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Abstract

A class of stochastic weighted variational inequalities in non-pivot Hilbert

spaces is proposed. Hence existence and continuity results are proved. These

theoretical results play an important role in order to introduce a new weighted

transportation model with uncertainty. Moreover, they allow to establish the

equivalence between the random weighted equilibrium principle and a suitable

stochastic weighted variational inequality. At the end, a numerical model is

discussed.
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1. Introduction

In the last years, more and more problems arising from Applied Mathemat-

ics, Economics and Engineering, but also from real life, have been modeled by

variational inequalities. In particular, variational inequalities for example pro-

vide a unifying framework for the study of diverse problems as boundary value5

problems, equilibrium problems and game theory (see, for instance, [1], [2], [3]).

Some years ago, the stochastic formulation for a special class of variational

inequalities has been studied in [4].
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The paper deals with the introduction of a new class of variational inequal-

ities, which we call stochastic weighted variational inequalities. More precisely,10

we give some useful definitions which we need to show some existence results.

Moreover, by using the set convergence in Kuratowski’s sense, we are able to

obtain a continuity result. The introduction of this new class is motivated by

the formulation of a more realistic transportation equilibrium model. More pre-

cisely, the random weighted traffic equilibrium problem is presented. Finally,15

thanks to the theoretical results, the random weighted equilibrium principle is

characterized by a stochastic weighted variational inequality.

Firstly, the weighted variational inequalities have been introduced for giv-

ing the definition of weighted equilibrium flow (see [5]). Later, a systematic

study on the weighted variational inequalities has been done in [6]. In partic-20

ular, existence and regularity results have been obtained. Then, by using such

theoretical theorems, a numerical scheme for the computation of equilibrium

solutions has been presented. In [7], making use of the infinite-dimensional du-

ality theory, the characterization of the weighted traffic equilibrium conditions

in terms of Lagrange multipliers has been established. Recently, in [8], weighted25

quasi-variational inequalities have been proposed in order to study the weighted

traffic model in which the travel demands depend on time and also on the equi-

librium flow. Furthermore, it is worth to remind that recently a static random

traffic model has been introduced in [9] and [10], where the authors charac-

terize the random Wardrop equilibrium distribution by means of a stochastic30

variational inequality.

This paper is motivated by the fundamental role that the uncertainty has

on network user’s decisions. Under that light, the results obtained in this paper

have a wide field of applicability and open to remarkable developments. We

want to emphasize that a deterministic model is quite unrealistic. The need35

to develop a random traffic model arises because the path flows as well as the

travel demand often vary over time in a non-regular and unpredictable manner.

Such an uncertainty can be caused by several factors such as the particular

hour of the day but also by a sudden accident or a maintenance work. This
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remark suggests the necessity to couple the deterministic dependence on time40

of all data with the probability. Moreover, as well as in [5] and [6], we introduce

a system of weights which permit us to express the real time information in the

duality pairing. In particular, such weights, acting on the path flows and the

path cost function, are introduced in the functional space. Such a space cannot

be identified with its topological dual. As a consequence, we have a non-pivot45

Hilbert space, in which the duality pairing depends implicitly on time. The

advantage of this setting is the possibility to study models with more general

flows and cost functions.

The outline of this paper is as follows. In Section 2 we fix the notation

and introduce the weighted functional spaces we will deal with. We define the50

stochastic weighted variational inequality problem. We recall some topological

and monotonicity properties of operators and the definition of set convergence

in Kuratowski’s sense, which will be useful to obtain a regularity result. In

Section 3, we establish existence results for stochastic weighted variational in-

equalities. Section 4 is devoted to the study of the stochastic continuity of55

equilibrium solutions. In Section 5 we present in detail the random weighted

traffic equilibrium model. In particular, we state a random weighted generalized

Wardrop equilibrium principle and we show the characterization with a stocastic

variational inequality. Finally, in Section 6 a numerical example is analyzed.

2. Basic concepts and setting of the problem60

Let T > 0, let Ω ⊂ R be open and let (Ω,F ,P) be a probability space. We

consider the product measure space (ΩT ,A, ν), where we set ΩT :=]0, T [×Ω,

A := B(]0, T [) ⊗ F and ν := L1 ⊗ P, B(]0, T [) is the Borel σ-field of ]0, T [ and

L1 stands for the 1-dimensional Lebesgue measure on ]0, T [. A point in ΩT will

be denoted by the couple (t, ω). If X = X(ω) is a random variable on Ω, then65

its expectation will be denoted by E(X). We assume the reader is familiar with

basic notions as stochastic processes and stochastic continuity (see e.g. [11] for

a general reference on these topics).
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The measure space (ΩT ,A, ν) is naturally endowed with a metric structure

(ΩT , ‖ · ‖2), where ‖ · ‖2 is the Euclidean norm on R2. We denote by C0(ΩT )70

the space of continuous functions with compact support on ΩT . The following

proposition, whose proof is immediate, shows that C0(ΩT ) can be endowed with

an inner product as a pre-Hilbert space.

Proposition 2.1. Let p = p(t), m = m(t) be continuous and strictly positive

functions on ]0, T [ called weight and real time density, respectively. Then the

bilinear form defined on C0(ΩT ) by

((u, v))p,m = E
(∫ T

0

u(ξ, ω)v(ξ, ω)p(ξ)m(ξ) dξ
)

is an inner product.

It’s worth to note that, since the product space (ΩT ,A, ν) is σ-finite, then

by Fubini and Tonelli’s Theorem the previous inner product could be defined

alternatively as

((u, v))p,m =

∫ T

0

E
(
u(ξ, ω)v(ξ, ω)p(ξ)m(ξ)

)
dξ.

However, we observe that the space C0(ΩT ) endowed with the inner product75

((·, ·))p,m is not a Hilbert space (as shown by a simple counterexample; see

e.g. [12]). As a consequence, we give the following definition.

Definition 2.2. A completion of C0(ΩT ) with respect to the inner product

((u, v))p,m is denoted by L2(ΩT , p,m).

This space is a non-pivot Hilbert space, since it has no sense to identify80

it with its topological dual (see [6] for details). Let us note that supposing

p a weight, then we obtain that also p−1 is a weight so that we may define,

correspondingly, the space L2(ΩT , p
−1,m) according to Definition 2.2.

In the following, we present a d-dimensional non-pivot Hilbert space. Let

p = (p1, . . . , pd) and m = (m1, . . . ,md) be two d-tuples of continuous and85

strictly positive functions on ]0, T [. Denoting by Xk = L2(ΩT , pk,mk) and
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X∗k = L2(ΩT , p
−1
k ,mk), the space

X =

d∏
k=1

Xk (1)

is a non-pivot Hilbert space with respect to the inner product

((A,B))X = ((A,B))p,m =

d∑
k=1

E
(∫ T

0

Ak(ξ, ω)Bk(ξ, ω)pk(ξ)mk(ξ) dξ
)
.

The same assertion holds for the space

X∗ =

d∏
k=1

X∗k (2)

with respect to

((A,B))X∗ = ((A,B))p−1,m =

d∑
k=1

E
(∫ T

0

Ak(ξ, ω)Bk(ξ, ω)mk(ξ)

pk(ξ)
dξ
)
.

Furthermore, if we consider the bilinear form

〈〈f ,x〉〉X∗×X = 〈〈f ,x〉〉m =

d∑
k=1

E
(∫ T

0

fk(ξ, ω)xk(ξ, ω)mk(ξ) dξ
)
, (3)

then the following result holds.90

Proposition 2.3. The bilinear form (3) on X∗ ×X defines a duality between

X∗ and X. The duality mapping is given by J(A) = (p1A1, . . . , pdAd).

Proof. We adapt to our purposes the argument of Proposition 3.1 in [5]. By

Definition 2.2, we know that for each k, Xk(ΩT ) = C0(ΩT )
{pk,mk}

and that X

is complete if for each k, Xk is complete. Then it is enough to take A and

B in Cd0 (ΩT ) := C0(ΩT ) × C0(ΩT ) × · · · × C0(ΩT ) d-times. By using twice the

Cauchy-Schwartz’s inequality for finite sums and integrals we obtain

〈〈A,B〉〉m ≤
d∑
k=1

E
(∫ T

0

∣∣∣Ak(ξ, ω)
√
mk(ξ)

√
pk(ξ)

Bk(ξ, ω)
√
mk(ξ)√

pk(ξ)

∣∣∣ dξ)
≤

d∑
k=1

E
((∫ T

0

A2
k(ξ, ω)mk(ξ)pk(ξ) dξ

) 1
2
(∫ T

0

B2
k(ξ, ω)mk(ξ)

pk(ξ)
dξ
) 1

2
)

≤
( d∑
k=1

E
(∫ T

0

A2
k(ξ, ω)mk(ξ)pk(ξ) dξ

)) 1
2
( d∑
k=1

E
(∫ T

0

B2
k(ξ, ω)mk(ξ)

pk(ξ)
dξ
)) 1

2

≤ ‖A‖p,m‖B‖p−1,m,
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where ‖ · ‖p,m and ‖ · ‖p−1,m denote the norm in X and X∗, respectively.

Now if A ∈ X then pA = (p1A1, . . . , pdAd) ∈ X∗ and ‖pA‖p−1,m = ‖A‖p,m
that means

‖B‖p−1,m = sup
A∈X

〈〈A,B〉〉m
‖A‖p,m

.

As a consequence, 〈〈·, ·〉〉m is a duality pairing and

((A,B))p,m =

d∑
k=1

E
(∫ T

0

Ak(ξ, ω)Bk(ξ, ω)pk(ξ)mk(ξ) dξ
)

= 〈〈pA,B〉〉m.

We are now ready to introduce the stochastic weighted variational inequali-95

ties.

Definition 2.4. Let M be a nonempty, closed and convex subset of X and let

A :]0, T [×M → X∗ be a vector-function. The stochastic weighted variational

inequality (SWVI) is the problem to find a (vector) stochastic process u =

u(t, ω) ∈M, such that100

〈〈A(u),v − u〉〉m =

=

d∑
k=1

E
(∫ T

0

mk(ξ)Ak(ξ, uk(ξ, ω))(vk(ξ, ω)− uk(ξ, ω)) dξ
)
≥ 0, ∀v ∈M.

(4)

2.1. Some tools

In this subsection we recall some useful definitions for the study of SWVIs.

First, we recall some topological and monotonicity properties of operators nec-

essary to obtain existence results, both in the monotone approach and without

monotonicity assumptions. Let X and X∗ be the non-pivot Hilbert spaces pre-105

sented in (1) and (2), respectively, and 〈〈·, ·〉〉m be the duality pairing defined

by (3).

Let M be a subset of X. The following definition deals with two more general

assumptions than monotonicity.

Definition 2.5. An operator A :]0, T [×M→ X∗ is said to be110
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• pseudomonotone in the sense of Karamardian (K-pseudomonotone) on M

if for every u,v ∈M

〈〈A(v),u− v〉〉m ≥ 0 =⇒ 〈〈A(u),u− v〉〉m ≥ 0;

• strongly pseudomonotone with degree α > 0 on M, uniformly with respect

to t ∈]0, T [, if there exists η > 0 such that, for every u,v ∈M,

〈〈A(v),u− v〉〉m ≥ 0 ⇒ 〈〈A(u),u− v〉〉m ≥ η‖u− v‖αX ,

where ‖z‖X =
√

((z, z))X .115

The approach to existence without monotonicity assumptions requires some

continuity and lower semi-continuity properties of the operator, as follows.

Definition 2.6. An operator A :]0, T [×M→ X∗ is said to be

• pseudomonotone in the sense of Brézis (B-pseudomonotone) iff

(a) for every sequence {uj} weakly converging to u (shortly, uj ⇀ u) in

M and such that lim supj〈〈A(uj),uj − u〉〉m ≤ 0 it results that

lim inf
j
〈〈A(uj),uj − v〉〉m ≥ 〈〈A(u),u− v〉〉m, ∀v ∈M;

(b) for every v ∈M the function u→ 〈〈A(u),u−v〉〉m is lower bounded120

on the bounded subsets of M.

• hemicontinuous in the sense of Fan (F-hemicontinuous) iff for all v ∈M,

the function

u 7−→ 〈〈A(u),u− v〉〉m

is weakly lower semi-continuous on M;

We conclude the list with the following continuity property which usually is125

coupled with a monotonicity assumption in existence theorems.
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Definition 2.7. Let M ⊂ X be convex. An operator A :]0, T [×M → X∗ is

said to be lower hemicontinuous along line segments iff the function

z 7−→ 〈〈A(z),u− v〉〉m

is lower semi-continuous for all u,v ∈M on the line segments [u,v].

In order to investigate the regularity properties of solutions to SWVIs, we130

will need a suitable notion of convergence for a family of closed sets. Let us

recall the set convergence in Kuratowski’s sense, that can be expressed as follows

(see [13] for further details).

Definition 2.8. Let (X, d) be a metric space and K ⊂ X be a nonempty, closed

and convex set. A sequence of nonempty, closed and convex sets {Kj} converges135

to K in Kuratowski’s sense, as j → +∞, and we write Kj
K→ K, if and only if

(i) for all q ∈ K, there exists a sequence {qj} converging to q in X such that

qj ∈ Kj for every j ∈ N,

(ii) for all sequences {qj} such that there exists {qjk} ⊆ {qj}, qjk ∈ Kjk ,

∀k ∈ N and qjk → q in X, then the limit q belongs to K.140

3. Existence theorems

In this section we recall some existence results for variational inequalities in

Banach spaces (see e.g. [14]). Let E be a reflexive Banach space over the reals,

let C ⊆ E be a nonempty, closed and convex set. Let A : C → E∗ be a map to

the dual space E∗ equipped with the weak∗ topology, and let 〈·, ·〉 denote the145

duality pairing between E and E∗. The first theorem deals with the existence

without monotonicity hypotheses (see [14], Theorem 2.18).

Theorem 3.1. Let C be a nonempty, closed and convex subset of E and let

A : C → E∗ be B-pseudomonotone or F-hemicontinuous. Let us assume that A

satisfies the following condition150
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• there exist u0 ∈ C and R > ‖u0‖ such that

〈A(v), v − u0〉 ≥ 0, ∀ v ∈ C ∩ {v ∈ E : ‖v‖ = R}. (5)

Then there exists u ∈ C such that

〈A(u), v − u〉 ≥ 0, ∀v ∈ C. (6)

The following result, instead, provides existence under monotonicity assump-

tions (see [14], Theorem 3.6).

Theorem 3.2. Let C be a nonempty, closed and convex subset of E. Let155

A : C → E∗ be a K-pseudomonotone and lower hemicontinuous along line

segments map. Moreover, let us suppose that A satisfies condition (5). Then

(6) admits solutions.

We note that if in addition C is bounded, then condition (5) may be removed

in the statements of Theorem 3.1 and 3.2. Moreover, if we replace the K-160

pseudomonotonicity assumption on A by the strongly pseudomonotonicity of

degree α > 0, then we get also the uniqueness of solutions to (6).

The previous results can be clearly enunciated also for non-pivot Hilbert

spaces. More precisely, we obtain the following existence theorems.

Theorem 3.3. Let M be a nonempty, closed and convex subset of non-pivot165

Hilbert space X and let A : M→ X∗ be B-pseudomonotone or F-hemicontinuous.

Let us assume that A satisfies the following condition

• there exist u0 ∈M and R > ‖u0‖ such that

〈〈A(v),v − u0〉〉m ≥ 0, for every v ∈M ∩ {v ∈ X : ‖v‖ = R}. (7)

Then the stochastic weighted variational inequality

〈〈A(u),v − u〉〉m ≥ 0, ∀v ∈M, (8)

admits a solution.170
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Theorem 3.4. Let M be a nonempty, closed and convex subset of non-pivot

Hilbert space X and let A : M → X∗ be a K-pseudomonotone map, which

is lower hemicontinuous along line segments. Moreover, let us assume that A

satisfies condition (7). Then (8) admits a solution.

4. Stochastic continuity175

The aim of this section is to show that a solution to (4) is stochastically

continuous (see [6] for the deterministic counterpart). More precisely, we prove

a stronger result, since we show that the stochastic process solving (4) is sample

path continuous (see e.g. [11]); that is, if u = u(t, ω) is solution, then for almost

any fixed ω ∈ Ω, the function t→ u(t, ω) is continuous.180

For this reason, we introduce the finite-dimensional stochastic weighted vari-

ational inequality associated to (4). We consider on Rd the norm

‖u‖d,p,m =

√√√√ d∑
k=1

u2
kpkmk

with p,m ∈ Rd, pk,mk > 0, k = 1, . . . , d, and the bilinear form:

〈·, ·〉d,m : (Rd, ‖ · ‖d,p−1,m)× (Rd, ‖ · ‖d,p,m)→ R

〈u,v〉d,m =

d∑
k=1

ukvkmk.

It can be immediately shown, with the same technique used in [5], that185

〈·, ·〉d,m is a duality pairing between the normed spaces (Rd, ‖ · ‖d,p−1,m) and

(Rd, ‖ · ‖d,p,m).

Let M be a nonempty, closed and convex subset of X. Setting for any

(t, ω) ∈ ΩT ,

M(t, ω) =
{
g(t, ω) ∈ Rd : g ∈M

}
,

we note that M(t, ω) is nonempty, closed and convex, so that one can present190
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the pointwise SWVI associated to (4):

Find a u(t, ω) ∈M(t, ω) such that

〈A(t,u(t, ω)),v(t, ω)− u(t, ω)〉d,m(t) ≥ 0, ∀v(t, ω) ∈M(t, ω), a.e. in ]0,T[, P − a.s.

(9)

We can establish, under our assumptions, the next equivalence:

u is a solution to (4) ⇔ u(t, ω) is a solution to (9), a.e. in ]0, T [, P-a.s.

For this aim, we assume that the variational inequality problem holds in its195

integral formulation. If the pointwise formulation were false, we would have the

existence of a measurable subset Z ∈ A with ν(Z) > 0 and ṽ(t, ω) ∈ M(t, ω)

such that

〈A(t,u(t, ω)), ṽ(t, ω)− u(t, ω)〉d,m(t) < 0, ∀(t, ω) ∈ Z.

Setting

v∗(t, ω) =

ṽ(t, ω), (t, ω) ∈ Z,

u(t, ω), (t, ω) ∈ ΩT \ Z,
,

we would obtain∫
Ω

∫ T

0

〈A(ξ,u(ξ, ω)),v∗(ξ, ω)− u(ξ, ω)〉d,m(ξ) dξ dP(ω)

=

∫∫
ΩT \Z

〈A(ξ,u(ξ, ω)),u(ξ, ω)− u(ξ, ω)〉d,m(ξ) dξ dP(ω)

+

∫∫
Z

〈A(ξ,u(ξ, ω)), ṽ(ξ, ω)− u(ξ, ω)〉d,m(ξ) dξ dP(ω) < 0

which would be a contradiction.200

The main result of this section is the following stochastic regularity theorem.

Theorem 4.1. Let (Ω,F ,P) be a probability space, let X and X∗ be as in

Section 2, T > 0, (t, ω) ∈ ΩT and let M(t, ω) be a nonempty, closed, con-

vex and bounded subset of Rd verifying Kuratowski’s convergence assumptions

with respect to t, namely: for any fixed ω ∈ Ω and tj → t as j → +∞ then205
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M(tj , ω)
K→M(t, ω) in Kuratowski’s sense; let A :]0, T [×M→ X∗ be a contin-

uous function and A(t, ·) strongly pseudo-monotone with degree α > 1. Then

the solution process u = u(t, ω) to (9) is stochastically continuous on ]0, T [.

Proof. Let ω ∈ Ω be fixed, and u(tj , ω) be the unique solution of the SWVI

〈A(tj ,u(tj , ω)),v(tj , ω)− u(tj , ω)〉d,m(tj) ≥ 0, ∀v(tj , ω) ∈M(tj , ω), ∀j ∈ N.

(10)

With fixed (t, ω) ∈ ΩT , it suffices to show that, for any sequence of times210

{tj} in ]0, T [ converging to t as j → +∞, we have that u(tj , ω) → u(t, ω) as

j → +∞.

A generalized version of Minty-Browder’s lemma ensures that for every

(t, ω) ∈ ΩT we have

〈A(t,v(t, ω)),v(t, ω)− u(t, ω)〉d,m(t) ≥ 0, ∀v(t, ω) ∈M(t, ω).

Now, making use of the Kuratowski’s set convergence assumption with re-215

spect to t on M(t, ω), we have that for any u(t, ω) ∈ M(t, ω), there exists a

sequence {z(tj , ω)}j∈N such that z(tj , ω) ∈ M(tj , ω) for j large enough and

z(tj , ω) → u(t, ω). The continuity of function A implies that A(tj , z(tj , ω)) →

A(t,u(t, ω)). If we set, for j large enough, v(tj , ω) = z(tj , ω) in (10), we have

〈A(tj ,u(tj , ω)), z(tj , ω)− u(tj , ω)〉d,m(tj) ≥ 0.

Since A(t, ·) is strongly pseudo-monotone with degree α > 1, we obtain the220

estimate

η‖z(tj , ω)− u(tj , ω)‖αd,p(tj),m(tj)

≤ 〈A(tj , z(tj , ω)), z(tj , ω)− u(tj , ω)〉d,m(tj)

≤ ‖A(tj , z(tj , ω))‖d,p−1(tj),m(tj)‖z(tj , ω)− u(tj , ω)‖d,p(tj),m(tj)

from which we deduce that

‖z(tj , ω)− u(tj , ω)‖d,p(tj),m(tj) ≤ η
1

1−α ‖A(tj , z(tj , ω))‖
1

α−1

d,p−1(tj),m(tj)
.
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The further estimate

‖u(tj , ω)‖d,p(tj),m(tj)

≤ ‖u(tj , ω)− z(tj , ω)‖d,p(tj),m(tj) + ‖z(tj , ω)‖d,p(tj),m(tj)

≤ η
1

1−α ‖A(tj , z(tj , ω))‖
1

α−1

d,p−1(tj),m(tj)
+ ‖z(tj , ω)‖d,p(tj),m(tj),

shows that {u(tj , ω)}j∈N is a bounded sequence. Thus, there exist z ∈ Rd

and a subsequence not relabeled and still denoted by {u(tj , ω)}j∈N such that

u(tj , ω) ∈M(tj , ω), ∀j ∈ N and u(tj , ω)→ z. The Kuratowski’s set convergence225

assumption ensures that z ∈M(t, ω).

Now, we are left to prove that z = u(t, ω). A further application of the

generalized version of Minty-Browder’s Lemma to any u(tj , ω) gives

〈A(tj ,v(tj , ω)),v(tj , ω)− u(tj , ω)〉d,m(tj) ≥ 0, ∀v(tj , ω) ∈M(tj , ω).

Making use again of the set convergence in Kuratowski’s sense, for any v(t, ω) ∈

M(t, ω), we can obtain {v(tj , ω)}j∈N such that v(tj , ω) ∈ M(tj , ω) for j large

enough and v(tj , ω)→ v(t, ω). We have

〈A(tj ,v(tj , ω)),v(tj , ω)− u(tj , ω)〉d,m(tj)

= 〈m(tj)A(tj ,v(tj , ω)),v(tj , ω)− u(tj , ω)〉d ≥ 0, ∀v(tj , ω) ∈M(tj , ω),

where 〈·, ·〉d is the inner product of Rd. Let j → +∞, we obtain

〈A(t,v(t, ω)),v(t, ω)− z〉d,m(t) ≥ 0, ∀v(t, ω) ∈M(t, ω).

Taking into account the generalized version of Minty-Browder’s Lemma, it re-230

sults

〈A(t, z),v(t, ω)− z〉d,m(t) ≥ 0, ∀v(t, ω) ∈M(t, ω).

Finally, the uniqueness of the solution to (9) ensures that z = u(t, ω) and

u(tj , ω)→ u(t, ω).

5. The random weighted traffic equilibrium model

This section is devoted to propose a more general transportation model. In235

particular we consider an extended version of the traffic models described in
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[6, 15, 16] where all the relevant quantities, like as path flows and costs, will be

random variables, being dependent both on time and probability. As already re-

marked in [6] for the deterministic weighted model, the non-pivot Hilbert space

setting permits to treat some “congested” traffic problems that otherwise would240

have no solution in L2. Moreover, the “weighted” bilinear form allows us to for-

mulate the results developed by Carlo Ratti at the SENSEable City Laboratory.

More precisely, we are looking for the optimal distribution of flows taking into

account the traffic density obtained by means of a system of wireless commu-

nications. However, the user’s choices (and, as a consequence, the equilibrium245

distribution) are often variable over time in a non-regular and unpredictable

manner. Such an uncertainty can be caused by several factors such as the par-

ticular hour of the day but also by a sudden accident or maintenance works.

The mathematical model, taking into account these remarks, can be expressed

by the weights on the routes and the cost function. Indeed, if we analyze a term250

of the bilinear form which explains the model, namely

d∑
k=1

E
(∫ T

0

Ak(ξ, ω)
√
pk(ξ)

√
mk(ξ)Bk(ξ, ω)

1√
pk(ξ)

√
mk(ξ)dξ

)
,

we note that if (
√
pk(t))−1 is the weight associated to the route Bk(t, ω), then

the weight
√
pk(t) acts on the cost function. As a consequence, if p−1

k (t) is

very large then the cost has to be very small (almost surely); if pk(t) is very

small, then the cost has to be very large (almost surely). Moreover, the weight255

p influences the traffic density. In particular the network user discards the path

in which the associated weight is greater than others for a fixed path cost.

For the reader’s convenience we introduce in detail the model of random

weighted traffic equilibrium problem (see [5, 10] for the deterministic and the

random static cases).260

A traffic network consists of a triple (N,A,W ), where N = {N1, . . . , Np}

is the set of nodes, A = {A1, . . . , An) represents the set of the directed arcs

connecting couples of nodes and W = {w1, . . . , wl} ⊂ N × N is the set of

the origin-destination (O/D) pairs. Let T > 0 and Ω ⊂ R. The planning

14



horizon of our problem is ]0, T [. The flow on the arc Ak is denoted by fk and265

the uncertainty which affects the knowledge of fk is given by the dependence

of fk also on ω, namely fk = fk(t, ω), where t ∈]0, T [, ω ∈ Ω. We will set

f(t, ω) = (f1(t, ω), . . . , fn(t, ω)). We call a set of a finite number of consecutive

arcs a path and assume that each O/D pair wj is connected by rj ≥ 1 paths,

whose set is denoted by Rj , j = 1, . . . , l. All the paths in the network are270

grouped into a vector (R1, . . . , Rd). We can describe the arc structure of the path

by using the arc-path incidence matrix ∆ = (δir), k = 1, . . . , n, r = 1, . . . , d,

whose entries take the value 1 if Ak ∈ Rr and 0 if Ak 6∈ Rr.

Let p = (p1, . . . , pd) and p−1 = (p−1
1 , . . . , p−1

d ) be two families of weights

such that for every 1 ≤ r ≤ d, pr ∈ C(]0, T [,R+\{0}). Let us introduce also275

the real time density m = (m1, . . . ,md) such that for every 1 ≤ r ≤ d, mr ∈

C(]0, T [,R+\{0}). Let us associate the components pr and mr of the weights

p and m, respectively, to every path Rr, r = 1, 2, . . . , d. Correspondingly, we

define the weighted spaces X and X∗, as presented in Section 2.

To each path Rr there corresponds a flow Fr(t, ω) ∈ L2(ΩT ,R, pr,mr), and280

the path flows are grouped into a vector F(t, ω) =

(F1(t, ω), . . . , Fd(t, ω)), which is called the path flow vector. The flow fk on

the arc Ak is equal to the sum of the flows on the paths which contains Ak

so that f(t, ω) = ∆F(t, ω), (t, ω) ∈ ΩT . Let us now introduce the unit cost of

going through Ak as a function ck(t, f(t, ω)) ≥ 0 of the flows on the network,285

so that c(t, f(t, ω)) = (c1(t, f(t, ω)), . . . , cn(t, f(t, ω))) denotes the arc cost on

the network. Analogously C(t,F(t, ω)) = (C1(t,F(t, ω)), . . . , Cn(t,F(t, ω))) will

denote the cost on the paths. Usually Cr(t,F(t, ω)) is given by the sum of the

costs on the arcs building the path: Cr(t,F(t, ω)) =

n∑
k=1

δkrck(t, f(t, ω)) or, in

vector notation, C(t,F(t, ω)) = ∆T c(∆F(t, ω)).290

We suppose that there exist two random capacity constraints

λλλ,µµµ ∈ L2(ΩT ,Rd,p,m), λλλ ≤ µµµ, such that for all r = 1, . . . , d

0 ≤ λr(t, ω) ≤ Fr(t, ω) ≤ µr(t, ω) a.e. in ]0, T [, P-a.s.

Let Φ be the pair-incidence matrix, whose element φjr is equal to 1, if the path

15



Rr connects the pair wj and equal 0 otherwise. Let aj the family of indices

r such that φjr = 1, for j = 1, . . . , l, let αj = |aj |, for j = 1, . . . , l, let p∗j =

max(p(aj)1 , . . . , p(aj)αj
)1, for j = 1, . . . , l, and letm∗j = max(m(aj)1 , . . . ,m(aj)dj

),

j = 1, . . . , l. Let us group the previous components in p∗ = (p∗1, . . . , p
∗
l ) and

m∗ = (m∗1, . . . ,m
∗
l ). Let ρj ∈ L2(ΩT ,Rl, p∗j ,m∗j ), j = 1, . . . , l, be the travel

demand associated with the users moving between the O/D pair wj and let

ρ = (ρ1, . . . , ρl)
T ∈ L2(ΩT ,Rl,p∗,m∗) =

∏l
j=1 L

2(ΩT ,R, p∗j ,m∗j ) be the to-

tal demand function. We require that the traffic conservation law is fulfilled,

namely

d∑
r=1

ϕjrFr(t, ω) = ρj(t, ω) j = 1, . . . , l a.e. in ]0, T [, P-a.s.

that can be written also as

ΦF(t, ω) = ρρρ(t, ω), a.e. in ]0, T [, P-a.s..

Hence, the set of feasible flows K is

K = {F ∈ L2(ΩT ,Rd,p,m) : λλλ(t, ω) ≤ F(t, ω) ≤ µµµ(t, ω),

ΦF(t, ω) = ρρρ(t, ω), a.e. in ]0, T [, P-a.s.}.

It can be shown that K is a nonempty, closed and convex subset of space

L2(ΩT ,Rd,p,m). Moreover, K satisfies the Kuratowski’s set convergence prop-

erty, which we present without proof (see for instance [17]).

Proposition 5.1. Let λλλ,µµµ ∈ L2(ΩT ,Rd,p,m)∩C(ΩT ,Rd+), let ρρρ ∈ L2(ΩT ,Rl,p∗,m∗)∩295

C(ΩT ,Rl+) and let {tj}j∈N ⊆]0, T [ be a sequence such that tj → t ∈]0, T [, as

j → +∞. Then, for any fixed ω ∈ Ω, the sequence of sets

K(tj , ω) =
{

F(tj , ω) ∈ Rd : λλλ(tj , ω) ≤ F(tj , ω) ≤ µµµ(tj , ω), ΦF(tj , ω) = ρρρ(tj , ω)
}
,

∀j ∈ N, converges to

K(t, ω) =
{

F(t, ω) ∈ Rd : λλλ(t, ω) ≤ F(t, ω) ≤ µµµ(t, ω), ΦF(t, ω) = ρρρ(t, ω)
}
,

1Where p(aj)k is the k-th element of the family aj , for j = 1, . . . , l and k = 1, . . . , l.
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as j → +∞, in Kuratowski’s sense.

Now we introduce the equilibrium condition, the so-called random weighted300

Wardrop equilibrium principle.

Definition 5.2. A distribution H ∈ K is an equilibrium distribution from the

user’s point of view iff ∀wj ∈W , ∀Rp, Rs ∈ Rj , a.e. in ]0, T [, P-a.s. there holds

mp(t)Cp(t,H(t, ω)) < ms(t)Cs(t,H(t, ω))

=⇒ Hp(t, ω) = µp(t, ω) or Hs(t, ω) = λs(t, ω).
(11)

305

The meaning of Definition 5.2 is that the network’s users discard the more

expensive paths with respect to the weighted cost. In the following, we apply

the theoretical results for stochastic weighted variational inequalities obtained

in the previous sections to the traffic problem. More precisely, we show the

equivalence between the random weighted equilibrium flow distribution and the310

solution to a stochastic weighted variational inequality.

Theorem 5.3. The stochastic process H ∈ K is an equilibrium distribution

according to Definition 5.2 iff it solves the stochastic weighted variational in-

equality:

〈〈C(H),F−H〉〉m =

d∑
k=1

E
(∫ T

0

Ck(ξ,H(ξ, ω))(Fk(ξ, ω)−Hk(ξ, ω))mk(ξ) dξ
)
≥ 0, ∀F ∈ K.

(12)

Proof. First, we prove that if H ∈ K is an equilibrium distribution as in (11),315

then H is a solution to (12). It is enough to prove that a.e. in ]0, T [ and P-a.s.

l∑
j=1

∑
Rr∈Rj

Cr(t,H(t, ω))(Fr(t, ω)−Hr(t, ω))mr(t, ω) ≥ 0, ∀F(t, ω) ∈ K(t, ω),

(13)

since the assertion (12) follows by integrating on ΩT .
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Let wj ∈W be an arbitrary O/D pair. We denote by

Aj := {Rq ∈ Rj : Hq(t, ω) < µq(t, ω) a.e. in ]0, T [, P-a.s.},

and

Bj := {Rk ∈ Rj : Hk(t, ω) > λk(t, ω) a.e. in ]0, T [, P-a.s.}.

From equilibrium condition (11) we obtain

mq(t)Cq(t,H(t, ω)) ≥ mk(t)Ck(t,H(t, ω)),∀Rq ∈ Aj , ∀Rk ∈ Bj , a.e. in ]0, T [, P−a.s.

As a consequence, there exists a function γj : ΩT → R such that

inf
Rq∈Aj

mq(t)Cq(t,H(t, ω)) ≥ γj(t, ω) ≥ sup
Rk∈Bj

mk(t)Ck(t,H(t, ω)),

a.e. in ]0, T [, P-a.s.

Let F ∈ K be fixed. Then, for every Rr ∈ Rj , the inequality

mr(t)Cr(t,H(t, ω)) < γj(t, ω), a.e. in ]0, T [, P-a.s.,

implies Rr 6∈ Aj , from which we deduce that Hr(t, ω) = µr(t, ω), a.e. in ]0, T [,

P-a.s. and then Fr(t, ω)−Hr(t, ω) ≤ 0, a.e. in ]0, T [, P-a.s. As a consequence,

we have

(Cr(t,H(t, ω))− γj(t, ω))(Fr(t, ω)−Hr(t, ω))mr(t) ≥ 0.

Likewise, mr(t)Cr(t,H(t, ω)) > γj(t, ω), a.e. in ]0, T [, P-a.s., implies320

(mr(t)Cr(t,H(t, ω))− γj(t, ω))(Fr(t, ω)−Hr(t, ω)) ≥ 0, a.e. in ]0, T [, P-a.s..

Thus, we have∑
Rr∈Rj

mr(t)Cr(t,H(t, ω))(Fr(t, ω)−Hr(t, ω))

≥ γj(t, ω)
∑

Rr∈Rj

(Fr(t, ω)−Hr(t, ω)) = 0,

from which (12) immediately follows.

Now we prove that any solution to (12) satisfies condition (11). We argue by

contradiction and we assume that there exist wj ∈ W , Rq, Rk ∈ Rj and a set

18



E ∈ A with ν(E) > 0 such that for a.e. (t, ω) ∈ E one has mq(t)Cq(t,H(t, ω)) <325

mk(t)Ck(t,H(t, ω)), but Hq(t, ω) < µq(t, ω) and Hk(t, ω) > λk(t, ω).

We denote by δ(t, ω) := min{µq(t, ω)−Hq(t, ω), Hk(t, ω)−λk(t, ω)}, (t, ω) ∈

E, satisfying δ(t, ω) > 0 a.e. in E, and consider the flow F∗(t, ω) defined as:

F∗(t, ω) = H(t, ω) in ΩT \E

F ∗r (t, ω) =


Hr(t, ω) if r 6= q, k

Hq(t, ω) + δ(t, ω) if r = q a.e. in E.

Hk(t, ω)− δ(t, ω) if r = k

It is easy to verify that F∗ ∈ K, then we can valuate the stochastic variational

inequality (12) in F∗:

d∑
k=1

E
(∫ T

0

Ck(ξ,H(ξ, ω))(F ∗k (ξ, ω)−Hk(ξ, ω))mk(ξ) dξ
)

= E
(∫

Eω

[mq(ξ)Cq(ξ,H(ξ, ω))−mk(ξ)Ck(ξ,H(ξ, ω))]δ(ξ, ω) dξ
)
< 0

which is in contradiction with (12).

As remarked previously, K is a nonempty, closed, convex and bounded subset

of X. Thus, taking into account Theorem 3.3 and Theorem 3.4, we obtain330

the existence of a random weighted traffic equilibrium solution, either with or

without monotonicity assumptions on the cost function. Moreover, assuming

that the data are continuous, Proposition 5.1 and Theorem 4.1 guarantee that

the equilibrium flow is a stochastically continuous process. As already remarked

in [6], the continuity is a fundamental tool to develop numerical schemes to335

compute the random weighted traffic equilibrium solution. These topics will be

subject of future investigations.

6. A simple numerical example

Now we apply the theory developed in the previous sections to a simple

traffic network model and we compute explicitly the vector stochastic process340
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describing the equilibrium flow.
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Figure 1: A simple network model.

We analyze a traffic network as in Fig.1, where the set of nodes is given by

N = (P1, P2, P3, P4) and the set of links by

A = {(P1, P2), (P1, P4), (P2, P3), (P4, P2), (P4, P3)}.

The set of O/D pairs is W = {(P1, P3)}, and consequently the routes are

R1 = (P1, P2) ∪ (P2, P3),

R2 = (P1, P4) ∪ (P4, P3),

R3 = (P1, P4) ∪ (P4, P2) ∪ (P2, P3).

The planning horizon of the traffic problem is ]0, 1[. Let p(t) = (p1(t), p2(t), p3(t)) =

(1, 1,
√
t) be the weight and let m(t) = (m1(t),m2(t),m3(t)) = (3t, t2, 2t

√
t) be

the real time density. We suppose that the path cost vector-function C(t,F(t, ω))

has components

C1(t,F(t, ω)) = F1(t, ω),

C2(t,F(t, ω)) =
1

t
(F1(t, ω) + F2(t, ω)),

C3(t,F(t, ω)) =
1√
t
F3(t, ω).

Let us introduce ρ(t, ω) the random traffic density. Let us assume that

ρ(t, ω) is normally distributed with mean 0 and variance 1 under the constraint

ρ ∈ [0,+∞), a.e. in ]0, 1[, P-a.s.
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Hence, the set of feasible flows is

K =
{

F ∈ L2(]0, 1[×Ω,R3,p,m) : Fk(t, ω) ≥ 0,∀k = 1, 2, 3 a.e. in ]0, 1[, P-a.s.,

3∑
k=1

Fk(t, ω) = ρ(t, ω), a.e. in ]0, 1[, P-a.s.
}
.

The stochastic weighted variational inequality, which governs the problem, is345

3∑
k=1

E
(∫ 1

0

Ck(ξ,H(ξ, ω))(Fk(ξ, ω)−Hk(ξ, ω))mk(ξ) dξ
)
≥ 0, ∀F ∈ K. (14)

In order to compute the equilibrium flow, we can apply the direct method

introduced in [18]. Firstly, we remark that

F3(t, ω) = ρ(t, ω)− F1(t, ω)− F2(t, ω), a.e. in ]0, 1[, P-a.s. (15)

and correspondingly we can consider

K̃ =
{

F̃ ∈ L2(]0, 1[×Ω,R2, (1, 1), (t, t2)) : Fk(t, ω) ≥ 0, k = 1, 2 a.e. in ]0, 1[, P-a.s.,

2∑
k=1

Fk(t, ω) ≤ ρ(t, ω), a.e. in ]0, 1[, P-a.s.
}
.

We define

Γ1(t, F̃(t, ω)) = m1(t)C1(t, F̃(t, ω))−m3(t)C3(t, F̃(t, ω))

= 5tF1(t, ω) + 2tF2(t, ω)− 2tρ(t, ω),

Γ2(t, F̃(t, ω)) = m2(t)C2(t, F̃(t, ω))−m3(t)C3(t, F̃(t, ω))

= 3tF1(t, ω) + 3tF2(t, ω)− 2tρ(t, ω).

Thus, problem (14) may be written as

2∑
k=1

E
(∫ 1

0

Γk(ξ, H̃(ξ, ω))(Fk(ξ, ω)−Hk(ξ, ω))mk(ξ) dξ
)
≥ 0, ∀F̃ ∈ K̃. (16)

It can be shown that if H̃ is a solution to the system
Γ1(t, H̃(t, ω)) = 0,

Γ2(t, H̃(t, ω)) = 0,

H̃ ∈ K̃,
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then it solves (16). We obtain, a.e. in ]0, 1[, P-a.s.

H1(t, ω) =
2

9
ρ(t, ω),

H2(t, ω) =
4

9
ρ(t, ω),

under the constraints that

H1(t, ω), H2(t, ω) ≥ 0, a.e. in ]0, 1[, P-a.s.,

H1(t, ω) +H2(t, ω) ≤ ρ(t, ω), a.e. in ]0, 1[, P-a.s.

Finally, from (15) we can compute H3(t, ω) and the vector stochastic process

describing the equilibrium flow a.e. in ]0, 1[ is given by

H(t, ω) =
(2

9
ρ(t, ω),

4

9
ρ(t, ω),

1

3
ρ(t, ω)

)
.

Let us check that H ∈ K. It is well known (see e.g. [11]) that the probabil-

ity density functions of H1, H2 and H3 can be obtained from pρ by a scaling

argument. More precisely, we have (see Fig. 2)

pH1
(x) =

9

2
pρ

(
9

2
x

)
=

9√
2π
e−

81
8 x

2

, x ≥ 0,

pH2
(x) =

9

4
pρ

(
9

4
x

)
=

9

2
√

2π
e−

81
32x

2

, x ≥ 0,

pH3
(x) = 3pρ (3x) =

6√
2π
e−

9
2x

2

, x ≥ 0,

from which a straightforward computation gives

P({Hk ≥ 0}) =

∫ +∞

0

pHk(z) dz = 1, ∀k = 1, 2, 3, a.e. in ]0, 1[.

Moreover, since E(cρ) = cE(ρ) and Var(cρ) = c2V ar(ρ), c ∈ R, we have

E(H1) =
2
√

2

9
√
π
, Var(H1) =

4π − 8

81π
,

E(H2) =
4
√

2

9
√
π
, Var(H2) =

16π − 32

81π
,

E(H3) =

√
2

3
√
π
, Var(H3) =

π − 2

9π
.
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Figure 2: Probability density functions of traffic demand and equilibrium flow.
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