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Abstract

The present thesis deals with numerical and experimental modelling of energy harvesting from ambient

vibrations with piezoelectric materials. The aim of the work is indeed to study the system with a multi-

physics approach, describing not only the electromechanical behaviour of the device, but also its interaction

with the electric conversion system closing the circuit on the external load. This holistic procedure fills

a gap in past literature, in which usually mechanical and electrical description are addressed separately

for this kind of devices, thus preventing from a global optimization. Indeed, finding the optimum set

of material, geometrical, and electric parameters is fundamental to maximise the overall efficiency and

make the power produced by the energy harvester suitable for real-life applications. Moreover, exploring

optimal combinations of mechanical and electrical parameters through optimization techniques, or even

new configurations, requires efficient numerical tools to evaluate a large number of times the concurrent

solutions. Thus, as a second main point of thesis, reduced-order models of the electro-mechanical system

are developed here to overcome problems usually occurring when interfacing computational expensive

models, and are experimentally validated to demonstrate their effectiveness.

The investigated system, aimed at harvesting energy from basement vibrations, is a cantilever multi-

layer structure with a unique piezoelectric lamina glued on the supporting material (unimorph configu-

ration, like in many commercial devices), the latter being in charge of several functions: facilitating the

device installation, ensuring structural integrity and mechanical stability, and avoiding charge cancella-

tion. The connection between support layer and piezoelectric lamina is supposed to be perfect, without

any loss in mechanical energy transmission. Since piezoceramics perform only if working in their narrow

resonance bandwidth, the cantilevered plate configuration allows for accurate prediction of its bending

frequencies with a simple and efficient layout. Indeed, the investigated device exhibits significant oscilla-

tion amplitudes at resonance frequencies under vertical basement vibrations applied at the clamped end.

Nonetheless, this layout can be easily adapted for different energy sources, like wind (for fluttering flags)

or waves (for wave energy converters).

Furthermore, the conversion circuit connected to the device is modelled as well, being indispensable to

convert AC voltage produced by the piezoelectric harvester into a DC voltage suitable for electronic de-

vices, and so of primary concern in building realistic energy harvesters. The circuit can also play a role in

enhancing the power production, increasing the efficiency of the whole energy chain. Moreover, storage

capacitance, fundamental to decouple power demand and production, is introduced. Finally, segmentation

of the device electrodes in width or length is explored, showing the benefit in supporting with the conver-

sion circuit functionalities and in avoiding charge cancellation, respectively. Being the latter not a frequent

topic in a thesis of the PhD course of Theoretical and Applied Mechanics, the electric system is explained

in detail to clarify every aspect of the investigated circuits behaviour.

As said previously, the system has been described with a reduced-order model (ROM), allowing an eas-

ier data exchange between piezoelectric plate and electric conversion system, and a simple interaction with

the optimization algorithm. The piezoelectric plate is described as a multi-layer composite cantilevered

Euler – Bernoulli beam model with non-uniform material distribution through its length. Though geomet-

rically approximated, the beam model captures the system response in design excitation conditions. The

electromechanical coupling has been introduced in the structural model by using the linear piezoelectric

constitutive equations. A tip mass is positioned on the free edge to tune harvester’s natural frequencies
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with lower excitation frequencies and to enhance oscillations. Although a concentrated mass model is ini-

tially considered, the not-negligible mass extension and associated rotational inertia effect are later taken

into account to obtain a more accurate natural frequency estimation. Finally, to simulate a non-perfect

clamping, yielding in rotation, a torsional spring is added at x = 0. The elastic constant krot will be defined

by tuning the eigenfrequencies of the structure, analytically found, with those measured in dedicating vi-

bration testing of the simulated device. Both tip mass and yielding clamp have been introduced to better

describe possible commercial and custom solutions.

By analytically developing Lagrange equations from extended Hamilton’s principle including also elec-

trical potential energy and electric load interactions, a partial differential equation system is found and

then projected on the exact bending modes of the structure. Thanks to the analytical determination of the

not-uniform beam modes, the developed ROM allows mechanically decoupling modal oscillators and then

easily neglecting those modes not contributing to energy production. The set of ordinary differential equa-

tions is numerically solved both in MATLAB and Simulink. The electric conversion system is developed

in Simulink by Simscape’s blocks, allowing for a simple simulation of voltage rectifier, storage capacitance,

Maximum Power Point Tracking system, and resistive load, with an easy data exchange with the ROM

model.

Results on non-uniform bending modes, and thus resonance frequencies, are then compared with a

3D high-fidelity model of the harvester in Comsol Multiphysics, to show that geometrical and mechanical

hypothesis do not undermine the overall consistency of the ROM.

To enhance the accuracy of the model, an identification of the torsional spring and modal damping

coefficients is carried out. Then, the developed theory is compared with experiments on a prototype of

the investigated energy harvester. The device is tested under sinusoidal excitation, imposed by a shaker,

finding the acceleration - voltage frequency transfer function of the energy harvester for different resistive

load and tip mass conditions. Experimental data and numerical results of the ROM model are found in

good agreement and thus validating the developed theory.

Finally, some mechanical and electrical parameters describing the main features of the system are cho-

sen as design variables to be optimized so as to maximise the power output. Different optimization pro-

cedures are carried out with the patternsearch algorithm in MATLAB, investigating the device sensitivity

to parameters change and underlying the crucial co-dependency of mechanical and electrical behaviour,

linked together by means of the piezoelectric effect. Moreover, it is demonstrated how an optimization

procedure comprehensive of both mechanical and electrical design variables leads to better results than

separate and single discipline optimizations. Finally, the optimization problem with duty cycle as design

variable is explored, finding a more efficient solution than Open Circuit Voltage MPPT method, and thus,

leading the way for further studies on Machine Learning MPPT implementation.

As a concluding remark, the combination of a multi-physics efficient and robust ROM model with an

optimization approach constitutes the novelty proposed in this thesis to provide a useful tool for improving

the design of piezoelectric energy harvesters for real life applications, paving the way for a significant

increase in the device performances.
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Chapter 1

Introduction

1.1 Energy harvesting: applications, energy sources, and harvesting

techniques

Electronic devices have become, in the last few years, more and more important in everyday life. Al-

though facing a quick increase of functions, their size is getting so small that we can expect them to pass

from mobile to wearable soon, making self-powering a fundamental feature to be developed. However, the

miniaturization and long autonomy trends are threatened by a not equivalently fast evolution of batteries,

still representing a great percentage of electronics weight and an issue for maintenance because of recharge

and replacement. Indeed, despite the fast growth of many electronic devices such as disk capacity, pro-

cessor speed and available memory (more than 250 times in ten years) [Anton et al. 2007], battery energy

density has seen an average increase rate of only 5 % since 1970 , as shown in Fig. 1.1. Indeed, in 2018

the highest energy density achieved was still below 400 Wh/kg, with a likely maximum increase in perfor-

mance of only 10 % per year (Fig. 1.2), due to challenges connected with optimal balance among battery

components and to development of new materials combinations [Winter et al. 2018].

Figure 1.1: Development of some elec-
tronic devices since 1990 [Anton et al.
2007].

Figure 1.2: Energy density evolution for
different battery technologies [Winter et al.
2018].
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1. Introduction

Therefore, a new powering solution is spreading: energy harvesting, the direct conversion of ambient

energy into electricity, making battery recharge or even direct device powering possible with no need for

grid connection. Indeed, despite growth in functions, nowadays electronics need very low amounts of

energy, as shown with some examples in Table 1.1 and Fig. 1.3, especially in fields like Internet of Things

(IoT), Wireless Sensor Networks (WSNs), Home Automation, and Human Health.

Table 1.1: Examples of average power consump-
tion for electronic devices [Priya 2007] [Sojan
et al. 2016] [Sachan et al. 2012] [Jackson; Ol-
szewski, et al. 2017] [Anton et al. 2007] [Khan
2016].

Electronic device Average power consumption

[mW]

TV controller 100

Small FM radio 30

Leadless pacemaker 5-10·10−3

Blood coagulation monitor 500

Temperature sensor 0.5-5

Pressure sensor 10-15

Accelerometer 2

Microprocessor 0.05

Figure 1.3: Power consumption for electronic
devices and potential power supply gaps cov-
ered by different energy sources [Todaro et al.
2018].

WSNs are constituted by a high number of spatially spread, autonomous electronic devices, able to col-

lect data from the environment and send them to a central location. WSNs can be employed for example

in structural health monitoring for bridges [H.-J. Jung et al. 2011] [Gaglione et al. 2018], railways [Tianchen

et al. 2014], and roads [Moure et al. 2016], with accelerometers, displacements and force sensors, strain

gauges, and optical fibres powered by energy recovering from vibrations with energy harvesters (EHs),

in order to avoid frequent maintenance. Another interesting application is energy recovery from pressure

fluctuations due to circuit instabilities or heat change for health monitoring of hydraulic systems. Differ-

ent configurations have been studied, from piezoelectric stack interface membranes [Aranda et al. 2017]

[Monroe et al. 2017] (Fig. 1.4b), to piezoelectric cylindrical tubes proposed by Zhou et al. [M. Zhou et al.

2018].

Energy harvesting can also be useful in applications where external power sources cannot be employed,

as in Human Health Engineering. For example, a leadless pacemaker can be powered by MEMS piezoelec-

(a) Pacemaker located in the right ventricle (left) and
schematic representation of piezoelectric energy harvesters
and storage supercapacitors (right) [Jackson; Olszewski, et
al. 2017].

(b) Piezoelectric energy harvester inside oscillating heat
pipe harvesting energy from pressure fluctuations due to
non-uniform steam [Monroe et al. 2017].

Figure 1.4: Examples of health monitoring in Humans (a) and hydraulic systems (b).
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1. Introduction

tric energy harvesters, exploiting shock induced by low-frequency, high acceleration vibrations of the heart

(Fig. 1.4a) [Jackson; Olszewski, et al. 2017], or a knee can be monitored by wireless-transmitting sensors

with energy recovery from knee motion itself [Kuang et al. 2016].

Finally, local power production can be useful for many different IoT applications even when grid con-

nection is available. Indeed, a large number of autonomous electronic devices would also mean relevant

savings in cabling and easier plants structures, whether this is about industrial production of smart appli-

ances or sensing for pollution control in cities and so on. For instance, on roads, vibration energy recovery

could power surface temperature monitoring and anti-icing systems [Morita et al. 2000] [Pan et al. 2015] or

traffic devices [Moure et al. 2016]. An example is Lybra, run by Underground Power SRL, a smart speed ab-

sorber recovering energy (1 kWh/100 cars) from braking in areas where a vehicle is expected to reduce the

speed for safety reasons, like the entrance of a petrol station, as shown in Fig. 1.5a [Power n.d.]. Another

application is the one proposed by Maurya et al. [Maurya et al. 2018], in which with energy harvesting

smart tires pressure is controlled by strain sensing and wireless data transfer.

(a) Lybra project run by Underground Power
[Power n.d.].

(b) Piezoelectric tiles installation at the Tokyo Sta-
tion’s Yaesu North Exit [Company 2008].

(c) Dance Floor tiles powering the Off Corso disco
in Rotterdam [Roosegaarde n.d.].

(d) Example of self-powered wireless switch pro-
duced by Illumra [Illumra n.d.].

Figure 1.5: Applications of distributed energy production and consumption.

More in general, energy harvesting could work in synergy with other renewables (photovoltaic, micro-

wind, geothermal,...) for applications both off-grid, like in small islands, mountain huts, or developing

Countries with not spread national electric grid, and grid-connected, in a distributed generation scenario.

For example, in both frameworks piezoelectric tiles could work, like proposed by Sharpes et al. [Sharpes;

Vučković, et al. 2016], to power presence sensors and home automation devices. A similar idea has been

tested inside Tokyo Station’s Yaesu North Exit by the JR East [Company 2008] with a power-generating floor

at ticket gates (Fig. 1.5b) aimed to satisfy energy demand of the led lighting system and, in the future, part

of the station’s facilities (displays, ticket gates,...). Same application can be found in Nederland at the Off

Corso, an eco-disco project carried out by Studio Roosegaarde [Roosegaarde n.d.] in Rotterdam, producing
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1. Introduction

up to 25 W per piezoelectric tile of Sustainable Dance Floor by exploiting dance steps (Fig. 1.5c) and then

powering lights and DJ booth. Despite these examples, energy harvesting in general could be very useful

in building automation, saving in cabling by powering wireless devices, such as switches (Fig. 1.5d) and

IoT sensors.

Before designing an EH, the energy source to exploit must be taken into account. In Fig. 1.6 [Boisseau;

Despesse, and Seddik 2012] energy densities for the main sources are reported. The radiant source pro-

vided by the sun in outdoor environments seems the most attractive, but it depends on weather and night

hours, and thus, not being available continuously, needs high capacity storages to supply energy constantly.

Thermal sources can be easily exploited by thermocouples thanks to the Seebeck effect, with productivity

limited by the Carnot efficiency, but rarely adequate temperature gradients are available [Mateu et al. 2005].

Thus, mechanical energy sources are the most interesting, being represented mainly by different forms of

kinetic energy: vibrations, air flow, and human motion. To exploit them, three different electromechanic en-

ergy harvesters are mainly used: electrostatic (EEH), magnetic induction (MEH), and piezoelectric (PEH).

However, although dealing with the same energy sources, these three kind of EH are very different from

each other and, since not being industrially spread yet, there is no standardized efficiency definition to

compare them to each other. Despite this, a brief overview of the three EHs will be now given.

Figure 1.6: Power densities for different energy sources [Boisseau; Despesse, and Seddik 2012].

Electrostatic devices are based on the variation of distance between the electrodes, inducing a change

in quantity of dielectric material interposed and, consequently, in capacitance. Through this phenomenon,

the capacitor gets charged and discharged, producing energy. EEHs are suitable for miniaturization, but

smaller sizes also induce voltage decrease, not suitable for common electronic applications. Moreover, the

device needs an external voltage source to work. An example of EEH is the one proposed by Boisseau et

al. [Boisseau; Despesse; Ricart, et al. 2011], in which a cantilevered electrode exploits vibration induced

oscillations with respect to an external fixed electret to produce a change in capacitance, as shown in Fig.

1.7b. Being the power proportional to the mobile mass, a tip mass is added to increase energy production.

Another interesting configuration is the honeycomb structure presented by Tashiro et al. [Tashiro et al.

2002], with capacitance increasing with compression and decreasing with expansion of an internal gas (Fig.

1.7a). The EEHs are also suitable for wind applications, like the one, shown in Fig. 1.7c, proposed by Perez

et al. [Perez et al. 2015]. A PTFE membrane undergoes to periodic oscillations due to flutter, thus changing

its distance from the upper and lower electrodes.
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1. Introduction

(a) Honeycomb structure of the EEH
proposed by Tashiro et al. [Tashiro et
al. 2002].

(b) Cantilevered EEH proposed by Boisseau et al. [Boisseau; Despesse; Ricart,
et al. 2011].

(c) Fluttering EEH proposed by Perez et al. [Nabavi et al. 2016].

Figure 1.7: Examples of electrostatic energy harvesters.

Magnetic induction Energy Harvesters are based on Faraday’s law: an electric field is generated by

varying the magnetic flux through an electric circuit. Usually the effect is induced with a magnet moving

with respect to a coil. The energy produced is proportional to the coil area, making MEHs not particularly

suitable for miniaturization. Moreover, these devices produce a relatively low voltage. A typical MEH

configuration consists of an inertial mass moving in response to external forces and storing mechanical

energy in springs, resonating at frequency higher than the excitation one and thus activating the magnetic

transducer. This frequency increased generator is suitable for recovery of any external kinetic energy, such

as human-induced vibrations [Halim et al. 2014] like hand-shaking (Fig. 1.8c), or vibrations of civil struc-

tures like bridges [Galchev; McCullagh, et al. 2011] (Fig. 1.8a). As for EEHs, also MEHs can be used to

harvest energy from air flows, as proposed, for example, by Weimer et al. [Weimer et al. 2006], presenting

an horizontal axis turbine with magnets on rotor and coils on stator (Fig. 1.8b).

7



1. Introduction

(a) Representation of MEH proposed by Galchev et
al. for bridge vibrations recovery [Galchev; McCul-
lagh, et al. 2011].

(b) Schematic representation of rotor and stator for
the axial-flux alternator in the magnetic energy har-
vester by Weimer [Nabavi et al. 2016].

(c) MEH for hand-shaking energy recovery proposed
by Halim et al. [Halim et al. 2014].

Figure 1.8: Examples of magnetic induction energy harvesters.

Finally, PEHs are based on piezoelectric materials, producing superficial electric charge when undergo-

ing to external stress, and show voltage levels suitable for electronics applications. The most performing

piezoelectric materials are ceramic (typically PZT), but they have an high energy efficiency only in narrow

bands close to their resonance frequencies. Thus, many piezoceramic devices are design to tune their reso-

nance frequencies with the main frequency of vibration sources, like the bimorph resonator studied by Lu

et al. [Lu et al. 2003] (Fig. 1.9a), or to work with shock-induced free vibrations, like the clam shell-structure

PEH in the shoe’s heel proposed by Shenck et al. [Shenck et al. 2001] (Fig. 1.9e). Other PEHs exploit poly-

meric piezoelectric materials, less performing than piezoceramics but working with good efficiencies for

wider frequency bands. An example is the the raindrop harvester [Ilyas et al. 2015] [Acciari et al. 2018],

shown in Figures 1.9b and 1.9c, working with PVDF (polyvinylidene fluoride), a flexible piezoelectric ma-

terial suitable for outdoor and shock excitation applications, being fatigue and corrosion resistant. The

same material has been used by Li et al. [Li et al. 2009] in the stalk of a polymer flapping leaf (Fig. 1.9d) and

by Shenck et al. [Shenck et al. 2001] in the front of the shoe.
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1. Introduction

(a) Bimorph piezoelectric resonant energy harvester
proposed by Lu et al. [Lu et al. 2003].

(b) Energy harvesting from raindrop impact: sin-
gle PEH in clamped-free (left) and clamped-clamped
(right) configuration [Acciari et al. 2018].

(c) Energy harvesting from raindrop impact: multi-
PEH configurations [Acciari et al. 2018].

(d) Piezoelectric wind energy harvester proposed by
Li et al. [Li et al. 2009].

(e) Schematic representation of the piezoelectric shoe
proposed by Shenck et al. [Shenck et al. 2001].]

Figure 1.9: Examples of piezoelectric energy harvesters.

Although perceived as the less mature among these technologies [AL-Oqla et al. 2018] and difficult to

be integrated in microsystems, PEHs are the most promising among the three main mechanical energy

harvesters, showing a magnitude of energy density three times higher than EEHs and MEHs, as shown in

Fig. 1.10. Thus the following sections will give a further insight on PEHs technologies and modelling.

Figure 1.10: Comparison of the three main energy harvesting technologies with respect to their energy
density [Priya 2007]. In the figure ǫ is the dielectric constant, E is the electric field, B is the magnetization,
X is the stress, d is the piezoelectric strain constant, and g the piezoelectric voltage constant.
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1.2 Piezoelectric energy harvesters technology

Piezoelectric harvesters are widely studied for kinetic energy recovery from low-frequency (<100 Hz)

phenomena, like vibrations or fluid flows. For this reason, the device in cantilevered configuration, allow-

ing for large mechanical strain and characterized by a relatively low resonance frequency of the fundamen-

tal flexural mode, is the most commonly used in literature. In particular, the main configurations are the

unimorph (Fig. 1.11(a)) and the bimorph (Fig. 1.11(b)), both having a support layer carrying out a struc-

tural function, the first with only one piezoelectric lamina and the latter with two. Piezoelectric layers have

top and bottom electrodes to collect the charge produced. Moreover, to further lower the natural frequency

and enhance oscillations amplitude, a proof mass is typically positioned at the tip of the beam. Although

bimorphs have more active material, unimorphs are useful for micro-electromechanical systems (MEMS),

being of easier manufacturing with existing micro-fabrication techniques [H. Liu et al. 2018].

Figure 1.11: Typical piezoelectric energy harvester in cantilevered configurations: unimorph (a) and bi-
morph (b). The proof mass on the free edge enhances oscillation amplitude and tunes the first bending
mode frequency with the excitation frequency. (c) shows a commercial PEH device produced by MIDE in
unimorph configuration.

Most research is focused on rectangular piezoelectric layers because of their easy implementation and

high stress distribution, although other shapes could be more suitable in some applications. For example Jia

and Seshia explored five different piezoelectric material distribution, shown in Fig. 1.12, finding that only a

cantilever with coupled subsidiary beams (b) could outperform the classical shape (a) [Jia and Seshia 2016].

Figure 1.12: Five cantilevered beams with different piezoelectric material distribution [Jia and Seshia 2016].
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Besides high resonance frequencies, PEHs suffer also for good transduction efficiency only in a narrow

frequency bandwidths, close to the resonance condition (Fig. 1.13). Although this issue can be fixed with

proof mass tuning for sinusoidal excitations, usually in nature energy sources exhibit random spectra, and

then more complicated solutions are needed.

Figure 1.13: Voltage output of a typical PEH in function of the frequency. The performing area is achieved
in a narrow interval in the neighbourhood of the resonance frequency of the device.

In this section then the most relevant frequency tuning and bandwidth widening techniques will be

investigated and compared in performance, underlying though how they have not brought yet to definitive

solutions and trying to explain why.

1.2.1 Frequency lowering techniques

As previously mentioned, one of the main issues of piezoelectric energy harvesters is frequency tuning

of the device resonance condition with the external excitation. This can be achieved by reducing the natural

frequency of the PEH with a tip mass or an increase of the device footprint and complexity. Jia and Seshia

[Jia and Seshia 2015] have investigated the effect of tip mass distribution on the beam structure, finding the

optimum configuration for linear PEHs with a mass occupying 60-70 % of the beam length. Jackson et al.

[Jackson; Stam, et al. 2015] have studied a liquid filled tip mass (Fig. 1.14b). The sliding fluid behaves like

a non-linear mass distribution for high amplitude and low frequency excitations, since the centre of mass

changes depending on the oscillations. This phenomenon alters the resonance frequency, thus broadening

the bandwidth without excessively affecting the voltage peak value. Moreover, 50 % of filled mass was

found to give the maximum frequency bandwidth, with fluid viscosity to be decreased for low-energy

excitations. From the other hand, Jia et al. [Jia; Arroyo, et al. 2018] proposed a MEMS PEH interdigitated

fork array, as shown in Fig. 1.14a, obtaining a reduction in resonant frequency by only changing the beam

length, with no need for tip mass.
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(a) Comparison between a classical cantilever (left)
and the low-frequency PEH proposed by Jia et al.
[Jia; Arroyo, et al. 2018]. (b) Piezoelectric energy harvester with liquid filled

tip mass proposed by Jackson et al. [Jackson; Stam,
et al. 2015].

Figure 1.14: Examples of frequency lowering in piezoelectric energy harvesting with tip mass or surface
change.

However, since, in particular for MEMS applications, a tip mass could threaten the device structural

integrity and higher surfaces suffer for charge cancellation due to torsional modes, shapes different form

the traditional cantilevered plate have been investigated [Priya; Song, et al. 2019].

One widely studied solution is the Zigzag-shape cantilever. Abdelmoula et al. [Abdelmoula; Sharpes;

H. Lee, et al. 2016] have derived the optimal power output from higher order modes of the device in

Fig. 1.15a, proving that torsional modes contribution is fundamental in this configuration [Abdelmoula;

Sharpes; Abdelkefi, et al. 2017] and that power production depends on proof masses [H. Lee et al. 2018].

The Inman group investigated frequency dependence on beam length and number of segments [S. Zhou;

W. Chen, et al. 2017] and proof masses (Fig. 1.15b). Moreover, they also demonstrated that the harvester

can recover energy from vibrations in different directions [S. Zhou; J. D. Hobeck, et al. 2017]. Finally, The

group provided a case study for wireless sensing application by successfully testing the device on vibration

data collection from a pumping station [Essink et al. 2017].

(a) Two-dimensional PEH with large joint blocks as
proof mass proposed by Abdelmoula et al. [H. Lee
et al. 2018].

(b) Two-dimensional PEH proposed by Zhou et al.
[H. Lee et al. 2018].

Figure 1.15: Examples of Zigzag-shaped piezoelectric energy harvesters.

Another popular shape adopted for piezoelectric energy harvesters is the spiral, bringing even MEMS
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devices to very low resonance frequency [Song; P. Kumar; Maurya, et al. 2017] and having a foot print

smaller than the Zigzag structures one [R. P. Varghese 2013]. Spirals natural frequency is proportional to

number of turns, but Deterre et al. [Deterre et al. 2013] demonstrated that voltage decreases after 5 turns

due to charge cancellation of higher order modes. The device presented, shown in Fig. 1.16a, is thought to

power a pacemaker by harvesting energy from blood pressure variations. Dos Santos et al. [Santos et al.

2018] presented an orthogonal spiral structure, combining the simplicity of zigzag cantilevers with spiral

compactness, as shown in Fig. 1.16b.

(a) Device for energy harvesting from blood pressure variations proposed by
Deterre et al. [Deterre et al. 2013].

(b) Orthogonal spiral de-
vice proposed by Dos San-
tos et al. [Santos et al.
2018].

Figure 1.16: Examples of spiral-shaped piezoelectric energy harvesters.

A modification of the Zigzag shape is the arc-based structure proposed by Apo [Apo 2014], a can-

tilevered made of purely circular arc segments, with the first bending mode being dominant in structure

strains. Among the configurations proposed, the S-shaped and C-shaped exhibited lower frequencies and

higher tip displacements for lower stiffness and mass conditions if compared to ArcSimple and ArcZigzag,

all shown in Fig. 1.17a.

Another interesting configuration is the two-dimensional elephant-shape beam by Sharpes et al. , shown

in Fig. 1.17b. The device was first compared with the Zigzag shape through experiments and simulations,

identifying the area with the highest concentrated stress where the piezoelectric must be placed [Sharpes;

Abdelkefi, and Priya 2015]. Then first and second mode of the structure were investigated via finite element

simulations, demonstrating that both are exploitable for power production, with frequency tuning possible

by properly proof mass placing [Sharpes; Abdelkefi; Abdelmoula, et al. 2016].
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(a) Different arc-based shapes for MEMS PEHs for
low-frequency structures [Apo 2014].

(b) Elephant-shape two-dimensional PEH proposed
by Sharpes et al. [Sharpes; Abdelkefi; Abdelmoula,
et al. 2016].

Figure 1.17: Examples of complex shapes for piezoelectric energy harvesters

1.2.2 Active self-tuning techniques

Another frequency lowering and tuning solution proposed in literature is the active self-tuning tech-

nique, adjusting the resonance frequency of the device by altering the centre of mass or the spring stiffness

of the system.

A piezoelectric clamped-clamped beam with a proof mass in the centre was proposed by Leland and

Wright first [Leland et al. 2006] and by Hu et al. then [Hu et al. 2007]. The resonance frequency is tuned

by changing an axial compressing preload and thus the stiffness of the system, as shown schematically in

Fig. 1.18a. Challa et al. [Challa et al. 2008] worked on a cantilevered PEH with magnetic tip mass, having

a repulsive interaction with external magnets, as shown in Fig. 1.18b. By varying magnets distance from

the beam, a natural frequency tuning of ±20% is obtained. The magnetic interaction could be used also as

variable axial compressive load, as shown by Ayala-Garcia et al. [Ayala-Garcia et al. 2010].

(a) Piezoelectric harvester in clamped-clamped con-
figuration with stiffness adjustment via variable ax-
ial compressive preload [Leland et al. 2006]. (b) Piezoelectric harvester with centre of mass ad-

justment via magnetic interaction [Challa et al.
2008].

Figure 1.18: Examples of active self-tuning piezoelectric energy harvesters.

However, active self-tuning systems require actuators, consuming almost all the produced energy, as

analytically demonstrated by both Roundy and Zhang [Roundy et al. 2005], and Zhu et al. [D. Zhu et al.

2010]. Thus, this technique is not widely studied if compared with all the other solutions presented in this

section.
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1.2.3 Multi-frequency techniques

The multi-frequency technique aims to widen the bandwidth by exploiting multiple resonant modes at

discrete frequencies. Indeed, by acting on mass and stiffness (particular shapes, proof mass, etc.) of the

PEH, it is possible to obtain resonance frequencies of different modes close to each other, overlapping their

bands and thus widening the device total bandwidth (Fig. 1.19).

Figure 1.19: Example of frequency bands overlapping for different modes of the structure [Song; P. Kumar;
Sriramdas, et al. 2018].

Very different from each others, the examples of this technique in literature are many. Vullers et al.

[Vullers et al. 2012] presented a stack of cantilevered piezoelectric beams attached at the tip of an external

metallic plate, as shown in Fig. 1.20a, creating a coupled resonator. Thanks to high mass and stiffness of

the system, a power amplification of more than 51 times was obtained. Rezaeisarav et al. [Rezaeisaray

et al. 2015] proposed a device, shown in Fig. 1.20b, exhibiting first, second and third mode frequencies

close to each other and within a range suitable for ambient vibration recovery. Berdy et al. [Berdy et al.

2012] utilized the sensor node electronics for structural condition monitoring as a distributed proof mass,

as shown in Fig. 1.20d, allowing for two modes exploitation. Iannacci et al. [Iannacci; Serra, et al. 2014]

[Iannacci; Sordo, et al. 2016] proposed a four-leaf clover shape, a four petal-like mass-spring system which

can be exploited for many resonant frequencies. The piezoelectric patches are on the top of the petals and

the proof masses are placed on the bottom to adjust the frequency modes, as shown in Fig. 1.20c.

Song et al. [Song; P. Kumar; Sriramdas, et al. 2018] presented an array of piezoelectric beams with

different natural frequencies and magnet as tip masses, as shown in Fig. 1.20e. Different from all the

previous applications, the vibration of all the beams on a wide frequency is due to magnetic induction

and not to mass-spring optimization, although frequency bands overlapping is still present. Indeed, if one

PEH resonates, the magnetic mass interacts with the others, inducing oscillations in the remaining beams.

Moreover, this device can harvest energy from both vibrations and electromagnetic fields.
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(a) Coupled resonator proposed by Vullers et al.
[Vullers et al. 2012].

(b) Device proposed by Rezaeisaray et al. [Rezaeis-
aray et al. 2015].

(c) Four-leaf clover device proposed by Iannacci et
al. [Iannacci; Sordo, et al. 2016].

(d) Device proposed by Berdy et al. [Berdy et al.
2012].

(e) Piezoelectric beams array proposed by Song et al.
[Song; P. Kumar; Sriramdas, et al. 2018].

Figure 1.20: Examples of multi-frequency piezoelectric energy harvesters.

Although promising in performance, this method suffers for high footprint and thus low power density.

1.2.4 Frequency-up conversion techniques

Since low frequency harvesters typically produce less power and have narrow frequency bandwidth,

another good solution can be the Frequency Up-conversion mechanism (FU).

One FU approach consist in inducing free vibrations in the piezoelectric beam via impact. This FU can

be coupled with the Multi-modal technique (see Sec. 1.2.3). Yu et al. [Yu et al. 2015] proposed a PEH in

which vibrations are transmitted through a cylindrical spring system hitting the piezoelectric beams, as

shown in Fig. 1.21a. The vertical spring allows a three dimensional response to external vibrations and a

bandwidth widening. Zhang et al. [H. Zhang et al. 2017] proposed a similar device. A bracket supported

by a spring has bimorph piezoelectric on the walls and a free bead on the inside, as shown in Fig. 1.21b.

Low-frequency excitations are sufficient to induce collisions of the steel ball on the piezoelectrics, that freely

vibrate. Viñolo’s group [Toma et al. 2013] [Viñolo et al. 2013] [Carlos Viñolo et al. 2013] used these impact

approach with a pendulum mechanism inside buoys for wave energy converting, shown in Fig. 1.21c. The

pendulum oscillates with the periodical wave motion and hits the cantilevered piezoelectric beams.
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(a) Device proposed by Yu et al. [Yu et
al. 2015].

(b) Device proposed by Zhang et al. [H.
Zhang et al. 2017].

(c) Device proposed by Viñolo et al.
[Viñolo et al. 2013].

Figure 1.21: Examples of impact-based FU piezoelectric energy harvesters.

Zhang et al. [J. Zhang et al. 2016] proposed a slightly different FU technique with a high resonance

frequency piezoelectric cantilever (HFGB) driven by ropes attached to a low-frequency beams (LFDB) array,

as shown in Fig. 1.22. Although the action is transmitted by ropes instead of impact, the piezoelectric beam

experiences free vibration as in the previous applications.

Figure 1.22: Multi-frequency piezoelectric energy harvester proposed by Zhang et al. [J. Zhang et al. 2016].

Another FU approach exploits plucking, with a plectrum inducing tip displacement in piezoelectric

cantilevers. However, this technique suffers for difficult adjusting of the overlapping distance for optimal

working condition. Pozzi et al. [Pozzi and M. Zhu 2011] [Pozzi; Aung, et al. 2012] proposed a plucking

device for knee wearable applications with rotating piezoelectric bimorphs deflected by plectrums on a

stator, as shown in Fig. 1.23a. A similar configuration has been used by Priya [Priya; C.-T. Chen, et al.

2004] Priya 2005 for a windmill (Fig. 1.23b), with plectrums placed on the rotor to allow fixed electrical

connection of the harvesters on the stator.
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(a) Device proposed by Pozzi et al. [Pozzi and M.
Zhu 2011].

(b) Device proposed by Priya et al. [Priya 2005].

Figure 1.23: Examples of plucking-based FU piezoelectric energy harvesters.

Impact and plucking FU may cause PEH breakage and fatigue damages, thus shorter life [Kuang et al.

2017]. For this reason other solutions have been developed.

The buckling FU technique allows for high amplitude oscillations in off-resonance conditions, although

the snap-through needs relatively high accelerations to occur. Despite classified here as FU, the snap-

through is a bistable behaviour (further investigated in 1.2.5) with high displacement and velocity of en-

ergy orbits, but not depending on the excitation frequency (thus with wide bandwidth). Jung et al. [S.-M.

Jung et al. 2010] presented a device made of blucked slender bridges with a central proof mass (Fig. 1.24a),

that, when snapping through, induces free vibrations at high acceleration in the attached piezoelectric

cantilevered beams. The similarly buckled bridge proposed by Han and Yun [Han et al. 2014], with piezo-

electric cantilevers placed on the central proof mass (Fig. 1.24b), exhibits a lower snap-through threshold

thanks to the flexible sidewalls. Inman’s group widely studied the buckling phenomenon for energy har-

vesting [Betts et al. 2013] [Tavakkoli et al. 2015] [Emam and Daniel J. Inman 2015] [Emam; J. Hobeck, et al.

2017] [A. J. Lee et al. 2018], using the piezoelectric for both power production and initial condition setting

(Fig. 1.24c). Another interesting application is the one proposed by Zhu and Zu [Y. Zhu et al. 2013], in

which the buckling phenomenon is enhanced by a magnetic proof mass interacting with external magnets

(Fig. 1.24d). Buckling has been obtained also with axial pre-loads [Ravindra Masana et al. 2013] [Masana

et al. 2012], sometimes coupled with proof mass in the centre of the beam [Xu et al. 2013].
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(a) Device proposed by Jung et al. [S.-M. Jung et al.
2010].

(b) Device proposed by Han and Yun [Han et al.
2014].

(c) Device proposed by Inman group [Emam; J.
Hobeck, et al. 2017].

(d) Device proposed by Zhu and Zu [Y. Zhu et al.
2013].

Figure 1.24: Examples of buckling FU piezoelectric energy harvesters.

Finally, to overcome the acceleration threshold issue of the buckling FU technique, a magnetic force-

induced FU method is used. Fan et al. [Fan; Chang, et al. 2015] proposed four piezoelectric beams with

magnetic tip masses coupled with a ferromagnetic ball, shown in Fig. 1.25a. The device can harvest vi-

brations energy in perpendicular direction with the classical basement excitation or in horizontal direction

thanks to the ball moving and inducing tip displacements in beams. Pillatsch et al. [Pillatsch; Yeatman, and

Holmes 2014] [Pillatsch; Yeatman; Holmes, and Wright 2016] and similarly Ramezanpour et al. [Ramezan-

pour et al. 2016] proposed devices for human motion energy recovery. A pendulum with a magnetic tip

interacts with an external fix magnet and performs the frequency-up conversion, as shown in Fig. 1.25b,

making the PEH suitable for human motion applications. Karami et al. [Karami et al. 2013], claiming that

piezoelectric harvesters are more efficient than a small electromagnetic transducer, developed a vertical

axis wind turbine with magnets attached to blades, inducing oscillation in piezoelectric beams positioned

underneath in tangential (left) or radial (right) configuration, as shown in Fig. 1.25c.
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(a) Device proposed by Fan et al. [Fan;
Chang, et al. 2015].

(b) Device proposed by Pillatsch et
al. [Pillatsch; Yeatman, and Holmes
2014].

(c) Device proposed by Karami et al.
[Karami et al. 2013].

Figure 1.25: Examples of magnetic-induced FU piezoelectric energy harvesters.

1.2.5 Non-linear frequency broadband techniques

Another technique to widen the frequency bandwidth is the introduction of non-linearities, expressed

in term of Duffing potential U(x). Spontaneous non-linearities can occur due to large strain deflections or

non-linear piezoelectricity, although they have limited effect, being usually negligible, and are difficult to

be controlled. Anyway, they also can be induced by introducing magnetic or mechanical restoring forces

F (x).

The following equations give the Duffing potential and restoring force expressions respectively.

U(x) =
1

2
k1(1− γ)x2 +

1

4
k3x

4 (1.1)

F (x) =
dU(x)

dx
= k1(1− γ)x+ k3x

3 (1.2)

where k1 is the linear stiffness coefficient, varying in function of γ in the neighbourhood of its nominal

value, x is the displacement, and k3 is the non linear stiffness coefficient [Daqaq; Ravindra Masana, et al.

2014]. The restoring force and the Duffing potential depend on γ and δ = k3/k1, coefficient of cubic non-

linearity or non-linearity strength. If δ = 0 and γ < 1, non-linearities are negligible and the PEH has a linear

behaviour, with a restoring force linear function of the displacement. In Fig. 1.26 the restoring force (a) and

potential energy (b) are shown for different non-linear conditions, depending on γ and δ.
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Figure 1.26: Monostable (hardening and softening) and bistable behaviours of PEHs in restoring force (a)
and Duffing potential energy (b) [H. Liu et al. 2018].

The non-linear monostable condition occurs when γ ≤ 1 and the coefficient of cubic non linearity is

whether δ > 0, with hardening restoring force increasing with displacement, or δ < 0, with softening

restoring force decreasing with displacement.

In case of γ > 1 and δ > 0 the structure faces bistability, with two equilibrium points, or potential wells,

divided by a potential barrier, inversely proportional to δ in both high and length. A shallow potential well

allows for easier inter-well oscillations, resulting in high strains and thus increased power production.

Monostable devices

As seen before, non-linear monostable condition can be of hardening or softening type. As shown in Fig.

1.27, the frequency response curve bends right or left if respectively a hardening or softening non-linearity

occurs. The Br and Bn branches correspond respectively to the resonant and non-resonant behaviours,

while the part in dashed line is the unstable condition. For instance, a PEH with hardening non-linearity

undergoing to a frequency sweep up follows the resonant branch until the upper saddle-node bifurcation

point is reached, and then jumps and continues moving on the non-resonant branch, if frequency keeps

increasing. An analogous behaviour can be seen for the softening non-linearity condition.

Figure 1.27: Linear and non-linear monostable response in function of frequency [H. Liu et al. 2018].
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Thus, non-linear monostable resonance depends on the non-linearity kind, on the initial condition, and

on whether the frequency is increasing or decreasing, making a unique solution difficult to be identified.

Indeed, a non-linear monostable PEH exhibits resonance only if an initial condition is imposed, although

actuators consume additional power. Moreover, the monostable non-linearity is relevant only with high

excitation levels [Sebald et al. 2011b] and, in case of electrical load optimization for impedance matching,

an output power increases corresponds to a frequency band shrinkage. Although there is still no design tool

to predict the non-linear monostable behaviour under random excitation, it has been experimentally shown

that hardening non-linear devices do not outperform linear ones, while softening non-linear harvesters can

[Nguyen et al. 2010].

To induce non-linearities, magnetic interaction is typically used. One of the first applications has been

presented by Stanton et al. [Stanton; McGehee, et al. 2009]. A magnetic proof mass has been placed on the

free end of a cantilevered piezoelectric beam, interacting with external magnets, as shown in Fig. 1.28a.

By changing the external magnets distance from the clamping, softening or hardening non-linearities have

been obtained. With a similar configuration, Sebald et al. [Sebald et al. 2011a] have introduced a fast voltage

burst to change the initial condition and thus always induce the higher branch solution, although with an

energetic cost. Fan et al. [Fan; Tan, et al. 2018] have proposed a device with attractive external magnet and

mechanical stoppers to contain the oscillation amplitude (Fig. 1.28b). A softening non-linearity has been

obtained, producing a great improvement in bandwidth (54 %) and power output (253 %) with respect to

the analogous linear device.

(a) Schematic representation of the device proposed
by Stanton et al. [Stanton; McGehee, et al. 2009].

(b) Schematic representation of the device proposed
by Fan et al. [Fan; Tan, et al. 2018].

Figure 1.28: Examples of magnetic induced non-linear monostable piezoelectric energy harvesters.

Axial pre-loads represent another method to induce monostable non-linearities. For example, Masana

and Daqaq [Ravindra Masana et al. 2011] [Ravindra Masana et al. 2013] proposed a bimprph PEH in

clamped-clamped configuration (Fig. 1.29a) with a static compressive axial load, adjusting the device nat-

ural frequency for both sinusoidal and band-limited noisy excitations. This configuration can be whether

monostable or bistable depending on the axial load being respectively lower or higher than a critical buck-

ling condition. Another clamped-clamped harvesters has been studied [Marzencki et al. 2009] [Hajati et al.

2011], although differently pre-stressed with a central proof mass (Fig. 1.29b).

Despite enhanced power production and frequency broadband with respect to the linear configura-

tion, non-linear monostable energy harvesters typically need high acceleration amplitudes (≥1 g) for non-

linearities to be relevant, making difficult for them to suit real-life vibration sources.
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(a) Schematic representation of the device proposed by Masana and Daqaq
[Ravindra Masana et al. 2011].

(b) Schematic representation of the de-
vice proposed by Hajati and Kim [Ha-
jati et al. 2011].

Figure 1.29: Examples of pre-load induced non-linear monostable piezoelectric energy harvesters.

Bistable devices

As mentioned before, bistable energy harvesters are characterized by two equilibrium points (potential

wells). Depending on vibration amplitude levels, a device can experience intra-well, chaotic, or inter-well

oscillations. The first occur for low-energy vibrations, when the beam oscillates around one single potential

well, acting like a monostable device under softening non-linearity. As the acceleration amplitude reaches

a threshold, chaotic (random amplitude) or inter-well (high amplitude) oscillations between the two poten-

tial wells occur. Erturk et al. [Erturk; Hoffmann, et al. 2009] [Erturk and Daniel J. Inman 2011a] [Erturk and

Daniel J. Inman 2011b] have found that inter-well oscillations induce large-orbit response, producing more

power and wider frequency bandwidth than linear PEHs. Moreover, De Paula et al. [De Paula et al. 2015]

compared bistable, linear monostable and non-linear monostable devices, confirming that bistable devices

are more performing if working in the inter-well oscillation region. However, identifying the threshold

acceleration is not sufficient to activate the inter-well oscillation, since a unique solution does not exist

to avoid the chaotic response (like in non-linear monostability). To overcome this issue, a correlation be-

tween the main parameters (potential shape, electromechanical coupling, damping, excitation levels) and

the bistability phenomenon should be known. However, non-linear bistable energy harvesters still suffer

for lack of analytical tools to characterize their actual performance under sinusoidal and random excita-

tions. Indeed, numerical and experimental investigations still do not provide evident correlations between

parameters and oscillation conditions, thus making control difficult to be performed [Daqaq; Ravindra

Masana, et al. 2014].

The three most common bistable PEH configurations are shown in Fig. 1.30, with bistability induced by

(a) magnetic attraction (MAI), (b) magnetic repulsion (MRI), and (c) mechanical pre-loading (MPI) [H. Liu

et al. 2018].

Figure 1.30: Three most common bistable PEH configurations: (a) magnetic attraction induced (MAI), (b)
magnetic repulsion induced (MRI), and (c) mechanical preload induced (MPI) [H. Liu et al. 2018].
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The MPI device is the same seen for monostability, but with axial load overcoming the buckling thresh-

old, as seen for Masana and Daqaq [Ravindra Masana et al. 2011] [Ravindra Masana et al. 2013] in the

previous section.

Zhao and Erturk [Zhao et al. 2013] have demonstrated that the MAI bistable configuration outperforms

its monostable linear counterpart only for a specific excitation interval, corresponding to the inter-well

oscillation. Indeed, for very low excitation levels, the monostable behaviour is more efficient than the

bistable one. Moreover, under broadband stochastic excitations, bistable devices can be advantageous only

if the excitation intensity is high, otherwise a monostable PEH is more robust and practical. Zhou et al. [S.

Zhou; Cao; Erturk, et al. 2013] [Cao; S. Zhou; Daniel J. Inman, et al. 2015b] have investigated the influence of

external magnets angle on a MAI device, shown in Fig. 1.31a, demonstrating that the frequency bandwidth

can be enhanced by optimizing magnets orientation. The same configuration has been further investigated

by the same group [Cao; S. Zhou; Daniel J Inman, et al. 2015a] [Cao; Syta, et al. 2015], analysing both chaotic

and inter-well oscillations behaviour, and verifying the device’s effectiveness in human motion applications

[Cao; Wang, et al. 2015]. A slightly different configuration has been proposed (Fig. 1.31b) [S. Zhou; Cao;

Daniel J Inman; S. Liu, et al. 2015], introducing impact induced excitation to provide an adequate initial

condition that enables inter-well oscillations also for low-energy vibrations.

(a) MAI bistable device with external magnets vari-
able angle proposed by Zhou et al. [S. Zhou; Cao;
Erturk, et al. 2013].

(b) MAI bistable device with impact excitation pro-
posed by Zhou et al. [S. Zhou; Cao; Daniel J Inman;
S. Liu, et al. 2015].

Figure 1.31: Examples of magnetic attraction induced bistable piezoelectric energy harvesters.

An example of the magnetic repulsive induced bistable PEH has been proposed by Ferrari et al. [Marco

Ferrari et al. 2010] [Ferrari et al. 2011], who have studied the device response to white noise vibrations,

finding, under proper coupling of the external magnet, a 400 % improvement of rms voltage output with

respect to an analogous linear harvester. However, bistable PEHs respond well to white noise only if the

electrical time constant is very high, and then the voltage is proportional to displacement instead of velocity

[Cottone et al. 2009].
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Multi-stable devices

Zhou et al. [S. Zhou; Cao; Daniel J Inman; Jing Lin, et al. 2014] have designed a magnetic field induced

multi-stable harvester with three potential wells, shown in Fig. 1.32, by setting the external magnet angle of

the bistable device in Fig. 1.31a at 90°. Compared to the bistable one, the tristable PEH has lower potential

barriers, obtaining inter-well oscillations for a lower activation threshold, and thus generating high power

output on a wider frequency bandwidth. The same group have investigated the influence of the potential

well depth on the harvesting performance, changing magnet distance to each other d, and vertical distance

from the bender h [Cao; S. Zhou; Wang, et al. 2015], as shown in Fig. 1.33. They have found d to be directly

proportional to the two external potential wells depth, and h to the central potential well depth. Wang et al.

[Wang; Cao; Bowen; S. Zhou, et al. 2017] [Wang; Cao; Bowen; Daniel J Inman, et al. 2018] have applied the

tristable PEH to human motion, verifying its effectiveness and finding the optimal resistive load.

Figure 1.32: Tristable piezoelectric energy
harvester proposed by Zhou et al. [S. Zhou;
Cao; Daniel J Inman; Jing Lin, et al. 2014].

Figure 1.33: Tristable potential energy
function proposed by Cao et al. [Cao; S.
Zhou; Wang, et al. 2015].

Zhou et al. [Z. Zhou et al. 2017] proposed a magnet repulsion induced quadstable harvester , as shown

in Fig. 1.34, with four potential wells characterized by low potential barriers. Indeed, the threshold in

excitation amplitude is much lower than the bistable one, allowing also in this application for greater energy

production and wider frequency band. Moreover, the same group [Z. Zhou et al. 2018] has investigated the

dependence of energy potential on distance among the magnets and distance between external magnets

and beam free end, optimizing the output for a given excitation intensity.
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Figure 1.34: Quadstable piezoelectric energy harvester proposed by Zhou et al. [Z. Zhou et al. 2017].

1.2.6 Parametric resonance based techniques

Parametric resonance deals with device parameters periodic change due to external forcing (heteropara-

metric resonance or parametric resonance) or to internal excitation performed by connections among differ-

ent modes of a multiple degree-of-freedom system (autoparametric resonance). This phenomenon poten-

tially can both widen the frequency band gap and increase power density of the PEH. However, to induce

the parametric resonance, an amplitude and frequency critical condition have to be reached [Daqaq; Stabler,

et al. 2009], being sometimes too onerous to be exploited [Jia 2020], also considering that higher parametric

resonance orders show only for low damping coefficients [Turner et al. 1998].

Jia et al. [Jia; Du, et al. 2018b] proposed a micromachined membrane, with proof masses enhancing non-

linearities, that exhibits over a hundred order parametric resonance (Fig. 1.35a). The same group presented

also a coupled pendulum-lever system with a spring giving an initial condition on the cantilever [Jia; Yan;

Soga, et al. 2014] and thus lowering the parametric resonance threshold more than one order of magnitude.

The device had increased power output and frequency bandwidth with respect to a direct resonance, thanks

to vibration amplitude enhancement. Both devices exhibited high orders parametric resonance thanks to a

low damping, enabling the instability region [Jia 2020]. Indeed, although more suitable for MEMS scales

[Jia; Du, et al. 2018a], parametric resonance higher orders can be useful to widen the frequency bandwidth

[Jia 2020], even if providing frequency band windows smaller than the one of the first order. Jia et al. [Jia;

Yan; Du, et al. 2018] also demonstrate that parametric resonance based devices are suitable for real-life

applications, such as vibration energy recovery from bridges and vehicle’s engines.

Galchev et al. [Galchev; Aktakka, et al. 2012] presented a device to harvest low-frequency non-periodic

vibrations with parametric resonance. As shown in Fig. 1.35b, an internal mass is suspended inside the

box and, responding to vibration, stores energy in springs. When the spring force overcomes the magnetic

action, the mass is pulled away and the spring resonates together with the piezoelectric beam.
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(a) Device proposed by Jia et al. [Jia; Du, et al.
2018b].

(b) Device proposed by Galchev et al. [Galchev; Ak-
takka, et al. 2012].

Figure 1.35: Examples of parametric resonance based devices
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1.3 Piezoelectric energy harvesting techniques: comparison and chal-

lenges

1.3.1 Remarks on current status of harvester design

In the previous sections many techniques for frequency tuning and bandwidth widening have been

presented. To better compare their performance to the Linear Monostable configuration and to each other,

the power output per volume of active piezoelectric material (Power/Piezoelectric volume in [µW/mm3]) in

function of the excitation level (acceleration amplitude in [g]) has been calculated and reported in Fig. 1.36

for different PEH. Only tests under sinusoidal excitations are taken into account. The desired working

area has high power density, ensuring good performance, for low vibration levels, since typically ambient

vibrations are characterized by low accelerations. Low frequency energy harvesters have power density

close to the Linear Monostable configuration, since they aim more to frequency tuning than to efficiency

improvement. Conversely, Frequency Up-converters seems to be one of the most performing kind of PEH,

since the structure vibrates at its resonance frequency for any the external excitation. However, the best FUs

are non-linear (with buckling bistability and magnetic induced non-linear monostability), needing indeed

high acceleration amplitudes to be performing and thus being not suitable for real-life applications. Also

the Non-linear Monostable configuration has high power density, but, as mentioned before, to perform

at low acceleration levels, it strictly depends on the initial condition, setting which requires additional

energy consumption. Similarly, the Bistable device outperforms the Linear Monostable configuration only

under inter-well oscillations, induced by high acceleration amplitude or a properly set initial condition.

Additional energy consumption is required as well for the Active Self-tuning devices, vanishing in the end

the advantage in power production gained with fine frequency tuning. Parametric devices have no clear

behaviour since they still need further investigations. Finally, Multi-frequency PEHs seem promising, but

they need a precise device characterization and comprehension of mechanical behaviour.
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Figure 1.36: Comparison of power density in function on the excitation acceleration amplitude for different
device typology.

Analogously, the frequency band, expressed in percentage of the device resonance frequency ((fmax −

fmin) · 100/fr in %), has been calculated for different kind of PEHs and it is shown in Fig 1.37. As expected,

Multi-frequency and Frequency up converters show an improvement in bandwidth, reaching an acceptable

value of 20 % on average and thus outperforming Linear Monostable configuration, with a typical 1-7 %

bandwidth. The Non-linear Monostable devices show a great enhancement, since its frequency response

can cover wide ranges. It must be underlined though that the 80 % is referred to a low resonance frequency

(9.4 Hz), resulting in a band gap of only 7.4 Hz, less than what typically is found in literature for broad-

band applications (till 30 Hz). Obviously Self-tuning devices are also performing, thanks to their active

mechanisms adjusting the structure resonance frequency depending on the external excitation.
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Figure 1.37: Comparison of frequency bandwidth (% of the PEH resonance frequency) in function on the
excitation acceleration amplitude for different device typology.

From previous overviews and comments it is evident that no technique outperforms the others nei-

ther is ready for real-life applications. Indeed, each configuration provides some advantages on one hand

but causes issues on the other (Table 1.2). Bistable and Non-linear monostable energy harvesters still face

challenges with lowering acceleration thresholds to activate non-linear behaviours and setting initial condi-

tions with passive techniques. Moreover, they do not show better performances than the Linear Monostable

configuration under random excitations, underlining how far from real-world applications they are. Para-

metric resonance devices need further investigations too, solving issues connected with impedance match-

ing and structural damping. Multi-frequency and Frequency up conversion are based on the ability to

change the Linear Monostable parameters to enhance its performance and match natural frequencies with

the excitation ones. Therefore, all PEH techniques still need a deeper comprehension to really become per-

forming, starting from the Linear Monostable mechanical behaviour. The technological approach indeed

is not sufficient to optimize the harvester parameters with respect to external non-ideal conditions. More-

over, the electrical conversion system, fundamental to make PEH power output suitable for electronics, is

rarely taken into account during tests, since would make the system even more complex to understand.

However, the electrical interaction is a fundamental part of the device optimization, influencing both oscil-

lations damping and power production. Thus, to reach an efficient piezoelectric energy harvester, a deep

comprehension of the Linear Monostable configuration must be firstly reached.
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Table 1.2: Advantages and disadvantages of different piezoelectric energy harvester kinds.

PEH kind Advantages Disadvantages

Active self - tuning Wide frequency bandwidth Additional power consumption

Low frequency Low resonance frequency No improvement in power production

Frequency - up converter Wide frequency bandwidth High footprint

High power density Easier breakage and fatigue damages

High accelerations or preload needed

Multi-frequency Wide frequency bandwidth High footprint

Non - linear Monostable Wide frequency bandwidth High accelerations or preload needed

High power density Not performing under random excitations

Complex to be modelled

Bistable Wide frequency bandwidth High accelerations or preload needed

High power density Not performing under random excitations

Complex to be modelled

Parametric Wide frequency bandwidth Difficult impedance matching

High power density Acceleration amplitude threshold

Complex to be modelled

1.3.2 Future challenges and scope of the present thesis

The aim of the present work is the development of a a reduced-order model (ROM), based on a multi-

physical approach, able to describe a Linear Monostable energy harvester taking into account all the pa-

rameters characterizing the entire system (material, structure, electric circuit). Thus, the coupled ROM of a

cantilevered piezoelectric device, with a single and spatially bounded piezoelectric layer and an extended

tip mass at the free edge, is analytically developed, including also the possibility of an imperfect clamp-

ing. The ROM is intended to provide an effective data exchange with the simulation framework of the

electric conversion system. Moreover, all the developed model will be inserted within an optimization al-

gorithm, that will benefit from the comprehensive multidisciplinary description of the device. Indeed, the

followed approach enables a robust and computationally efficient analysis of PEH performance, exploring

optimal combinations of mechanical and electrical parameters through optimization techniques. Based on

this multi-physics model, some improvements in the PEH layout can be then further investigated, develop-

ing the required analytical models and implementing control techniques to maximize performances when

possible.
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Chapter 2

Theory of linear piezoelectricity

In order to gain a more complete comprehension of the piezoelectric energy harvester studied in this

thesis, a physical insight on piezoelectricity is presented. The structure and ions influence on the material,

and the polarization process to induce the piezoelectric effect are explained, underlying their relationship

with material characteristics. Moreover, limit working conditions to keep constant piezoelectric properties

are defined through thermal, mechanical and electrical thresholds. Finally the piezoelectric constitutive

equations, relating material stress, strain, and charge production, are presented, also defining the main

piezoelectric coefficient, fundamental to identify the most suitable material for any desired energy harvest-

ing application.

2.1 Piezoelectric effect

The piezoelectric effect is a phenomenon connecting mechanical strain and electric charge production

inside a material and can manifest in direct or converse form. The direct effect (or generator behaviour)

happens when an imposed mechanical stress induces a surface charge production in the material. On the

contrary, the converse effect (or motor behaviour) occurs when an external electric field (or voltage) induces

a material strain. The previous definitions are exemplified in Fig. 2.1.
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Figure 2.1: Piezoelectric material a) at rest; b) under compression; c) under stretching; d) under constant
voltage; e) under constant voltage opposite to d); f) under alternate voltage.

Figs. 2.1(b) and 2.1(c) show how opposite applied forces induce charge production opposite in sign.

The charge output remains constant until the constant mechanical stress produces a strain rate. Conversely,

a constant strain does not cause any superficial charge generation. Figs. 2.1(d), 2.1(f), and 2.1(e) represent

the converse effect. In particular, the first and second differs only in voltage sign, obviously causing op-

posite strain (elongation and shortening of the cylinder in high). An alternate voltage induces a sinusoidal

strain, varying similarly to the voltage signal itself. Then, from Fig. 2.1 comments, it is trivial that piezo-

electric materials have some properties connecting strain, stress, and electric field (i.e., voltage), that will

be investigated in the following sections after an overview of applications and exploring the physics of

piezoelectricity.

2.1.1 Historical review of piezoelectric applications

In 1880, Jacques and Pierre Curie discovered the piezoelectric effect while working on quartz crystals.

The word "piezoelectricity" etymologically comes from Greek πιεζειν, meaning "push" and thus referring

to charge generation due to a mechanical pressure applied [Haertling 1999].

Despite piezoelectricity being an interesting subject, its spread worldwide was delayed due to previous

use of well known electromagnetic devices, like switches and engines. The first relevant application was in

1920s, forty years after Curies brothers’ discover, with quartz crystal based radio transmitters, application

dominated by piezoelectricity from 1930 till now. Despite this lucky application, piezoelectric materials did

not spread until the barium titanate was first produced in 1946 and, in general, until ferroelectric materials

became easy to be made. The first BaTiO3 based devices were pickup phonographs, on the market since

1947 [Heywang et al. 2008]. Then, in 1959 the first gas ignition for lighters came out, generating, thanks to

the piezoelectric effect, an open circuit voltage higher than 10 kV, sufficient to break the dielectric gas and
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then generate a sparkle for gas ignition (Fig. 2.2).

Figure 2.2: Section of a piezoelectric sparkle generator of a lighter. The spring (1) is activated by the finger,
applying a pre-set stress to the mechanism (2) that hit the piezoelectric (3) [Doremus 1959].

In 1980 the first application of piezo-generators and power electronics came out: a piezoelectric trans-

ducer was used to monitor the pressure levels in car and truck tires, being a low pressure level identified

by higher stress acting on the piezoelectric. In 2003 Enocean GmbH put on the market, in building au-

tomation field, wireless switches for lights with working distance up to 300 m, whose mechanical energy

input gained by pushing the button was used to stress a piezoelectric bender [Rödig et al. 2010]. After that,

piezoelectrics spread on the market very fast, experiencing an increment of 5 billions dollars by 1990 only

in the sensor field [Akdogan et al. 2005].

Nowadays, piezoelectric materials are used in many different applications. A particularly interesting

field is that of the self-powered sensors, for devices life monitoring, building and environment manage-

ment, and process control [Rödig et al. 2010]. For example sensor working in frequency ranges from Hz

to MHz can identify precisely displacements of few µm and forces from mN till kN, while facing difficult

environments, dirty conditions, chemical and aggressive atmospheres, mechanical hits, and high tempera-

tures [Tressler et al. 1998]. Indeed, wireless grids require a flexible and low-maintenance energy production

system, able to work continuously for years. Piezoelectric sensors and actuators happen to be particularly

feasible for this kind of applications, having an high energy density, a low strain-stress level necessary to

work, and also being able to recover energy from vibration (available almost everywhere) [Rödig et al.

2010]. Apart from energy production, piezoelectric can also perform vibration suppression, useful in many

different fields: a sensor measures vibration of a point on the structure and then an actuator responds to

suppress it. Both sensor and actuator are piezoelectric and connected to shunt piezoelectric, dissipating en-

ergy surplus on a RL passive circuit [Moheimani 2003]. Such devices are useful especially in the aeronautic

field for aerofoil, but can work also in sport, for instance, on tennis rackets to reduce the frame vibrations

[C. Ferrari n.d.]. Another application is about printers, in which very fast and compact piezoelectric actua-

tors makes printing possible at higher speed and resolution. Also, piezoelectric fuel injectors are ten times

faster than the traditional coil ones, performing a better engine control and reduction in emissions. More-

over, thanks to their unlimited resolution, it is possible to operate micro-manipulations useful for laser,

optical fibres, and equipment positioning, like precision positioning at commutation velocity for weaving

machines needles. Another meaningful example for low-space consumption, communication speed, and

low energy is piezoelectric valve (Fig. 2.3) [Lecce 2002].
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Figure 2.3: Piezoelectric valve.

Interesting application is the piezoelectric transformers for grid adapters, being small, high efficient,

and low weight [Lecce 2002]. In health field ultrasonic transducers are then highly relevant, allowing high

resolution ultrasounds tests, capable to explore particular parts of the body, like the anterior part of the

eye, the skin or the vascular system [Shung et al. 2007]. Also, the Surgybone surgical scalpel can cut only

hard and mineralized tissues, while not acting on the soft ones like gums [C. Ferrari n.d.]. Other promising

projects under development are ultrasonic engines, compact and highly efficient, that in the future could

replace all hydraulic systems in planes. Finally, a funny and weird application is E-Nose, a synthetic nose

able to classify smells in which piezoelectrics act as mass sensors [Arshak et al. 2004].

In Table 2.1 other remarkable applications for piezoelectric materials are reported [Heywang et al.

2008][Lecce 2002].
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Table 2.1: Piezoelectric materials applications.

Category Device innovation Application

Frequency control and signal

elaboration

Standard time/frequency High precision frequency con-

trol

mechanical frequency filter Frequency control and filter

SAW devices Passive signal elaboration for

wireless communication

Sounds and ultrasounds Buzzer Sound alarms

Microphones and speaker telephones, blood pressure

Ultrasound Medical diagnosis

Hydrophones Sound identification and re-

search

High power transducers and

shock wave generators

Lithotripsy, ultrasound cleaning

Atomizer Oil atomization, humidifier,

aerosol

In air ultrasound Intrusion alarms, distance mea-

suring, sonar

Actuators and engines Printers Ink jet, needles

Engines and transformers Miniaturized engines and trans-

formers

Bimorph actuators Tires, micro-pumps, Braille al-

phabet

Multilayer actuators High precision positioning, op-

tics

Injection systems Fuel valves for automotive

Sensors Accelerometers Automotive, automation,

medicine

High precision sensors, shock

waves, flow, mass, level, mo-

tion, position

Automation, medicine

Start up Gas and fuel injection

Adaptronics Adaptive devices Noise and vibration suppres-

sion

2.1.2 Material classification and structure

Being clear what direct and converse piezoelectric effects are, it is still not obvious which is the physical

phenomenon that induces them. Cady [Cady 1946] defines piezoelectricity as "electric polarization pro-

duced by mechanical strain in crystals belonging to certain classes, the polarization being proportional to
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the strain changing sign with it", from which is trivial that the phenomenon depends on the material micro-

scopic structure. For this reason a physical insight into piezoelectricity and its dependency from material

structure is given in the following.

A crystal is made of ions, connected to each other and occupying ordered and repeated positions in

space: such a structure is called crystal lattice. Its smallest unit, repeating itself identical to the previous

one is called unit cell, whose symmetry defines whether or not the crystal is piezoelectric. The asymmetric

structure has a fundamental role in piezoelectricity, since a uniform mechanical stress could not produce

asymmetric effects unless these are inside the material yet. Indeed, an electric charge distribution would

not be possible without a flow of ions, due to the presence of electric dipoles (polarization) in the asym-

metric structure. Thus, depending on the cell centre of symmetry, rotation axis, and mirror plane, crystals

are classified in 32 structures, in turn again distinguished on 7 crystal geometries: triclinic, monoclinic,

orthorhombic, tetragonal, rhombohedral (trigonal), hexagonal, and cubic (in symmetry ascending order),

showed in Fig. 2.4

Figure 2.4: Unit cell structure a) triclinic, b) monoclinic, c) orthorhombic, d) tetragonal, e) rhombohedral, f)
hexagonal, g) cubic.

Among these 32 classes, only 20 are piezoelectric, with noncentrosymmetric crystals and unique polar

axis. However, the subgroup of ferroelectrics is the only one of useful application, since can exhibit a

permanent spontaneous electric dipole. Ferroelectricity is the ability of a polarized crystal to adjust its

global electric dipole with respect to the direction of an external electric field applied. As for ferromagnetic

materials, the ferroelectric ceramics have a structure divided in Weiss domains, areas having a common

electric dipoles orientation, but still having different orientations from each other and thus determining a

global electric dipole equal to zero for the material. Nonetheless, those areas allow an easier polarization

process and a residual orientation of the microscopic dipoles.

Ferroelectric materials are divided into groups, different in crystal lattice, among which the one with

perovskite structure (Fig. 2.5) is the most performing and industrially used. Common materials with per-

ovskite structure are BaTiO3, PZT, and PLZT [Haertling 1999].

37



2. Theory of linear piezoelectricity

Figure 2.5: Perovskite cell structure (BaTiO3) before (a) and after (b) polarization.

The rhombohedral or tetragonal unit cell has a generic formulaA2+B4+O2−
3 , withA a covalent metallic

ion (like Ba and Pb) and B a tetravalent metallic ion (like Ti and Zr).

The barium titanate (example in Fig. 2.5) has been the most common piezoelectric material on the

market for many years, used in phonographs, ultrasonic transducers, and sonar. However, nowadays PZT

(Pb(Zr, T i)O3) is the most widespread piezoceramic, thanks to its stability, energy conversion efficiency,

low price, and easy property definition. Indeed, changing PZT characteristics is easy thanks to simple

Zr-Ti ratio alterations. When Zr and Ti content are almost the same with a slightly higher Zr content

(Pb(T i0.465, Zr0.535)O3), the ferroelectric behaviour is enhanced, allowing for a greater number of domains

orientations and thus higher polarization [Fabbri 1998]. However, a small predominance of Ti increases the

piezoelectric constant d, responsible for the electromechanical transduction (as will be seen in the following

sections).

Finally, to make PZT materials even more versatile in characteristic definition, dopants are used:

• for higher permittivity, but lower Curie point, Ca2+, Sr2+, and Ba2+ ions can replace Pb2+;

• for higher piezoelectric coefficients, permittivity, compliance, and service life a Nb5+ ion can replace

(T i, Zr)4+ or a La3+ ion a Pb2+;

• for lower piezoelectric coefficients, permittivity, compliance, but also service life Sc3+ or Fe3+ ions

can replace (T i, Zr)4+.

2.1.3 Curie temperature

Piezoelectric internal structure depends not only on the ions contents, as seen in the previous section,

but also on the temperature at which the material is exposed. Indeed, there is a temperature threshold,

called Curie temperature Tc, at which most of materials perform a transition from ferroelectric to non-

ferroelectric phase (Fig. 2.6) [Damjanovic 1998].The new phase can be or not piezoelectric, but usually it

has a more symmetric structure than the ferroelectric one, losing the total non-zero electric dipole.
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Figure 2.6: Phase transition from ferroelectric with Weiss domains to non ferroelectric and dielectric per-
mittivity ǫ behaviour for a piezoelectric material undergoing temperature change [Damjanovic 1998].

Moreover, beyond Curie point the dielectric permittivity ǫ shows a significant reduction (Fig. 2.6), fol-

lowing the Curie-Weiss law:

ǫ = ǫ0 +
C

T − Tc
(2.1)

where ǫ0 is the vacuum permittivity (8.854 · 10−12F/m) and C is the Curie constant of the material. The

Curie temperature is thus a threshold for piezoelectrics working conditions, since, if the material undergoes

to higher temperatures, it loses its global electric dipole because of thermal excitation phenomenon. For this

reason, typically piezoelectric materials are used in applications at maximum temperatures approximately

equal to Tc/2, in order to avoid a return to the virgin condition. Piezoelectric ceramics Curie temperatures

vary from a minimum of 130 °C (barium titanate), to 360 °C (PZT), to a maximum of 700 °C (bismuth

doped PZT) [Cook et al. 1971]. However, the most performing piezoelectric material for high temperature

applications is the aluminium nitride (AlN), investigated by Arroyo et al. [Arroyo et al. 2016] [Arroyo et al.

2017] with an temperature-dependent model. Indeed, it’s Curie temperature is equal to 2000 °C, and thus

it is successfully used up to 1000 °C in high temperature applications (automotive, industrial, aerospace).

2.1.4 Polarization process

As mentioned before, ferroelectrics are the most performing among piezoelectric materials, since they

exhibit a total residual polarization, fundamental for a strong piezoelectric behaviour. However, at their

initial state (virgin condition), ferroelectrics show a global electric dipole equal to zero, with random ori-

entation of Weiss domains, that however can be adjusted in one unique direction through a polarization

process, described in this section [Cook et al. 1971].

To be effective, the polarization must be performed at a temperature lower than the material Curie

temperature Tc, to be found before. An external electric field E is applied, adjusting the microscopic electric

dipoles with its direction. Then, after the field is removed, a remanent polarization close to the electric field

direction (new microscopic electric dipoles stable low-energy position) is obtained along with a geometric

strain in the crystal lattice, making the material anisotropic. In Fig. 2.7 a sketch of the process is shown.
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Figure 2.7: Polarization process for a ferroelectric material: sketch of microscopic electric dipoles orientation
adjustment.

The polarization process is limited by the electric breakdown phenomenon, that causes material break.

So, even if in theory any material could be polarized, for some of them the breakdown would occur before

polarization is over. Obviously, the limit is even lower if vacancies, cracks, and other physical imperfections

exist and it is influenced by electrode shape and position. Moreover, mechanical strain also limits polariza-

tion, since it could induce relevant internal stress leading to material break even before electric breakdown

occurs. For example the PZT ceramics can reach strains of 0.5% in the electric field direction and −0.2%

in the normal direction [Fabbri 1998]. Typically, being conscious of the previous limits allows for a good

and long-lasting remanent polarization to be induced. Time and intensity of the electric field to obtained

the final result depend then on material characteristics. At the end of the process, the material behaves as a

piezoelectric crystal responding linearly to stress and external electric fields.

From an electric point of view, the polarization process in a dielectric medium (as piezoelectric materi-

als), can be expressed as follow:

D = ǫ0 E + P = ǫ0 E + (ǫr − 1)ǫ0 E = ǫr ǫ0 E (2.2)

where D [C/m2] is the electric displacement representing the charge quantity stored per unit of area,

E [V/m], as mentioned before, is the electric field, P [C/m2] is the polarization, and ǫr is the relative per-

mittivity of the material. All boldface quantities denote vectors in physical (3D) space. If a virgin sample

undergoes to an electric field E at a temperature close to but lower than Tc, it will act as in the hysteresis

diagram in Fig. 2.8.
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Figure 2.8: Typical ferroelectric material hysteresis cycle.

The electric field induces a polarization field P , rising with the trend shown in figure (internal dipoles

aligning in the same direction). With E raising, P increases too until it reaches the saturation level P s when

all dipoles are aligned with the external electric field. When E decreases, P decreases too, but less fast than

before, reaching a remanent polarization P r when the external electric field goes to zero, with internal

dipoles in a stable position close to the saturation one. If an electric field opposite in sign is applied, then

P will decrease again till it reaches zero for the coercive electric field value Eco, and then changes in sign

till the new saturation point −P s. Analogously, there will be a remanent polarization −P r when the new

electric field goes to zero.

Different hysteresis loop shapes (Fig. 2.8) determine different properties, dividing piezoceramic mate-

rials in two categories: soft and hard piezoelectrics. The first ones exhibit high saturation point P s and

low coercive electric field Eco, conversely, the latter is characterized by lower saturation point, but higher

coercive electric field, as shown in Fig. 2.9. Soft piezoelectric materials perform better for wider frequency

bands but have lower transduction efficiency and suffer more easily from depolarization and deterioration.

Moreover, they exhibit low Curie temperatures (<300 °C), and thus they can be used only in low tempera-

ture applications. Finally, a low coercive field value means need for low field to be polarized initially, with

lower energy consumption for the production, but makes soft materials easy to depolarize, and thus not

useful in applications in which electric fields are involved. Hard piezoelectrics have opposite characteris-

tics: high curie temperature, higher transduction efficiency for narrow frequency bands in the neighbour-

hood of resonance frequencies. Furthermore, having higher coercive field value, they keep the residual

polarization longer than soft materials. For the previous reasons, hard piezoelectrics are typically used in

energy harvesting from sources characterized by certain frequencies, while soft ones are more suitable for

random excitation spectra sensing.
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Figure 2.9: Hysteresis loop for a soft (red) and hard (blue) piezoelectric materials.

In Fig. 2.10 a typical strain curve in function of an external electric field E is shown. During polarization,

the material stretches in E direction, due to converse piezoelectric effect. Usually polarization (cycle in

dashed line) occurs for electric field values at which the induced strain is almost linear.

Figure 2.10: Strain - electric field diagram for polarization process.

Nonetheless, when the electric field overcomes a critic value Ec, the strain assumes a non-linear be-

haviour, with a butterfly-shaped symmetric trend. This change is due to internal domains polarization

inversion, as better explained in Fig. 2.11.
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Figure 2.11: Domains polarization inversion and effect on strain for a piezoceramic material.

Indeed, if a piezoelectric material undergoes to an electric field opposite in direction with respect to

its polarization, firstly it experiences a contraction due to internal domains resistance, until the minimum

strain is reached for critical value Ec. Then, a polarization inversion happens, determining a more and

more consistent and fast expansion till the electric field maximum value Emax. After all domains being

in the new orientation, the crystal experiences a strain decreasing until the electric field goes to zero. This

bipolar field application can induce mechanical damage inside the material. Once polarization is obtained,

it can be lost because of three different phenomena: electric, mechanical, and thermal depolarization. The

first occurs when a static external electric field is applied in the opposite direction with respect to the in-

ternal polarization, in particular if at the material coercive value Eco. For this reason Eco is a measure

of the resistance to depolarization: the higher it is, the higher electric fields the piezoelectric material can

undergo without being damaged (hard materials). Electric depolarization can also occur with a sinusoidal

electric field during the period in which E direction is opposite to the polarization one. In this situation,

frequency is a fundamental parameter since the higher it is, the less and easier to be fixed in the following

half period polarization damages are. Mechanical depolarization occurs when the material undergoes to

high stress, disturbing domains and dipoles orientation. This limit varies a lot depending on material and

dopants used, so it must be verified for every different case. Finally, thermal depolarization occurs when

the piezoelectric works at a temperature higher than Tc: due to thermal excitation, domains regain random

orientations. Moreover, a phase shift occurs and, even going back to the original phase, the material be

back at virgin state. An empiric rule to avoid thermal depolarization is to always work at temperatures

lower than Tc/2, at which thermal depolarization is negligible.

2.2 Constitutive equations

In this section, variables and coefficients involved in piezoelectric effect will be first defined and then

used to express the material constitutive equations.

External forces in equilibrium condition are applied to a generic continuum body and induce internal

forces inside the material. Considering an internal surface element ∆A, a generic point P in it, with n
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Figure 2.12: Force acting on a generic surface.

denoting the normal to the surface in P , and the external force ∆F acting on the surface ∆A (Fig. 5.1), the

stress vector is defined as

σ = lim
∆A→0

∆F

∆A
(2.3)

with force and normal having different directions.

If now a body with surfaces parallel to the [x, y], [x, z], and [y, z] planes is considered, the stress can be

expressed as a second order tensor measured in [N/m2]. Each component is denoted as σij , with the first

index i = 1, 2, 3 referring to the surface normal and the second index j = 1, 2, 3 denoting the component of

the force in the j-th direction, as shown in Fig. 2.13.

Figure 2.13: Mechanical stress tensor components acting on a solid body.

A stress field in a continuous body induces deformation, the transition from a non-deformed configura-

tion (reference configuration) to a new configuration (current configuration) with deformation or distortion

effects. The strain represents the measure of deformation in terms of relative displacements of the body’s

particles. Thus, considering two particles in their initial positions Q and P in the reference configuration

and in their final positions Q′ and P ′ in the current configuration, as shown in Fig. 5.2, the strain is defined
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Figure 2.14: Transition form reference to current configuration for points P and Q.

as the relative change of the vector dX .

ε = lim
dX→0

|dx| − |dX|

|dX|
(2.4)

As for the stress, the strain can be expressed as a non-dimensional second order tensor, whose components

are εij , with index following the same stress tensor components logic.

Stress and strain are connected to each other by the following relation.

σij = sijmn εmn (2.5)

where sijmn is the stiffness or elasticity fourth-order tensor component, depending on material properties.

Eq. 2.5 can also be written as

εmn = cijmn σij (2.6)

with cijmn the compliance fourth-order tensor component.

The dielectric permittivity represents the electric polarization response of a material to an external elec-

tric field and can be defined as the electric displacement D resulting from an applied electric field E.

Di = ǫijEj (2.7)

Since the electric displacement D and the electric field E are both vectors, the dielectric permittivity is a

second order tensor measured in [F/m].

The piezoelectric charge or strain coefficient represents, for the direct piezoelectric effect, the polariza-

tion produced in the material due to a mechanical stress applied.

Pk = dijkσij (2.8)

For the converse effect it can be defined as the generated strain per unit of applied electric field:

εij = dijkEk (2.9)
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So the subscript k refers to the electric quantity, P andE having the same direction, and ij to the mechanical

one, σ and ε having the same direction. dijk. The piezoelectric coefficient is a a third order tensor and it is

measured in [C/N ] or [m/V ].

Finally, the stress or charge coefficient represents, for the direct piezoelectric effect, the charge produced

due to a strain in the material

Dk = −êijkεij (2.10)

For the converse piezoelectric effect, it can be expressed as the stress produced for an external electric field

applied

σij = −êijkEk (2.11)

with same use of subscripts as for dijk. The charge coefficient is a third order tensor measured in [C/m2] or

[V ·m/N ].

Despite using the piezoelectric constants, in order to have a global estimation of the material behaviour,

the electromechanical coupling coefficient K2
eff , ratio between energy converted and energy in input, can

be used. K2
eff is always lower than 1, and typically varies among 0.5 and 0.7 for PZT ceramics. This quantity

though is not always a precise efficiency indicator since the energy converted does not always correspond

to the useful one. A good piezoelectric material at its resonance frequency could reach an efficiency higher

than 90 %, that unluckly drops quickly out of the resonance point.

Other piezoelectric coefficients, not used in our problems, are reported in Tab. 2.2.

Table 2.2: Piezoelectric coefficients [Damjanovic 1998].

Name Symbol Unit Definition

Dielectric lost coefficient tan δe [-] Pe,loss/Qe

Strain or voltage coefficient gijk [V ·m/N ] Ek/σij ≡ εij/Dk

Stress or voltage coefficient eijk [N/C] or [V/m] −Ek/εij ≡ −σij/Dk

The constitutive equations for direct and converse piezoelectric effect can be defined, respectively, in

tensorial form.

Dl = dmnl σmn + ǫσlk Ek (2.12)

εij = cEijmn σmn + dijk Ek (2.13)

where the superscript is a quantity kept constant during the coefficient identification, with the piezoelectric

elastic quantities having a different value for DC current (E constant) or AC current (D constant).

A tensorial analysis could help in understanding how all the quantities influence each other. Remem-

bering their definitions at the beginning of the chapter, both strain and stress are second-order tensors. So,

the elasticity and compliance (Eqs. 2.5 and 2.6) must be fourth-order tensors, with 81 components. Then,

being electric displacement and electric field vectors, the permittivity is necessarily a second-order tensor

(9 components) and the piezoelectric coefficients third-order tensors (27 components).

Recalling Cauchy’s second law of motion, we can assume the stress tensor to be symmetric, i.e., σ23 =

σ32, σ12 = σ21, σ13 = σ31, and the compliance tensor cijmn independent components be reduced from

81 to 36. Moreover, being the force system conservative, the compliance tensor has to be symmetric, so
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components further decrease to 21. Thus strain and stress relevant components are 6 and, for sake of

simplicity, the two tensors can be written in engineering notation, i.e., as vectors:

[σ11, σ22, σ33, σ23, σ13, σ12] = [σ1, σ2, σ3, σ4, σ5, σ6]

[ε11, ε22, ε33, ε23, ε13, ε12] = [ε1, ε2, ε3, ε4, ε5, ε6]

with subscripts [1, 2, 3] and [4, 5, 6] corresponding now respectively to relative rotations and shear actions.

Moreover, only 18 piezoelectric constant and 6 permittivity constant components happen to be inde-

pendent and, being the material isotropic only in the plane orthogonal to the global dipole direction due to

polarization, the cylindrical symmetry further reduces the independent components to 10 [Fabbri 1998].

So now the constitutive Eqs. 2.12 and 2.13 for direct and converse piezoelectric effect can be defined in

linear form respectively as.

Dl = djl σj + ǫσlk Ek (2.14)

εi = cEij σj + dik Ek (2.15)

with l, k = 1, 2, 3 and i, j = 1, 2, ..., 6.

Thus, Eqs. 2.14 and can be written for each component as

D1 =ǫ11E1 + d15 σ5 (2.16a)

D2 =ǫ11E2 + d15 σ4 (2.16b)

D3 =ǫ33E3 + d31 (σ1 + σ2) + d33 σ3 (2.16c)

And, analogously, Eqs. 2.15 can be written as

ε1 =cE11 σ1 + cE12 σ2 + cE13 σ3 + d31E3 (2.17a)

ε2 =cE11 σ2 + cE12 σ1 + cE13 σ3 + d31E3 (2.17b)

ε3 =cE13 (σ1 + σ2) + cE33 σ3 + d33E3 (2.17c)

ε4 =cE44 σ4 + d15E1 (2.17d)

ε5 =cE44 σ5 + d15E1 (2.17e)

(ε6 =cE66 σ6) (2.17f)

with Eq. 2.17f defining the shear strain ε6 (in {x, y} direction) not showing any piezoelectric effect and thus

being neglected, since the material is polarized in z direction.

Eqs. 2.16 and 2.17 are thus expressed in matrix form as

[

ε

D

]

=

[

cE dt

d ǫσ

][

σ

E

]

(2.18)
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where the superscript t stands for matrix transposition, the compliance matrix is

c =























cE11 cE12 cE13 0 0 0

cE12 cE11 cE13 0 0 0

cE13 cE13 cE33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE44 0

0 0 0 0 0 2 (cE11 − cE21)























the piezoelectric matrix is

d =







0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0







and the permittivity matrix is

ǫ =







ǫσ11 0 0

0 ǫσ11 0

0 0 ǫσ33







from which its clear which are the 10 independent coefficients.
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Chapter 3

Electromechanical modelling of

piezoelectric cantilevered beams

In recent years, researchers from different engineering fields (materials, mechanical, and electric) have

addressed piezoelectric energy harvester (PEH) modelling, although frequently using oversimplified hy-

pothesis to reach compact formulations and thus leading to inaccurate results [Erturk and Daniel J. Inman

2008b].

The most simple representation of a PEH is the Single Degree of Freedom (SDOF) model, usually suf-

fering from incorrect representation of the electromechanical coupling. Following this approach, some re-

searchers [Jeon et al. 2005] [Hua-Bin et al. 2006] modelled the energy conversion due to piezoelectric effect

with a viscous damping term, as also done for energy harvesters exploiting an electromagnetic principle

(although exploiting a completely different physics). However, change in resonance frequency due to re-

sistive load variation demonstrate that the piezoelectric effect is more complex than a viscous damping,

the latter depending on rapidity of oscillations. The piezoelectric can be also modelled as a transformer

[Goldfarb et al. 1999], with capacitance, inductance and resistance representing, respectively, spring, mass,

and damper at the primary winding. This representation allows for a more accurate representation of the

electromechanical coupling, since a variation of the resistive load results in a consequent change in the

resonance frequency of the structure. However, considering the tip mass as unique responsible of inertia

forces leads to acceptable results only if the distributed beam mass is comparatively small, otherwise both

oscillation amplitude and power output are underestimated. Finally, SDOF representation lacks of useful

details like strain distribution, multi-modal behaviour, and electrodes position, and can be mainly used for

describing simple features of the mechanical response.

Although more accurate than the SDOF models, also Single-mode Distributed Parameter (SDP) models

exhibit some issues. They are developed considering the PEH working only at its fundamental resonance

frequency, typically the first bending mode one. However, this hypothesis guarantees accurate results only

in the neighbourhood of the considered resonance frequency [Lu et al. 2003] [S.-N. Chen et al. 2006]. More-

over, as for the SDOF, the piezoelectric effect is sometimes oversimplified by representing it as a viscous

damping [S.-N. Chen et al. 2006] or by not considering the influence of the electric circuit on the structural

response [Lu et al. 2003] [JH Lin et al. 2007] [Ajitsaria et al. 2007]. If then the backward piezoelectric effect is
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not taken into account, in addition to missing the correct resonance frequency, the predicted power output

for the optimal resistive load is not accurate.

Erturk and Inman [Erturk and Daniel J. Inman 2008a] [Erturk; Hoffmann, et al. 2009] [Stanton; Erturk,

et al. 2010] [Erturk 2012] and other research groups [M. Kim et al. 2010] [Tang et al. 2017] proposed a Multi-

mode Distributed Parameter (MDP) model, with two-way coupling in the piezoelectric model. Being more

accurate than the previous models, they employ exact modes for modal solution of the governing equations

of multilayer uniform beams. Moreover, in case of linear response, an analytical expression of the transfer

function from the imposed acceleration to the system response is found, providing the voltage output for

harmonic excitation.

From the above literature review, it emerges that an accurate prediction of the harvester electromechan-

ical behaviour is strictly required to match its natural frequencies with the spectrum peaks of the excitation;

this is a simple but not easy requirement for maximizing the energy conversion. More in general, the avail-

ability of reduced-order models (ROMs), encompassing the coupling between the mechanical and piezo-

electric models, as well as the AC/DC electrical conversion system downstream, allows for a balanced and

computationally affordable optimization of the device.

In the following sections a MDP model of a non-uniform PEH is presented. Its numerical solution is

found and compared before with analytical results proposed in [Erturk and Daniel J. Inman 2008a] and

then with 3D COMSOL Multiphysics simulations.

3.1 Device configuration

3.1.1 Cantilevered plate configuration with proof mass

The investigated energy harvester converts ambient vibrations into electric energy by exploiting the

piezoelectric effect of its piezoceramic layer. The cantilevered configuration, shown in Fig. 3.1, is excited

by basement vibrations through its clamped side and exhibits significant flapping amplitudes at resonance.

This configuration combines efficiency and simplicity, the latter feature favoring the possibility of a precise

prediction of the bending natural frequencies. In Fig. 3.1, a Cartesian coordinate system is defined with

origin O at the midpoint of the clamped edge of width b, x-axis lying on bottom face of the beam, y-axis on

its clamped edge, and z-axis pointing upward.
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Figure 3.1: 3D view and main dimensions of the PEH.

A unimorph configuration is adopted, with a thin piezoelectric lamina of length Lp and width b glued

on the top side of the supporting plate at a distance l1 from the clamped edge, and covering partially the

support layer up to x = l2, such as Lp = l2 − l1 < Ls, with Ls the overall length of the supporting plate.

Though the piezoelectric patch should be placed toward the clamped edge as much as possible to harvest

more energy, this geometrical layout describes a generic configuration of the piezoelectric layer, making

the model able to easily reproduce different devices. Moreover, in the following chapters, the importance

of the piezoelectric patch length will be studied, taking into account the compromise between material use

and energy production, and analysing different modes exploitation through electrode segmentation. The

connection between support layer and piezoelectric lamina is supposed to be perfect, without any loss in

mechanical energy transmission. For sake of clarity, in the following the letter ’p’ will be used to indicate

variables or coefficients related to the piezoelectric layer, the letter ’s’ for the support layer instead. Figure

3.2 highlights the thicknesses hs and hp for support and piezoelectric layers, respectively.

Figure 3.2: Lateral view of the PEH (dimensions do not scale real values of the device considered later).

Apart from providing the necessary structural strength, one of the benefits of the support layer is avoid-

ing the charge cancellation phenomenon when the circuit is connected to electrical loads. Indeed, in case of

passing from fiber compression to tension through the piezoelectric material, opposing charge is generated
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3. Electromechanical modelling of piezoelectric cantilevered beams

because of polarization. To keep strain in the same direction through the piezoelectric layer, the thickness

of support plate must be chosen to contain the neutral axis of the overall structure. This choice guarantees

that the piezoelectric material is subjected to mechanical stress in just one direction through its thickness.

As shown in Fig. 3.2, a tip mass is positioned on the free edge to tune harvester’s natural frequency

with the excitation frequency, if the latter is lower than the natural frequencies of the device, and to enhance

oscillations. For sake of simplicity, the mass is initially supposed to have negligible extension and rotational

inertia. The clamping can be also supposed to be yielding in rotation and consequently a torsional spring

of coefficient krot is added at x = 0 to take this effect into account. Typically, the elastic constant krot will

be assigned by matching the eigenfrequencies of the structure, numerically found, with those measured

during experiments.

3.1.2 Multilayer Euler-Bernoulli beam model

Assuming perfect connection between the piezoelectric and support layers as well as small thickness

of both and considering the cantilevered configuration, the system can be modelled as a 2D multi-layer

thin plate in plain-stress conditions (σ3 = σ4 = σ5 = 0), where the engineering notation, introduced in

the previous chapter, is used ([σ11, σ22, σ33, σ23, σ13, σ12] = [σ1, σ2, σ3, σ4, σ5, σ6]). Since both materials are

mechanically isotropic and homogeneous, the stress-strain relation (neglecting now the piezoelectric effect

for sake of simplicity) is expressed as:







σ1

σ2

σ6






=

Y

1− ν2







1 ν 0

ν 1 0

0 0 1− ν













ε1

ε2

ε6






(3.1)

Nevertheless, considering seismic excitation in the z-direction at the applied in x = 0, the device sym-

metry, and the tip mass layout in Fig. 3.2, the main phenomena to be evaluated are expected to live only

in the [x, z] plane. Thus, even though the general condition b/Ls >> 1 is not satisfied, we can suppose

that the plate deflection does not depend on y and consequently adopt an Euler - Bernoulli beam theory,

for which the only non-zero stress component is σ1, acting in x direction. Moreover, since electrodes cover

the piezoelectric surfaces perpendicular to z direction (polarization direction), the only relevant electric

field component inside the material is E3. Therefore, based on the previous assumptions, the constitu-

tive equations of piezoelectric materials Eqs. 2.18, relating mechanical stress σ and mechanical strain ε to

electric field E and displacements D, can be reduced to the following scalar equations in stress / electric

displacement form:

[

σ1

D3

]

=

[

s11 −ē31

ē31 ǭ33

][

ε1

E3

]

, (3.2)

where σ1 and ε1 are the stress and strain in x direction, respectively,D3 andE3 are the electric displacement

and electric field components in z-direction, respectively. Equation 3.2 further simplifies for the support

layer as

σ1 = s11ε1 (3.3)

because of absence of piezoelectric properties.
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Recalling the generic definition of voltage as electric potential representing the work of an electric charge

to move from a point A to another point B

V = −

∫ B

A

E(P ) · d
−→

OP (3.4)

where P is a generic point, and defining formally the flux linkage as

λ =

∫

V dt , (3.5)

it is convenient to express the electric field E3 as a function of the electric flux linkage λ derivative with

respect to time:

E3 = −λ̇ / hp. (3.6)

This expression of the electric field will allow for expressing the piezoelectric electromechanical coupling

as a current source (see later).

The coefficients of Eq. 3.2 can be further detailed. The elastic stiffness component at constant electric

field, denoted as sE11, the piezoelectric constant ē31, and the permittivity component at constant strain,

denoted as ǭε33 are

sE11,p =
1

cE11
, ē31 =

d31
cE11

, ǭε33 = ǫσ33 −
d231
cE11

, (3.7)

where ǫσ33 is the permittivity at constant stress, d31 piezoelectric coefficient, and, according to the plain stress

hypothesis, it is set:

s11,p =
1

cE11
= Yp/(1− ν2p), s11,s = Ys/(1− ν2s ) (3.8)

with Ys and Yp Young’s moduli, and νs and νp Poisson’s ratios.

Finally, the strain ε1, representing the stretch in the longitudinal direction, can be expressed as:

ε1 = e0 − z1κ (3.9)

where e0 is the strain along the neutral axis, z1 is the vertical distance from the neutral axis (see next section),

and κ is the curvature in the x-direction. Since only one edge of the beam is constrained, there is no stretch

of the neutral axis and the latter can be considered inextensible, i.e., e0 = 0. Moreover, small displacements

are assumed, and consequently linear behaviour of the system. Thus, the curvature is

κ = w′′(x, t) (3.10)

with w(x, t) with w(x, t) the time-dependent vertical beam displacement at any point x, relative to the

frame of reference fixed to the clamping. However, since the clamping itself experiences an oscillating

vertical motion wb(t), the absolute transverse displacement at any point x takes the expression:

wa(x, t) = w(x, t) + wb(t). (3.11)
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3.1.3 Neutral axis position

As mentioned before, in designing the device one has to avoid occurrence of charge cancellation. To

reach this goal, the support plate thickness must be chosen to contain the neutral axis of the overall struc-

ture, located at z0 from the bottom. This choice guarantees that the piezoelectric material is subjected to

stress distribution through its thickness (Fig. 3.3) pointing in the same direction. Indeed, if the piezoelectric

experiences stress in opposite directions, there would be also opposite polarized layers through the lamina,

leading to partial or even total cancellation of charge produced when the circuit is connected to the electric

load.

The neutral axis is defined as intersection of the neutral plane (where σ1 = 0) with the xz-plane, lo-

cated at a distance z0 from the beam bottom. To determinate the position z0 of the neutral axis (see e.g.,

[ballas:2007]), the equilibrium of internal forces through the section of the beam is imposed:

∫ hs+hp

0

σ1(x, z − z0) dz = 0 (3.12)

Figure 3.3: Sketch of the mechanical configuration. The neutral axis z0 is positioned inside the support plate
and the piezoelectric undergoes tension σ1 in the same direction.

and z0 is chosen to satisfy the previous relation. As mentioned previously, in order to take into account

the neutral axis influence on the behaviour of the device, a new vertical coordinate z1, referred to z0, will

be defined as

z1 = z − z0 (3.13)

The neutral axis identification will also be fundamental to express the equivalent bending stiffness D̄

and the electromechanical coupling coefficient θ for the piezoelectric region in mechanical equations (ob-

tained in the following sections).

Considering the change of material in the thickness direction, the compliance s11(x, z) for x ∈ (l1, l2)

can be expressed in function of z as

s11(x, z) =



























s
(s)
11 =

Ys
1− ν2s

, 0 < z ≤ hs

s
(p)
11 =

Yp
1− ν2p

, hs < z ≤ hp + hs

(3.14)

with s11(x, z) = s
(s)
11 for x ≤ l1 and x ≥ l2. By substituting Eqs. 3.2, 3.3, 3.9, and 3.10, Eq. 3.12 becomes for
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x ∈ (l1, l2)
∫ hp+hs

0

−s11(x, z) (z − z0)w
′′(x) dz = 0 (3.15)

where the dependence of the different variables on the local coordinates is highlighted once for the sake of

clarity. Next, by substituting the compliance expressions (Eq. 3.14), it yields

∫ hs

0

Ys
1− ν2s

(z − z0)w
′′dz +

∫ hp+hs

hs

Yp
1− ν2p

(z − z0)w
′′dz = 0 (3.16)

which, after evaluation of the integrals, becomes

Ys
1− ν2s

(h2s
2

− hsz0

)

+
Yp

1− ν2p

(h2p
2

− hpz0 + hphs

)

= 0 . (3.17)

Solving the previous equation with respect to z0, the expression of the neutral axis position with respect to

the material properties is determined:

z0 =

Ys
1− ν2s

h2s +
Yp

1− ν2p
(h2p + 2hphs)

2

(

Ys
1− ν2s

hs +
Yp

1− ν2p
hp

) (3.18)

If x ≤ l1 or x ≥ l2, we can assume hp = 0 and the neutral axis position becomes z0 = hs/2. Thus,

combining the previous results, the neutral axis expression over the total length of the beam is

z0(x) =











































Ys
1− ν2s

h2s +
Yp

1− ν2p
(h2p + 2hphs)

2

(

Ys
1− ν2s

hs +
Yp

1− ν2p
hp

) , l1 < x < l2

hs
2
, 0 ≤ x ≤ l1 and l2 ≤ x ≤ Ls

(3.19)

The position z0 of the neutral axis is a weighted mean of the layer thicknesses, with weights related to

the Young moduli of the different layers.

3.2 Governing equations from extended Hamilton principle

The electromechanical model has been developed by using the Lagrangian equations with an energetic

approach derived from the Extended Hamilton’s Principle for continuous systems [Gupta 1988], which is

expressed as:

δI =

∫ t2

t1

(δL+ δWnc) dt = 0 (3.20)

where δ denotes variation, I stands globally for the integral term on the right. Hamilton’s principle states

that for a time interval t1 and t2 the integral is stationary when taken along the dynamical path in the
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state space defined by the set u of the independent parameters of the dynamical system, with L the La-

grangian function also known as kinetic potential in mechanical problems. Wnc is the virtual work of

non-conservative forces and L the Lagrangian function, which includes three different contributions, one

distributed L1 and two concentrated L2 and L3, of tip mass and yielding clamp, respectively:

L1 = T − Um + Ue =

∫ Ls

0

ℓdx (3.21)

L2 =
1

2
mtipẇ

2
a(Ls, t) (3.22)

L3 =
1

2
krotγ

2 (3.23)

The term L2 represents the kinetic energy of the tip mass in x = Ls [Meirovitch 2001]. L3 is the potential

elastic energy related to the rigid body rotation [Laura et al. 1975], (γ angle of rotation) at the yielding clamp

at x = 0 (Fig. 3.4).

Figure 3.4: Yielding clamp: configuration and variables definition. γ, dx, dx∗, du, and dwa are respectively
angle of rotation, initial configuration, deformed configuration, horizontal displacement, and vertical dis-
placement.

Thus, the global displacement of the beam can be expressed as

wa = wrb + we (3.24)

with wrb the rigid body displacement and we the elastic displacement, satisfying the condition we = 0.

Therefore,

wa = γx+ we (3.25)

and, by differentiating with respect to x and calculating at x = 0

w′

a(0) = γ (3.26)

Substituting (3.24), the Lagrangian term of elastic potential energy L3 can be written as

L3 =
1

2
krotw

′2
a (0) (3.27)
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L1 is given by the kinetic energy T , the mechanical potential energy Um, and the electric internal energy Ue

of the piezoelectric beam, expressed in terms of their energy density per unit volume.

The mechanical potential energy is given by

Um =
1

2

∫

V

σ1ε1dV =
1

2

{

∫ b/2

−b/2

∫ l1

0

[

∫ hs

0

σs
1ε1dz

]

dxdy+

+

∫ b/2

−b/2

∫ l2

l1

[

∫ hs

0

σs
1ε1dz +

∫ hp+hs

hs

σp
1ε1dz

]

dxdy +

∫ b/2

−b/2

∫ Ls

l2

[

∫ hs

0

σs
1ε1dz

]

dxdy

} (3.28)

in which the integral is split in three parts on x direction due to the inhomogeneity in the device mate-

rial. Substituting the strain (Eq. 3.9) and stress (Eq. 3.3) expressions for the support material, the explicit

integrations through its thicknesses hs yields

∫ hs

0

σs
1ε1dz =

∫ hs

0

Ys
1− ν2s

(z − z0)
2κ2dz =

Ys
1− ν2s

κ2
∫ hs

0

z2 − 2zz0 + z20dz =
Ys

1− ν2s
κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

(3.29)

Analogously, substituting the strain (Eq. 3.9) and stress (Eq. 3.2) expressions for the piezoelectric material,

the explicit integrations through its thicknesses hp gives

∫ hp+hs

hs

σp
1ε1dz =

Yp
1− ν2p

∫ hp+hs

hs

κ2(z2 − 2zz0 + z20)−
d31λ̇κ

hp
(z − z0)dz (3.30)

and, after some algebric manupulation,

Yp
1− ν2p

κ

{

κ

[(

h3p
3

+
h3s
3

+ h2phs + h2shp −
h3s
3

)

− z0

(

h2p + h2s + 2hphs − h2s

)

+ z20

(

hp + hs − hs

)]

+

−
d31λ̇

hp

[

1

2

(

h2p + h2s + 2hphs − h2s

)

− z0

(

hp + hs − hs

)]}

=

=
Yp

1− ν2p
κ2

[

h3p
3

+ h2phs + h2shp − z0

(

h2p + 2hphs

)

+ z20hp

]

−
Ypλ̇d31κ

1− ν2p

[

hp
2

+ hs − z0

]

(3.31)

Then, substituting Eqs. 3.29 and 3.31 in the potential energy expression 3.28, we obtain the final expression

of the mechanical potential energy of the system.

Um =
b

2

{

∫ l1

0

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

dx+

∫ l2

l1

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

+

+
Yp

1− ν2p
κ2

[

h3p
3

+ h2phs + h2shp − z0

(

h2p + 2hphs

)

+ z20hp

]

−
Ypλ̇d31κ

1− ν2p

[

hp
2

+ hs − z0

]

dx+

+

∫ Ls

l2

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

dx

}

(3.32)

The electric potential energy is present only in the piezoelectric domain Vp, for x ∈ (l1, l2), and is given
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by

Ue =
1

2

∫

Vp

E ·D dV =
1

2

∫

Vp

E3D3 dV =
1

2

∫

Vp

−
λ̇

hp

(

ε11ē31 − ǫ33
λ̇

hp

)

dV (3.33)

with E and D the electric field and electric displacement vectors, respectively. WithE3 the only component

in z direction not vanishing, remembering Eqs. 3.2, and decomposing the volume Vp, the latter equation

becomes

Ue = −
λ̇

2hp

∫∫

Ap

∫ hp+hs

hs

−κ(z − z0)ē31 − ǫ33
λ̇

hp
dzdA =

=
bλ̇

2hp

∫ l2

l1

ē31

[

κ

2

(

h2p + h2s + 2hphs − h2s

)

− κz0

(

hp + hs − hs

)]

+ ǫ33
λ̇

hp

(

hp + hs − hs

)

dx =

=

∫ l2

l1

d31Ypb

2(1− ν2p)

(

hp
2

+ hs − z0

)

κλ̇+ ǫ33
b

2hp
λ̇2dx

(3.34)

Finally, the kinetic energy is given by

T =
1

2

∫ Ls

0

µ(x)ẇ2
a dx (3.35)

where the kinetic energy term due to the horizontal displacement u can be neglected because of the small

displacement hypothesis and µ is the beam mass per unit of length, defined along the beam as

µ(x) =



















ρphpb+ ρshsb, l1 < x < l2

ρshsb, 0 ≤ x ≤ l1 and l2 ≤ x ≤ Ls

(3.36)

Substituting the expression for kinetic energy T (Eq. 3.35), mechanical potential energy Um (Eq. 3.32),

and electric potential energy Ue (Eq. 3.34), finally we can define L1 by means of the density Lagrangian

function ℓ in the form

ℓ =
1

2

{

µẇ2
a −

bYp
1− ν2p

κ2
[

h3p
3

+ h2phs + hph
2
s − z0

(

h2p + 2hphs

)

+ hpz
2
0

]

−
bYs

1− ν2s
κ2
[

h3s
3

− h2sz0 + hsz
2
0

]

+

+
bd31Yp
1− ν2p

κλ̇

[

hp
2

+ hs − z0

]

+
bd31Yp
1− ν2p

κλ̇

[

hp
2

+ hs − z0

]

+
bǫ33
hp

λ̇2
}

(3.37)

and further collecting together the terms multiplying κ2, κλ̇, and λ̇2, Eq. 3.37becomes:

ℓ =
1

2

{

µẇ2 − κ2
[

bYp
1− ν2p

(

h3p
3

+ h2phs + hph
2
s − z0

(

h2p + 2hphs

)

+ hpz
2
0

)

+
bYs

1− ν2s
κ2
(

h3s
3

− h2sz0 + hsz
2
0

)]

+

+ 2κλ̇

[

bd31Yp
1− ν2p

(

hp
2

+ hs − z0

)]

+ λ̇2
(

bǫ33
hp

)}

(3.38)
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Thus, introducing the following coefficients:

• Equivalent bending stiffness of the system

D̄(x) =































Ysb

1− ν2s

[

h3s
3

− z0h
2
s + hsz

2
0

]

+
Ypb

1− ν2p

[

h3p
3

+ h2phs + h2shp − z0

(

h2p + 2hphs

)

+ z20hp

]

, l1 < x < l2

Ysbh
3
s

12(1− ν2s )
, 0 ≤ x ≤ l1 and l2 ≤ x ≤ Ls

(3.39)

• Electromechanical coupling coefficient

θ =
Ypbd31
1− ν2p

(

hp
2

+ hs − z0

)

(3.40)

• Equivalent piezoelectric capacity per unit of length

Cp,L = ǫ33
b

hp
(3.41)

and the Heaviside function, defined as

H(x) =



















1, x ≥ 0

0, x < 0

(3.42)

Substituting the above expressions in Eq. 3.38,

ℓ =
1

2

{

µẇ2
a − D̄w′′2 + 2θw′′λ̇[H(x− l1)−H(x− l2)] + Cp,Lλ̇

2[H(x− l1)−H(x− l2)]

}

(3.43)

It is worth noting that the Heaviside function H(x) has been used to consider the contribution of the piezo-

electric lamina only on its length.

Finally, the external work of non-conservative forces is:

δWnc = −
1

R
λ̈ δλ−

∫ Ls

0

caẇa δwa dx−

∫ Ls

0

csε̇ δε dV =

=
1

R
λ̈ δλ+

∫ Ls

0

caẇa δwa dx+

∫ Ls

0

csJ ẇ
′′ δw′′ dx

(3.44)

with λ̈/R δλ = Ic the current powering the electric load (represented by a resistance R), (csJẇ
′′)′′ the

Kelvin-Voigt (or strain-rate) damping term, expressing the internal energy dissipation of the beam, and

caẇa the viscous air damping.

Focusing on the specific form of the Lagrangian function, which includes continuous ℓ and lumped
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contributions Lk (see e.g., [Gupta 1988]),

δL(u) =

∫ Ls

0

δℓ(u) dx+ δL2(u) + δL3(u), (3.45)

the set of independent parameters is provided for the piezoelectric cantilever by functions p1 = wa(x, t)

and p2 = λ(t) along with their time and space derivatives. Thus, setting p = {p1, p2}, the Lagrangian from

Eq. A.7 can be expressed in general form as:

δL(p,p′,p′′, ṗ, ṗ′) =

∫ Ls

0

(

2
∑

j=1

4
∑

i=0

∂ℓ

∂pj(i)
δpj

(i)

)

dx+

3
∑

k=2

2
∑

j=1

4
∑

i=0

∂Lk

∂pj(i)
δpj

(i) (3.46)

where, for the sake of conciseness, it is set p
(0)
j = pj , p

(1)
j = p′j , p

(2)
j = p′′j , and p

(3)
j = ṗj . Each term of

the expansion with respect to the virtual displacements δp
(i)
j needs to be separately evaluated, using the

condition δp(t1) = δp(t2) = 0. In the following, only not vanishing derivatives will be taken into account

relatively to the summations in the r.h.s of Eq. A.8. Thus, remembering the Extended Hamilton’s Principle

(Eq. 3.20), and considering the order reversibility of integrals and the commutativity of the operators δ(·)

and ∂/∂x(·), the derivative of ℓ with respect to ṗj can be integrated by parts over time, as follows

∫ Ls

0

∫ t2

t1

∂ℓ

∂ṗj
δṗj dt dx =

∫ Ls

0

[

∂ℓ

∂ṗj
δpj

∣

∣

∣

∣

t2

t1

−

∫ t2

t1

∂

∂t

(

∂ℓ

∂ṗj

)

δpj dt

]

dx = −

∫ Ls

0

∫ t2

t1

∂

∂t

(

∂ℓ

∂ṗj

)

δpj dt dx.

(3.47)

Analogously, the derivative with respect to ṗj relative to L2 can be integrated by parts over time

∫ t2

t1

∂L2

∂ṗj
δṗj dt =

∂L2

∂ṗj
δpj

∣

∣

∣

∣

t2

t1

−

∫ t2

t1

∂

∂t

(

∂L2

∂ṗj

)

δpj dt = −

∫ t2

t1

∂

∂t

(

∂L2

∂ṗj

)

δpj dt (3.48)

and the integral over the beam length not taken into account since L2 is defined only at the free edge.

Regarding the term L3 associated to the yielding clamp, one obtains,

∫ t2

t1

∂L3

∂p′j
δp′j dt =

∂L3

∂p′j
δpj

∣

∣

∣

∣

t2

t1

−

∫ t2

t1

∂

∂x

(

∂L3

∂p′j

)

δpj dt = −

∫ t2

t1

∂

∂x

(

∂L3

∂p′j

)

δpj dt (3.49)

Finally, the derivative of L3 with respect to ṗj is equal to zero, since this lagrangian term is not time depen-

dent.

A similar calculation can be performed for derivatives with respect to p′j and p′′j . Since both L2 and L3

are defined only at the boundaries, their integral over the beam length is zero. Thus, integrals of ℓ over x of

the derivative with respect to p′j can be integrated by parts:

∫ t2

t1

∫ Ls

0

∂ℓ

∂p′j
δp′j dx dt =

∫ t2

t1

[

∂ℓ

∂p′j
δpj

∣

∣

∣

∣

Ls

0

−

∫ Ls

0

∂

∂x

(

∂ℓ

∂p′j

)

δpj dx

]

dt (3.50)
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and, analogously, for the derivative of ℓ with respect to p′′j we obtain

∫ t2

t1

∫ Ls

0

∂ℓ

∂p′′j
δp′′j dx dt =

∫ t2

t1

[

∂ℓ

∂p′′j
δp′j

∣

∣

∣

∣

Ls

0

−
∂

∂x

(

∂ℓ

∂p′′j

)

δpj

∣

∣

∣

∣

Ls

0

+

∫ Ls

0

∂2

∂x2

(

∂ℓ

∂p′′j

)

δpj dx

]

dt (3.51)

Recalling also the expression of external work of non-conservative forces leading to mechanical damp-

ing and electrical dissipation terms,

δWnc =

∫ Ls

0

(Q̄11 δp1 + Q̄12 δp
′′

1)dx+Q2 δp2 (3.52)

As seen before for the Lagrangian function, exploiting the order reversibility of time and space integrals,

the Q12δp
′′

1 term can be integrated by parts:

∫ Ls

0

Q12δp
′′

1 dx = Q12δp
′

1

∣

∣

∣

∣

Ls

0

−

∫ Ls

0

∂Q12

∂x
δp′1 dx =

=Q12δp
′

1

∣

∣

∣

∣

Ls

0

−
∂Q12

∂x
δp1

∣

∣

∣

∣

Ls

0

+

∫ Ls

0

∂2Q12

∂x2
δp1 dx

(3.53)

Substituting the expressions 3.47, 3.48, 3.50, 3.51, and 3.53 in the Eq. A.8, we can rewrite the Extended

Hamilton Principle 3.20 as

∫ t2

t1

{

∫ Ls

0

[

∂ℓ

∂pj
−

∂

∂x

(

∂ℓ

∂p′j

)

+
∂2

∂x2

(

∂ℓ

∂p′′j

)

−
∂

∂t

(

∂ℓ

∂pj

)

+Qj

]

δpj dx +

[

∂ℓ

∂p′j
−

∂

∂x

∂ℓ

∂p′′j
−
∂Q12

∂x
−
∂

∂t

∂L2

∂ṗj

]

δpj

∣

∣

∣

∣

Ls

0

+

[

∂ℓ

∂p′′j
+Q12 +

∂L3

∂p′j
−
∂

∂t

∂L2

∂ṗ′j

]

δp′j

∣

∣

∣

∣

Ls

0

}

dt = 0 (3.54)

where the terms involving L2 and L3 are considered equal to zero in 0 and Ls, respectively, and where Q1

includes the resulting term from integration by parts of the integral term in Eq. 3.52. Usually, Eq. 3.54 leads

to separately setting the terms associated to virtual displacements equal to zero because of principle of

virtual work, directly providing in this way the governing equation and the BCs. However, in the present

case it would lead to time dependent BCs due to the presence of imposed excitation wb inside the total

displacement wa, and this suggest to rearranging terms in Eq. 3.54 before setting them equal to zero.

Thus, for p1 = wa we have

∫ Ls

0

[

∂ℓ

∂wa
−

∂

∂x

(

∂ℓ

∂w′

a

)

+
∂2

∂x2

(

∂ℓ

∂w′′

a

)

−
∂

∂t

(

∂ℓ

∂ẇa

)

+Q11 +
∂2Q12

∂x2

]

δwa dx+

+

[

∂ℓ

∂w′

a

−
∂

∂x

∂ℓ

∂w′′

a

−
∂Q12

∂x
−
∂

∂t

∂L2

∂ẇa

]

δwa

∣

∣

∣

∣

Ls

0

+

[

∂ℓ

∂w′′

a

+Q12 +
∂L3

∂w′

a

−
∂

∂t

∂L2

∂ẇ′

a

]

δw′

a

∣

∣

∣

∣

Ls

0

= 0

(3.55)

in which, recalling that the space derivatives of wa contain only the elastic contribution w, the terms are

∂ℓ

∂wa
=

∂ℓ

∂w′

a

= 0,
∂ℓ

∂w′′

a

= −D̄w′′ + θλ̇
[

H(x− l1)−H(x− l2)
]

,
∂ℓ

∂ẇa
= µẇa

61



3. Electromechanical modelling of piezoelectric cantilevered beams

Then, by substituting in Eq. 3.55 we obtain

∫ Ls

0

∂2

∂x2

{

−D̄w′′ + θλ̇

[

H(x− l1)−H(x− l2)

]}

−
∂

∂t

(

µẇa

)

−caẇa−
∂2

∂x2

(

csJẇ
′′

)

dx+

+

{

−
∂

∂x

[

−D̄w′′ − csJẇ
′′ + θλ̇

(

H(x− l1)−H(x− l2)

)]

−
∂

∂t

(

mtipẇa(Ls)

)}

δwa

∣

∣

∣

∣

∣

Ls

0

+

+

{

−D̄w′′ − csJẇ
′′ + θλ̇

[

H(x− l1)−H(x− l2)

]

+ krotw
′

}

δw′

∣

∣

∣

∣

∣

Ls

0

= 0

(3.56)

Considering the term depending from θ vanished since, thanks to the Heaviside function, the piezoelectric

does not act in 0 and Ls, by performing derivatives in Eq. 3.56 the following equation can be obtained.

∫ Ls

0

−µẅa − (D̄w′′)′′ + θλ̇

[

H ′′(x− l1)−H ′′(x− l2)

]

−caẇa−(csJẇ
′′)′′dx+

+

[

(D̄w′′)′ + (csJẇ
′′)′ −mtipẇa

]

δwa

∣

∣

∣

∣

∣

Ls

0

+

(

−D̄w′′ − csJẇ
′′ + krotw

′

)

δw′

∣

∣

∣

∣

∣

Ls

0

= 0

(3.57)

Where the second derivative of the Heaviside function is equal to the first derivative of the Dirac delta

function δ, defined as.

δ(x) =



















+∞, x = 0

0, x 6= 0

(3.58)

It is convenient splitting wa into the elastic and rigid body contribution, and then grouping the terms both

depending on wb and associated to δp1 with the continuous term (δ-Dirac symbols are introduced for that).

Thus, the following equation is obtained:

∫ Ls

0

{

−µẅ − (D̄w′′)′′ + θ

[

δ′(x− l1)− δ′(x− l2)

]

λ̇− caẇ − (csJẇ
′′)′′ −

[

µ+mtipδ(x− Ls)

]

ẅb − caẇb

}

dx+

+

[

(D̄w′′)′ + (csJẇ
′′)′ −mtipẇ

]

δw

∣

∣

∣

∣

∣

Ls

0

+

(

−D̄w′′ − csJẇ
′′ + krotw

′

)

δw′

∣

∣

∣

∣

∣

Ls

0

= 0

(3.59)

Considering δp(0, t) = δp(Ls, t) = δp′(0, t) = δp′(Ls, t) = 0, according to the fundamental lemma of

calculus of variations and thanks to the arbitrariness of virtual displacements δp, Eq. 3.59 is satisfied ∀δp

and ∀(x, t) ∈ (0, Ls)× [0,+∞) only if the terms inside and outside the integral are equal to zero. Thus, the

following equation is obtained.

µẅ + caẇ + (D̄w′′ + csJẇ
′′)′′ − θ

[

δ′(x− l1)− δ′(x− l2)

]

λ̇ = f(x, t) (3.60)

with f(x, t) expressed as:

f(x, t) = −[µ+mtipδ(x− lr)] ẅb − caẇb (3.61)
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The natural and geometric boundary conditions are obtained by setting to zero arbitrarily δp(0, t) and

δp′(0, t) or their coefficients of the terms out of the integral in Eq. 3.59.

For p2 = λ, the derivatives in Eq. 3.54 take the form:

∂ℓ

∂λ′
=

∂ℓ

∂λ′′
=
∂ℓ

∂λ
= 0,

∂ℓ

∂λ̇
= θw′′[H(x− l1)−H(x− l2)] + Cp,Lλ̇[H(x− l1)−H(x− l2)]

Recalling that Q2 = −Ic, and setting equal to zero the first term in r.h.s. of Eq. 3.54, the following equation

is obtained:
∫ Ls

0

[

∂ℓ

∂λ
−

∂

∂x

(

∂ℓ

∂λ′

)

+
∂2

∂x2

(

∂ℓ

∂λ′′

)

−
∂

∂t

(

∂ℓ

∂λ̇

)

− I(Ls)
c

]

dx = 0 (3.62)

Substituting the above derivatives expressions, the following equation is obtained

∫ Ls

0

{

−
∂

∂t

[

θw′′

[

H(x− l1)−H(x− l2)

]

+ Cp,Lλ̇[H(x− l1)−H(x− l2)]

]

− I(Ls)
c

}

dx = 0 ⇒

⇒−

∫ Ls

0

θẇ′′

[

H(x− l1)−H(x− l2)

]

dx− Cpλ̈− Ic = 0

(3.63)

where Cp = Cp,L · Lp is the equivalent piezoelectric capacity, including the length of the piezo lamina.

Thus, the final system is











µẅ + caẇ + (csJẇ
′′ + D̄w′′)′′ − θ

[

δ′(x− l1)− δ′(x− l2)
]

λ̇ = f(x, t)

Cpλ̈+
∫ Ls

0
θ

[

H(x− l1)−H(x− l2)

]

ẇ′′ dx = −Ic
(3.64)

with boundary conditions in x = 0

w(0) = 0 (3.65)

− D̄w′′(0)− csJẇ
′′(0) + krotw

′(0) = 0 (3.66)

and in x = Ls

D̄w′′(Ls) + csJẇ
′′(Ls) = 0 (3.67)

[D̄w′′(Ls) + csJẇ
′′(Ls)]

′ −mtipẅ(Ls) = 0. (3.68)

3.3 Electromechanical reduced-order model

3.3.1 Analytical beam modes including tip mass and yielding clamp effects

As known from several authors, the contribution of higher-order modes to voltage and then power pro-

duction is negligible. Fot this reason, it is convenient to find a solution of Eqs. 3.64 by modal superposition.

Thus, the displacement w can be expressed as a linear combination of the product of a time and space

function:

w(x, t) =

Nw
∑

j=1

qj(t)φj(x) (3.69)
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with qj the generalized coordinate depending on time, φj(x) the linear normal modes of the multi-layer

beam, satisfying the geometric and natural boundary conditions at the beam edges, and Nw number of

modes taken into account. The flux linkage λ is constant along the length of the piezoelectric patch and,

consequently, has the unit constant as shape function:

λ(x, t) = λ(t) · C (3.70)

where can be set directly C = 1.

To solve the system equations and obtain the most accurate solution, the exact modes φj of the consid-

ered structure can be calculated. First, the external force f(x, t) is set to zero to obtain the free vibration

condition. Moreover, the system is considered undamped to avoid complex modes. Finally, to uncouple

electrical and mechanical equations, the short circuit condition, i.e., λ̇ = 0, is imposed. With the previous

hypothesis, Eqs. ?? are reduced to

µẅ + (D̄w′′)′′ = 0 (3.71)

and, substituting the modal expansion (Eq. 3.69) into Eq. 3.71, the equation for the j-th mode is

µq̈j(t)φj(x) + (D̄φ′′j )
′′qj(t) = 0 or −

q̈j
qj

=
(D̄φ′′j )

′′

µφj
(3.72)

Since the left-hand side is time dependent and the right-hand side is not, Eq. 3.72 is verified only if both

sides are equal to a positive constant, i.e.,

−
q̈j
qj

=
(D̄φ′′j )

′′

µφj
= cost = ω2

j (3.73)

where the constant ω2
j is the eigenvalue referred to the eigenfunction j, expressed as the ratio of the modal

stiffness and the modal mass. Thus, the following equations can be defined







q̈j + ω2
j qj = 0

(D̄φ′′j )
′′ − µφj = 0

(3.74)

The second equation can be solved easily only for a beam with uniform stiffness D̄ over the length, provid-

ing

D̄φIVj − µω2
jφj = 0 (3.75)

For the piezoelectric structure under consideration has non-uniform distribution of stiffness and mass, the

calculation of the exact bending modes, which allows for modal decoupling, requires some mathematical

developments (a similar problem is addressed in [Dessi et al. 2015]). First, in order to refer to Eq. 3.75, a

piecewise definition of w(x, t) in space is introduced and consequently three different displacement func-
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tions can be locally defined along the beam axis as:

w(x, t) =



















w1(x1), for 0 ≤ x1 ≤ l1

w2(x2), for 0 ≤ x2 ≤ Lp = l2 − l1

w3(x3), for 0 ≤ x3 ≤ Ls − l2

(3.76)

where local coordinate systems have been defined for the three parts of the beam, as shown in Fig. 3.5.

Figure 3.5: Definition of local coordinate systems for exact mode calculation.

Each local displacement function wi can be expanded with respect to the local modes relative to the

i-th portion as wi =
∑

qjφij . Each set of shape functions {φ1j , φ2j , φ3j} represents the global mode φj and

satisfies the proper BCs at the beam ends and the continuity conditions at the piezoelectric layer edges

up to 3-rd order spatial derivative [Dessi et al. 2015]. Each function φij satisfies the following eigenvalue

problem:

φIVij − α4
ijφij = 0 (3.77)

with α4
ij = µω2

j /D̄, where µ and D̄ are constant in each subproblem, and ωj is the natural frequency of the

vibration modes. Next, given the shape functions φij in the form:

φij(xi) = A
(1)
ij sin(αijxi) +A

(2)
ij cos(αijxi) +A

(3)
ij sinh(αijxi) +A

(4)
ij cosh(αijxi) (3.78)

where i = 1, 2, 3 correspond respectively to the three parts of the beam. To determinate the A
(k)
ij coeffi-

cients, the following boundary conditions are rewritten in terms of φij .

At the beam clamping, in x1 = 0:

w1(0) = 0 ⇒ φ1j(0) = A
(2)
1j +A

(4)
1j = 0 (3.79)

D̄w′′(0) = krotw
′(0) ⇒ φ′1j(0) =

D̄

krot
φ′′1j(0) ⇒ A

(1)
1j +A

(3)
1j =

D̄α1j

krot
(−A

(2)
1j +A

(4)
1j ) (3.80)

At the discontinuity interfaces same displacement, slope, shear stress and bending moment are imposed.

For x1 = l1 and x2 = 0:

• displacement

w1(l1) = w2(0) ⇒ φ1j(l1) = φ2j(0) ⇒

A
(1)
1j

[

sin(α1j l1)− sinh(α1j l1)
]

+A
(2)
1j

[

cos(α1j l1)− cosh(α1j l1)
]

= A
(2)
2j +A

(4)
2j

(3.81)

65



3. Electromechanical modelling of piezoelectric cantilevered beams

• slope

w′

1(l1) = w′

2(0) ⇒ φ′1j(l1) = φ′2j(0) ⇒

α1j A
(1)
1j

[

cos(α1j l1)− cosh(α1j l1)
]

+ α1j A
(2)
1j

[

− sin(α1j l1)− sinh(α1j l1)
]

= α2j A
(1)
2j + α2j A

(3)
2j

(3.82)

• bending moment

D̄(l1)w
′′

1 (l1) = D̄(Lp)w
′′

2 (0) ⇒ φ′′1j(l1) = D21φ
′′

2j(0) ⇒

α2
1j A

(1)
1j

[

− sin(α1j l1)− sinh(α1j l1)
]

+ α2
1j A

(2)
1j

[

− cos(αj1l1)− cosh(α1j l1)
]

=

D21(α
2
2j A

(4)
2j − α2

2j A
(2)
2j )

(3.83)

• shear stress

D̄(l1)w
′′′

1 (l1) = D̄(Lp)w
′′′

2 (0) ⇒ φ′′′1j(l1) = D21φ
′′′

2j(0) ⇒

α3
1j A

(1)
1j

[

− cos(α1j l1)− cosh(α1j l1)
]

+ α3
1j A

(2)
1j

[

sin(α1j l1)− sinh(α1j l1)
]

= D21(α
3
2j A

(3)
2j − α3

2j A
(1)
2j )

(3.84)

For x2 = Lp and x3 = 0:

• displacement

w2(Lp) = w3(0) ⇒ φ2j(Lp) = φ3j(0) ⇒

A
(1)
2j

[

sin(α2jLp)− sinh(α2jLp)
]

+A
(2)
2j

[

cos(α2jLp)− cosh(α2jLp)
]

= A
(2)
3j +A

(4)
3j

(3.85)

• slope

w′

2(Lp) = w′

3(0) ⇒ φ′2j(Lp) = φ′3j(0) ⇒

α2j A
(1)
2j

[

cos(α2jLp)− cosh(α2jLp)
]

+ α2j A
(2)
2j

[

− sin(α2jLp)− sinh(α2jLp)
]

= α3j A
(1)
3j + α3j A

(3)
3j

(3.86)

• bending moment

D̄(Lp)w
′′

2 (Lp) = D̄(Ls)w
′′

3 (0) ⇒ φ′′2j(Lp) = φ′′3j(0)/D21 ⇒

α2
2j A

(1)
2j

[

− sin(α2jLp)− sinh(α2jLp)
]

+ α2
2j A

(2)
2j

[

− cos(α2jLp)− cosh(α2jLp)
]

=
α2
3j A

(4)
3j − α2

3j A
(2)
3j

D21

(3.87)
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• shear stress

D̄(Lp)w
′′′

2 (Lp) = D̄(Ls)w
′′′

3 (0) ⇒ φ′′′2j(Lp) = φ′′′3j(0)/D21 ⇒

α3
2j A

(1)
2j

[

− cos(α2jLp)− cosh(α2jLp)
]

+ α3
2j A

(2)
2j

[

sin(α2jLp)− sinh(α2jLp)
]

=
α3
3j A

(3)
3j − α3

3j A
(1)
3j

D21

(3.88)

where

α4
1j =

µ(0)ω2
j

D̄(0)
(3.89)

α4
2j =

µ(Lp)D̄(0)

µ(0)D̄(Lp)
α4
1j =

µ21

D21
α4
1j (3.90)

α4
3j = α4

1j (3.91)

Finally, for x3 = Ls − l2 = χ3 the boundary conditions are:

D̄w′′′

3 (χ3)−mtipẅ3(χ3) = 0 ⇒ φ′′′3j(χ3) = −
mtip

D̄
ω2
jφ3j(χ3) ⇒

φ3j
′′′(χ3) = −µtα

4
1jφ3j(χ3)

(3.92)

D̄w′′(χ3) = 0 ⇒ φ′′3j(χ3) = 0 (3.93)

where µt = mtip/µ(0). Boundary and continuity conditions together form a system of equations from the

associated eigenproblem in the unknown eigenvalues αij and coefficients A
(k)
ij is solved, and the modal

shape functions φij and pulsation ωj are then obtained for each beam portion thanks to the MATLAB

numerical solvers. Thus, the shape of the j-th mode is reconstructed according to modal representation

introduced above.

3.3.2 Modal projection

Taking now into account the damped equations, by substituting Eq. 3.69 into the first equation of (3.64),

and projecting the first equation over the mode φm(x), one has:

Nw
∑

j=1

q̈j < µφj , φm > +

Nw
∑

j=1

q̇j (ca < µφj , φm > + cs < (Jφ′′j )
′′, φm >)+

+

Nw
∑

j=1

qj < (D̄φ′′j )
′′, φm > − θλ̇ <

[

δ′(x− l1)− δ′(x− l2)
]

, φm >=< f(x, t), φm >= Fm(t)

(3.94)

where the inner product between generic functions g1 and g2 in the interval [0, lr] is introduced as <

g1, g2 >=
∫ lr
0
g1g2 dx. In Eq. 3.94 it is convenient to group terms sharing the same inner product.
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Nw
∑

j=1

(q̈j +
ca
µ
q̇j) < µφj , φm > +

Nw
∑

j=1

q̇j < (csJφ
′′

j )
′′, φm > +

+

Nw
∑

j=1

qj < (D̄φ′′j )
′′, φm > −θλ̇ <

[

δ′(x− l1)− δ′(x− l2)
]

, φm >= Fm(t)

(3.95)

Moreover, considering the following properties of the Dirac distributions δ for a generic function f(x)

∫ L

0

δ′(x) f(x) dx = −

∫ L

0

δ(x) f ′(x) dx (3.96)

∫ L

0

δ(x− x0) f(x) dx = f(x0) (3.97)

the term including the Dirac function δ derivatives becomes:

< δ′(x− l1)− δ′(x− l2), φm >= −φ′1m(l1) + φ′2m(Lp) (3.98)

Defining then Mjm =< µφj , φm > and K̃jm =< (D̄φ′′j )
′′, φm >, Eq. 3.95 can be written as:

Nw
∑

j=1

(q̈j +
ca
µ
q̇j)Mjm +

Nw
∑

j=1

q̇j < (csJφ
′′

j )
′′, φm > +

+

Nw
∑

j=1

qjKjm − θλ̇

[

φ′2m(Lp)− φ′1m(l1)

]

= Fm(t)

(3.99)

Moreover, by using integration by parts, and recalling the boundary conditions in Eqs. 3.79, 3.80, 3.92, and

3.93, the damping and stiffness terms in Eq. 3.92 can be written as:

< (csJφ
′′

j )
′′, φm >= (csJφ

′′

ij)
′φim

∣

∣

∣

∣

∣

Ls

0

− csJφ
′′

ijφ
′

im

∣

∣

∣

∣

∣

Ls

0

+

∫ Ls

0

csJφ
′′

j φ
′′

mdx⇒ (3.100)

< (D̄φ′′j )
′′, φm >= (D̄φ′′ij)

′φim

∣

∣

∣

∣

∣

Ls

0

− D̄φ′′ijφ
′

im

∣

∣

∣

∣

∣

Ls

0

+

∫ Ls

0

D̄φ′′j φ
′′

mdx⇒ (3.101)

Substituting Eqs. 3.100 and 3.101 into Eq. 3.95

Nw
∑

j=1

(q̈j +
ca
µ
q̇j) < µφj , φm > +

Nw
∑

j=1

q̇j(< csJφ
′′

j , φ
′′

m > +φ3m(Ls)(csJφ
′′

3j)
′|x=Ls

+ φ′1m(0)csJ0φ
′′

1j(0))+

+

Nw
∑

j=1

qj(< D̄φ′′j , φ
′′

m > +φ3m(Ls)(D̄φ
′′

3j)
′|x=Ls

+ φ′1m(0)D̄0φ
′′

1j(0))− θλ̇

[

φ′2m(Lp)− φ′1m(l1)

]

= Fm(t)

(3.102)
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where, for the sake of conciseness, D̄0 = D̄(0) and J0 = J(0). Equation 3.102 can be rearranged as

Nw
∑

j=1

(q̈j +
ca
µ
q̇j) < µφj , φm > +

Nw
∑

j=1

q̇j < csJφ
′′

j , φ
′′

m > +

Nw
∑

j=1

qj < D̄φ′′j , φ
′′

m > +

+

Nw
∑

j=1

q̇jφ3m(Ls)(csJφ
′′

3j)
′|x=Ls

+

Nw
∑

j=1

qjφ3m(Ls)(D̄φ
′′

3j)
′|x=Ls

+

+

Nw
∑

j=1

q̇jφ
′

1m(0)csJ0φ
′′

1j(0) +

Nw
∑

j=1

qjφ
′

1m(0)D̄0φ
′′

1j(0)− θλ̇

[

φ′2m(Lp)− φ′1m(l1)

]

= Fm(t)

(3.103)

Substituting Eq. 3.69 into the expression of the boundary condition at x = Ls (i.e., [csJẇ
′′+D̄w′′]′|x=Ls

=

mtipẅ|x=Ls
) yields:

[

Nw
∑

j=1

q̇j(csJφ
′′

3j) +

Nw
∑

j=1

qj(D̄φ
′′

3j)]
′|x=Ls

= mtip

Nw
∑

j=1

q̈jφ3j(Ls). (3.104)

Similarly, substituting Eq. 3.69 into the expression of the boundary condition at x = 0 (i.e., [D̄w′′(0) +

csJẇ
′′(0)]|x=0 = krotw

′(0)|x=0) yields:

Nw
∑

j=1

qjD̄0φ
′′

1j(0) +

Nw
∑

j=1

q̇jcsJ0φ
′′

1j(0) = krot

Nw
∑

j=1

qjφ
′

1j(0) (3.105)

Taking into account relations 3.104 and 3.105, one can write Eq. 3.102 as:

Nw
∑

j=1

(

Mjm +mtip φ3j(Ls)φ3m(Ls)

)

q̈j +

Nw
∑

j=1

(

ca
µ
Mjm +

csJ

D̄
Kjm

)

q̇j+

+

Nw
∑

j=1

(

Kjm + krotφ
′

1j(0)φ
′

1m(0)

)

qj − θ (φ′2m(Lp)− φ′1m(l1))λ̇ = Fm(t),

(3.106)

with Kjm =< D̄φ′′j , φ
′′

m >. Introducing the normalization condition i.e., Mjm +mtipφ3j(Ls)φ3m(Ls) = δjm

(δjm is a Kronecker delta), the overall mass matrix is diagonal with unit elements and consequently we have

also an overall diagonal stiffness matrix Kjm + krotφ
′

1j(0)φ
′

1m(0) = δjmω
2
m. Thus the previous equation

becomes:

q̈m + 2 ζmωmq̇m + ω2
mqm − θ (φ′2m(Lp)− φ′1m(l1))λ̇ = Fm(t), (3.107)

where the damping ratio is ζm = 1/2
[

csJωm/D̄ + ca/(µωm)
]

.

Recalling the second equation of Eqs. 3.64,

Cpλ̈+

∫ Ls

0

θ
[

H(x− l1)−H(x− l2)
]

ẇ′′ dx = −Ic

where θ is constant over the piezoelectric patch, and substituting Eq. 3.69, one has for the integral term:

θ

Nw
∑

j=1

q̇j

∫ Ls

0

[

H(x− l1)−H(x− l2)
]

φ′′j dx = θ

Nw
∑

j=1

q̇j

∫ l2

l1

φ′′j dx, (3.108)
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where the effect of the Heaviside function is just to limit the integration domain between l1 and l2. Denoting

then with χj the integral term the right hand side of Eq. 3.108, the second equation of the system takes the

form:

Cpλ̈+ θ

Nw
∑

j=1

χj q̇j = −Ic (3.109)

The final system of equations is:

q̈m + 2ζmωmq̇m + ω2
mqm − θ(φ′2m(Lp)− φ′1m(l1))λ̇ = Fm(t) (3.110)

Cpλ̈+ θ

Nw
∑

j=1

χj q̇j = −Ic (3.111)

where m = 1, 2, ..., Nw.

The hypothesis of lumped tip mass can be inaccurate if its extension ltip covers a significant part of the

beam, i.e., ltip/Ls << 1 is not verified, as also intuitively shown in Fig. 3.6. The tip mass, positioned on the

support layer, affects the vibration modes differently with respect to a concentrated proof mass because is

featured by a moment of inertia as well. For this reason, an extended tip mass model is adopted, following

several authors [M. Kim et al. 2010] [Tang et al. 2017] [Magrab 2012]. This model describes closely what

happens in real-life applications where a more stable adhesion of proof mass to the cantilever is guaranteed

via a sufficiently large contact surface. To fit into the 1D representation, a mass per unit of length µtip is

defined over its length ltip.

Figure 3.6: Lateral view of the PEH with extended tip mass (dimensions do not scale real values of the
device considered later).

For the sake of simplicity, supposing the support layer as part of the tip mass above for lr ≤ x ≤ Ls and

since the overall mass per unit of length keeps constant in the same interval, it follows for the total tip mass

mtip and moment of inertia Jtip:

mtip = µtipltip + µ(lr)ltip (3.112)

Jtip =
µtipltip

3

(

h2tip +
l2tip
4

−
hs

8htip
l2tip

)

+
µ(lr)l

3
tip

12
(3.113)

where the point T with coordinates x = lr, z = hs/2 is assumed as pole to calculate the moment of inertia

and terms of order higher than O(hs) are neglected since hs << htip. Following this hypothesis, x = lr

becomes the effective beam length for which the beam modes are calculated.

The new boundary conditions at the free end x = lr become

D̄w′′(lr) + csJẇ
′′(lr) +

mtipltip
2

(

ẅ(lr)+
ltip
2
ẅ′(lr)

)

+ Jtipẅ
′(lr) = 0 (3.114)
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[D̄w′′(lr) + csJẇ
′′(lr)]

′ −mtip

(

ẅ(lr) +
ltip
2
ẅ′(lr)

)

= 0. (3.115)

and the the normalization condition is now

Mjm+mtipφ3j(lr)φ3m(lr)+
mtipltip

2
[φ′3j(lr)φ3m(lr)+φ3j(lr)φ

′

3m(lr)]+

(

Jtip+mtip

l2tip
4

)

φ′3j(lr)φ
′

3m(lr) = δjm.

(3.116)

The modal forcing term Fm(t) is defined as the component of the excitation over the m-th mode, and,

introducing βm =
∫ lr
0
µφm dx and γm =

∫ lr
0
φm dx, Eq. ?? can be written as:

Fm(t) = −ẅb

[

βm +mtipφ3m(lr) +mtip
ltip
2
φ′3m(lr)

]

− caγmẇb (3.117)

For more details on extended tip mass theory, see Appendix A.

3.3.3 Comparison of beam analytical modes with existing results

In order to validate the theory developed in the previous section, the calculation of exact modes first is

compare with numerical results found by Laura et al. [Laura et al. 1975], who have studied a beam with

uniform mass and stiffness distribution for different mass (mtip/(µ · Ls)) and stiffness (D̄/krot · Ls) non-

dimensional ratios, without any piezoelectric effect involved. The beam is considered to be uniform and

made of the only support layer (piezoelectric effect is not involved in resonance frequency calculation).

Moreover, the tip mass is considered to be concentrated in x = Ls and its rotational inertia neglected.

In Figs. 3.7a, 3.7b, and 3.7c the solutions obtained by Laura (squares), expressed as the non-dimensional

spatial frequency αj1Ls, for the first three modes are plotted as function of different tip mass ratios for

different spring/stiffness ratios and compared with those relative to the analytical modes obtained with

the present model implemented in MATLAB (dots), showing a complete agreement. By maintaining the

segmented mode model, both correct definition of boundary conditions (Eqs. 3.79, 3.105, 3.93, 3.104) and

effectiveness of interface conditions (Eqs. 3.81 to 3.88) are thus verified.
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(a) First mode.

(b) Second mode.

(c) Third mode.

Figure 3.7: Comparison between Laura et al. [Laura et al. 1975] and present theory results for a uniform
cantilevered beam with torsional spring at the clamping and concentrated mass at the free end.

From the analysis of the previous plots, it emerges that adding even a small tip mass on the free end

of the beam has a great impact on the structure resonance frequencies. However, if this mass is increased
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above a certain value its effect on reducing the beam frequency reaches a horizontal asymptote formtip/(µ ·

Ls) > 3. This implies that frequency estimation is more sensitive to model or parameters errors for lower

tip mass ratios.

The dependence of the frequency on the stiffness/spring ratio needs to be clarified as well. An ’infinite’

value of K determines that the ratio tends to zero, which is equivalent to constrain the beam slope and

then impose clamping BC. A finite value of this ratio has a significant effect on frequencies, and as the

spring coefficient gets lower, the BC resembles more and more to simply supported BC, where only vertical

displacement are constrained.

Finally, the extended tip mass model (not lumped as in previous cases) has been validated by comparing

results obtained with the present theory with those reported by Kim et al. [M. Kim et al. 2010]. The main

parameters of the investigated device are reported in Tab. 3.1 and in Tab. 3.2 resonance frequencies for the

first bending mode and different tip masses, found with the present theory, are compared with those by

Kim et al. , showing good agreement.

Table 3.1: Kim et al. [M. Kim et al. 2010] energy harvester parameters.

Parameter Unit Value

Support layer
Length Ls m 0.053
Thickness hs m 0.000126
Width b m 0.0317
Young’s modulus Ys Pa 100 · 109

Density ρs kg/m3 7630
Piezoelectric layer
Length Lp m 0.053
Thickness hp m 0.000275
Young’s modulus Yp Pa 61 · 109

Density ρp kg/m3 7750
Tip mass 1
Length ltip m 0.0104
Thickness htip m 0.00661
Mass mtip kg 0.0167
Tip mass 2
Length ltip m 0.0216
Thickness htip m 0.00666
Mass mtip kg 0.0347

Table 3.2: Frequency comparison between Kim et al. [M. Kim et al. 2010] and present theory.

Tip mass Kim et al. Present theory Concentrated mass
[Hz] [Hz] [Hz]

0 109.45 109.45 109.45
mtip1 41.44 41.64 36.86
mtip2 34.85 34.87 26.34
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3.4 Numerical solution validation via COMSOL Multiphysics plate so-

lution

COMSOL Multiphysics™ is the commercial solver chosen to generate a 3D model of the device to which

compare the developed analytical model, and consequently evaluate if the ROM introduces errors in de-

scribing the bending plate behaviour. It is a software able to solve PDEs systems through a finite element

method (FEM) for space variables, providing stationary, time-dependent, frequency-domain, and eigenfre-

quency studies. To run the simulation, the system is defined through geometry (thanks to an integrated

CAD tool), material properties, and different physics involved.

To model a piezoelectric energy harvester two physics are needed: Solid Mechanics and Electrostatics.

The first one describes the mechanical behaviour and boundary conditions of the system. A fixed constraint

with zero displacements and rotation is imposed at one edge of the support layer to simulate the clamping.

To evaluate the eigenfrequencies, the following system of equation is solved







−ρjω
2u = ∇ · σ

−iω = λ
, (3.118)

where the subscript j refers to the different layer. The stress matrix σ is defined according to the constitutive

equations of piezoelectric and isotropic linear elastic materials, respectively reported below

σ = sε− ē31E (3.119)

σ = sε (3.120)

In the Electrostatics section, the charge conservation relation is imposed

∇ ·D = ρv (3.121)

where ρv is the charge density of the material and the electrical displacement D is defined according to

the electrical permittivity through the materials, taking into account the internal polarization for the piezo-

electric. Finally, the Multiphysics section couples the Solid Mechanics and Electrostatics equations with

a segregated approach to simulate the piezoelectric behaviour of the device. The eigenvalues problem is

then solved by using the ARPACK FORTRAN routines, suitable for large-scale problems and based on the

implicitly restarted Arnoldi method (IRAM).

Thus, to prove the 2D reduced order model assumption is not effecting the final results, a 3D model of

the energy harvesting device was created in COMSOL using parameters in Tab. 3.3, the same of the device

investigated experimentally in following sections.
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Table 3.3: Energy harvester parameters.

Parameter Unit Value

Support layer

Length Ls m 0.0633

Thickness hs m 0.000274

Width b m 0.04

Young’s modulus Ys Pa 190 · 109

Density ρs kg/m3 7850

Poisson’s ratio νs - 0.3

Piezoelectric layer

Length Lp m 0.04

Thickness hp m 0.000184

Width b m 0.04

Distance from clamping l1 m 0.0023

Young’s modulus Yp Pa 90 · 109

Density ρp kg/m3 7800

Poisson’s ratio νp - 0.34

Relative electric permittivity ǫ33 F/m 2400

Piezoelectric coefficient d31 C/N −2.1·10−10

Stiff matrix component s11 1/Pa 15 · 10−12

Stiff matrix component s12 = s33 1/Pa 19 · 10−12

Stiff matrix component s12 1/Pa −4.5·10−12

Stiff matrix component s13 = s23 1/Pa −5.7·10−12

Stiff matrix component s44 = s55 1/Pa 39 · 10−12

Stiff matrix component s66 1/Pa 49.4 · 10−12

In the Geometry and Materials sections two main blocks have been defined and modelled as piezoelec-

tric and harmonic steel lamina glued together with the Form Union command, and then setting the relative

physics to the layers.

The mesh is defined with the Physics-controlled option, as shown in Fig. 3.8, choosing automatically

the best shape for physic interface settings imposed and normal size of the elements. As seen in Fig. 3.8, the

support lamina has three holes close to the free edge, previously inserted to allow for different clamping

layouts. The ROM takes into account the missing mass due to the holes by reducing the mass per unit of

length µ in the final portion of the beam (this reduction has not been reported in Eq. 3.36 for the sake of

simplicity).
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Figure 3.8: Finite element discretization of the support and piezoelectric layers.

The torsional spring BC has been simulated and compared with the ROM results with no tip on the free

end. The reproduction of yielding clamp condition requires some care to guarantee its equivalence with the

torsional spring model adopted in the ROM. A small area (see Fig. 3.9) is reserved at the constrained edge

of the PEH to impose numerically the BCs. Along line A the vertical displacement is set to zero, while at

the side connected with the device, i.e., line B in Fig. 3.9, a linear spring system, exerting its restoring force

in the transverse (z-axis) direction, is defined.

Figure 3.9: Schematic representation of the spring system for the yielding clamp as modelled in COMSOL.

To identify the value of the linear spring coefficient to be set in COMSOL™, a criterion based on the

equivalence of the moment exerted by the constraint in both 1D and 3D models is adopted. This moment

can be expressed as:

M = k
(3D)
rot · b · l · l sin γ = k

(1D)
rot · arccos γ (3.122)
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with k
(3D)
rot and k

(1D)
rot spring constants for, respectively, the distributed linear spring system (3D model) and

the lumped torsional spring (1D model), γ the allowed rotation at the clamping, and l the distance between

the spring attachment (line B) and the points where displacement is set to zero (line A). Thus, for small

rotation angles the spring coefficients are related to each other by this relation:

k
(1D)
rot = k

(3D)
rot · b · l2 (3.123)

allowing for the equivalence between the 1D and 3D models. In Fig. 3.10 the natural frequencies associated

to the considered bending modes are compared, showing that 3D and 1D results do not differ for more than

6 %, and thus demonstrating that the Euler-Bernoulli beam model well represents the considered problem.

The difference tends to lower as the BC approximates the perfect clamping condition, with an error which

becomes negligible for the first mode. Moreover, a decrease in spring coefficient value, i.e., a yielding clamp,

affects in a relevant way the resonance frequency, as also demonstrated in Sec. 3.3.3.

Figure 3.10: Comparison of the frequency prediction for different values of the torsional spring krot at the
yielding clamping in logarithmic scale.

A tip mass can be modelled in COMSOL as a body placed at the free end, as shown in Fig. 3.11, assuming

this time ideal clamping conditions at the opposite side.
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Figure 3.11: COMSOL model of the PEH with extended tip mass on the free edge.

Table 3.4: Tip mass parameters.

Tip mass Dimensions LxWxh Weight

[mmxmmxmm] [g]

mtip1 8.1 x 40 x 5.15 2.6

mtip2 9.6 x 40 x 4.1 3.72

As shown in Fig. 3.12, both extended and concentrated tip mass theories show good agreement with the

3D model results in terms of resonance frequency for the first mode, the most relevant for energy harvesting,

but slightly different results for second and third modes. Although both are close to the 3D FEM results,

the extended mass theory difference with the 3D model is always less than 5 %, while the concentrated tip

mass model reaches even 7.7 %. Moreover, Laura conclusions on tip mass are confirmed, with a relevant

but limited decrement of the system resonance frequencies for the two different tip masses studied.
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Figure 3.12: Comparison between resonance frequencies of 3D FEM model (squares) and present theory
with concentrated (stars) or extended (dots) tip mass conditions.

Finally, Fig. 3.13 shows, through a comparison with the 3D model in COMSOL, how the exact mode

calculations significantly improves the structural representation provided by the modal decomposition. In

one case, the exact modes of the stepped beam are employed as in the developed theory, while in the other

case the mode shapes of the uniform structure are used for projecting the PDE and obtaining a system

of ODEs. Using the exact modes, the relative difference with the 3D FE model reduces from 17.5 % to

5 %. Moreover, expanding the displacement field with respect to the exact (undamped) vibration modes

(or system eigenfunctions) provides diagonal mass and stiffness matrices of the ODE, which allows full-

decoupling of the ODE equations.
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Figure 3.13: Comparison between resonance frequencies of 3D FE model (squares) and present theory for
different tip mass conditions, using both approximated (stars) or exact (dots) modes for the modal solution.

3.5 Analytical transfer function vs time marching solution of ROM

To evaluate the energy harvester voltage output under harmonic excitation conditions, Erturk’s ana-

lytical solution [Erturk and Daniel J. Inman 2008a] of forced response under sinusoidal input of Eq. 3.110

has been implemented in MATLAB, taking into account the first three modes of the system. The PEH con-

sidered is a uniform cantilevered beam with support and piezoelectric layers having the same length and

width, but different thickness, as shown in Fig. 3.14.

Figure 3.14: Erturk unimorph PEH.

Main characteristics of the piezoelectric energy harvester are listed in Tab. 3.5

Erturk obtained analytically the ratio of the voltage amplitude with respect to the basement acceleration

amplitude F in the frequency domain as:

λ̇(ω)

−ω2f(x, t)
=

3
∑

r=1

−jµωϕrγr
ω2
r − ω2 + j2ζrωrω

3
∑

r=1

jωψrϕr

ω2
r − ω2 + j2ζrωrω

+
1 + jωτc

τc

(3.124)

where ωr is the circular eigenfrequency of the system, ω is the circular frequency of the seismic excitation,

ϕr = θ/Cp · dφr/dx|Ls
is the modal projection of the ratio between the coupling term in the electrical

equation and the equivalent piezoelectric capacitance, γr =
∫ Ls

0
φrdx is the modal projection of the base

excitation, ψr = θdφr/dx|Ls
is the modal projection of the coupling term in mechanical equations, and
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Table 3.5: Erturk energy harvester parameters.

Parameter Unit Value

Support layer
Length Ls m 0.1
Thickness hs m 0.0005
Width b m 0.02
Young’s modulus Ys Pa 100 · 109

Density ρs kg/m3 7165
Piezoelectric layer
Length Lp m 0.1
Thickness hp m 0.0004
Width b m 0.02
Young’s modulus Yp Pa 66 · 109

Density ρp kg/m3 7800
Permittivity ǫ33 nF/m 15.93
Piezoelectric coefficient d31 pm/V −190

τc = R · Cp (with R electric load) is the time constant of the circuit.

In Fig. 3.15 Erturk analytical solution (continuous lines) for different resistive loads are compared with

the voltage output of Eq. 3.110 (dashed lines) solved in MATLAB with a Runge-Kutta algorithm.

Figure 3.15: Comparison between analytical (continuous lines) and numerical (dashed lines) voltage FRFs
calculated in MATLAB for different resistive loads.

Results obtained with the two different methods are in accordance to each other. Voltage increases with

the resistive load, varying from short circuit (R = 100Ω) until open circuit (R = 106 Ω). First and second

modes are more relevant then the third one, for a unique electrode configuration. Moreover, resistive load

variation causes a slight change in resonance frequency of the system (approximately 1-2 Hz from short

circuit to open circuit conditions).
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3.6 Concluding remarks

In this chapter a multi-layer composite cantilevered Euler – Bernoulli beam model of a piezoelectric

energy harvester has been developed, with non-uniform mass and stiffness distribution through its length.

The electromechanical coupling has been introduced in the mechanical description by using the linear

piezoelectric constitutive equations. A tip mass is positioned on the free edge to tune harvester’s natu-

ral frequencies with lower excitation frequencies and to enhance oscillations. Although a concentrated

mass model is considered initially, a more accurate description is introduced, taking into account the not

negligible extension and rotational inertia effect. Finally, to simulate a non-perfect clamping, yielding in

rotation, a torsional spring is added at x = 0. By analytically developing Lagrange equations from Hamil-

ton’s principle, a partial differential equation system is found and then projected on the exact non-uniform

beam modes (determined in MATLAB). Thus, the developed ROM allows mechanically decoupling oscil-

lators and then easily neglecting those modes not contributing to energy production. The set of ordinary

differential equations is integrated in MATLAB.

Numerical results are compared first with those by Kim et al. [M. Kim et al. 2010] and Laura et al.

[Laura et al. 1975], validating the effectiveness of boundary conditions, and then with a 3D high-fidelity

model of the harvester for the non-uniform configuration developed in Comsol Multiphysics, to show that

geometrical and mechanical hypothesis do not undermine the overall consistency of the ROM. Finding the

yielding influencing in a relevant way the resonance frequencies of the device, tests on the clamping relia-

bility must be carried out along with piezoelectric energy harvester characterization, as further explained

in Sec. 5.3.2. Moreover, the influence of tip mass position and weight on the device power output will be

further investigated in Chap. 6, as design variables for one of the optimization problems.

Finally, numerical results in terms of voltage output for different resistive loads have been compared

with the analytical solution proposed by Erturk et al. [Erturk and Daniel J. Inman 2008a] for a uniform con-

figuration without tip mass, finding perfect agreement. If ones considers the ϕr and ψr terms calculated not

for the total length Ls, but in [l1, l2] instead, the analytical solution (Eq. 3.124) also solves the configuration

with piezoelectric patch shorter than the support layer.
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Chapter 4

Energy conversion system and storage

4.1 Introduction

As seen in previous chapters, the voltage output from a piezoelectric device is not constant, but varies in

time and spectrum depending on the external excitation. Thus, to make energy produced by the harvester

usable and available at any time for powering electronic device a critical component is a proper electric

conversion system. At first stage, this goal can be simply obtained with a Full Bridge Rectifier (FBR) and/or

storage capacitance to increase global performances.

Research studies focused on electric conversion systems for Piezoelectric Energy Harvesters (PEHs)

oversimplify the usually electromechanical behaviour by modelling the device as a current source in paral-

lel with a capacitance and considering the output signal only for sinusoidal excitation conditions. Others,

like Goldfarb et al. [Goldfarb et al. 1999], model the PEH as a transformer, with mass, stiffness, damp-

ing and external force represented, respectively, by inductance, capacitance, resistance, and voltage source.

Within this approach, the transformer turns ratio represents the piezoelectric coupling θ. Although better

than modelling the PEH as a real current source, the previous 1-dof model suffers from inaccurate results

and lack of information on strain distribution and modes shape identification, as seen in Chap. 3.

In the following section the full bridge rectifier will be described and studied, considering proper sizing,

coupled behaviour and critical issues in interfacing with a PEH. The integration with the electromechanical

model of Chap. 3 will be shown, along with the conversion circuit model. A deeper understanding of

the system will be also useful to properly develop the electrode segmentation, to improving the system

performances and in provide solutions to limits for both electric and mechanical issues, such as FBR and

loads voltage threshold and charge cancellation.

4.2 Full bridge rectifier and capacity storage

4.2.1 Electric circuit model

A piezoelectric energy harvester alone undergoing to seismic excitation would produce a sinusoidal AC

current. To power electronic devices anyway a DC current is needed, and for this reason a Full Bridge Rec-
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tifier (FBR) is employed. This component is chosen for its stability and simplicity, despite issues connected

to voltage activation threshold. Other kind of rectifiers can be found in literature for energy harvesting ap-

plications, like for instance MEMS. In this case, as usually MEMS PEHs cannot reach easily the activation

voltage threshold required by FBRs and have low conversion efficiency with FBRs, synchronized switch

harvesting on inductor (SSHI) [Lallart et al. 2008] [Liang et al. 2011] [Du; Amaratunga, et al. 2018][Fu et al.

2018] or synchronous electric charge extraction (SECE) [Romani et al. 2013] have been used. Although gen-

erally allowing an higher power transmission than a FBR, they have limits in real-life applications. SSHI

shows a good performance only for a limited excitation level range, making applications at variable ex-

citation source difficult. Both SSHI and SECE need power to work, thus, at the very beginning or after a

long time without any input, they prevent the AC/DC conversion to happen (cold-startup issue). For this

reason higher excitation levels are needed to first activate the system. Moreover, SSHI and SECE are suit-

able only for low piezoelectric coupling conditions, since, at resonance, the Synchronized Switch Damping

phenomenon occurs, for which the charge extracted (SECE) or the pulse current applied (SSHI) induce

an actuation effect on the piezoelectric, damping its oscillations and thus cancelling the resonance effect.

[Badel et al. 2006] [Ji et al. 2016].

Before considering PEH and FBR connected, the rectifier behaviour is explained. A single-phase full

bridge rectifier is a passive AC/DC converter made by four diodes and a polarized capacitor (Fig. 4.1).

vs

is

Ls

vL
vAB

vD4

iD4

vD1

iD1

vD2

iD2

vD3

iD3

idr

CR

ic

I0

V0 R

Figure 4.1: Generic full bridge rectifier connected to a voltage generator in input and a resistive load in
output.

To explain its behaviour, the FBR is considered connected to a utility supply in input (voltage generator

vs in series with an inductance Ls) and a resistive load R in output [Mohan 2011a]. Steady state conditions

(inductance voltage and capacitor current mean values equal to zero) are assumed, decomposing the signal

into a mean value and ripple 1, and evaluating separately their effect. The following circuit equations can

1The ripple is a periodic variation of a signal on its DC value, by applying the superposition principle. Usually it is recommanded
to reduce it to allow for electronics correct functioning.
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be then written by applying Kirchhoff’s laws to the circuit in Fig. 4.1.

vs =Ls
dis
dt

+ vAB (4.1a)

v0 =vD1 + vD2 + vAB (4.1b)

v0 =vD3 − vAB + vD4 (4.1c)

v0 =vD1 + vD4 (4.1d)

v0 =vD2 + vD3 (4.1e)

idr =iD1 + iD3 (4.1f)

idr =ic + I0 (4.1g)

where, in general, v is a voltage, i is a current, subscripts are referred to source output (AB), FBR output (0),

i− th diode (Di), and capacitor CR (c), as shown in Fig. 4.1, and the uppercase denotes system coefficients

(later also used to indicate variables).

In steady state conditions Eq. 4.1g becomes

īdr = īc + I0 = I0 (4.2)

since the mean value of the capacitor current is zero on the period. Thus I0 represents the idr DC component

and ic its ripple, i.e., the voltage ripple in output from diodes will impact only on the capacitor.

To understand the FBR behaviour, voltage and current trend have to be studied on one period (steady

state conditions), as shown in Fig. 4.2.
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Figure 4.2: Voltage and current waveforms for a full bridge rectifier.

By choosing appropriate time intervals, the behaviour of the system can be split into different phases

and described as follows, where the letters refer to Fig. 4.2:
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A) Considering vs = vAB = 0 and v0 > vAB at t = 0, it can be proved by contradiction that all the four

diodes are reverse biased2. For example, from Eq. 4.1b, vD1 + vD2 > 0 necessarily. Assuming them

vD1 to be zero, Eqs. 4.1 would become

vD1 =0 (4.3a)

vD4 =v0 (4.3b)

v0 =vD3 + v0 − vAB ⇒ vD3 = vAB = 0 (4.3c)

vD2+vD3 = v0 ⇒ vD2 = v0 (4.3d)

meaning that diodes D1 and D3 are in conduction mode (voltage equal to zero). However, this config-

uration would not allow any closed circuit, so the initial condition on D1 voltage has to be impossible.

Analogously, D2 cannot conduct either and, following similar logic paths for Eqs. 4.1c, 4.1d, and 4.1e,

it is found that there is no diodes combination at t = 0 that can be in conduction mode (Fig. 4.3).

Consequently, the rectifier current idr is zero and the capacitor current has to be equal to −I0 (Eq.

4.1g). Being CR a finite value and considering ic = CR dv0/dt < 0, v0 has to decrease linearly.

vs

is

Ls

vL
vAB

CR

ic

I0

V0 R

Figure 4.3: Equivalent circuit for the FBR system in phase A) (it applies also to phase F)).

B) At t = t1, the external sinusoidal generator and FBR output voltages reach the same value vs = vAB =

v0, so, for Eq. 4.1b, both vD1 and vD2 have to be zero, meaning diodes D1 and D2 conduct (Fig. 4.4).

Then, the FBR current is = idr = iD1 increases, since input voltage keeps growing and the voltage on

the inductance becomes Ls dis/dt = vs − v0 > 0. Being though constant the output current I0, ic on

the capacitor has to decrease (Eq. 4.1g).

2A diode can work in forward biased condition, conducting currents and acting like a short circuit, or in reverse biased condition, not
conducting and acting like an open circuit.
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vs

is

Ls

vL
vAB

idr

CR

ic

I0

V0 R

Figure 4.4: Equivalent circuit for the FBR system in phase B), C), D), and E).

C) When idr reaches a mean value equal to I0 (t = t2), and consequently ic goes to zero, v0 reaches a

minimum. However, since vL is still positive, is keeps growing, overcoming I0 mean value, charging

the capacitor but decreasing vL. The equivalent circuit is still the one shown in Fig. 4.4

D) When vL goes to zero (t = t3), v0 = vs and both is and ic reach a maximum. Being the capacitor

current still positive, its voltage overcomes again the generator one (v0 > vs as for t = 0), but diodes

do not go reverse biased because idr > 0.

E) When idr reaches I0 and consequently the capacitor current goes to zero (t = t4), a maximum for v0

occurs.

F) Then, being now vL < 0, the FBR current keeps decreasing until zero (t = t5), and so do both iD1 and

iD2, while still v0 > vs. Consequently, diodes D1 and D2 go reverse biased and again all four diodes

do not conduct (Fig. 4.3).

G) At t = t6, again |vs| = v0 and diodes D3 and D4 are activated (due to the reverse sign of the input

voltage). In the remaining time interval the rectifier acts analogously to D1-D2 conduction mode.

vs

is

Ls

vL
vAB

idr

CR

ic

I0

V0 R

Figure 4.5: Equivalent circuit for the FBR system in phase G).
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Having clarified how the rectifier behaves, in the following the FBR is connected to the PEH in order to

rectify and filter its output signal. From an electrical point of view, a piezoelectric energy harvesters can be

modelled as a current source in parallel with a capacitance Cp and a resistance Rp (usually not taken into

account because negligible). The resulting circuit powering a resistive load is reported in Fig. 4.6

ip

Cp Rp vp

piezoelectric

vD

ir

CR V0 R

Figure 4.6: Piezoelectric energy harvester connected to FBR and external resistive load.

To power R, the harvester has to reach a threshold voltage value imposed by the storage capacitance

CR of the FBR. Indeed, as explained previously in Fig. 4.2, the FBR is activated only when the input and

output voltage reach the same value. Then, the threshold can be defined as

Vth = V0 + 2 · VD (4.4)

where V0 is the voltage imposed by the FBR capacitor and VD is the voltage drop on each diode (pre-

viously neglected for sake of simplicity, being a constant value over the time). Until Vth is reached, the

energy produced is lost in charging the piezoelectric internal capacitance Cp. Being Cp negligible during

FBR conduction, the output current i0 can be expressed as follows:

i0 =



























0, |λ̇| < Vth

R · 1
jωCR

R+ 1
jωCR

(|λ̇| − 2VD), |λ̇| > Vth

, (4.5)

where j is the imaginary unit and ω is the current pulsation.

Finally, considering that the voltage ripple ∆V0 usually should be kept under 5 % of V0 DC value

∆V0 ≤ 0.05V0 , (4.6)

the capacitance of the FBR could be sized considering

i0 = CR
∂V0
∂t

= CR
∆V0
T

⇒ CR =
V0T

R∆V0
(4.7)
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4.2.2 Numerical solution via Simulink/Simscape

In order to obtain a complete model of the Piezoelectric Energy Harvester (PEH) from both mechanical

and electrical points of view, in the next sections all the circuits being part of the conversion system will be

modelled using Simscape blocks in Simulink (version R2020b), making them compatible with the numerical

electromechanical model developed in section 3.5.

Full bridge rectifier response

The FBR circuit has been modelled in Simulink, as shown in Fig. 4.7, to confirm its behaviour under

a sinusoidal ideal current source in parallel with a capacitance and a resistance. Reference values for all

quantities have been used (ip of 10−5 A at 60 Hz, Cp = 10nF , CR = 500µF , R = 100Ω. Rp = 10MΩ),

being consistent with the expected current output and equivalent capacitance of the piezoelectric from

mechanical modelling.

Figure 4.7: Simulink/Simscape model of PEH and FBR.

The output, shown in Fig. 4.8, is obtained in agreement with the behaviour expected for this circuit

configuration.
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(a) ip is imposed by the electromechanical equations.

(b) i0 is non-zero only when the input voltage over-
comes the threshold.

(c) vp = λ̇ grows while charging Cp and keeps con-
stant once reached Vth.

(d) V0 showing a ripple that has to be low compared
to the mean value.

Figure 4.8: Simulink output of the FBR simulation.

Analysis of full bridge rectifier and energy harvester coupled behaviour for different resistive loads

To achieve a full simulation of both PEH and FBR and provide a proper and accurate model of the

conversion system, as anticipated in the previous paragraph, Simscape was used to model the electric

components. In this way, also the mechanical equation of the PEH, previously developed in MATLAB,

must be recast into Simulink blocks. The ordinary differential equation solver used is ode15s, a variable

step method for stiff problems. Indeed, even though the piezoelectric problem itself is not stiff, diodes and

switches introduces non-linearities in the system, making necessary the choice of an appropriate solver

to ensure both simulation efficiency and speed. The maximum step size chosen for the simulations is

10−4 s. The adopted PEH configuration for the following simulations is the simplest among all considered

in Chap. 3, with no tip mass and perfect clamping, in order to focus only on the relationship between the

device and the conversion system. For the excitation, an acceleration amplitude of 0.06 g was proposed

as reference, being representative of different vibration sources such as home devices, vehicles, wind and

traffic on bridges [Khan 2016]. Since the main purpose of this chapter is understanding the conversion

circuit behaviour, for sake of simplicity, the excitation frequency is set equal to the first mode resonance one

of the device (76.1 Hz).

The capacitance was sized considering the current voltage characteristic (Fig. 4.14) of a temperature

sensor with operating range of -25/85 °C (LM61BIM3, National Semiconductor). Thus, considering the

current almost constant equal to 82µA, taking as reference voltage 3 V, and considering a voltage ripple

desired of 5 %, the capacitance value for the full bridge rectifier is 7.2µF .

The simulation was carried out for different resistive loads, ranging from short circuit (assumed as

100Ω) to open circuit (1010 Ω), to study the behaviour of the FBR in both conditions of correct and incorrect

sizing ofCR. Results shown in Figs. 4.9 and 4.10 refer to two resistive loads,R = 1.5·103 Ω andR = 6·103 Ω,

91



4. Energy conversion system and storage

respectively. For the first case, during the transient and when the FBR is in conduction, a small rise in PEH

voltage can be seen, as a consequence of the electromechanical coupling. Indeed, remembering Eq. 3.111

Cpλ̈ = −θ

Nw
∑

j=1

χj q̇j − Ic,

the piezoelectric voltage output λ̇ is due to both the electromechanical coupling term and the current of the

electric circuit connected.

(a) Time histories. (b) Zoom of the signals.

Figure 4.9: Piezoelectric (top) and FBR (bottom) output voltage for R = 1.5 · 103 Ω.

The R = 6 · 103 Ω shows a more efficient behaviour of the capacitance, with a smaller voltage ripple

when the complete charge is reached.

(a) Time histories. (b) Zoom of the signals.

Figure 4.10: Piezoelectric (top) and FBR (bottom) output voltage for R = 6 · 103 Ω.

This phenomenon of reciprocal excitation keeps increasing with the resistive load, as can be seen in Fig.

4.11 for R = 2.5 · 104 Ω, leading to a relevant periodic voltage amplitude oscillation in both piezoelectric

harvester and FBR. However, when a maximum voltage is reached, due to internal damping of the PEH,
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the piezoelectric voltage drops and returns, with a transient, to the open circuit conditions. In this period

of time, the capacitance of the full bridge rectifier has to provide power to the load and thus its voltage

decreases, resulting in an high amplitude oscillation, as shown in Fig. 4.11. When the capacitance voltage

reaches again the PEH voltage in open circuit condition, the charge starts again. The capacitance voltage

oscillation during PEH disconnection is due to CR being sized for signal frequency, but not for energy

storage. Thus, a long off - condition in the FBR results in a deep discharge as it attempts to provide the

power required by the load. In any case, the maximum voltage level reached (1 V) would not be enough to

power the temperature sensor taken as reference at this excitation level.

(a) Time histories. (b) Zoom of the signals.

Figure 4.11: Piezoelectric (top) and FBR (bottom) output voltage for R = 2.5 · 104 Ω.

In the open circuit condition, simulated with R = 1010 Ω (Fig. 4.12), the amplification phenomenon

is still present, but once the transitory phase ends and the capacitance is charged, it does not power any

electric load and thus its voltage has no drop (apart from self discharge, not taken into account for sake of

simplicity). Thus, the piezoelectric keeps working at its open circuit conditions.

(a) Time histories. (b) Zoom of the signals.

Figure 4.12: Piezoelectric (top) and FBR (bottom) output voltage for the open circuit condition (R = 1010 Ω).
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In Fig. 4.13 the root mean square (rms) values of power and voltage of the whole system (PEH and

FBR), considered after transient and thus for signals with constant spectral characteristics, are plotted in

function of different resistive loads. The voltage also shows error bars representing the standard deviation,

expressed as

σ2 =

√

∑A
i=1 |λ̇(ti)−

¯̇
λ(t)|2

A− 1
(4.8)

where A is the number of element of the voltage output and ¯̇
λ(t) is the mean value of the voltage. The stan-

dard deviation expresses the ripple of the signal, giving a measure of the FBR capacitance filtering action for

different resistive loads. A resonant piezoelectric energy harvester connected to a Full Bridge Rectifier and

an electric resistive load constitute an RC circuit, in which the equivalent capacitance is the parallel of Cp

and CR. The power output of the device (PEH and FBR), considered after transient, is formally expressed

as

P =
V 2
0

R
, (4.9)

and depends not only on the amplitude of the external excitation but also on the load R value, reaching a

maximum condition known as impedance matching i.e., maximum power transfer theorem for AC circuits3.

In the studied configuration, the maximum power occurs for an electric load of 6 · 103 Ω. There is a second

peak at R = 2.5 · 104 Ω, that, as seen previously, corresponds to the amplification phenomenon. However,

this condition produces an high ripple of voltage, that can be seen both on the voltage curve and its standard

deviation in Fig. 4.13b. This behaviour could potentially damage an electronic device and thus should be

avoided. As expected, the voltage keeps growing with the resistive load, reaching the maximum for the

open circuit condition. Comparing the two graphs it can be highlighted that the best condition occurs in

the flat-slope region of the voltage curve, for which the FBR behaviour is constant, a safe working condition

for electronic devices. In the power output curve, this area corresponds to the descending branch, starting

from the maximum point until 0.02 mW. After the flat-slope region, the open circuit conditions are almost

reached and, indeed, the power output goes to zero.

3An AC circuit exhibits maximum power transfer when the load impedance is equal to the complex conjugate of the power source
impedance
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(a) Power output for different resistive loads.
(b) FBR rms voltage output and standard deviation
for different resistive loads.

Figure 4.13: Power (left) and voltage (right) output from the conversion system for different resistive loads,
from short circuit till open circuit conditions.

Analysis of full bridge rectifier and energy harvester coupled behaviour for a variable resistive load

The Full Bridge Rectifier and the resistance modelled in the previous section does not take into account

limits of the capacitance CR and of a real load. For this reason, an electronic device, such as a typical tem-

perature sensor (LM61BIM3, National Semiconductor) is taken into account. Indeed, its voltage working

range and impedance vary, as shown in its I-V curve (Fig. 4.14).

Figure 4.14: I-V curve of the temperature sensor LM61BIM3 produced by National Semiconductor.

Thus, if the supply voltage is lower than a certain threshold, the device will not work at all, while if an

overvoltage is applied, it will be damaged. The capacitance has a limit voltage (surge voltage) too, over
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which it breaks or even explodes. For this reason a new Simulink model was developed, with two switches

and a variable load. The first switch disconnects the capacitor in case of overvoltage. Taking into account

the capacitance value used in the previous section (7.2µF ), a real tantalums capacitor produced by AVX is

taken as reference: the TAJB685*006NJ, with 6.8µF capacitance, 6.3 V rated voltage, and 8 V surge voltage.

The second switch disconnects the load when the voltage is whether too low (not working for V0 < 3V ) or

too high (damage for V0 > 10V ).

Figure 4.15: Simulink model of PEH and FBR with conditions on capacitance and variable load voltage.

The minimum voltage required by the temperature sensor is then higher than the open circuit voltage

output (2 V) of the PEH and FBR configuration taken into account. Thus, the acceleration level taken

previously as reference is not sufficient to power the load. For this reason te simulation was run for different

acceleration amplitudes, in order to find the minimum and maximum values allowed for the circuit. Results

are shown in Fig. 4.16. It must be pointed out that the variable resistance was defined as a piecewise

function, which explains why the curve slope seems to have some discontinuity points. As expected, at

the acceleration amplitude used in the previous simulations (0.06 g) the PEH does not power the load,

although this condition is close to the minimum acceleration requirement (0.18 g). The load damage occurs

for acceleration amplitude higher than 0.6 g and, since close to this condition small changes in acceleration

can lead out of the safe working area, a lower value should be used.
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(a) Power. (b) Voltage.

Figure 4.16: Power and voltage output from the conversion system for different acceleration amplitudes.

The developed model gives a full representation of the behaviour of a device completely equipped to

manage real operating conditions. This model allows also for a preliminary design of an experimental

campaign, minimizing the risk of failures and malfunctioning of components.

4.3 Segmented electrode technique for voltage amplification

4.3.1 Conceptual development

In this section the electrode segmentation in width and length will be investigated to underline its ef-

fectiveness in voltage amplification and avoiding charge cancellation for higher order modes, respectively.

The development of a new set of electromechanical coupled equations will show how the segmentation has

an influence on the electrical equation of the system, but does not change the mechanical model.

As seen in the previous section, instead of looking for higher accelerations to meet the load require-

ments, one should try to properly design both the PEH and the conversion system, so they can efficiently

work together. In particular, since the voltage threshold Vth could be hard to reach for low seismic exci-

tation levels, a step-up converter is needed. Anyway this solution could lead to relevant losses, affecting

significantly the total amount of power generated. Du et al. [Du; Jia, and Seshia 2017] proposed the width

segmented electrodes, demonstrating their effectiveness as voltage amplifier, with piezoelectric as a cur-

rent source in parallel with a capacitance. To implement this approach, in Sec. 4.3.2 the electromechanical

model of the PEH with segmented electrode is presented. To overcome this issue, the device electrodes can

be divided into nw regions connected to each other in series, in order to obtain a voltage input at the FBR

nw times higher and so overcoming more easily the Vth issue. In Fig. 4.17 the actual PEH configuration is

shown, with segmented electrodes in width connected to a FBR, whose equivalent circuit can be seen in

Fig. 4.18.
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Figure 4.17: Representation of a PEH with electrodes segmented in width. The electrodes are connected in
series.
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Figure 4.18: Actual (a) and equivalent (b) circuit of a FBR and a PEH with electrodes segmentation in width
connected in series and main electric quantities.

Moreover, the electrode segmentation technique can be useful also to avoid charge cancellation through

the piezoelectric length, allowing an increase in energy production and higher modes power recovery. Du

et al. [Du; Jia; S.-T. Chen, et al. 2017] proposed a similar idea, with electrodes segment in width connected

gradually to find the electrode area harvesting the maximum power. They demonstrate that a distribution

from the maximum strain point (clamping) to about a half the maximum strain would be optimal. Since this

result are due to charge cancellation, a further improvement in optimal electrode positioning in length could

be done by studying the structure nodes and finding an optimal configuration of electrode segmentation

in length. Moreover, to actually avoid charge cancellation, the output voltage from each segment of the

piezoelectric patch must be first rectified and then can be connected to the others to power a unique load.
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In Fig. 4.20 the PEH configuration with segmented electrodes in length is shown and its equivalent circuit

is presented and in Fig. 4.19.

Figure 4.19: Representation of a PEH with electrodes segmented in width.
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Figure 4.20: Actual (a) and equivalent (b) circuit of a FBR and a PEH with electrodes segmentation in length.

99



4. Energy conversion system and storage

4.3.2 Segmentation in width

As mentioned before, the electrode segmentation in width is helpful to overcome the voltage threshold

set by the FBR capacitor CR. In order to find the effect of electrode segmentation, the Lagrange equations

will be developed again taking into account the discontinuity introduced in electrical behaviour.

Electromechanical reduced-order model

Despite the electrode segmentation in width in nw parts, the electric field in z directionE3 is still defined

as

E3 = −
λ̇

hp
= −

σ

2ǫ33
(4.10)

where λ̇ is the voltage measured between terminals of all segmented parts connected in series, σ is the

superficial charge, and ǫ33 is the permittivity of the material. The first definition has not changed, since it

depends on the material characteristics rather than on how electrodes are positioned. However a second

definition is given, being convenient to express the series connection in the following. Although the me-

chanical potential energy calculations remain the same, it is convenient to express the integral over width

as sum of the nw intervals in which electrodes divide the surface. Consequently, the mechanical potential

energy becomes

Um =
1

2

{

b

∫ l1

0

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

dx+

nw
∑

i=1

[

bi

∫ l2

l1

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

+

+
Yp

1− ν2p
κ2

[

h3p
3

+ h2phs + h2shp − z0

(

h2p + 2hphs

)

+ z20hp

]

−
Ypd31κ

1− ν2p

[

hp
2

+ hs − z0

]

λ̇dx

]

+

+ b

∫ Ls

l2

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

dx

}

(4.11)

with bi width of the i− th electrode and
∑nw

i=1 bi = b. The new nw contributions from segmented electrodes

takes into account the electric discontinuity in y direction. Since this discontinuity does not occur from a

mechanical point of view, it is not considered in the areas where piezoelectric material is not present.

Similarly, the electric internal energy is given by

Ue =
1

2

∫ ∫

Ap

∫ hp+hs

hs

E3

(

ε1ē31 − ǫ33E3

)

dzdxdy (4.12)

where it is convenient to express the electric field as function of the charge density for the capacitive part

of the energy expression. Thus,

Ue =
1

2

∫∫

Ap

∫ hp+hs

hs

(

−
λ̇

hp
ε1ē31 − ǫ33

σ2

2ǫ233

)

dz dx dy =

=

(

1

2

∫∫

Ap

∫ hp+hs

hs

−
λ̇

hp
ε1ē31 − ǫ33

Q2

2S2
pǫ

2
33

)

dz dx dy.

(4.13)
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substituting then in the previous equation the strain ε1 expression and integrating over the width and

thickness of the piezoelectric, the following expression of electric potential energy is obtained:

Ue =

∫ l2

l1

nw
∑

i=1

[

bi
d31Yp

2(1− ν2p)

(

hp
2

+ hs − z0

)

κλ̇+ ǫ33bihp
Q2

i

2S2
p,iǫ

2
33

]

dx (4.14)

where Qi is the superficial charge produced by the piezoelectric effect and Sp,i is the surface on which the

charge is distributed. Since all the electrodes are considered to be equal in width bi = b/nw, each element

has the same surface and equivalent capacitance and, thus, equal superficial charge Qi = ±Q. Considering

now that the connection among the different parts of the piezoelectric is in series, the sum of the superficial

charges on the electrodes results in only Q on those on the terminal electrodes since all the others cancel, as

schematically shown in Fig. 4.21.

Figure 4.21: Series connection of the i− th capacitances.

Thus, the term relative to the charge can be now written in terms of PEH series voltage λ̇, obtaining

Ue =

∫ l2

l1

[

b
d31Yp

2(1− ν2p)

(

hp
2

+ hs − z0

)

κλ̇

]

+ ǫ33
bhp
2nw

λ̇2

h2p
dx

=

∫ l2

l1

[

b
d31Yp

2(1− ν2p)

(

hp
2

+ hs − z0

)

κλ̇

]

+ ǫ33
b

2nw

λ̇2

hp
dx

(4.15)

By substitution of Eqs. 4.11, 4.13, and 3.35 in Eq. 3.22, the specific Lagrangian ℓ can be written as

ℓ =
1

2

{

µẇ2
a − D̄w′′2 + 2θ[H(x− l1)−H(x− l2)]w

′′λ̇+

CL
p,i[H(x− l1)−H(x− l2)]λ̇

2

} (4.16)

With respect to the single electrode configuration the electromechanical coupling coefficient θ does not

change,

θ =
Ypbd31
1− ν2p

(

hp
2

+ hs − z0

)

(4.17)
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while the equivalent piezoelectric capacity per unit of length CL
p,i of the single i− th element becomes

CL
p,i = ǫ33

b

nwhp
. (4.18)

Thus, again the relation 3.54 is used to derive the electric equation of the system. For λ we have

∂ℓ

∂λ′
=

∂ℓ

∂λ′′
=
∂ℓ

∂λ
= 0

∂ℓ

∂λ̇
= CL

p,i[H(x− l1)−H(x− l2)]λ̇+ θ[H(x− l1)−H(x− l2)]w
′′

from which, by applying the 3.54 the following equation is obtained

− Cp,iλ̈−

∫ Ls

0

θ

[

H(x− l1)−H(x− l2)

]

ẇ′′ dx− Ic = 0 (4.19)

where Cp,i = CL
p,i · Lp is the equivalent piezoelectric capacity of each electrode element. This equation

corresponds to apply the Kirchhoff’s current law to one of the nodes of connection with the conversion

circuit.

Being the sum over nw only virtual for the electromechanical coupling term, mechanical equations of

the PEH do not change. Thus, the final global equation system, also taking into account a Kelvin-Voigt (or

strain-rate) damping term and a viscous air damping one, becomes















µẅ + caẇ + (csJẇ
′′ + D̄w′′)′′ − θ

[

δ′(x− l1)− δ′(x− l2)

]

λ̇ = f(x, t)

Cp,iλ̈+

∫ Ls

0

θ

[

H(x− l1)−H(x− l2)

]

ẇ′′ dx = −Ic

, (4.20)

Both damping terms introduced are not affected by the electrode segmentation, since they are not electric

variable dependent.

Finally, by projecting equations 4.20 on the modes of the structure, the following system of equations is

obtained:

q̈m + 2ζmωmq̇m + ω2
mqm − θ(φ′2m(Lp)− φ′1m(l1))λ̇ = Fm(t) (4.21)

Cp,iλ̈+ θ

Nw
∑

j=1

χj q̇j = −iR (4.22)

Numerical solution via Simulink

The electrode segmentation in width was simulated in the same conditions (excitation amplitude and

FBR capacitance) adopted for the single electrode configuration. As seen before, the electrode segmentation

in width do not change the superficial charge produced, and thus, if one neglects the electromechanical

coupling effect, the expected output voltage is nw times the voltage from a single electrode. Considering

that in Sec. 4.2.2, for the simple resistive load, the acceleration amplitude of 0.06 g (about 1 V in maximum

power condition) was found too low for the PEH to produce a typical 3 V minimum voltage required by
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electronic devices, an nw = 3 segmentation is chosen to overcome the threshold value.

To obtain the electrical outputs shown in Fig. 4.22, the system is solved using the joint Simscape-

Simulink formulation introduced before in this Chapter. It can be observed that the voltage corresponding

to the optimal working conditions is close to 3 V, as desired, and the open circuit voltage is three time the

single electrode configuration one, reaching 6 V. It is then worth noting that these conditions potentially

match the powering requirements seen in Sec. 4.2.2 on the temperature sensor for both minimum voltage

and overvoltage thresholds. The maximum power occurs for a different value of resistance with respect

the single electrode condition. This is due to the change of the equivalent capacitance of the system, that

requires a different impedance matching. Indeed, the piezoelectric series capacitance is n2
w times smaller

than the one for a single electrode, and thus, considering the frequency does not change, the impedance of

the PEH grows. The peak power of the segmented electrode configuration (0.09 mW) is slightly lower than

the one of the single electrode (0.1 mW), due to a more dissipative optimal resistance (5 · 104 Ω).

(a) Power. (b) Voltage.

Figure 4.22: Power and voltage output from the conversion system for different resistive loads for the single
electrode configuration (blue) and for the segmented electrode with nw = 3 (red).

4.3.3 Segmentation in length

Electromechanical reduced-order model

As for the previous configuration, electrode segmentation in length will not affect the mechanical be-

haviour of the structure if only longitudinal bending modes are involved in the structural response. How-

ever, nl different voltage variables λ̇i (i = 1, ..., nl) have to be introduced, because different longitudinal

portions experience different strain and so produce different amounts of superficial charge. Thus, a no
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more uniform but piecewise voltage function can be defined as

λ̇(x) =































λ̇1, l1 < x ≤ l2

λ̇2, l2 < x ≤ L3

...

λ̇nl
, Lnl

< x ≤ Lnl+1

(4.23)

A schematic representation of the electrode segmentation the new reference length used in the following is

reported in Fig. 4.23.

Obviously, all the nl parts have to be connected to as many FBRs, to completely avoid signal destructive

interference. After the signals are rectified, they can be mixed together to jointly supply the same electric

load, as shown in Fig. 4.20.

Figure 4.23: Schematic representation of the PEH with electrode segmented in nl parts.

The voltage λ̇i is then referred to terminals of each segmented part. Consequently, the piezoelectric

stress 3.2 and electric field expressions 3.6 change as follow

E3 = −
λ̇(x)

hp
(4.24)

σp
1 = −

Yp
1− ν2p

(z − z0)w
′′ + d31

Yp
1− ν2p

λ̇(x)

hp
. (4.25)

and mechanical potential energy becomes

Um =
1

2

{

b
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0
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h3s
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− z0h
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dx+
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∑
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(

h2p + 2hphs

)

+ z20hp
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1− ν2p

[

hp
2

+ hs − z0

]

λ̇idx

]

+

+ b

∫ Ls
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Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

dx

}

(4.26)

Indeed, the sum to nl term represents the contribution of each element in x direction. Since this discontinu-

ity does not occur from a mechanical point of view, it have not been taken into account in the areas where
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piezoelectric material is not present. Thus, the previous relation can be rewritten as

Um =
1

2

{

b

∫ Ls

0

Ys
1− ν2s

κ2

[

h3s
3

− z0h
2
s + hsz

2
0

]

dx+ b
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[
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(
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+

+
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∑
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(4.27)

Similarly, the electric internal energy is given by

Ue =
1

2

∫∫

Ap

∫ hp+hs

hs

−
λ̇(x)

hp

(

ε1ē31 − ǫ33
λ̇(x)

hp

)

dzdxdy (4.28)

which, by substituting the local expression of the voltage and integrating over width and thickness, taking

into account Eq. 4.25, becomes

Ue =

nl
∑

i=1

∫ li+1

li

[

b
d31Yp

2(1− ν2p)

(

hp
2

+ hs − z0

)

κλ̇i + ǫ33
b

2hp
λ̇2i

]

dx (4.29)

By substitution of Eqs. 4.26, 4.28, and 3.35 the specific Lagrangian ℓ can be written as

ℓ =
1

2

{

µẇ2
a − D̄w′′2 + 2

nl
∑

i=1

[

θ[H(x− li)−H(x− li+1)]w
′′λ̇i

]

+

nl
∑

i=1

[

Cp,L[H(x− li)−H(x− li+1)]λ̇
2
i

]} (4.30)

With respect to the single electrode configuration, the equivalent mass and bending stiffness do not change,

being only dependent on mechanical quantities. The electromechanical coupling coefficient θ and capaci-

tance per unit of length Cp,L do not change either, because they have no dependency on the length.

Thus, once again Eq. 3.54 is used to derive system equations and its boundary conditions.

For each λi we have

∂ℓ

∂λ′i
=

∂ℓ

∂λ′′i
=

∂ℓ

∂λi
= 0

∂ℓ

∂λ̇i
= Cp,L[H(x− li)−H(x− li+1)]λ̇i + θ[H(x− li)−H(x− li+1)]w

′′

from which, by applying the 3.54 the following equation is obtained

− C(i)
p λ̈i −

∫ Ls

0

θ

[

H(x− li)−H(x− li+1)

]

ẇ′′ dx− Ic = 0 (4.31)

where C
(i)
p is the equivalent piezoelectric capacity for the i− th segment of electrode and Ic,i is the current

to the i − th FBR. The equation represents the current balance at the connection node considered for the

i− th segment.
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For wa we have

∂ℓ

∂wa
=

∂ℓ

∂w′

a

= 0
∂ℓ

∂w′′

a

= −D̄w′′ +

nl
∑

i=1

{

θ
[

H(x− li)−H(x− li+1)
]

λ̇i

}

∂ℓ

∂ẇa
= µẇa

from which, referring to the 3.54, substituting and deriving, the following equation can be obtained



















µẅ + caẇ + (csJẇ
′′ + D̄w′′)′′ −

∑nl

i=1

{

θ

[

δ′(x− li)− δ′(x− li+1)

]

λ̇i

}

= f(x, t)

C
(i)
p λ̈i +

∫ Ls

0
θ

[

H(x− li)−H(x− li+1)

]

ẇ′′ dx = −Ic

, (4.32)

Both damping terms introduced are not affected by the electrode segmentation, since they are not electric

variable dependent.

Finally, by projecting equations 4.32 on the modes of the structure, the following system of equations is

obtained:

q̈m + 2ζmωmq̇m + ω2
mqm −

nl
∑

i=1

[

θ(φ′m(li+1)− φ′m(li))λ̇i

]

= Fm(t) (4.33)

C(i)
p λ̈i + θ

Nw
∑

j=1

χj,iq̇j = −iR (4.34)

Numerical solution via Simulink

In order to avoid charge cancellation phenomenon, piezoelectric areas with opposite curvatures should

be electrically disconnected to each other. For this reason, the electrode segmentation has to be performed

taking into account the position of the nodes of the relevant bending modes. For a cantilever beam, thus, a

test case with segmented electrode in length must consider the curvatures of the second derivative of second

and third bending modes. Once the curvature zeroes have been calculated with a Newton Raphson method,

the second mode is found to be not suitable for electrode segmentation in the considered configuration,

being too close to the piezoelectric edge. Conversely, for the third mode a change in curvature was found

for x = 0.03, close to the centre of the piezoelectric patch. Indeed, in Section 3.5 the third mode contribution

to power production was negligible if compared with those of first and second modes, with an open voltage

of 0.02 V in open circuit conditions for 0.1 g acceleration amplitude. This is due to charge cancellation

phenomenon, being the node almost in the centre of the patch and, thus, having a relevant opposite charge

production on the same side of the lamina. However, with length segmentation of electrodes, this issue is

overcame. The nl = 2 configuration has then one electrode of 2.6 cm and the other of 1.4 cm, as shown in

Fig. 4.24. As in the previous sections, the device was simulated with acceleration amplitude of 0.06 g, but

the excitation frequency is set equal to the third mode one (1080.2 Hz). Consequently, the capacitance size

is adjusted in frequency (keeping constant all the other parameters), obtaining CR = 2.5mF .
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4. Energy conversion system and storage

Figure 4.24: Segmented electrode in length configuration with third mode shape.

In Fig. 4.25 a comparison of the two configurations is shown. The single electrode does not produce

any power, since the voltage output cannot even overcome the drop due to diodes. On the opposite, the

segmented electrode configuration provides a power output not completely negligible, although small if

compared to the one obtained for the first mode resonance frequency, with a peak occurring for R = 9 ·

103 Ω. Similarly, the voltage output is very low. Thus, this configuration if excited on the third mode

frequency alone could not supply an electronic device, but shows the potential effectiveness of the electrode

segmentation in length. In fact, for a configuration with the piezoelectric patch properly positioned, the

second bending mode could benefit of the electrode segmentation as well, being then more relevant as a

contribution with respect to the third mode.
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4. Energy conversion system and storage

(a) Power. (b) Voltage.

Figure 4.25: Power and voltage output from the conversion system for different resistive loads for the single
electrode configuration (blue) and for the segmented electrode with nw = 2 (red).
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Chapter 5

Experimental analysis and model

validation

In this chapter the piezoelectric harvester is investigated experimentally, also providing data to vali-

date the mathematical models introduced in the previous chapters. The experiments were carried out at

the Structural Dynamics and Diagnostic Laboratory (SDDLab) at Institute of Marine Engineering of the

National Research Council (CNR-INM) facility in Rome.

First, a brief account of piezoelectric patch realization is described, from material production, through

cutting techniques, till polarization process. Then, a comparative analysis of four custom piezoelectric

energy harvesters (same piezoelectric material but different support layer) is performed to select in open

circuit condition the best device, which is further investigated under both sinusoidal and random excita-

tions, analysing its performances and power output with respect to a commercial PEH. Finally, the chosen

custom device is taken as reference configuration for the theoretical model validation. The clamping condi-

tion and the structural and air damping coefficients are first identified for different tip mass conditions (no

tip mass, mtip,1, and mtip,2). The device is then tested for the three tip mass configurations with different

resistive loads under sinusoidal excitations (different frequencies but constant acceleration amplitude). Fi-

nally, numerical results of the present theory are compared with the obtained voltage - acceleration transfer

function.

5.1 Remarks on piezoelectric patch production

In order to create a PEH performing at low frequencies, a piezoelectric lamina was made at the CNR-

ISTEC laboratory. The material is produced with a tape casting process, particularly useful when a thin

thickness (220 µm) needs to be reached. To create the ceramic material, a suspension of ceramic powder

dispersed in an organic liquid is prepared [Gardini et al. 2010]. The powder is lead-zirconate-titanate doped

with niobium and lanthanum (PLZTN):

(Pb0.93 La0.07) [(Zr0.60 T i0.40)0.9825 Nb0.0175] O3. (5.1)
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5. Experimental analysis and model validation

and has been synthesized through a solid state reaction of the single elements oxides: PbO, ZrO2, T iO2,

Nb2O3, and La2O3. The powder synthesis happens in consecutive stages. First, the oxides are mixed in

water with zirconia spheres for 48 hours. The suspension is lyophilized and sieved at 250 µm, to then

undergo to calcination at 850 °C for 4 hours. After this process, the product is subjected to grinding for 100

hours, drying and again sieving.

Knowing form empirical experiences that the sintering process induces a linear shortening of about 21%

and willing for a 220 µm thickness, a 278 µm tape should be produced. The suspension is made by powder,

solvent and additives. The solvent is an azeotropic mixture of methylethylketone (MEK) (or 2-butanone),

67% by weight, and ethanol (EtOH). The additives are a dispersant, stabilizing colloidally the suspension

and so avoiding agglomerates formation, a plasticizer, making tapes flexible and so possible to be bended,

and a binder, binding together the particles.

Table 5.1: Suspension components.

Component Acronym Name

Powder PLZTN lead-zirconate-titanate

doped with niobium and

lanthanum

Solvent MEK-EtOH Methylethylketone

(2-butanone)-Ethanol

(azeotropic mixture)

Dispersant GTO Trioleate glycerol

Binder PVB polyvinyl butyral

Plasticizer 1 ABP Alkyl (C7-C9) benzyl ph-

thalate

Plasticizer 2 PEG400 Polyethylene glycol

(molecular weight 400)

To properly prepare the suspension, components must be added at different moments and with specific

intervals of time between two consecutive additions for mixing/grinding with small zirconia spheres (ball

milling technique). First dispersant, part of the binder and part of the powder are added in the solvent,

with 4 hours for grinding. Then, respectively the remaining powder, binder, and plasticizers are added,

each addition being followed by 24 hours for grinding. The whole process takes 4 days to be completed.

To be ready for casting, the suspension must undergo to filtering, to remove any lumps due to a non

efficient mix/grinding, and degassing, to eliminate possible air bubbles. The latter process is performed in

atmosphere saturated in solvent to avoid suspension properties changes due to evaporation.

To level the layers thickness to 278 µm, the suspension moves on a belt at a 62 cm/min speed and

passes under a blade positioned at the desired high (Fig. 5.1). After the casting process, the tape is kept

in atmosphere saturated with solvent at 22 °C for 24 hours to dry, with a ventilation system aspirating the

steams produced. This phase is one of the most critical since the solvent evaporation induces mechanical

stress inside the tape, consequently producing macroscopic defects in the final product. The flexible solid

tape can be punched or cut to obtain different shapes, taking into account the shorten during sintering

110



5. Experimental analysis and model validation

Figure 5.1: Casting bench.

process when choosing dimensions (Fig. 5.2).

Figure 5.2: Casting samples after the cutting process.

In order to eliminate all organic components, the material obtained undergoes to debonding by slow

temperature increase (4 °C/h) till 600 °C, taking 5 days. Then, to consolidate the extremely fragile sample

obtained, the sintering process is performed at 1200 °C for 2 hours in PLZTN powder, to avoid changes

in stoichiometry due to lead and other elements evaporation. Finally, silver paste-made electrodes are

deposited on the sample surfaces by screen printing and the polarization process to induce piezoelectric

properties in the ferroelectric material is performed, by applying an external 3 kV/mm electric field for 40

minutes in a silicon oil bath at 120 °C.

5.2 Selection of the supporting plate material

5.2.1 Experimental setup

The selection of the device configuration is based on comparing performances among four cantilevers

sharing the same piezoelectric patch but different support materials. To assess the energy harvester perfor-

mance under variable conditions, an experimental setup is required. For the following tests, the PEHs lie on

a metallic plate, simulating a real-life installation (e.g. floor or walls), clamped along the contour between a

metal frame and a backframe, as shown in Fig. 5.3. The plate transfers to the piezoelectric device the force

excitation applied via a shaker. In order to understand how the applied ideal force was transmitted to the

energy harvester, the frequency transfer function (FRF), defined as ratio between the Fourier transform of

the acceleration of the free edge of the piezoelectric and that relative to the exciting force, was identified.

The FRF can be split as the product of two transfer functions: the transfer function between the exciting

system and the plate (FRF1), and the one between the support and the piezoelectric device (FRF2). By the

knowledge of FRF, it is possible to reproduce the required acceleration on the piezoelectric element by con-

trolling the shaker with the proper input signal. Nonetheless, an accelerometer (PCB Piezotronic 333B32),
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placed on the piezoelectric clamping, allows for empirical verification of the excitation actually transmit-

ted, making sure the devices are tested under same excitation levels, an accelerometer. The LMS acquisition

system collects voltage data from the piezoelectric harvester and acceleration data from the accelerometer

at the clamp.

(a) Setup schematic representation of the setup.
(b) Close view of the setup at SDDLab.

Figure 5.3: Configuration of the experimental setup.

5.2.2 Comparison of the devices in open circuit condition

The four piezoelectric energy harvesters (Fig. 5.4) were built by using identical piezoelectric patches

(PLZTN produced at CNR-ISTEC) but different materials as support plates: Steel, Brass, Aluminium and

PLA (Polylactic Acid, obtained by 3D printing) [Passacantilli et al. 2018]. Each support layer thickness,

reported in Tab. 5.2, has been chosen in order to keep the beam neutral axis outside the piezoelectric

material, and thus avoiding charge cancellation phenomenon.

Figure 5.4: Custom energy har-
vesters with same piezoelectric
material (PLZTN) but different
support layer materials (Steel,
Brass, PLA, Alluminium).

Table 5.2: Thickness and materials of ISTEC piezoelectric energy har-
vester support layers and the bending resonance frequency.

Short name Material Thickness Bending frequency

[mm] [Hz]

ISTEC-Al Aluminium 0.5 72.3

ISTEC-Br Brass 0.3 42.3

ISTEC-PLA PLA 0.8 65.4

ISTEC-St Harmonic Steel 0.3 76.1

To investigate the electromechanical performances of the four piezoelectric devices, a test was carried

out with harmonic excitation at the first bending mode frequency (different for each device). The results,

summarized in Tab. 5.3, show that in resonance condition (optimal working point) ISTEC-St produces the

highest outputs in terms of open circuit voltage relatively to the given excitation.
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A second kind of test was carried out by comparing the most performing in-house built device (ISTEC-

St), without tip mass, and the commercial piezoelectric harvester, equipped with tip mass in order to bring

the frequency of the second device at the same value of the first one (44.1 Hz). The two PEH dimensions

are reported in Table 5.4. Since the MIDE PPA 1012 was provided with its clamping structure, a custom

one was 3D-printed in PLA for the ISTEC-St as well, in order to test both devices in similar BCs (Fig. 5.5).

Despite the tip mass enhancing oscillation amplitude, for the commercial device, ISTEC-St still exhibits a

better performance in voltage than MIDE PPA 1012, as shown in the last column of Table 5.3.

Table 5.3: Comparison among the four ISTEC PEH and the commercial PEH MIDE PPA 1012 in term of
open circuit output voltage.

Test type Signal Output

Type Frequency Device RMS OC Voltage

[Hz] [V · s2/m]

1 Sinusoidal 44.1 ISTEC-St 3.64

Sinusoidal 42.3 ISTEC-Br 2.11

Sinusoidal 72.3 ISTEC-Al 1.14

Sinusoidal 65.4 ISTEC-PLA 0.30

2 Sinusoidal 44.1 ISTEC-St 3.64

Sinusoidal 44.1 PPA 1012 2.62

Table 5.4: Piezoelectric material patch dimensions.

Device LxWxT Area Volume

[mm] [mm2] [mm3]

ISTEC-St 40x40x0.2 1600 320

MIDE PPA 1012 46x38x0.25 1766 442

Furthermore, device sensitivity to perturbation of optimal excitation frequency was analysed too. Both

ISTEC-St and MIDE PPA 1012 have been equipped with a tip mass to lower their natural frequency fn

till (Fig. 5.5). Thus, five test conditions with sinusoidal excitation were carried out at 0.6m/s2 amplitude,

varying the excitation frequency fe of ±5% and ±10% with respect to the initial resonance frequency value

fn.
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Figure 5.5: Schematic configuration (top) and picture (bottom) of the commercial (left) and in-house assem-
bled device (right).

Results in Fig. 5.6 show in the y axis the root mean square (rms) value of the voltage harmonic time

history. It is evident the expected drop in the voltage output for both devices out of the resonant frequency

(fe 6= fn). However, ISTEC-St still provides a slightly better performance at the resonant excitation and for

fe > fn, but this difference becomes negligible for fe < fn.

Figure 5.6: Comparison between the commercial and in-house assembled device output voltage for har-
monic excitation at different frequencies.

5.2.3 Comparison in terms of power output

Recalling Table 5.4, ISTEC-St and MIDE PPA 1012 have similar values of piezoelectric areas and vol-

umes, thus a comparison in terms of power depends also not only on active material quantity, but also on

the configuration adopted.

The two devices were tested for different resistive loads, varying from 0.82 kΩ to 90 kΩ (Figs. 5.7 and

5.8). The shift in optimal load condition (70 kΩ for ISTEC-St and at 50 kΩ for the PPA 1012) reflects the

change in electrical behaviour due to different piezoelectric capacitance Cp, which depends on material

characteristics and patch dimensions. Both absolute (Fig. 5.7) and per unit volume (Fig. 5.8) power output
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data point out a better performance for ISTEC-St, confirming previous results also when the circuit is closed

on an electric load.

Figure 5.7: Comparison between the com-
mercial and in-house assembled device output
power for different resistive loads.

Figure 5.8: Comparison between the com-
mercial and in-house assembled device output
power per unit of volume for different resistive
loads.

Finally, the two devices performances are experimentally compared through their response to a real-

istic working case, with a resistive temperature sensor (TMP36 by Analog Devices) as load and a voltage

amplifier connected to a commercial charge regulator (BOB 09946) as conversion circuit, shown in Fig. 5.9.

Having six steps made by Schottky diodes and tantalum capacitors, the multiplier gives an output voltage

up to 6 times the input one, allowing the PEH to reach the minimum threshold needed to activate the charge

regulator. A storage capacitor (1500 mF) is connected to the BOB 09946 to ensure constant power flow for

a time interval sufficient to perform the temperature measurement. The sensor indeed is activated by an

enable signal from BOB 09946 controlling a MOSFET: the circuit is on only when the capacitor reaches 3.3

V, but it goes off when the voltage drops again under 3 V.

Figure 5.9: PEH, commercial conversion system, and temperature sensor schematic representation.

The test were carried out under harmonic seismic excitation with acceleration amplitude and frequency

equal to 0.1m/s2 and 20 Hz, respectively. The first charge of the capacitance to reach 3.3 V from zero takes a

few minutes for both devices. Despite this, since the MOSFET opens only when the voltage drops from 3.3
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V to 3 V, and the storage capacitor voltage has then to regain only 0.3 V, the subsequent charges are operated

in a shorter period. In Tab. 5.5 the intermediate charges and the charge from scratch are compared in time.

Both devices power successfully the load, but recharge time is 27 s for ISTEC-St against 48 s for MIDE PPA

1012, as shown in Tab. 5.5.

Table 5.5: Storage capacitor recharge intervals.

Device First charge Temperature data sample

[min] [s]

ISTEC-St 5 27

MIDE PPA 1012 9 48

5.3 Piezoelectric structure identification

5.3.1 Experimental setup

After identifying a preliminary prototype, as seen in the previous section, the most performing device

ISTEC-St was elected as reference device for modelling purposes and, consequently, underwent a system-

atic series of tests to provide data for validating the theoretical models developed in the previous chapters.

However, considering some limitations of the clamping block used in the previous experiments (too low

stiffness and screws too small to use a torque wrench and thus to have an easily reproducible tightening

condition), in the following a new clamping structure is employed to ensure a clamping condition is as

ideal as possible. Indeed, in the following tests the PEH is clamped on a custom steel block, shown in Fig.

5.10. Thus, to overcome limitations of the previous constraint system, three central screws passing through

holes in the support layer ensure clamping and do not allow any rotation of the lamina, and other two side

screws make the clamp more tight. One of the side screw also is used as a terminal for piezoelectric output

voltage measurement.

Figure 5.10: Custom clamping structure for the piezoelectric energy harvester.
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The device (clamping block plus PEH) is provided with a thread at the vice to directly place it on the

head of a shaker (Fig. 5.11), used to produce seismic excitations. The shaker The Modal Shop 2100E11 is

controlled through LMS Simcenter Testlab via an amplifier.

Figure 5.11: Experimental setup:
PEH with clamping structure posi-
tioned on the shaker head. The ac-
celerometer is placed on the clamp-
ing end.

Figure 5.12: Experimental setup block diagram.

The LMS acquisition system collects acceleration and voltage signals, provided by an accelerometer PCB

PIEZOTRONICS Model M352C68, placed at the clamping (Fig. 5.11), and by the PEH, respectively. Indeed,

being the piezoelectric device directly positioned on the shaker prevents from using a sensing head, that

would measure applied force and acceleration output and allow for direct control on the seismic excitation.

Thus, to ensure the tests are carried out under the same amplitude, the acceleration measurement is taken

as reference, since, though giving as input the same voltage with the amplifier, the shaker excitation varies

with frequency. In diagram 5.12 the experimental set-up chain is shown.

5.3.2 Analysis of the yielding clamp

Before comparing experimental data and simulation results, a more accurate characterization of the

PEH needed to be done. First, layer characteristics were verified by measuring their weight and dimen-

sions, taking also into account the silver electrodes and the epoxy resins, glueing together piezoelectric and

support material. In Tab. 5.6 deduced thicknesses and densities are reported for each layer.
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Table 5.6: Experimentally verified thickness and density for each layer of the PEH.

Layer Material Thickness Density

[mm] [kg/m3]

Support Harmonic steel 0.27 7850

Piezoelectric PLZTN 0.18 7800

Electrodes Silver 0.005 10490

Glue Epoxy resins 0.19 2000

Other characteristics of the piezoelectric energy harvester are reported in Tab. 5.7.

Table 5.7: Energy harvester parameters.

Parameter Unit Value

Support layer

Length Ls m 0.0633

Width b m 0.04

Young’s modulus Ys Pa 190 · 109

Poisson’s ratio νs - 0.3

Piezoelectric layer

Length Lp m 0.04

Width b m 0.04

Distance from clamping l1 m 0.0023

Young’s modulus Yp Pa 9 · 1010

Poisson’s ratio νp - 0.34

Relative electric permittivity ǫ33 F/m 2400

Piezoelectric coefficient d31 C/N −2.1·10−10

In order to provide a better clamping system than the one presented in Sec. 5.2.2, a steel block made of a

lower and upper side was build. The screws used are suited to be tightened with a torque wrench, in order

to ensure equal and repeatable tightening torques. The clamping was tested to evaluate its effectiveness

and possible corrections to describe non ideal boundary conditions in the model (e.g., a yielding clamp), as

seen in section 3.2. The device is positioned on the shaker head (Fig. 5.13) and, by randomly tipping on the

plate edge, modal frequencies in open circuit conditions (in order to avoid short circuit, that could damage

the acquisition system) are measured by recording the voltage output for different clamping torques.
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Figure 5.13: Experimental setup for boundary condition test.

A torque wrench was used to know exactly the screws tightness level. Tests were repeated (Table 5.8) for

several torque values (1.5, 2.5, and 3.5 N ·m) using different tightening sequences for screw (345, 543, and

453) with screws numbered as shown in Fig. 5.14. The screws 1 and 2 are only used as electric terminals.

To reduce uncertainty, each individual test was repeated 3 times. Indeed, by measuring the voltage output

during transient vibrations following a small hit on the support layer, resonance frequencies of the first

two bending modes are found to vary slightly from one condition to the other, as shown in Figs. 5.15a and

5.15b.

Figure 5.14: Schematic representation of PEH clamping and screws identification by numbers.
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Table 5.8: Test matrix for clamping effectiveness verification.

Tightening torque Tightening sequence Number of test repetition

[N ·m] for each torque value

1.5 3

2.5 345 3

3.5 3

1.5 3

2.5 453 3

3.5 3

1.5 3

2.5 543 3

3.5 3

The mean values (Fig. 5.15) and the max-min oscillation (Table 5.9) of first and second bending modes

resonance frequencies, calculated over the data from three repetitions, are reported for different tightening

sequences and torques. It can be seen that for a torque value higher than 1.5 N ·m the clamping effect is the

same and one can conclude that perfect clamping BC is closely approximated. However, constraint relax-

ation in terms of frequency reduction appears for 1.5 N ·m, proving that attention to clamping effectiveness

is requested in this case to make results repeatable.

Moreover, data in Table 5.5 confirm that, for higher torques, the tightening sequence has no influence

on the measured resonance frequency, while for 1.5 N ·m there is one sequence (453) providing less repeat-

able results. The frequency variation is always within the 1.5 % of the mean frequency, proving that the

value of applied torque is anyway more relevant than the tightening sequence in affecting the experimental

frequency value.

(a) Mean frequencies for the first bending mode. (b) Mean frequencies for the second bending mode.

Figure 5.15: Resonance frequencies for three different torques (1.5, 2.5 and 3.5 N · m) for different screw
tightening sequence.

120



5. Experimental analysis and model validation

Table 5.9: Frequency variation around its mean value for three different torques (1.5, 2.5 and 3.5 N ·m) and
for different screw tightening sequences.

Tightening torque Tightening sequence ∆f1,mean ∆f2,mean

[N ·m] [Hz] [Hz]

1.5 0.1 0.9

2.5 345 0.7 1.5

3.5 0.5 1.3

1.5 2.0 3.3

2.5 453 0.5 2.1

3.5 0.9 1.2

1.5 0.7 2.3

2.5 543 0.8 1.4

3.5 0.7 1.4

5.3.3 Identification of the structural damping

As the PEH response in resonance conditions is strongly dependent on damping, it is necessary to up-

date these values in the mathematical model. Thus, the PEH damping is experimentally identified and

expressed as modal critical damping coefficient ζm using the logarithmic decrement method [Daniel J. In-

man 2008]. Limiting the analysis to the first two modes, the investigation is carried out also considering the

effect of the tip mass, whose dimension and weight are reported in Tab. 5.10.

Table 5.10: Parameters of the three tip mass conditions tested.

Tip mass Dimensions LxWxh Weight

[mmxmmxmm] [g]

no mtip - -

mtip1 8.1 x 40 x 5.15 2.6

mtip2 9.6 x 40 x 4.1 3.72

The natural frequencies of the structure are first identified by analysing the power spectral density peaks

of voltage produced by randomly hitting the support layer. These frequencies are then used to generate

a sinusoidal seismic excitation, exerted with the shaker, which was suddenly stopped to induce transient

decaying oscillations at the desired frequency. An example of the signal obtained for the first resonance

frequency is shown in Fig. 5.16. The logarithmic decrement method, implemented in MATLAB, is then

used to calculate the damping ratio, expressed as

ζm =
δm

√

4π2 + δ2m
(5.2)
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where the logarithmic decrement δm is defined as [Daniel J. Inman 2008]

δm = ln
λ̇(t)

λ̇(t+ T )
(5.3)

where, in our case, λ̇ is filtered voltage signal relative to a certain mode of the structure.

Figure 5.16: Voltage time history for logarithmic decrement method application.

In Tab. 5.11 the natural frequencies, damping rations for the first and second bending modes, and damp-

ing coefficients are reported for the three tip mass conditions. For instance, considering the configuration

without tip mass, the two damping ratios for the first (76.09 Hz) and second (437 Hz) resonance frequencies

are respectively ζ1 = 0.0101 and ζ2 = 0.0045. Thus, recalling the generic expression in function of air and

structure damping coefficients (Eq. 3.3.2), used in the governing Eq. 3.111 as

ζm = 1/2
(

csJωm/D̄ + ca/µωm

)

, (5.4)

it can be found that csJ/D̄ = 2.2754 ·10(−6) s/rad and ca/µ = 8.1856 rad/s. In the previous equation csJ , D̄,

ωm, ca, and µ are, respectively, the Kelvin-Voigt damping term, the equivalent stiffness, the eigenvalue of

the m-th mode, the viscous air damping term, and the equivalent mass per unit of length. In this way, the

damping coefficient ratios allow the determination of damping ratios ζm for m > 2 as well. Analogously,

the damping coefficients are found for the first and second tip mass conditions.
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Table 5.11: Modal parameters and damping coefficient ratios relative to the considered tip mass conditions.

Tip mass condition fr,1 fr,2 ζ1 ζ2 csJ/D̄ ca/µ

[Hz] [Hz] [s/rad] [rad/s]

no mtip 76.09 437.0 0.0101 0.0045 2.2754 · 10−6 8.1856

mtip,1 49.57 325.1 0.0118 0.0069 5.1310 · 10−6 6.8569

mtip,2 44.88 323.1 0.0243 0.0049 1.5780 · 10−6 13.5654

5.4 Linear model validation

In this sections results from tests carried out to validate the numerical model for different resistive load

and tip mass conditions are presented. The coefficients of the theoretical model have been updated here

with experimental results obtained in the previous section. Thus, a perfect clamping BC and different

damping coefficients depending on the tip mass are used. Experiments are set up, as described in Sec.

5.3.2, with the clamping block directly screwed on the shaker head, as shown in Fig. 5.13. An accelerometer

is positioned on the clamping to measure the actual acceleration the piezoelectric energy harvester (PEH)

is subjected to. Data acquisition for both excitation input and voltage output are collected as described in

Sec. 5.3.1.

Tests have been carried out under sinusoidal excitation, with acceleration amplitude kept equal to 5 ·

10−3 g in order to avoid non linear piezoelectric behaviour [Erturk and Daniel J. Inman 2011c]. To acquire

the transfer function of the PEH, the device was tested for different forcing frequencies. Moreover, voltage

output has been measured in open circuit conditions and with two resistive loads of respectively 104 Ω

and 105 Ω. To better compare numerical and experimental data, results are presented in voltage per unit of

acceleration amplitude.

5.4.1 Response analysis without tip mass

In Fig. 5.17 numerical results (lines) and experimental data (squares) for open circuit (OC) condition are

shown. In MATLAB, the OC is simulated with high resistive load, R = 106 Ω.

Focusing on the comparison of FRF peaks, the relative difference in resonance frequencies between nu-

merical and experimental results, defined as ∆fj/f
(exp)
j and shown as a percentage in Table 5.12, is only

0.3 % for the first mode and 1.8 % for the second one. The numerical value of first peak amplitude matches

quite exactly the experimental one while the second peak is slightly underestimated (∆Am/A
(exp)
m ≃ −15%).

The agreement keeps good also outside the FRF peaks, especially for the first mode, highlighting the pos-

sibility to evaluate the sensitivity of the response to off-design conditions. As expected, the second mode

peak is far lower than that of the first mode, due to charge cancellation phenomenon. Thus, in the case

of broad-band excitation, the contribution of the second mode can be disregarded as first approximation.

This issue can be solved by electrode segmentation in length, as seen in Sec. 4.3.3, that could thus make the

second mode relevant for power production as well.
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Figure 5.17: Voltage per unit acceleration amplitude for the configuration without tip mass in open circuit
conditions.

In Figs. 5.18b and 5.18a similar results have been achieved for closed circuit conditions, for resistive

loads of respectively 104 Ω and 105 Ω. The first mode peak amplitude is slightly overestimated (∆Am/A
(exp)
m ≃

15%) but the second peak is almost exactly captured. As in the OC condition, the difference between numer-

ical and experimental resonance frequency keeps quite small (1 % for the first mode, 1.8 % for the second

mode). This confirms the model as a useful tool to estimate performances of the device, calculated in terms

of power in closed circuit conditions. As expected, the load causes a voltage drop with respect to the open

circuit condition value. As seen also in Sec. 3.5, resonance frequencies experience a small decrease (up to

0.5 Hz), passing from OC conditions to closed circuit conditions for R = 104 Ω.

(a) R = 10
5
Ω. (b) R = 10

4
Ω.

Figure 5.18: Voltage per acceleration amplitude for the configuration without tip mass for two different
resistive loads.

5.4.2 Response analysis with different tip masses

As seen in previous chapters, a tip mass on the free edge can be useful to tune the resonance frequency

of the device with the excitation frequency. For this reason the PEH has been studied with two different tip

mass (different from those used in Sec. 5.2.3), whose features are reported in Tab. 5.10. The experimental
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setup is the same of the previous tests, but a tip mass is placed at the free end of the device, covering part of

the support layer, as shown in Fig. 5.19 formtip,2. Three different circuit conditions were investigated: open

circuit (R = 106 Ω), R = 105 Ω, and R = 104 Ω. These numerical results are compared with experimental

data and the no-tip mass condition, already analysed of the previous paragraph.

Figure 5.19: Experimental setup with tip mass on the free edge.

In Fig. 5.19 the open circuit condition results are shown. There is a satisfactory agreement between

predicted and experimental resonance frequencies, with differences of less than 5 % for the first mode and

of 2 % for the second mode with reference to both mass values. Moreover, the agreement with experimental

results in terms of FRF amplitudes can be considered satisfactory as well. As expected, the tip mass lowers

in a relevant way both first and second mode resonance frequency, but, as previously underlined in Sec.

3.3.3, its effect has a limited frequency range. Indeed, when passing from mtip,1 (16 % of PEH mass) to

mtip,2 (38 % of PEH mass), the resonance frequency decrease is not as relevant as it is from no-tip mass to

mtip,1 configuration, as expected from simulation results [Laura et al. 1975]. Moreover, although a tip mass

is commonly considered enhancing oscillation amplitude, results show this is not necessarily true. Indeed,

when a certain threshold is reached, the total mass of the system increases and, consequently, the damping

too (Tab. 5.11), but without a correspondent rise in oscillation amplitude. In this condition the voltage

output drops, as shown for the mtip,2 configuration. Finally, it is worth noting that the frequency decrease

for the second mode is more relevant in absolute terms than for the first one. This fact suggests the tip mass

could also be useful to create a wider band gap for a device with initial first and second modes sufficiently

close to each other.
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Figure 5.20: Voltage per acceleration amplitude with (2 cases) and without tip mass in open circuit condi-
tion.

As for the no-tip mass configuration, closed circuit conditions have been investigated for two different

resistive loads: R = 105 Ω, shown in Fig. 5.21a, and R = 104 Ω, shown in Fig. 5.21b. The enhanced

oscillation amplitude, caused by a proper tip mass condition mtip,1, brings to a first mode voltage output

almost twice the one of the two other configurations (Fig. 5.21a). Conversely, it is obvious that mtip,2 does

not produce any oscillation enhancement, having higher damping and thus providing a power output even

lower than the no-tip mass configuration. For this reason it is evident that the only advantage of adding

mtip,2 over the no-tip mass condition could be in frequency tuning for a specific vibration excitation, in case

any other parameter of the device (i.e., length, thickness, width, materials) could not be changed.

(a) R = 10
5
Ω. (b) R = 10

4
Ω.

Figure 5.21: Voltage per acceleration amplitude with (2 cases) and without tip mass for two different resis-
tive loads.
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Table 5.12: Percentage difference between numerical results and experimental data in terms of resonance
frequency for different tip mass and resistive load conditions.

Tip mass condition R = 106 Ω R = 105 Ω R = 104 Ω

∆f1/f1% ∆f2/f2% ∆f1/f1% ∆f2/f2% ∆f1/f1% ∆f2/f2%

no mtip 0.3 -1.8 1.0 -1.8 0.3 -1.8

mtip,1 -0.9 -1.9 -2.7 -1.9 -3.6 -1.9

mtip,2 -4.7 0.5 -4.7 -0.4 -6.6 -1.0

Table 5.13: Comparison of predicted and experimental resonance frequencies for different tip mass and
resistive load conditions.

Tip mass R = 106 Ω R = 105 Ω R = 104 Ω

f1 f2 f1 f2 f1 f2

num exp num exp num exp num exp num exp num exp

no mtip 77.7 77.5 431.9 440.0 77.7 77.0 431.9 440.0 77.0 77.0 431.9 440.0

mtip,1 50.6 51.0 328.6 335.0 50.6 52.0 328.6 335.0 50.0 52.0 328.6 335.0

mtip,2 45.8 48.0 326.7 325 45.8 48.0 326.7 328.0 44.9 48.0 326.7 330.0

Following the previous experimental validation, the ROM is finally used to predict the power perfor-

mance of device. In Fig. 5.22 the power output for acceleration amplitude of 1 m/s2 is shown for several

values of the resistive load. The maximum performance of the device occurs at the resonance frequency of

the first mode for R = 104 Ω, a value close to the impedance matching condition, generating 0.2 mW. For

the second resonance frequency, the peak value of 0.03 mW is obtained for R = 103 Ω. It is worth noting

that the resonance frequencies vary depending on the resistance, with differences of about 1 Hz for the first

mode and 3 Hz for the second mode passing from OC and low-resistance circuit condition. The shown

dependence of both power output and mechanical behaviour on the electric load confirms how relevant a

proper description of the electromechanical coupling is.
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Figure 5.22: Power per acceleration amplitude for mtip = mtip,1 for different electric loads.
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Chapter 6

Device optimization for performance

improvement

6.1 Introduction

In this chapter an overview of the extent at which some mechanical and electrical parameters influence

the power output of the piezoelectric energy harvester is given. This goal is not reached directly performing

a sensitivity analysis; it is obtained as a by-product of the attempt of optimizing the device leveraging the

mechanical configuration and electric system features. The PEH electromechanical system subjected to

optimization is considered in two configurations: the one taken into account in Chapter 3, with only a

resistive load connected, and the one with the FBR interposed between the PEH and the load (Chapter 4).

Considering both configurations will show how different equivalent impedances affect the optimization

results. As design parameters, the distance of the piezoelectric patch from the clamping and its length are

assumed.

Thus, the FBR capacitance is considered, finding the best sizing to perform signal filtering, and show-

ing how minimizing the voltage ripple leads to better performance of the converter. Moreover, the active

control for impedance matching with a Buck-Boost (BB) converter is performed, comparing the optimized

duty cycle with the one calculated with Maximum Power Point Tracking (MPPT) logic. In order to im-

prove the control circuit performance, the capacitance sizing will be studied again to provide a storage

function besides the filtering one considered previously, and, thus, allowing for a better coupling with the

BB inductor.

Finally the distance from the clamping and the capacitance will be taken into account jointly, proving

that a coupled optimization is fundamental to improve the overall performance of the PEH system, and

thus proving the effectiveness of the holistic approach presented in this work.
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6. Device optimization for performance improvement

6.2 Constrained optimization and Patternsearch solver

An optimization process aims to improve a merit function (objective function), by changing some of

the problem parameters (design variable). Indeed, the optimization goal is to maximize or minimize the

objective function inside a defined domain A, called search space or the choice set, in which the feasible

solution of the problem will be found. To define the search space A a series of conditions on the design

variables are imposed, defined as inequality constraints (inequality conditions, such as material limits or

device dimensions) or equality constraints (equality conditions, such as balance of forces or energy).

In general, a minimization problem can be defined as [Haftaka et al. 1992]

minimize f(x)

such that gi(x) ≥ 0, i = 1, ..., ng

hk(x) = 0, k = 1, ..., ne

(6.1)

where x is the vector of design variables, f(x) is the objective function, gi(x) are the inequality constraints,

and hk(x) the equality constraints. Usually an optimization is defined as a minimization problem, since the

maximization can be obtained by minimizing the negative of the function. If the design variables are only

subjected to bounds and are not related to each other in other ways, a more simple constraint definition can

be used in the form of parameter bounds

xl ≤ x ≤ xu (6.2)

where xl and xu are respectively the upper and lower bound vectors.

When both objective function and constraints are defined as linear functions, the problem is known

as Linear Programming problem, but if non-linearities are present then the Nonlinear Programming problem

should be addressed. Moreover, the optimization can be carried out on a local or global basis, finding re-

spectively local or global minima of the objective function. Indeed, the objective function could have more

basins of attraction, regions in which for any given initial condition a unique minimum is found, as shown

in Fig. 6.1.

Figure 6.1: Basins of attraction for a generic objective function f(x).

Thus, depending on the initial condition given to the solver, a different solution can be found, being

130
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a local minimum, but not necessarily the global minimum of the problem. If one wants to search for the

global minimum, then the starting point condition has to be investigated first, running the optimization

problem with a regular grid of initial points inside the boundaries defined for the design variables.

Thus, depending on what the optimization goal is, a different solver should be chosen depending on

non-linearities and variables constraints. Considering that our problem is non-linear and stiff due to the

presence of time varying circuit elements (diodes and switches), the Matlab Global Optimization Toolbox

guide suggests the patternsearch algorithm, suitable for non-smooth problems. Although less efficient than

gradient-based solvers, patternsearch is provably converging on a wide range of problems, and thus reliable.

At the beginning, patternsearch runs for a certain number of points in the neighbourhood of the initial

condition given and, if some of them are found to belong to different basins, it looks in more basins at

the same time, although not ensuring that no other minima exist outside that area. Thus, if interested in a

global solution, patternsearch has to be run initially with multiple starting points distributed on the design

variable domain.

To find the solution, the optimization algorithm defines a set of fixed-direction vectors (pattern), depend-

ing on the design-space dimension, usually coinciding with unit basis vectors [Audet et al. 2002] [Conn et

al. 1997] [Lewis et al. 2006]. At each step, those vectors are multiplied by a scalar (mesh size), evaluating the

objective function in the new positions and comparing their values to the current point. If a new minimum

is found, the poll is called successful, becoming the point for the next iteration, and the mesh size is doubled.

Otherwise the poll is unsuccesful and at the next iteration the point stays the same, but the mesh size is re-

duced to a half. Although the mesh size is treated as previously described, patternsearch modifies the point

to always stay inside the constrained boundaries. The run stops when, after a successful poll, the change in

both objective function and mesh size is less then the tolerance set.

The objective function that will be used in the following simulations is the power output, expressed

in mW and found by making the resistive load vary from a minimum of 100Ω to a maximum of 106 Ω.

Obviously, this can lead to different maximum resistive loads for different design variables values, and this

will be evaluated in the following.

6.3 Optimization on tructural parameters

First, the device performances are improved by modifying the mechanical layout, that is, the value

of two geometrical parameters of the PEH: the distance from the clamping l1 and the piezoelectric patch

length Lp, shown in Fig. 6.2.

Figure 6.2: PEH configuration with its geometrical parameters.

The investigated configuration does not include a tip mass. The harmonic acceleration amplitude con-
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sidered to calculate the power output is the same used in Chap. 4, equal to 0.06 g, and its frequency is the

natural frequency of the PEH first bending mode. As said before, the patternsearch algorithm is employed to

find their optimum value. Regarding the electric circuit downstream the piezoelectric, two configurations

are studied:

• PEH connected to a resistive load, denoted as S1 in the following. The power output is calculated as

ratio between the square of the peak voltage over the resistive load

PS1 =
λ̇2peak
R

(6.3)

which gives an indication of the possible output in DC.

• PEH connected to the full bridge rectifier, named S2 in the following. The power output is calculated

as root mean square of the instantaneous power p(tn) sampled at tn time instants over the resistive

load

PS2 = Prms =

√

√

√

√

1

N

N
∑

n=1

|p(tn)|2 (6.4)

where N is the number of time steps. This power definition will be used also for the MPPT optimiza-

tion.

In both configurations the power is calculated in stationary conditions, after the transient phase is over.

The power is calculated in mW and thus the maximum tolerance set for patternsearch is 10−4, considering a

difference of less than µW not significant. Moreover, the FBR capacitance sized as

i0 = CR
∂V0
∂t

= CR
∆V0
T

⇒ CR =
V0

R∆V0fr
(6.5)

were R is the resistive load, V0 and ∆V0 are the required voltage and the admissible ripple and fr is the

frequency of the circuit, provided by the excitation source. Thus, the capacitance depends on the PEH reso-

nance frequencies, and, consequently, the impedance matching point is expected to change too. It is worth

to underline that the FBR is likely to produce enhancement of the model instability, because of the strong

non-linearity of the circuit. This instabilities may appear only for particular combinations of the piezo-

electric parameters, unpredictably chosen by the patternsearch algorithm. This behaviour is well known in

technical literature, as also underlined for instance by Manzoor et al. [Manzoor et al. 2017]. A remedy is

setting a one-way coupling between the mechanical system and the conversion circuit, i.e., imposing the

FBR current not participating in the piezoelectric effect on the structure; even if underestimating the output

power, as shown in Fig. 6.3. Moreover, a shift in the optimal resistive load occurs, since the structure be-

haves as the equivalent capacitance relevant for the matching is only the piezoelectric one Cp. Although the

peak is underestimated and shifted, the optimization in S2 configuration will show comparatively different

results with respect to the resistive load configuration, underlying the importance of a realistic description

of the problem.
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Figure 6.3: Power output comparison between the coupled and uncoupled model of the PEH and FBR
system.

First, with the only resistive load connected to the PEH, the convergence of patternsearch is investigated

for different initial conditions, showing how the algorithm gives reliable solutions. Then the best initial

condition is used to perform an optimization of the parameter in the FBR configuration and results are

compared with the previous ones.

6.3.1 Piezoelectric patch distance from clamping

The influence of distance l1 from the clamping is investigated in the following. To avoid the patch

is moved with one edge beyond the supporting structure, the design variable l1 is constrained by upper

and lower boundaries of 25 mm (piezoelectric patch reaching the free end) and 0 mm (piezoelectric patch

attached to the clamping point), respectively. In the patternsearch call, the mesh tolerance imposed is 10−4

considering values under 0.1 mm not relevant in a real life design.

To avoid stopping the search at local minima the patternsearch routine, running on S1 case, is started for

a set of different initial conditions, distributed between the limits. In Fig. 6.4 the final objective function

maximum is plotted in function of the optimized design variable. Different initial conditions lead to similar

output power values, but some difference exists in the optimal points, with 3.7mm < l1 < 4.6mm (l1 =

3.7mm in the original configuration), showing that the curve has a flat behaviour around the maximum.

At first glance, this result seems to point out we can get almost the maximum power output even with a

not precise technique for piezoelectric patch positioning on the support layer.
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Figure 6.4: Dependence of the optimum patch distance on initial conditions imposed to the patternsearch
algorithm.

In Fig. 6.5 the intermediate optimization steps for the S1 (circles) and S2 (squares) configuration are

compared, with patternsearch starting from the same initial condition of 20 mm. It is evident how the two

configurations reach the optimum power condition for different resistive loads. Indeed, by introducing the

FBR, the total equivalent capacitance of the circuit decreases and thus the impedance matching occurs for an

higher resistive load. Moreover, the optimal distance from the clamping changes too, reaching almost zero

for the FBR configuration. Thus, optimizing the PEH parameters without taking into account the correct

circuit ahead leads to relevant changes in results.
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Figure 6.5: Power output comparison for optimization of the distance from the clamping with the PEH
connected to a resistive load (circles) or to the FBR (squares).

Table 6.1 summarizes input and output for optimization of both S1 and S2 configurations.

Table 6.1: Summary Table of the l1 optimization.

Configuration Fixed Design Design variable Optimized Objective Correspondent

parameters variable constraints design variable function PSi resistance

[mm] [mm] [mW] [kΩ]

S1 Lp, CR l1 0 - 25 4.3 0.047 5

S2 Lp, CR l1 0 - 25 0.4 0.11 15

6.3.2 Length of the piezoelectric patch

This time fixing the parameter l1, the length Lp of the piezoelectric patch which maximizes the power

is investigated as well. Upper and lower limits need to be also set for Lp. These are set equal, respectively,

to 10 mm, considered as minimum value to make a comparison with the initial length of 40 mm, and 61

mm, representing the piezoelectric patch covering the entire support layer except for the distance from the

clamping (3.7 mm). The mesh tolerance imposed is 10−4 considering values under 0.1 mm not relevant in

a real life design.

As in the previous section, the algorithm reliability and the presence of possible local minima are inves-

tigated by running patternsearch on the S1 configuration for a set of different initial conditions, spanning

the interval of admissible values. In Table 6.2 the final objective function maxima are reported along with

the design variable. The optimal condition is found close to the upper boundary as expected; more piezo-
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electric material is used, more charge is produced. Small differences in the final values of the design and

objective variable depend on the imposed algorithm tolerances.

Table 6.2: Study of patternsearch output for different initial conditions.

Initial Lp PS1 Optimal Lp

mm mW mm

10 0.0541 60.7

20 0.0538 60.0

30 0.0539 60.3

40 0.0541 60.5

50 0.0541 60.7

61 0.0540 60.1

In Fig. 6.6 the optimization steps for the S1 (circles) and S2 (squares) configuration are compared, with

patternsearch starting from the same initial condition of 40 mm. As also seen in the previous section, it is

evident how the two configurations have optimum power for different combinations of the resistive load

and piezoelectric patch length. Indeed, by introducing the FBR, the total equivalent capacitance of the

circuit decreases and thus the impedance matching occurs for a higher resistive load. However, at the same

time, the impedance matching criterion forces the optimization algorithm to find the most suitable Cp for

the circuit rather then the maximum charge production, resulting in a final length of 36 mm. Thus, also

in this problem, optimizing the PEH parameters with different conversion circuits ahead leads to relevant

changes in results, and the more realistic solution (S2) should be preferably considered.
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Figure 6.6: Power output comparison for optimization of the piezoelectric patch length with the PEH con-
nected to a resistive load (circles) or to the FBR (squares).

Table 6.3 summarizes input and output for optimization of both S1 and S2 configurations.

Table 6.3: Summary Table of the Lp optimization.

Configuration Fixed Design Design variable Optimized Objective Correspondent

parameters variable constraints design variable function PSi resistance

[mm] [mm] [mW] [kΩ]

S1 l1, CR Lp 0.1 - 61 60.7 0.054 5

S2 l1, CR Lp 0.1 - 61 36.3 0.053 25

6.4 Optimization on full bridge rectified capacitance

A correct sizing of the FBR capacitance CR is fundamental for system performance and output DC

signal filtering. Although an approximated sizing can be done with Eq. 6.5, in Chap. 4 CR inefficiency in

providing adequate power output to higher loads was reported. Thus, the optimization can be useful to

find a suitable value of the capacitance for a PEH device, as a compromise between short charge time and

required power output. Therefore, the capacitance is assumed as unique design variable. For this reason the

simulation time is set to 20 s, sufficient to not only overcome the transient, but also large enough to allow for

charging of higher capacitances. In order to be consistent with the previous section, the simulation is run

with the one-way piezoelectric coupling, although the model is less sensitive to FBR capacitance changes

rather than to structural parameters variation. The harmonic acceleration amplitude is equal to 0.06 g, with
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excitation frequency set to the resonance one of the PEH first bending mode. The objective function is the

power output calculated in mW as rms value of the instantaneous power, as reported in Eq. 6.4.

Two PEH configurations are investigated: the first (S2) is the one used in the previous section, compre-

hensive of PEH and FBR, the second (S2opt) is equal to S2, but has a distance from the clamping l1 equal to

the optimum value found in Sec. 6.3.1 (0.4 mm). By sizing the capacitance according to Eq. 6.5, S2 and S2opt

would have CR values equal to 7µF and 6µF , respectively, very close to each other. The first of these value

is set as initial conditions for the iterations. Both simulations are run limiting the capacitance between 10−1

and 104 the initial CR values.

In Fig. 6.7 the optimization steps for the S2 (circles) and S2opt (squares) configuration are compared,

with initial condition of CR = 7µF . It can be noted that S2opt has a power output almost double the

S2 one, although its optimal capacitance is one orders of magnitude smaller. Thus, not only a complete

model of the energy harvesting circuit provides more accurate optimization of structural parameters, but

it is also fundamental to properly size the circuital elements, improving efficiency with lower capacitance

and, consequently, sizes.

Figure 6.7: Power output comparison for optimization of the FBR capacitance with the distance from the
clamping being 3.7 mm (circles) or to 0.4 mm (squares).

Although until now the FBR capacitance was only considered for filtering purposes, in Section 4.2.2

it was pointed out that the PEH cannot efficiently supply higher power-demanding loads, and, thus, the

capacitance exhibit a periodic deep charge-discharge cycle, with consequent increase in voltage ripple. For

this reason it is important to investigate the role of the FBR capacitance also as storage element. Therefore,

a new optimization was performed (S2storage), with the same S2 configuration, but for longer simulation

time (100 s instead of 20 s), to reach full charge even for higher capacitance values. In Fig. 6.8 is shown that

138



6. Device optimization for performance improvement

the optimized storage capacitance can provide an higher amount of energy instantaneously, with a power

output double the one of the optimal capacitance for a charging time of 20 s. However, it must be taken into

account that higher capacitance values mean also higher volumes of the device. Moreover, the maximum

charging time should be set also considering the sample time of the powered electronic device.

Figure 6.8: Power output comparison for optimization of the FBR capacitance for a charging time of 20 s
(circles) and 100 s (squares).

Table 6.4 summarizes input and output for all the performed optimization of the FBR capacitance.

Table 6.4: Summary Table of the CR optimization.

Configuration Fixed Design Design variable Optimized Objective Correspondent

parameters variable constraints design variable function PSi resistance

[µF ] [µF ] [mW] [kΩ]

S2 l1, Lp CR 0.7 - 7 · 104 11.0 0.06 22

S2opt l1, Lp CR 0.6 - 6 · 104 0.96 0.11 10

S2storage l1, Lp CR 0.7 - 7 · 104 3.8·103 0.12 10

6.5 Final remarks on optimization results

In Table 6.5 all the optimization cases are summarized. The first important result is how the system

performance is improved if the conversion circuit model is included. Indeed, although the one-way cou-

pling hypothesis has been introduced, the power output is doubled by the conversion circuit for both l1
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and Lp optimization cases, the latter with an S2 configuration performing as S1 but with half the patch

length. Thus, designing a PEH without taking into account the FBR interaction leads to underestimate

power output. Moreover, the optimal resistance, for which the impedance matching occurs, changes too,

reaching higher values due to a different equivalent capacitance of the system. This means that if the PEH

was designed in configuration S1, then the real impedance matching conditions would be missed in the

application, resulting in far lower power outputs. Therefore, the structural parameters optimization high-

lights that the comprehensive model is fundamental to understand the PEH efficiency and to predict the

future optimal working conditions of the device. In general, the capacitance should be sized by taking into

account the required power and the space and time constraints (maximum volume of the device, load sam-

ple time). However, by jointly optimize the PEH design variables and the FBR capacitance, a compromise

between energy storage and size can be found. Indeed, cases 4 and 6 point out that the holistic approach

can lead to more efficient material use for both piezoelectric patch and FBR capacitance, showing that size

reduction is possible without compromising on power output.

Table 6.5: Summary Table of all optimization problems.

Case Configuration Fixed Design Optimized Objective Correspondent

parameters variable design variable function PSi resistance

1 S1 Lp, CR l1 4.3 mm 0.047 mW 5 kΩ

2 l1, CR Lp 60.7 mm 0.054 mW 5 kΩ

3 S2 Lp, CR l1 0.4 mm 0.11 mW 15 kΩ

4 l1, CR Lp 36.3 mm 0.053 mW 25 kΩ

5 S2 l1, Lp CR 11.0 µF 0.06 mW 22 kΩ

6 S2opt l1, Lp CR 0.96 µF 0.11 mW 10 kΩ

7 S2storage l1, Lp CR 3.8 mF 0.12 mW 10 kΩ

6.6 Active circuits for load-adapting energy production

6.6.1 Introduction

As previously mentioned, the impedance matching phenomenon can be exploited to maximize the effi-

ciency of the device, varying R (i.e., the voltage required by the load) during the energy harvesting process.

To reach this optimum efficiency condition, a DC/DC converter, with duty cycle d provided by a Maximum

Power Point Tracking logic unit (MPPT), must be added to the power conversion system as shown in Fig.

6.9.
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Figure 6.9: Maximum Power Point Tracking system.

The logic unit detects the condition at which the piezoelectric device works, due to the external exci-

tation, and adjusts it thanks to the DC/DC converter, setting the voltage at the maximum power point

condition. The DC/DC converter is supposed to be a buck - boost converter and will be presented in the

next section.

6.6.2 DC/DC converter: Buck-Boost theory

Electrical model

The buck - boost converter is a DC/DC converter able to both increase and decrease a DC input voltage,

while keeping the overall power constant (despite small internal losses). The circuit, shown in Fig. 6.10,

is constituted by a switch, a diode, an inductor, and a capacitance. The switch is controlled by an external

logic signal imposing a duty cycle or switching signal d.

Vin

iin vT

iT

LBBvL

iL

CBB

ic

vD

iD

R V0

I0

Figure 6.10: Buck - boost converter circuit.
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In order to understand its behaviour, mesh and nodes equations can be written by applying Kirchhoff’s

laws.

Vin = vT + vL (6.6)

V0 + vL = vD (6.7)

iT + iD = iL (6.8)

iD = ic + I0 (6.9)

where subscripts refer to parameters relative to the voltage source (in), the transistor (T ), the inductance

(L), the output (0), and the diode (D). When the switch is in on condition (Fig. 6.11), the previous equations

become

vT = 0 (6.10)

vL = Vin (6.11)

vD = Vin + V0 (6.12)

iL = iT = iin (6.13)

iD = 0 ⇒ ic = −I0 (6.14)

Vin

iin

LBBvL

iL

CBB

ic

R V0

I0

Figure 6.11: Buck - boost converter circuit with switch ON.

Equation 6.12 shows that the diode is reverse biased, and so it is equivalent to an open circuit. The load

is completely powered by the capacitance (6.14) and the input voltage charges the inductance (6.13).

During the off state of the switch (Fig. 6.12), circuit equations become:

iT = 0 (6.15)

vD = 0 (6.16)

vT = Vin + V0 (6.17)

vL = −V0 (6.18)

iD = iL > 0 (6.19)
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Vin LBBvL

iL

CBB

ic

R V0

I0

Figure 6.12: Buck - boost converter circuit with switch OFF.

The diode now conducts (Eq. 6.19), then it is equivalent to a short circuit. The inductance powers the

load and charges the capacitance. In the following graphs, the main voltage and current trends are reported

in function of the switching signal d.

Figure 6.13: Buck - boost converter voltage and currents[ Mohan 2011b].

To understand how the duty cycle sets V0 value, the mean value of the voltage over the inductance v̄L is

studied. Being equal to zero for the Continuous Conduction Mode hypothesis and recalling Eqs. 6.11 and

6.18, v̄L can be written as

v̄L =
1

Ts

[

∫ ton

0

Vindt+

∫ Ts

ton

−V0dt

]

=
1

Ts

[

Vinton − V0(Ts − ton)

]

= dVin − V0(1− d) = 0 ⇒

⇒V0 =
d

1− d
Vin

(6.20)

The previous equation gives then the relation between V0 and Vin:

• if d = 0.5, then V0 = Vin;

• if d < 0.5, then V0 < Vin;

• if d > 0.5, then V0 > Vin.

The inductor can be sized from the on-state equation of the inductor voltage (eq. 6.11):

vL = Vin ⇒ LBB
∂iL
∂t

= Vin ⇒ LBB =
VinTsd

∆iL
(6.21)
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where ∆iL is the inductor current ripple amplitude, usually kept between 10 % and 20 % of iL mean value

in order to obtain a wide range of operating conditions.

To size the capacitor, the output voltage ripple must be taken into account.

ic = CBB
∂V0
∂t

= I0 ⇒ CBB =
I0 Ts d

∆V0
(6.22)

where the ripple of the output voltage ∆V0 is usually small (1-2 % of V0).

Finally, the power flowing through the buck - boost converter can be expressed as

P =
1

d(1− d)
V0I0 (6.23)

Obviously, P has a maximum for d = 0.5, condition that determines the switch choice.

6.6.3 Maximum Power Point Tracking logic unit

MPPT methods

The most widely used MPPT techniques for piezoelectric resonant energy harvesters are the Perturb &

Observe technique and the Open Circuit Voltage (OCV) technique [Balato et al. 2018]. The first one (fig.

6.14) is based on voltage perturbation to find the maximum power point with a trial and error mechanism.

After changing V , the new voltage and current are measured and the calculated power is compared with the

old value, determining if voltage perturbation brought to higher or lower energy production. Depending

on the comparison, a further voltage perturbation is decided for the following time step until the optimum

power condition is reached (∆P = 0). The variation of V0,ref must induce a variation in P0 greater than the

one caused by the maximum variation of the vibration amplitude [Balato et al. 2018]. Although simple to

be implemented, P&O technique can fail easily under excitation fast changing condition [Tung et al. 2006],

so it could be not suitable for a noisy spectrum vibration condition.
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Figure 6.14: Perturb & Observe MPPT logic.

The Open Circuit Voltage technique relies on the principle according to which the maximum power

point voltage of the device is always a fraction of the open circuit voltage Vopt = αVoc, with α a constant

related to the working conditions. At every cycle, the open circuit voltage is measured and the new optimal

condition is found. Then Vopt is compared with the operating voltage and an increment or decrement is

considered to reach the optimal working conditions [Sharma et al. 2016] (Fig. 6.15).
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Figure 6.15: Open Circuit Voltage MPPT logic.

Ottman et al. [Ottman; Hofmann; Bhatt, et al. 2002] considered the MPPT with buck-boost converter

only for the sinusoidal case, a rather ideal condition far from real life applications, demonstrating its effec-

tiveness, although for high excitation amplitudes. Moreover, the same research group [Ottman; Hofmann,

and Lesieutre 2003] studied the optimal duty cycle in relationship with the external force amplitude, finding

that control becomes easier (duty cycle constant) for higher acceleration amplitude.

A new upcoming technique in the MPPT field is based on Machine Learning (ML) [Memaya et al. 2019].

Providing a faster convergence towards the optimum point with respect to the previous methods, ML could

be useful in the energy harvesting application field, since a variable and noisy excitation (fast changing con-

ditions) requires an equally fast control. However, to implement this MPPT logic a training set is needed,

with data on the PEH system behaviour for different excitation and load conditions, with optimum duty

cycle found with optimization algorithms. Following the last point, an holistic, robust and accurate model,

providing the acceleration-voltage transfer function, is still fundamental, showing once again the benefits

of a comprehensive approach to this problem.

In the following, first the OCV method will be presented for piezoelectric device under sinusoidal excita-

tions, and then results will be compared with those of the duty cycle found with the patternsearch algorithm.

MPPT logic for piezoelectric harvesters with sinusoidal excitation

As mentioned previously, Ottman et al. [Ottman; Hofmann; Bhatt, et al. 2002] presented a MPPT logic

for a piezoelectric device producing a sinusoidal current output, deriving the V0 optimal value in function

of open circuit voltage (OCV technique) from the average power output expression.
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Knowing that

Ipsin(ωt) = Cp
∂vp
∂t

= ωCp
∂vp
∂(ωt)

(6.24)

and integrating the previous relation from 0 to the instant t1 at which Cp is fully charged,

cos(ωt1) = 1−
2V0ωCp

Ip
(6.25)

is obtained.

So the FBR output current DC component is expressed as mean value of the signal, that is

< i0(t) >=
1

π

(

0 +

∫ T

t1

Ipsin(ωt)dt
)

=
Ip
π

(

− cos(π) + cos(ωt1)
)

=
2Ip
π

−
2ωCpV0

π
(6.26)

Considering the output voltage kept almost constant by CR, the system average power output is

< P0 >= V0 < i0(t) >= V0

(2Ip
π

−
2ωCpV0

π

)

(6.27)

from which, the voltage at maximum power production can be determined:

(V0)opt =
Ip

2ωCp
(6.28)

corresponding to half the open circuit voltage, measured during the off-condition period of the DC/DC

converter switch.

6.6.4 OCV MPPT technique versus duty cycle optimization

To find the results of the power output produced with the OCV MPPT control, a new configuration

(S3OCV ) is used, comprehensive of PEH, FBR and DC/DC converter. The optimization problem with

duty cycle d as design variable runs with the same configuration of the OCV, but denoted as S3opt for

the sake of clarity. The FBR capacitance is set equal to the optimized one to provide a storage function

(CR = 3.8mF ), since the inductor charge otherwise could cause high voltage ripples. From Eqs. 6.21

and 6.22, the inductance and capacitance of the buck-boost converter are set equal to LBB = 1.2 kH and

CBB = 5.7µF , respectively.

The two control techniques are tested for a set of resistive load values. In Fig. 6.16 a comparison between

S3OCV and S3opt results is shown in function of resistance and duty cycle. The optimization algorithm

provides better performances than OCV for all load conditions, overcoming it in particular for lowR values

and keeping the mean power to a higher average level. Indeed the OCV technique shows a low capability

to cover on the duty cycle interval ([0,1]), limiting its effectiveness for low voltage conditions occurring at

low impedances. On the contrary the optimized duty cycle is more flexible, proving to be a better strategy

to obtain a condition of maximum power.
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6. Device optimization for performance improvement

Figure 6.16: Power output comparison of MPPT results with duty cycle obtained with the OCV technique
(circles) and with the optimization algorithm (squares).

Since the optimized duty cycle has been proved to be more efficient than the OCV method by running

the present model under different load and excitation conditions, this technique can create a set of data

to train the ML algorithm under a supervised learning approach. This provides a ML-MPPT technique

capable to perform for any kind of excitation (harmonic, stochastic) and electric load.
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Chapter 7

Conclusions

In the present work a piezoelectric energy harvester has been studied with an holistic approach to

achieve a deeper understanding of its behaviour, to predict more accurately and efficiently the response and

to provide potential enhancement to design. The PEH is described as a multi-layer composite cantilevered

Euler – Bernoulli beam with not uniform material distribution along its length. The electromechanical cou-

pling is introduced in the structural model by adding the linear piezoelectric constitutive equations. A

finite dimension tip mass, taking into account the not negligible extension and rotational inertia effect, is

positioned on the free edge to tune harvester’s natural frequencies on (lower) external excitation frequen-

cies and to enhance oscillations. By analytically developing Lagrange equations from extended Hamilton’s

principle, also including electrical potential energy and electric load interactions, a partial differential equa-

tion system is obtained and then projected on the exact bending modes of the structure. Thanks to the an-

alytical determination of the modes of the not-uniform beam (obtained in MATLAB), the developed ROM

allows mechanically decoupling modal oscillators and then easily neglecting those modes not contributing

to energy production, simplifying the problem and saving computational time. The electric conversion

system is developed in Simulink by Simscape’s blocks, allowing for a simple simulation of voltage rec-

tifier, storage capacitance, Maximum Power Point Tracking system, and resistive load, with an easy data

exchange with the ROM model in Simulink environment. To enhance the accuracy of the theory, an exper-

imental identification of torsional spring and modal damping coefficients is carried out. A PEH prototype

is tested under sinusoidal excitation, imposed by a shaker, for different frequencies, but constant acceler-

ation amplitude to provide data for validation of the developed ROM. Though approximated, the model

captures the system response, being in agreement with experimental evaluation of the acceleration - volt-

age frequency transfer function for different resistive load and tip mass conditions. Finally, mechanical

and electrical key parameters of the system are optimized to maximise the power output with the pat-

ternsearch algorithm in MATLAB, investigating their influence on the device and underlying the crucial

co-dependency of mechanical and electrical behaviour, connected by means of the piezoelectric effect.

The presented holistic procedure fills a gap in past literature, in which usually mechanical and electrical

description are addressed separately for this kind of devices, thus preventing from a global comprehen-

sion and optimization, and limiting the possibility of introducing technological improvements for PEH

efficiency. Interfacing the ROM with the conversion system in Simulink/Simscape allows for a deep un-
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derstanding of dynamic coupled behaviour of PEH and FBR; as an example, the developed tool helps in

sizing correctly the capacitance not only as signal filter but also as a storage element to ensure the electronic

device powering. First, by considering the exact modes of a not uniform multi-layer structure, new design

opportunities are introduced, allowing for more flexibility in piezoelectric material use and positioning.

Indeed, an accurate simulation of the model behaviour is fundamental for accurate tuning with the main

excitation frequencies. Moreover, by studying the node position of the bending modes, an electrode seg-

mentation in length can be performed to avoid charge cancellation and, thus, increase power production.

Furthermore, the introduction of electrode segmentation in width shows how the device could comply

with voltage requirement of both FBR and loads (typically 3 V) also for very low excitation levels (0.06 g),

opening to possible IoT applications for low vibration sources.

The integrated multi-physics approach used in the developed ROM overcomes issues related to interfac-

ing computationally expensive models and shows how few parameters are sufficient to carry out effective

sensitivity analysis and optimization of the PEH. Indeed, the sensitivity study underlines which design

variables are more relevant in terms of power production and how they influence each other, and that an

integrated approach is fundamental to reach an efficient device. Finally, the optimization problem with

duty cycle as design variable is addressed, achieving a more efficient behaviour than that obtained with

the Open Circuit Voltage MPPT method. This approach can produce more valuable data to build training

datasets for the supervised ML techniques increasingly used in MPPT implementation. Hence, the com-

bination of a multi-physics efficient and robust ROM with an optimization approach constitutes a novelty

proposed in this thesis to provide a useful tool for improving the design of piezoelectric energy harvesters

for real life applications, paving the way for a significant increase in the device performances.

Experimental testing has been systematically used for validating the developed theoretical and numer-

ical models as far as time constraints has allowed for, leaving some work to do in an ideal continuation

of the present efforts beyond the PhD thesis. First, the device performance should be tested also under

multi-frequency or stochastic excitations. Indeed, the off-design conditions analysis is useful to under-

stand the weaknesses of the device and then design, thanks to the optimization technique, a more robust

configuration. Non-linearities could also taken into account in the model, both neglecting the small dis-

placement hypothesis and introducing the not linear piezoelectric constitutive equations. This allows for

model validation at higher excitation levels, representing real-life vibration sources characterized by high

energy densities. Then, a further experimental campaign should be carried out to test the complete PEH -

conversion circuit system model, since both diodes and capacitance blocks need for experimental character-

ization and validation. Moreover, comparing different capacitor technologies and sizes, and measuring the

initial full-charge time is fundamental for data comparison with simulation results and could highlight the

need for some improvement in the model. The real load model could be validated too by testing different

sensors and data transmitters, thus assessing more specific applications for the PEHs. Finally, the MPPT

control module could be added, with the ML logic unit working remotely from an online server, in order to

validate the fully coupled model provided in this thesis and give an estimation on the power consumption

of the MPPT unit. Moreover, tests under stochastic excitations could bring to the development of a dynamic

MPPT logic, based on the correlation between input excitation and optimal duty cycle in a feasible range of

acceleration amplitudes and frequencies. As underlined before, the Machine Learning MPPT logic can be

more fruitfully trained with simulation data employing the duty cycle optimized under different excitation

150



7. Conclusions

and load conditions.

An investigation, both numerical and experimental, of more complex PEH configurations derived from

the present ones is also worthwhile, and further exploring the electrode segmentation technique and con-

sidering a bimorph configuration to improve device power output. As part of the fundamental tuning

process, sensitivity analysis on the tip mass position and weight can be fruitfully performed too, develop-

ing a new empirical model that correlates tip mass and damping coefficients.

Moreover, the energy flow, from the vibration source (mechanical energy) till the electronic device (elec-

tric energy), could be investigated, offering a quick evaluation of the device efficiency and giving a new

simplified model to be used in possible PEH multi-array applications.

Finally, the optimization process should be refined and extended to a multi-objective analysis, testing at

the same time the performance of different algorithms provided by the Matlab Optimization Tool to reduce

the computational time. Indeed, optimization techniques are expected to provide the perfect match among

piezoelectric patch dimensions and position, and the best electrode segmentation both in length and width,

coupling it with the search for a new optimum FBR capacitance. Moreover, following the identification of

the best configuration for ideal conditions, optimization can lead to address efficiently the presence of a

real load, as seen in Chapter 4, and to adjust the PEH system parameters for quasi-periodic and stochastic

excitations, more likely in real life applications.
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Appendix A

Governing equations with extended tip

mass

A.1 Device configuration

As shown in Fig. A.1, the studied piezoelectric energy harvesting (PEH) has a tip mass covering part of

the support layer.

Figure A.1: Configuration of the piezoelectric cantilevered harvester with geometrical characteristics.

Thus, in order to better describe the proof mass effect on resonance frequencies and power output, the

extended mass model proposed by several authors [Tang et al. 2017] [Magrab 2012] is adopted, with not

negligible extension nor rotational inertia. The tip mass is then defined with a mass per unit of length µtip,

a length ltip, and a thickness htip, as shown in Fig. A.2.
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Figure A.2: Lateral view of the PEH with extended tip mass (dimensions do not scale real values of the
device considered later).

For the sake of simplicity, supposing the support layer as part of the tip mass above for lr ≤ x ≤ Ls and

since the overall mass per unit of length keeps constant in the same interval, it follows for the total tip mass

mtip and moment of inertia Jtip:

mtip = µtipltip + µ(lr)ltip (A.1)

Jtip =
µtipltip

3

(

h2tip +
l2tip
4

−
hs

8htip
l2tip

)

+
µ(lr)l

3
tip

12
(A.2)

where the point T with coordinates x = lr, z = hs/2 is assumed as pole to calculate the moment of inertia

and terms of order higher than O(hs) are neglected since hs << htip. Following this hypothesis, x = lr

becomes the effective beam length for which the beam modes are calculated.

A.2 Electromechanical PDE model

As in Chapter 3, to obtain the equations describing the behaviour of the piezoelectric bender with an

extended tip mass, the Hamilton’s principle for continuous systems [Gupta 1988] is written in the form:

δI =

∫ t2

t1

(δL+ δWnc) dt = 0 (A.3)

with Wnc the virtual work of non-conservative forces and L the Lagrangian function, which includes three

different contributions,

L1 = T − Um + Ue =

∫ Ls

0

ℓdx (A.4)

L2 = Ttip =
1

2
mtip

[

ẇa(lr, t) +
ltip
2
ẇ′

a(lr, t)

]2

+
1

2
Jtipẇ

′2
a (lr, t) (A.5)

L3 =
1

2
krotγ

2 (A.6)

The term L2 represents the kinetic energy of the extended tip mass placed on the free edge of the beam

(x = lr).

Focusing on the specific form of the Lagrangian function, which includes continuous ℓ and lumped

contributions Lk (see e.g., [Gupta 1988]),

δL(u) =

∫ Ls

0

δℓ(u) dx+ δL2(u) + δL3(u), (A.7)
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the set of independent parameters is provided for the piezoelectric cantilever by functions p1 = wa(x, t)

and p2 = λ(t) along with their time and space derivatives. Thus, setting p = {p1, p2}, the Lagrangian from

Eq. A.7 can be expressed in general form as:

δL(p,p′,p′′, ṗ, ṗ′) =

∫ Ls

0

(

2
∑

j=1

4
∑

i=0

∂ℓ

∂pj(i)
δpj

(i)

)

dx+

3
∑

k=2

2
∑

j=1

4
∑

i=0

∂Lk

∂pj(i)
δpj

(i) (A.8)

where, for the sake of conciseness, it is set p
(0)
j = pj , p

(1)
j = p′j , p

(2)
j = p′′j , p

(3)
j = ṗj , and p

(4)
j = ṗj

′. Each term

of the expansion with respect to the virtual displacements δp
(i)
j needs to be separately evaluated, using the

condition δp(t1) = δp(t2) = 0. In the following, only not vanishing derivatives will be taken into account

relatively to the summations in the r.h.s of Eq. A.8. Thus, remembering the Extended Hamilton’s Principle

(Eq. 3.20), and considering the order reversibility of integrals and the commutativity of the operators δ(·)

and ∂/∂x(·), the derivative with respect to ṗj relative to L2 can be integrated by parts over time

∫ t2

t1

∂L2

∂ṗj
δṗj dt =

∂L2

∂ṗj
δpj

∣

∣

∣

∣

t2

t1

−

∫ t2

t1

∂

∂t

(

∂L2

∂ṗj

)

δpj dt = −

∫ t2

t1

∂

∂t

(

∂L2

∂ṗj

)

δpj dt (A.9)

with the integral over the beam length not taken into account since L2 is defined only at the free edge.

Analogously, the derivative with respect to ṗ′j relative to L2 can be integrated by parts over time

∫ t2

t1

∂L2

∂ṗ′j
δṗ′j dt =

∂L2

∂ṗ′j
δp′j

∣

∣

∣

∣

t2

t1

−

∫ t2

t1

∂

∂t

(

∂L2

∂ṗ′j

)

δp′j dt = −

∫ t2

t1

∂

∂t

(

∂L2

∂ṗ′j

)

δp′j dt (A.10)

Substituting the expressions 3.47, A.9, A.10, 3.50, and 3.51 in the Eq. A.8, we can rewrite the Extended

Hamilton Princile 3.20 as

∫ t2

t1

{

∫ Ls

0

[

∂ℓ

∂pj
−

∂

∂x

(

∂ℓ

∂p′j

)

+
∂2

∂x2

(

∂ℓ

∂p′′j

)

−
∂

∂t

(

∂ℓ

∂pj

)

+Qj

]

δpj dx +

[

∂ℓ

∂p′j
−

∂

∂x

∂ℓ

∂p′′j
−
∂Q12

∂x
−
∂

∂t

∂L2

∂ṗj

]

δpj

∣

∣

∣

∣

Ls

0

+

[

∂ℓ

∂p′′j
+Q12 +

∂L3

∂p′j
−
∂

∂t

∂L2

∂ṗ′j

]

δp′j

∣

∣

∣

∣

Ls

0

}

dt = 0(A.11)

where the terms involving L2 and L3 are considered equal to zero in 0 and lr, respectively. Usually, Eq. A.11

leads to separately setting the terms associated to virtual displacements equal to zero because of principle of

virtual work, directly providing in this way the governing equation and the BCs. However, in the present

case it would lead to time dependent BCs due to the presence of imposed excitation wb inside the total

displacement wa, and this suggest to rearranging terms in Eq. A.11 before setting them equal to zero.

For p1 = wa, one has:

∂ℓ

∂wa
=

∂ℓ

∂w′

a

=
∂ℓ

∂ẇa
′
= 0,

∂ℓ

∂w′′

a

= −D̄w′′ + θ
[

H(x− l1)−H(x− l2)
]

λ̇,
∂ℓ

∂ẇa
= µẇa

recalling that the space derivatives of wa contain only the elastic contribution w. After substitution of the

above relations into Eq. A.11, it si convenient splitting wa into the elastic and rigid body contribution, and

then grouping the terms both depending on wb and associated to δp1 with the continuous term (δ-Dirac
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symbols are introduced for that). Thus, the following equation is obtained:

∫ lr

0

{µẅ + (D̄w′′)′′} − θ
[

δ′(x− l1)− δ′(x− l2)
]

λ̇+caẇ + (csJẇ
′′)′′+

+[µ+mtipδ(x− lr) +
mtip

2
δ′(x− lr)] ẅb + caẇb} dx = 0 (A.12)

where the second derivative of the Heaviside functionH(x) is replaced with the first derivative of the Dirac

delta function δ. Equation A.12 is then satisfied if the integrated function vanishes, obtaining Eq. A.14 in

Sec. 3.3.2.

For the BCs, considering that only elastic terms are retained after splitting of wa in Eq. A.12, it yields:

[

(D̄w′′)′ + cs(Jrẇ
′′)′ −mtip

(

ẅ +
ltip
2
ẅ′

)]

δw

∣

∣

∣

∣

∣

lr

0

+

[

−D̄w′′ + csJrẇ
′′ + krotw

′ −
mtipltip

2

(

ẅ +
ltip
2
ẅ′

)

− Jtipẅ
′

]

δw′

∣

∣

∣

∣

∣

lr

0

= 0

(A.13)

where the term depending on θ has vanished as the piezoelectric effect occurs only in (l1, l2). Tthe system

governing equations are then obtained as:











µẅ + caẇ + (csJẇ
′′ + D̄w′′)′′ − θ

[

δ′(x− l1)− δ′(x− l2)
]

λ̇ = f(x, t)

Cpλ̈+
∫ Ls

0
θ

[

H(x− l1)−H(x− l2)

]

ẇ′′ dx = −Ic
, (A.14)

with δ the Dirac-delta distribution and f(x, t) expressed as:

f(x, t) = −[µ+mtipδ(x− lr) +
mtipltip

2
δ′(x− lr)] ẅb − caẇb (A.15)

The boundary conditions in x = 0 are:

w(0) = 0, − D̄(0)w′′(0)− csJẇ
′′(0) + krotw

′(0) = 0 (A.16)

and in x = lr:

D̄(lr)w
′′(lr) + csJẇ

′′(lr) +
mtipltip

2

(

ẅ(lr) +
ltip
2
ẅ′(lr)

)

+ Jtipẅ
′(lr) = 0 (A.17)

[D̄(lr)w
′′(lr) + csJẇ

′′(lr)]
′ −mtip

(

ẅ(lr) +
ltip
2
ẅ′(lr)

)

= 0. (A.18)

A.3 Electromechanical reduced-order model

As previously mentioned, the piezoelectric structure under consideration is modelled as a beam with

non uniform distribution of stiffness and mass. Thus, in order to refer to Eq. 3.75, a piecewise definition

of w(x, t) in space is introduced [Dessi et al. 2015] and three different displacement functions can be locally
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defined along the beam length as

w(x, t) =



















w1(x1), for 0 ≤ x1 ≤ l1

w2(x2), for 0 ≤ x2 ≤ Lp = l2 − l1

w3(x3), for 0 ≤ x3 ≤ Ls − l2

(A.19)

where local coordinate systems are defined for the three parts of the beam, as shown in Fig. A.3.

Figure A.3: Definition of local coordinate systems for exact mode calculation.

Each local displacement function wi can be expanded with respect to the local modes relative to the

i-th portion as wi =
∑

qjφij . Each set of shape functions {φ1j , φ2j , φ3j} represents the global mode φj and

satisfies the proper BCs at the beam ends and the continuity conditions at the piezoelectric layer edges

up to 3-rd order spatial derivative [Dessi et al. 2015]. Each function φij satisfies the following eigenvalue

problem:

φIVij − α4
ijφij = 0 (A.20)

with α4
ij = µω2

j /D̄, where µ and D̄ are constant in each subproblem, and ωj is the natural frequency of the

vibration modes. Next, given the shape functions φij in the form:

φij(xi) = A
(1)
ij sin(αijxi) +A

(2)
ij cos(αijxi) +A

(3)
ij sinh(αijxi) +A

(4)
ij cosh(αijxi) (A.21)

where i = 1, 2, 3 correspond respectively to the three parts of the beam. To determinate the A
(k)
ij coeffi-

cients, the following boundary conditions are rewritten in terms of φij .

α4
j3 = α4

j1 (A.22)

Indeed, for x3 = lr − l2 = χ3 the boundary conditions are:

•

[D̄w′′

3 (χ3)]
′ −mtip

(

ẅ3(χ3) +
ltip
2
ẅ′

3(χ3)

)

= 0 ⇒

φ3j
′′′(χ3) = −

mtip

D̄
ω2
j

(

φ3j(χ3) +
ltip
2
φ′3j(χ3)

)

⇒

φ3j
′′′(χ3) = −µtα

4
1j

(

φ3j(χ3) +
ltip
2
φ′3j(χ3)

)

(A.23)
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•

D̄w′′

3 (χ3) +
mtipltip

2

(

ẅ3(χ3)+
ltip
2
ẅ′

3(χ3)

)

+ Jtipẅ
′

3(χ3) = 0 ⇒

φ3j
′′(χ3) =

1

2

mtipltip
D̄

ω2
j

(

φ3j(χ3)+
ltip
2
φ′3j(χ3)

)

+
Jtip
D̄

ω2
jφ

′

3j(χ3) ⇒

φ3j
′′(χ3) =

µt

2
α4
1j

(

φ3j(χ3)+
ltip
2
φ′3j(χ3)

)

+
Jtip
µ
α4
1jφ

′

3j(χ3)

(A.24)

where µt = mtip/µ(0). Boundary and continuity conditions together form a system of equations from

which the 12 A
(k)
ij coefficients for each mode, and thus the exact modes φij , are determined thanks to the

MATLAB numerical solvers.

Taking now into account the damped equations, by substituting Eq. 3.69 into the first equation of (3.64),

and projecting the first equation over the mode φm(x), one has:

Nw
∑

j=1

q̈j < µφj , φm > +

Nw
∑

j=1

q̇j (ca < µφj , φm > + cs < (Jφ′′j )
′′, φm >)+

+

Nw
∑

j=1

qj < (D̄φ′′j )
′′, φm > − θλ̇ <

[

δ′(x− l1)− δ′(x− l2)
]

, φm >=< f(x, t), φm >= Fm(t)

(A.25)

wwhere the inner product between generic functions g1 and g2 in the interval [0, lr] is introduced as <

g1, g2 >=
∫ lr
0
g1g2 dx for sake of conciseness.

Moreover, by using integration by parts, and recalling the boundary conditions 3.79, 3.80, 3.92, and 3.93,

the damping and stiffness terms in Eq. 3.92 can be written as:

< (csJφ
′′

j )
′′, φm >= (csJφ

′′

ij)
′φim

∣

∣

∣

∣

∣

lr

0

− csJφ
′′

ijφ
′

im

∣

∣

∣

∣

∣

lr

0

+

∫ lr

0

csJφ
′′

j φ
′′

mdx (A.26)

< (D̄φ′′j )
′′, φm >= (D̄φ′′ij)

′φim

∣

∣

∣

∣

∣

lr

0

− D̄φ′′ijφ
′

im

∣

∣

∣

∣

∣

lr

0

+

∫ lr

0

D̄φ′′j φ
′′

mdx (A.27)

Substituting Eqs. A.26 and A.27 into Eq. 3.95

Nw
∑

j=1

(q̈j +
ca
µ
q̇j) < µφj , φm > +

Nw
∑

j=1

q̇j(< csJφ
′′

j , φ
′′

m > +φ3m(lr)(csJφ
′′

3j)
′|x=lr − φ′3m(lr)csJrφ

′′

3j(lr)+

+ φ′1m(0)csJ0φ
′′

1j(0)) +

Nw
∑

j=1

qj(< D̄φ′′j , φ
′′

m > +φ3m(lr)(D̄φ
′′

3j)
′|x=lr − φ′3m(lr)D̄rφ

′′

3j(lr)

+ φ′1m(0)D̄0φ
′′

1j(0))− θλ̇

[

φ′2m(Lp)− φ′1m(l1)

]

= Fm(t)

(A.28)
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that can be rearranged as

Nw
∑

j=1

(q̈j +
ca
µ
q̇j) < µφj , φm > +

Nw
∑

j=1

q̇j < csJφ
′′

j , φ
′′

m > +

Nw
∑

j=1

qj < D̄φ′′j , φ
′′

m > +

+

Nw
∑

j=1

q̇jφ3m(lr)(csJφ
′′

3j)
′|x=lr +

Nw
∑

j=1

qjφ3m(lr)(D̄φ
′′

3j)
′|x=lr −

Nw
∑

j=1

q̇jφ
′

3m(lr)csJrφ
′′

3j(lr)+

−

Nw
∑

j=1

qjφ
′

3m(lr)D̄rφ
′′

3j(lr) +

Nw
∑

j=1

q̇jφ
′

1m(0)csJ0φ
′′

1j(0) +

Nw
∑

j=1

qjφ
′

1m(0)D̄0φ
′′

1j(0)+

− θλ̇

[

φ′2m(Lp)− φ′1m(l1)

]

= Fm(t)

(A.29)

Substituting Eq. 3.69 into the expression of the boundary condition at x = lr yields:

Jr

Nw
∑

j=1

q̇jcs φ
′′′

3j |x=lr + D̄r

Nw
∑

j=1

qj φ
′′′

3j |x=lr = mtip

Nw
∑

j=1

q̈j

[

φ3j +
ltip
2
φ′3j

]

x=lr

(A.30)

Jr

Nw
∑

j=1

q̇jcsφ
′′

3j |x=lr + D̄r

Nw
∑

j=1

qj φ
′′

3j |x=lr = −
mtipltip

2

Nw
∑

j=1

q̈j

[

φ3j +
ltip
2
φ′3j

]

x=lr

− Jtip

Nw
∑

j=1

q̈jφ
′

3j |x=lr . (A.31)

Similarly, substituting Eq. 3.69 into the expression of the boundary condition at x = 0 (i.e., [D̄w′′(0) +

csJẇ
′′(0)]|x=0 = krotw

′(0)|x=0) yields:

J0

Nw
∑

j=1

q̇jcsφ
′′

1j |x=0 + D̄0

Nw
∑

j=1

qjφ
′′

1j |x=0 = krot

Nw
∑

j=1

qjφ
′

1j |x=0 (A.32)

Taking into account relations A.30, A.31, and 3.105, one can write Eq. A.29 as:

Nw
∑

j=1

[

Mjm +mtip φ3j(lr)φ3m(lr) +
mtipltip

2

[

φ′3j(lr)φ3m(lr) + φ3j(lr)φ
′

3m(lr)
]

+
mtipl

2
tip

4
φ′3j(lr)φ

′

3m(lr)+

+ Jtip φ
′

3j(lr)φ
′

3m(lr)

]

q̈j +

Nw
∑

j=1

(

ca
µ
Mjm +

csJ

D̄
Kjm

)

q̇j +

Nw
∑

j=1

(

Kjm + krot φ
′

1j(0)φ
′

1m(0)

)

qj+

− θ (φ′2m(l2)− φ′1m(l1))λ̇ = Fm(t),

(A.33)

with Mjm =< µφj , φm > and Kjm =< D̄φ′′j , φ
′′

m >. The chosen normalization condition, i.e., modes must

be orthogonal with respect to the PEH mass distribution, is expressed as:

Mjm +mtip φ3j(lr)φ3m(lr) +
mtipltip

2

[

φ′3j(lr)φ3m(lr) + φ3j(lr)φ
′

3m(lr)
]

+
(

Jtip +mtip

l2tip
4

)

φ′3j(lr)φ
′

3m(lr) = δjm,
. (A.34)
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where δjm is a Kronecker delta, the overall mass matrix is diagonal with unit elements and consequently

we have also an overall diagonal stiffness matrix Kjm + krotφ
′

j1(0)φ
′

m1(0) = δjmω
2
m. Thus the previous

equation becomes:

q̈m + 2ζmωmq̇m + ω2
mqm − θ[φ′2m(Lp)− φ′1m(l1)]λ̇ = Fm(t) (A.35)

Cpλ̈+ θ

Nw
∑

j=1

χj q̇j = −Ic (A.36)

The modal forcing term Fm(t) is defined as the component of the excitation over the m-th mode, i.e.,

Fm(t) = −

∫ lr

0

{

[µ(x) +mtipδ(x− lr)]ẅb + caẇb +mtip
ltip
2
δ′(x− lr)ẅb

}

φm(x) dx (A.37)

which, using the property of Dirac-δ distributions and the dependence of wb on time alone, becomes:

Fm(t) = −ẅb

[

∫ lr

0

µφm(x) dx+mtipφ3m(lr) +mtip
ltip
2
φ′3m(lr)

]

− caẇb

∫ lr

0

φm(x) dx (A.38)

and introducing βm =
∫ lr
0
µφm dx and γm =

∫ lr
0
φm dx, Eq. ?? can be written as:

Fm(t) = −ẅb

[

βm +mtipφ3m(lr) +mtip
ltip
2
φ′3m(lr)

]

− caγmẇb (A.39)
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