with the view that mutations
underlie a slow influx of Na+ or Ca2+ can predispose trigeminal
axons to mechanical injury, a gain-of-function mutation of so-
dium channel Nav1.6 has been described in a patient with adult
onset trigeminal neuralgia and ipsilateral neurovascular com-
pression of the trigeminal root.49 Alternatively, it is possible that
vascular compression causes demyelination of the trigeminal
root. Electrophysiologic recordings and computer simulations
show that focally demyelinated axons can become
hyperexcitable50,51 and the enhanced TRPM8 channel activation
increased basal current amplitude and intracellular [Ca2+] in cells
carrying the mutant channel could summate with this hyperex-
citability to produce ectopic activity.

The familial occurrence of trigeminal neuralgia in some patients,
together with the presence of unilateral pain and adult onset,
suggest a multihit model in which genetic factors can contribute
to pathophysiology. Our results provide support for the idea that
genetic factors can predispose axons to injury in response to
mechanical insults and specifically for the hypothesis that variants
of ion channels within the trigeminal neuron electrogenisome can
predispose to the development of trigeminal neuralgia in re-
sponse to microvascular compression.
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