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Abstract We study chirality transitions in frustrated ferromagnetic spin chains,
in view of a possible connection with the theory of Liquid Crystals. A variational
approach to the study of these systems has been recently proposed by Cicalese
and Solombrino, focusing close to the helimagnet/ferromagnet transition point
corresponding to the critical value of the frustration parameter α = 4. We re-
formulate this problem for any α ≥ 0 in the framework of surface energies in
nonconvex discrete systems with nearest neighbours ferromagnetic and next-to-
nearest neighbours antiferromagnetic interactions and we link it to the gradient
theory of phase transitions, by showing a uniform equivalence by Γ -convergence
on [0, 4] with Modica-Mortola type functionals.
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1 Introduction

The phenomenon of frustration arises from the competition between different inter-
actions, in a continuous or discrete physical system, that favor incompatible ground
states. It occurs, for instance, in the liquid-crystalline phases of chiral molecules:
a chiral molecule cannot be superimposed on its mirror image through any proper
rotation or translation. The main effect of chirality is that chiral molecules do not
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align themselves parallel to their neghbors but tend to form a characteristic angle
with them (see, e.g., [1,15,13]).

Edge-sharing chains of cuprates, instead, provide an example of frustrated
lattice systems, where the frustration results from the competition between fer-
romagnetic (F) nearest-neighbour (NN) and antiferromagnetic (AF) next-nearest-
neighbour (NNN) interactions (see, e.g., [12]).

In this paper we study the asymptotic properties of a one-dimensional frus-
trated spin system at zero temperature via Γ -convergence (see [3] and [11]), focus-
ing also on the variational equivalence with problems in gradient theory of phase
transitions (see, e.g., [3,2] for a simple introduction to the topic). Our contribution
has been inspired by the recent results about the variational discrete-to-continuum
analysis of such systems provided by Cicalese and Solombrino [10] in the vicinity
of the so called “helimagnet/ferromagnet transition point”, exhibiting at a suit-
able scale different scenarios not detected by a first-order Γ -limit. Indeed, the
Γ -convergence approach provides a rigorous way of deriving a continuum limit
for discrete systems as the number of interacting particles is increasing. How-
ever, the Γ -limit does not always capture the main features of the discrete model
and in some cases more refined approximations are needed (see, e.g., [5,10,18]).
This motivated the derivation of the uniformly Γ -equivalent theories, introduced
by Braides and Truskinovsky [8] for a wide class of discrete systems and devel-
oped, e.g., in the framework of fracture mechanics, by Scardia, Schlömerkemper
and Zanini [17] for one-dimensional chains of atoms with Lennard-Jones interac-
tions between nearest-neighbours. Our paper can also be seen as a first step in
the analysis of chirality transitions in more complicated physical systems like as
chiral liquid crystals. A discrete-to-continuum analysis via Γ -convergence of some
problems in liquid crystals has been recently treated, e.g., by Braides, Cicalese
and Solombrino [6], but this promising research field is still largely unexplored.

We consider the so-called F-AF spin chain model, where the state of the system
is described by an S1-valued spin variable u = (ui) parameterized over the points
of the set 1

nZ ∩ [0, 1], n ∈ N. The energy of a given state of the system is

Eαn (u) = −α
n−1∑
i=0

(ui, ui+1) +

n−1∑
i=0

(ui, ui+2)− nmα, (1.1)

with periodic boundary conditions (u0, u1) = (un, un+1), where α ≥ 0 is the
frustration parameter, (·, ·) denotes the scalar product between vectors in R2and
mα are constants depending on α (see (2.5) for the precise definition).

The first term of the energy (1.1) is ferromagnetic and favors the alignment
of NN spins, while the second, being antiferromagnetic, frustrates it as it favors
antipodal NNN spins. Consequently, the frustration of the system depends on
the parameter α. In order to characterize the ground states of this system and
their dependence on the value of α, we first associate to each pair of nearest
neighbours ui, ui+1 the corresponding oriented central angle θi ∈ [−π, π). Then,
by the periodicity assumption, we may reread the energies in terms of this scalar
variable as

Eαn (θ) = −α
2

n−1∑
i=0

(
cos θi + cos θi+1

)
+

n−1∑
i=0

cos(θi + θi+1)− nmα, (1.2)
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and follow the approach by Braides and Cicalese [5] for lattice systems of the
form (1.2). Indeed, by “minimizing out” for each fixed i the nearest neighbours
interactions, we are led to the definition of the effective potential Wα (equation
(2.9)) such that

Eαn (θ) ≥
n−1∑
i=0

Wα(θi), (1.3)

where Wα is convex with minimum at θ = θα = 0 if α ≥ 4, while it is a double-well
potential with wells at θ = ±θα if 0 ≤ α ≤ 4 (see Fig. 2.1). Since the inequality
in (1.3) is strict if θi 6= θi+1 or θi 6= ±θα, we deduce that if α ≥ 4 the nearest
neighbours prefer to stay aligned (ferromagnetic order); if 0 ≤ α ≤ 4, instead, the
minimal configurations of Eαn are θi = θi+1 ∈ {±θα}; that is, the angle between
pairs of nearest neighbours ui, ui+1 and ui+1, ui+2 is constant and depending on
the particular value of α (helimagnetic order). The two possible choices for θα
(a degeneracy known in literature as chirality symmetry) correspond to either
clockwise or counterclockwise spin rotations, or, equivalently, to a positive or a
negative chirality (see Fig. 1.1).

Fig. 1.1 A schematic representation of the ground states of the spin system for 0 ≤ α < 4 for
clockwise (on the left) and counterclockwise (on the right) chirality (picture taken from [13]).

The asymptotic behaviour of the energies Eαn as n → ∞ and for fixed α
(Theorem 3.1) reflects such different regimes for the ground states. If α ≥ 4 the
limit is trivially finite (and equal to zero) only on the constant function θ ≡ 0,
while if 0 ≤ α < 4 it is finite on functions with bounded variation taking only the
two values {±θα} and it counts the number of chirality transitions. More precisely,

Γ - lim
n→+∞

Eαn (θ) = Cα#(S(θ)),

where S(θ) is the jump set of function θ and Cα = C(α) is the cost of each chirality
transition. The value Cα (see Section 3.1) represents the energy of an interface
which is obtained by means of a ‘discrete optimal-profile problem’ connecting the
two constant (minimal) states ±θα. It is continuous as a function of α on the
interval [0, 4) (as shown by Proposition 3.2) and can be defined to be equal to 0
for α ≥ 4. Moreover, Cα → 0 as α→ 4 and (compare with [14] and Remark 4.1)

Cα ∼
√

2

3
(4− α)3/2, as α→ 4−. (1.4)
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In a recent paper [10], Cicalese and Solombrino investigated the asymptotic be-
haviour of this system close to the ferromagnet/helimagnet transition point; that
is, they found the correct scaling (heuristically suggested by (1.4)) to detect the
symmetry breaking and to compute the asymptotic behaviour of the scaled energy
describing this phenomenon as α is close to 4. They let the parameter α depend
on n and be close to 4 from below; i.e., they rewrite the energies (1.2) in terms of
4− αn, with 4− αn → 0 as n→∞.

We state their result in a slight different form, useful for the sequel. More
precisely, we prove in Theorem 4.1 that an analogous result can be obtained if we
choose as order parameter the “flat” angular variable

v =
θ

θα
,

which is equivalent to the variable considered in [10] in the regime of small angles.
We compute the Γ -limit F 0 as n → ∞, α = αn → 4 with respect to the strong
L1-topology of the scaled energies

Fαnn (v) :=
Eαnn (v)

µαn
=

8Eαnn (v)√
2(4− αn)3/2

, (1.5)

and show that, within this scaling, several regimes are possible depending on the
value

l := lim
n

√
2

4n(4− αn)1/2
.

Namely, if l = 0 then F 0(v) = 8
3#(S(v)), v ∈ BV (I, {±1}), if l = +∞ then F 0

is finite (and equal to zero) only on constant functions, while in the intermediate
case l ∈ (0,+∞) we get

F 0(v) =
1

l

∫
I

(
v2(t)− 1

)2
dt+ l

∫
I

(v̇(t))2 dt, v ∈W 1,2
|per|(I),

where I = (0, 1), BV (I, {±1}) is the space of functions of bounded variation
defined on I and taking the values {±1}, and W 1,2

|per|(I) = {v ∈W 1,2(I) : |v(0)| =
|v(1)|}.

Motivated by the particular form of this result and in the spirit of Braides
and Truskinovsky[8], with Theorem 5.2 we find a variational link between such
energies (seen as a ‘parametrized’ family of functionals) and the gradient the-
ory of phase transitions, in the framework of the equivalence by Γ -convergence.
Roughly speaking, two families of functionals are equivalent by Γ -convergence if
they have the same Γ -limit (see Definition 5.1 and the subsequent ones for the
precise definitions useful in this framework). More precisely, we show the uniform
equivalence by Γ -convergence on [0, 4] of the energies Fαn (v) defined in (1.5) with
the “Modica-Mortola type” functionals given by

Gαn(v) =
1

µα

[
λn,α

∫
I

(
v2 − 1

)2
dt+

M2
α

λn,α

∫
I

(v̇)2 dt
]
, v ∈W 1,2

|per|(I),

where λn,α = 2nθ4
α and Mα = 3Cα/8.

The value α0 = 4 is a singular point, since the Γ -limit of Gαn will depend on
choice of the particular sequence αn → α−0 = 4−. Each α0 ∈ [0, 4), instead, is a
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regular point ; i.e., it is not singular. As a consequence of Theorem 5.2, we deduce
(see Corollary 5.1) the uniform equivalence of the energies Eαn (θ) for α ∈ [0, 4)
with the family

Hα
n (θ) =

λn,α
θ4
α

∫
I

(
θ2(t)− θ2

α

)2
dt+

M2
α

λn,αθ2
α

∫
I

(θ̇(t))2 dt, θ ∈W 1,2
|per|(I),

whose potentialsWα(θ) := (θ2−θ2
α)2 have the wells located at the minimal angles

θ = ±θα.
As a final remark, we would like to observe that our result can be useful also to

analyze more general problems of interest for the applied community. For instance,
a natural extension would be the case of S2-valued spins, that has been recently
investigated by Cicalese, Ruf and Solombrino [9] in the vicinity of the transition
point. In that paper, the authors modify the energies penalizing the distance of
the S2 field from a finite number of copies of S1 and prove the emergence of non-
trivial chirality transitions. However, even in the case of values in S1, the Villain
Helical XY -model studied there could be attacked with our approach, at least in
the regime of “strong” ferromagnetic interaction considered therein by the authors.

2 Setting of the problem

Preliminarily, we fix some notation that will be used throughout. We denote by
I = (0, 1) and by λn = 1

n , n ∈ N a positive parameter. Given x ∈ R, we denote by

bxc the integer part of x. The symbol S1 stands for the standard unit sphere of R2.
Given a vector v ∈ R2 with components v1 and v2 with respect to the canonical
basis of R2, we will use the notation v = (v1|v2). Given two vectors v, w ∈ R2 we
will denote by (v, w) their scalar product. Here and in the following, Un(I) will be
the space of the functions w : λnZ ∩ [0, 1]→ S1, Θn(I) the space of the functions
ϕ : λnZ ∩ [0, 1] → [−π2 ,

π
2 ] and we use the notation wi = w(iλn), ϕi = ϕ(iλn);

Ūn(I) will denote the subspace of those w ∈ Un(I) satisfying the following periodic
boundary condition

(w1, w0) = (wn+1, wn). (2.1)

Analogously, Θ̄n(I) will denote the subspace of those ϕ ∈ Θn(I) such that ϕ0 =
ϕn.

We will identify each lattice function w ∈ Ūn(I) with its piecewise-constant
interpolation belonging to the class

Cn(I) = {w : R→ S1 : w(t) = w(λni) if t ∈ (i, i+ 1)λn, i ∈ {0, 1, . . . , n− 1}},

while the symbol Dn(I) will denote the analogous space for functions ϕ ∈ Θ̄n(I).
Given a pair of vectors v = (v1|v2), w = (w1|w2) ∈ S1, we define the function

χ[v, w] : S1 × S1 → {±1} as

χ[v, w] = sign(v1w2 − v2w1), (2.2)

with the convention that sign(0) = −1, and the corresponding oriented central
angle θ ∈ [−π, π) by

θ = χ[v, w] arccos((v, w)). (2.3)

The positivity of the determinant in (2.2) represents the counterclockwise ordering
of the vectors v and w.
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2.1 The model energies Eαn

We consider the energy of a given state u of the F-AF spin chain model, defined
as

Eαn (u) = Pαn (u)− nmα = −α
n−1∑
i=0

(ui, ui+1) +

n−1∑
i=0

(ui, ui+2)− nmα, (2.4)

where u ∈ Cn(I), α ≥ 0 and (see [10, Proposition 3.2])

mα =
1

n
min

u∈L∞(I,S1)
Pαn (u) =

{
−
(
α2

8 + 1
)

if α ∈ [0, 4],

−α+ 1 if α ∈ [4,+∞).
(2.5)

First we note that, thanks to the periodicity assumption (2.1), we can write
the energies (2.4) equivalently in the form

Eαn (u) = −α
2

n−1∑
i=0

[
(ui, ui+1) + (ui+1, ui+2)

]
+

n−1∑
i=0

(ui, ui+2)− nmα. (2.6)

Now we associate to each pair of neighbouring spins ui, ui+1 the corresponding ori-
ented central angle θi defined as in (2.3), and taking θi as (scalar) order parameter,
the energies (2.6) can be rewritten as

Eαn (θ) = −α
2

n−1∑
i=0

(
cos θi + cos θi+1

)
+

n−1∑
i=0

cos(θi + θi+1)− nmα, (2.7)

where θ ∈ Dn(I).

2.2 Ground states of Eαn

In this section, we focus on the ground states of the energies Eαn . We will show the
emergence of chiral ground states for α ∈ [0, 4] by means of a double-minimization
technique introduced by Braides and Cicalese in [5] for lattice systems of the form
(2.7). Following their approach, for each i = 0, 1, . . . , n − 1 we fix the next-to-
nearest neighbour interactions θi + θi+1 = 2θ and solve the minimum problem

min
θi∈[−π,π)

{
−α

2

[
cos θi + cos(2θ − θi)

]
+ cos 2θ −mα

}
. (2.8)

By a direct computation, we find that the unique minimizers in (2.8) for α 6= 0
are θi = θi+1 = θ if θ ∈ (−π/2, π/2), and θi = θi+1 = θ−π if |θ| ∈ (π/2, π), while
for α = 0 we have θi = θi+1 = ±π/2. The following picture shows that, up to a
reparametrization, θ and θ − π actually represent the same minimizer.



Chirality transitions in frustrated spin chains: a link with Modica-Mortola 7

(a) The angle between NN is θ
(b) The angle between NN is

θ − π

Without loosing generality we will assume up to the end that θi = θi+1 = θ ∈ J ,
J := [−π/2, π/2] and correspondingly we define the effective potential as

Wα(θ) = cos 2θ − α cos θ −mα. (2.9)

The potential Wα is thus obtained by integrating out the effect of nearest-
neighbour interactions optimizing over atomic-scale oscillations, and its properties
strongly depend on the value α. Indeed, if 0 ≤ α < 4 then Wα is a “double-well”
potential, while if α ≥ 4 the potential is convex (see Fig. 2.1). Moreover,

arg minWα(θ) =

{
{±θα} := {± arccos(α4 )}, if α ∈ [0, 4],

{0}, if α ∈ [4,+∞),
(2.10)

We note that by the definition of Wα and (2.8) we get

Eαn (θ) ≥
n−1∑
i=0

Wα(θi), (2.11)

the inequality being strict if θi 6= θi+1 or θi 6= ±θα. In particular, Eαn (θ) ≥ 0.

Fig. 2.1 The potential Wα for 0 ≤ α < 4 (on the left) and for α ≥ 4 (on the right).

Thus, the particular minimization procedure leading to the definition of Wα

(and then to inequality (2.11)) allows us to deduce some information about the
ground states of the energies Eαn from the properties of this potential. More pre-
cisely, if α ≤ 4 the minimal configurations of Eαn are θi = θi+1 ∈ {±θα}; that is,
the angle between pairs of nearest neighbours ui, ui+1 and ui+1, ui+2 is constant



8 Giovanni Scilla, Valerio Vallocchia

and depending on the particular value of α. If α ≥ 4, instead, the nearest neigh-
bours prefer to stay aligned (−θα = +θα = 0).

Let be θ ∈ Dn(I). We may regard the energies Eαn as defined on a subset
of L∞(I, J) and consider their extension on L∞(I, J). With a slight abuse of
notation, we set Eαn : L∞(I, J)→ [0,+∞] as

Eαn (θ) =

−
α

2

n−1∑
i=0

(cos θi + cos θi+1) +

n−1∑
i=0

cos(θi + θi+1)− nmα, if θ ∈ Dn(I),

+∞, otherwise.

(2.12)

3 Limit behaviour of Eαn with fixed α

Our first result is the explicit computation of the Γ -limit, as n→∞, of the energies
Eαn with fixed α ∈ [0,+∞). As we will show with Theorem 3.1, the asymptotic
behaviour of the energies Eαn reflects the different regimes for the ground states
outlined in Section 2.2. Indeed, the limit is non-trivial only in the helimagnetic
regime (0 ≤ α < 4), representing the energy the system spends on the scale 1 for
a finite number of chirality transitions from −θα to θα.

3.1 Crease transition energies

The cost Cα of each chirality transition can be characterized as the energy of
an interface which is obtained by means of a ‘discrete optimal-profile problem’
connecting the two constant (minimal) states ±θα.

Let α ∈ [0, 4). According to [5, Section 2.2], we define the crease transition
energy between −θα and θα as

Cα := C(−θα, θα)

= inf
N∈N

min
{ +∞∑
i=−∞

[
cos(θi + θi+1)− α

2
(cos θi + cos θi+1)−mα

]
:

θ : Z→ [−π/2, π/2], θi = sign(i)θα, if |i| ≥ N
}
.

(3.1)

We note that the infinite sums in (3.1) are well defined, since they involve only non
negative terms and, actually, for fixed N they are finite sums, since the summands
are 0 for i ≥ N and i ≤ −N − 1. Moreover, it follows by the definition a useful
symmetry property of the crease energy; that is,

C(−θα, θα) = C(θα,−θα). (3.2)

Now we prove that the optimal test function in (3.1) is constantly equal to
±θα only for N → +∞, thus relaxing the boundary condition as a condition at
infinity in the definition of Cα. We notice that an analogous property of crease
energies has been showed by Braides and Solci in [7] for a one-dimensional system
of Lennard-Jones nearest and next-to-nearest neighbour interactions.



Chirality transitions in frustrated spin chains: a link with Modica-Mortola 9

Proposition 3.1 The infimum in (3.1) is obtained for N →∞; that is,

Cα = inf
{ +∞∑
i=−∞

[
cos(θi + θi+1)− α

2
(cos θi + cos θi+1)−mα

]
:

θ : Z→ [−π/2, π/2], lim
i→±∞

sign(i)θi = θα
}
.

(3.3)

Moreover, Cα > 0.

Proof Let θi be a test function for the problem (3.3) and denote by C̃α the infimum
in (3.3). With fixed η > 0, let Nη be such that |θi − sign(i)θα| < η for |i| ≥ Nη,
and define

θiη =

{
θi, if |i| ≤ Nη
sign(i)θα, if |i| > Nη.

We then have

+∞∑
i=−∞

[
−α

2
(cos θiη + cos θi+1

η ) + cos(θiη + θi+1
η )−mα

]

=

Nη∑
i=−Nη−1

[
−α

2
(cos θiη + cos θi+1

η ) + cos(θiη + θi+1
η )−mα

]

=

Nη−1∑
i=−Nη

[
−α

2
(cos θi + cos θi+1) + cos(θi + θi+1)−mα

]
− α

2
(cos θNη + cos θα) + cos(θNη + θα)−mα

− α

2
(cos θα + cos θ−Nη ) + cos(θ−Nη − θα)−mα

≤
+∞∑
i=−∞

[
−α

2
(cos θi + cos θi+1) + cos(θi + θi+1)−mα

]
+ 2ω(η)

where

ω(η) := max
{
−α

2
(cos θ + cos θα) + cos(θ + θα)−mα : |θ − θα| ≤ η

}
(3.4)

is infinitesimal as η → 0. This shows that the value Cα defined in (3.1) is less or

equal than C̃α. Then we are done, the converse inequality being trivial since any
test function for problem (3.1) is a test function for problem (3.3). The estimate
Cα > 0 easily follows from (2.11) and the fact that ±θα are the unique minimizers
of Wα. ut

Remark 3.1 In the ferromagnetic regime α ≥ 4, we may define Cα = 0 consistently
with (3.1), where now mα = −α+ 1. Indeed, being θα = −θα = 0, we can choose
θ ≡ 0 as a test function in (3.1), thus obtaining the estimate Cα ≤ 0.

It will be useful in the sequel the following continuity property of Cα with
respect to the frustration parameter α.
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Proposition 3.2 (Continuity) The crease energy Cα defined as before is con-
tinuous in [0, 4); i.e., for any ᾱ ∈ [0, 4) and any sequence αj such that 0 ≤ αj < 4,
αj → ᾱ it results Cαj → Cᾱ.

Proof Let us fix η > 0 and let α, α′ ∈ [0, 4) be such that if |α − α′| < δ(η) for a
suitable δ(η) > 0, then |θα − θα′ | < η/2.
From the definition of Cα′ as in (3.3), there exists a function θ : Z→ [−π/2, π/2]

such that
∑
i∈Z
Ei,α

′
(θ) < Cα′ + η, where we have set

Ei,α
′
(θ) := −α

′

2

(
cos θi + cos θi+1

)
+ cos(θi + θi+1) +

(α′)2

8
+ 1,

and lim
i→±∞

sign(i)θi = θα′ . This means that there exist two indices h1(η), h2(η) ∈ N

such that |θi − θα′ | < η/2 for every i > h2(η) and |θi − (−θα′)| < η/2 for every
i < −h1(η).

Setting h̄ = h̄(η) := max{h1, h2} and Kh̄ := {i ∈ Z : |i| ≤ h̄}, we observe that
for every i 6∈ Kh̄ it also holds that |sign(i)θi − θα| < η.

Now we modify θ in order to obtain a test function for the problem defining
Cα by setting

θ̃i =

{
θi, if i ∈ Kh̄
sign(i)θα, otherwise.

(3.5)

We then have

Cα ≤
∑
i∈Z
Ei,α(θ̃) =

∑
|i|<h̄

Ei,α(θ) + E−h̄,α(θ̃) + E h̄,α(θ̃)

≤
∑
i∈Z
Ei,α

′
(θ) + 2|α− α′|#Kh̄ +

[
E−h̄,α(θ̃)− E−h̄,α

′
(θ)
]

+
[
E h̄,α(θ̃)− E h̄,α

′
(θ)
]
,

(3.6)

where in the second inequality we used the estimate∑
|i|<h̄

∣∣∣Ei,α(θ)− Ei,α
′
(θ)
∣∣∣ ≤ 2|α− α′|#Kh̄.

Each of the last two terms in (3.6) can be estimated in the same way, so we
make an explicit computation only for the latter. We have

∣∣∣E h̄,α(θ̃)− E h̄,α
′
(θ)
∣∣∣ ≤ ∣∣∣(cos(θh̄ + θα)− cos(θh̄ + θh̄+1)

∣∣∣+

∣∣∣∣α2 − (α′)2

8

∣∣∣∣+∣∣∣∣α2 (cos θh̄ + cos θα)− α′

2
(cos θh̄ + cos θh̄+1)

∣∣∣∣ ≤ η + 2|α− α′|.

Collecting all the previous estimates and inserting them into (3.6) we obtain

Cα ≤ Cα′ + η + 2|α− α′|#Kh̄ + η + 2|α− α′|
≤ Cα′ + 2η + 2|α− α′|(1 + #Kh̄).
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Choosing now γ ≥ 4η and α and α′ such that

|α− α′| ≤ min

{
δ(η),

γ

4(1 + #Kh̄)

}
=: σ(γ, η),

we finally obtain Cα ≤ Cα′ + γ.
If we change the role of α and α′, we get an analogous estimate for Cα′ .

Hence, we conclude that for every γ ≥ 4η, there exists σ(γ, η) > 0 such that if
|α − α′| < σ(γ, η) then |Cα − Cα′ | ≤ γ. Since the choice of η was arbitrary, the
assertion immediately follows. ut

3.2 Compactness and Γ -convergence results

The following compactness result states that sequences θn with equibounded en-
ergy Eαn converge to a limit function θ which has a finite number of jumps and
takes the values {±θα} almost everywhere if 0 ≤ α < 4, while if α ≥ 4 the limit
function is identically 0.

Proposition 3.3 (Compactness) Let Eαn : L∞(I, J)→ [0,+∞] be the energies
defined by (2.12). If {θn} is a sequence of functions such that

sup
n
Eαn (θn) < +∞, (3.7)

then we have two cases:
(i) if 0 ≤ α < 4 there exists a set S ⊂ (0, 1) with #S < +∞ such that, up to
subsequences, θn converges to θ in L1

loc((0, 1)\S), where θ is a piecewise constant
function and θ(0+) = θ(1+). Moreover, θ(t) ∈ {±θα} for a.e. t ∈ (0, 1) and
S(θ) ⊆ S;
(ii) if α ≥ 4 then the limit function θ is identically 0.

Proof (i) We first note that −α cos θ ≥ |pαθ| − α − 1 for θ ∈ [−π/2, π/2] and a
constant pα depending on α, so that

C > Cλn ≥ λnEαn (θn) ≥|pα|
n−1∑
i=0

λn|θin| − (α+ 1)nλn + λn − nλn +
α2

8
+ 1

≥|pα|
n−1∑
i=0

λn|θin| − α− 1,

from which we deduce that ∫ 1

0

|θn(t)| dt < +∞. (3.8)

From the equiboundedness assumption (3.7) there exists a constant C > 0 such
that

sup
n

n−1∑
i=0

Ein(θn) ≤ C < +∞, (3.9)
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where we have set

Ein(θn) = cos(θin + θi+1
n )− α

2
(cos θin + cos θi+1

n )−mα. (3.10)

Now, if for every fixed η > 0 we define

In(η) := {i ∈ {0, 1, . . . , n− 1} : Ein(θn) > η},

then (3.9) implies the existence of a uniform constant C(η) such that

sup
n

#In(η) ≤ C(η) < +∞. (3.11)

Let i ∈ {0, 1, . . . , n− 1} be such that i 6∈ In(η); that is,

Ein(θn) = cos(θin + θi+1
n )− α

2
(cos θin + cos θi+1

n )−mα ≤ η.

Let σ = σ(η) > 0 be defined such that if

0 ≤ cos(θ1 + θ2)− α

2
(cos θ1 + cos θ2)−mα ≤ η, θ1 + θ2 = 2θ, θ ∈ {±θα},

then
|θ1 − θ|+ |θ2 − θ| ≤ σ(η).

As a consequence, if i 6∈ In(η) we deduce the existence of θ ∈ {±θα} such that

|θin − θ| ≤ σ and |θi+1
n − θ| ≤ σ.

Hence, up to a finite number of indices i, both θin and its nearest neighbour
θi+1
n are close to the same minimal angle ±θα. Namely, there exists a finite number

of indices 0 = i0 < i1 < · · · < iNn = n − 1 such that for all k = 1, 2, . . . , Nn we
can find θk,n ∈ {±θα} satisfying for all i ∈ {ik−1 + 1, ik−1 + 2, . . . , ik − 1} the
aforementioned closeness property

|θin − θk,n| ≤ σ and |θi+1
n − θk,n| ≤ σ. (3.12)

Now, let {ijr}, r = 1, . . . ,Mn be the maximal subset of 0 = i0 < i1 < · · · <
iNn = n − 1 defined by the requirement that if θjr,n = ±θα then θjr+1,n = ∓θα;
this means that {ij1 , . . . , ijMn } ⊆ In(η). Hence, there exists C(η) > 0 such that∑n−1
i=0 E

i
n(θn) ≥ C(η)Mn and then Eαn (θn) ≥ C(η)Mn, so that from (3.7) Mn are

equibounded. Thus, up to further subsequences, we can assume that Mn = M
and that for every r = 1, . . . ,M , tnijr = λnijr → tr for some tr ∈ [0, 1] and
θjr,n = θr. Set S = {t1, . . . tM} and, for fixed δ > 0, Sδ =

⋃
r(tr− δ, tr + δ). Then,

by identifying θn with its piecewise constant interpolation, from (3.12) and for n
large enough we get

sup
t∈(0,1)\Sδ

|θn(t)− θr| ≤ σ.

The previous estimates, together with (3.8) ensure that {θn} is an equicontinuous
and equibounded sequence in (0, 1)\Sδ. Thus, thanks to the arbitrariness of δ, up
to passing to a further subsequence (not relabelled), θn converges in L∞loc((0, 1)\S)
(and in L1

loc((0, 1)\S)) to a function θ such that θ(t) ∈ {±θα} for a.e. t ∈ (0, 1).
Moreover, S(θ) ⊆ S. Finally, by the periodicity assumption (2.1), we have θ0

n = θnn
from which passing to the limit as n→∞ we conclude that θ(0+) = θ(1+).
(ii) The proof of (ii) requires minor changes in the argument above, so we will
omit it. ut
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Now we can state and prove the Γ -convergence result.

Theorem 3.1 (i) Let α ∈ [0, 4). Then the energies Eαn Γ -converge with respect to
the L1

loc-topology to

Eα(θ) =


Cα#(S(θ) ∩ [0, 1)), if θ ∈ PCloc(R), θ ∈ {±θα}

θ is 1-periodic

+∞, otherwise

(3.13)

on L1
loc(R), where Cα = C(−θα, θα) is given by (3.1) and PCloc(R) denotes the

space of locally piecewise constant functions on R.
(ii) Let α ∈ [4,+∞). Then the energies Eαn Γ -converge with respect to the L1

loc-topology
to

Eα(θ) =

{
0, if θ = 0

+∞, otherwise
(3.14)

on L1
loc(R).

Proof (i) Liminf inequality. We may assume, without loss of generality, that θ is
left-continuous at each jump. Let θn → θ in L1(0, 1) be such that Eαn (θn) < +∞.
Then, from Proposition 3.3 there exist N ∈ N, θ̄1, . . . , θ̄N ∈ {±θα} and 0 = s0 <
s1 < · · · < sN = 1, {sj} = {tk} (the set of indices may be different if sk = sk+1

for some k) such that

θnjk → θ̄j , on the interval (sj−1, sj), j ∈ {1, . . . , N}. (3.15)

For l ∈ {0, 1, . . . , N}, let {kln}n be a sequence of indices such that k0
n = 0,

lim
n
λnk

l
n = sl,

and let {hln}n be another sequence of indices such that h0
n = 0,

lim
n
λnh

l
n =

sl + sl−1

2
.

To get the Γ -liminf inequality, we rewrite the energies as follows:

Eαn (θn) =

N−1∑
j=1

Eαn (θn, h
j
n, h

j+1
n ) + rn, (3.16)

where we have set

Eαn (θn, h
j
n, h

j+1
n ) =

hj+1
n −1∑
i=hjn

[
cos(θin + θi+1

n )− α

2
(cos θin + cos θi+1

n )−mα

]
,

mα = −α
2

8 − 1 and

rn =

h1
n−1∑
i=0

Ein(θn) +

n−1∑
i=hNn +1

Ein(θn),
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with rn > 0 and Ein(θn) as in (3.10). Defining for j ∈ {1, 2, . . . , N − 1}

θ̃in =


θ̄j , if i ≤ hjn − kjn − 1,

θ
i+kjn
n , if hjn − kjn ≤ i ≤ hj+1

n − kjn − 1,

θ̄j+1, if i ≥ hj+1
n − kjn,

(3.17)

we have that θ̃in is a test function for the minimum problem defining C(θ(sj−), θ(sj+))
as in (3.1), where θ(sj−) = θ̄j and θ(sj+) = θ̄j+1.

For n large enough and any σ > 0, we then find that each summand in (3.16)
can be estimated from below as

Eαn (θn, k
j
n, k

j+1
n ) =

kjn∑
i=hjn

Ein(θn) +

hj+1
n −1∑
i=kjn

Ein(θn)

=
0∑

l=hjn−kjn

E l+k
j
n

n (θn) +

hj+1
n −kjn−1∑
l=1

E l+k
j
n

n (θn)

=

hj+1
n −kjn−1∑
l=hjn−kjn

E ln(θ̃n)

=
∑
l∈Z
E ln(θ̃n)−

∑
l≤hjn−kjn−1

E ln(θ̃n)−
∑

l≥hj+1
n −kjn

E ln(θ̃n)

=
∑
l∈Z
E ln(θ̃n)− Eh

j
n−k

j
n−2

n (θ̃n)

≥
∑
i∈Z

[
cos(θ̃in + θ̃i+1

n )− α

2
(cos θ̃in + cos θ̃i+1

n )−mα

]
− ω(σ)

≥ C(θ̄j , θ̄j+1)− ω(σ),

(3.18)

where ω : [0,+∞)→ [0,+∞) is a suitable continuous function, ω(0) = 0. Finally,
since for every j ∈ {1, . . . , N − 1} it holds C(θ̄j , θ̄j+1) = Cα by (3.2), combining
(3.18) with (3.16) and passing to the liminf as n→ +∞ we get the liminf inequality

lim inf
n→∞

Eαn (θn) ≥ lim inf
n→∞

[
(N − 1)Cα − (N − 1)ω(σ)

]
= Cα#(S(θ) ∩ [0, 1)),

(3.19)

where the latter equality follows by the arbitrariness of σ.
Limsup inequality. Let θ be such that Eα(θ) < +∞. Then there exist M ∈ N,
θ̄1, . . . , θ̄M ∈ {±θα} and 0 = t0 < t1 < · · · < tM = 1 such that #S(θ) = M − 1
and

θ(t) = θ̄j , t ∈ (tj−1, tj), j ∈ {1, 2, . . . ,M}. (3.20)

Fixed η > 0, from the definition of C(θ(tj−), θ(tj+)) for j ∈ {1, 2, . . . ,M − 1} we
can find functions ψj,j+1 : Z→ [−π/2, π/2], such that

ψij,j+1 =

{
θ̄j for i ≤ −Nj ,
θ̄j+1 for i ≥ Nj ,

(3.21)
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and ∑
i∈Z

[
cos(ψij,j+1 + ψi+1

j,j+1)− α

2
(cosψij,j+1 + cosψi+1

j,j+1)−mα

]
≤ C(θ(tj−), θ(tj+)) + η = Cα + η,

(3.22)

where the latter equality follows again by (3.2). Note that in (3.21) we may assume
N = Nj independent of j, up to choose N = max

1≤j≤M−1
{Nj}.

We define a recovery sequence θ̃n by means of a translation argument in-
volving the functions ψj,j+1, j ∈ {1, . . . ,M − 1}, that will allow us to esti-
mate the energy contribution from above with (3.22) in a suitable neighbour-

hood of each jump point tj . Namely, for every j, we set θ̃in = ψ
i−btjnc
j,j+1 if i ∈

{btjnc −N, . . . , btjnc+N}, while if i ∈ {btjnc+N, . . . , btj+1nc −N}, we define
θ̃in to be constantly equal to θ̄j+1, according to (3.21). This definition can be
summarized as follows:

θ̃in =


θ̄1 if 0 ≤ i ≤ bt1nc −N
ψ
i−btjnc
j,j+1 if btjnc −N ≤ i ≤ btjnc+N,

θ̄j+1 if btjnc+N ≤ i ≤ btj+1nc −N, j ∈ {1, . . . ,M − 1}
θ̄M if n−N ≤ i ≤ n− 1.

(3.23)

We note that the corresponding θ̃n ∈ Dn(I) satisfy θ̃n → θ in L∞ and (here we
use the simplified notation for the energies as in (3.10))

Eαn (θ̃n) =

n−1∑
i=0

Ein(θ̃n) =

bt1nc−N−1∑
i=0

Ein(θ̃n) +

M−1∑
j=1

btjnc+N−1∑
i=btjnc−N

Ein(θ̃n)


+

M−1∑
j=1

btj+1nc−N−1∑
i=btjnc+N

Ein(θ̃n)

+

n−1∑
i=n−N

Ein(θ̃n)

=

M−1∑
j=1

btjnc+N−1∑
i=btjnc−N

Ein(ψ
i−btjnc
j,j+1 )

 =

M−1∑
j=1

∑
i∈Z
Ein(ψij,j+1)

≤ (M − 1)(Cα + η),

whence, by the arbitrariness of η, we deduce that

lim sup
n→+∞

Eαn (θ̃n) ≤ (M − 1)(Cα + η) = Cα#(S(θ) ∩ [0, 1)). (3.24)

Thus, (3.24) shows that the lower bound (3.19) is sharp, and this concludes the
proof of (i).
(ii) In this case the proof is immediate. Indeed, for any θn → 0, from Eαn (θn) ≥ 0
we have in particular that

lim inf
n→+∞

Eαn (θn) ≥ 0.

As a recovery sequence, we can choose θn ≡ 0, for which we obtain lim
n→+∞

Eαn (θn) =

0. ut
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4 Limit behaviour near the transition point α = 4

The description of the limit as n → +∞ of the energies Eαn with fixed α, carried
out in the previous section, has a gap for α = 4. Indeed, the crease energy Cα
jumps from a strictly positive value (corresponding to 0 ≤ α < 4) to 0 (when
α ≥ 4). Note also that the explicit value of Cα defined implicitly by (3.1) is not
known in literature. This suggests to focus near the transition point α = 4, let
the parameter α depend on n and be close to 4 from below; that is, replace α by
4− αn, αn → 4−.

Such analysis is the main content of a recent paper by Cicalese and Solom-
brino [10], where they find suitable scaling and order parameter to compute the
energy the system spends in a transition between two states with different chirality
when α ' 4. Moreover, they show the dependence of the limit on the particular
sequence αn → 4− and the existence of different regimes. Our aim is to show that
their result can be retrieved also correspondingly to a different choice of the order
parameter in the energies. First of all, we write the energies (2.12) in terms of
4− α as

Eαn (θ) = [4− (4−α)]

n−1∑
i=0

(1− cos θi)−
n−1∑
i=0

[1− cos(θi + θi+1)] +n
(4− α)2

8
, (4.1)

and when necessary, we may think also the quantities Wα, Cα, etc. to be functions
of 4−α. Note that if we choose as a test function in (3.1) θi,α = sign(i) arccos(α/4)
then we obtain a first rough estimate

0 < Cα ≤ (4− α)− (4− α)2

8
,

showing in particular that Cα → 0 as α→ 4−.
The following proposition (compare with [10, Proposition 4.3]) characterizes

the angles between neighbours for an equibounded (in energy) sequence of spins
as the frustration parameter approaches the critical value from below.

Proposition 4.1 If {θn} is a sequence such that

sup
n
Eαnn (θn) ≤ C(4− αn)3/2, (4.2)

then θin → 0 as αn → 4− uniformly with respect to i ∈ {0, 1, . . . , n− 1}.

Proof The claim follows immediately from the estimate

0 ≤ 2
(

cos θin −
αn
4

)2
≤
n−1∑
i=0

Wαn(θin) ≤ Eαnn (θn) ≤ C(4− αn)3/2 (4.3)

valid for all i ∈ {0, 1, . . . , n− 1}. ut

We introduce a new order parameter

vin =
θin
θαn

(4.4)
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and reformulate the Γ -convergence result by Cicalese and Solombrino ([10, Theo-
rem 4.2]) in terms of this new variable. However, it is worth noting that the “flat”
angular parameter vin is equivalent with their variable zin in the regime of “small
angles”, i.e., as αn → 4−, θin → 0, since in this case

θαn = arccos

(
1− (4− αn)

4

)
'
√

4− αn√
2

and

zin =
2
√

2√
4− αn

sin

(
θin
2

)
'
√

2θin√
4− αn

.

The change of variables (4.4) associates to any given θn ∈ Dn(I) a piecewise-

constant function vn ∈ D̃n(I) where

D̃n(I) :=
{
v : [0, 1)→ R : v(t) = vin if t ∈ λn(i+ [0, 1)), i ∈ {0, 1, . . . , n− 1}

}
,

with vn as in (4.4). With a slight abuse of notation, we regard Eαnn as a functional
defined on v ∈ L1(I,R) by

Eαnn (v) =

{
Eαnn (θ), if v ∈ D̃n(I)

+∞, otherwise,
(4.5)

and correspondingly we define the scaled energies

Fαnn (v) :=
8Eαnn (v)√

2(4− αn)3/2
. (4.6)

Theorem 4.1 (Cicalese and Solombrino [10]) Let Fαnn : L1(I,R)→ [0,+∞]
be the functional in (4.6). Assume that there exists l := limn

√
2λn/4(4− αn)1/2.

Then F 0(v) := Γ - lim
n
Fαnn (v) with respect to the L1(I) convergence is given by:

(i) if l = 0,

F 0(v) :=

{
8
3#(S(v)) if v ∈ BV (I, {±1}),
+∞ otherwise.

(4.7)

(ii) if l ∈ (0,+∞),

F 0(v) :=


1

l

∫
I

(
v2(t)− 1

)2
dt+ l

∫
I

(v̇(t))2 dt if v ∈W 1,2
|per|(I),

+∞ otherwise.
(4.8)

where we have set W 1,2
|per|(I) := {v ∈W 1,2(I) : |v(0)| = |v(1)|}.

(iii) if l = +∞,

F 0(v) :=

{
0 if v = const.,

+∞ otherwise.
(4.9)
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Proof In order to simplify the notation, we put εn := 4− αn → 0 as n→∞. Let

{vn} be a sequence in D̃n(I) such that sup
n

Eεnn (vn)

ε
3/2
n

≤ C <∞. As remarked before,

correspondingly, there exists a sequence {θn} in Dn(I) such that sup
n

Eεnn (θn)

ε
3/2
n

≤

C <∞, satisfying θin → 0 uniformly with respect to i by Proposition 4.1.
From the estimates contained in the proof of [10, Theorem 4.2] we get

Eεnn (θn) ≥ 8

n−1∑
i=0

[
sin2

(θin
2

)
− εn

8

]2
+ 2(1− γn)

n−1∑
i=0

[
sin
(θi+1

n

2

)
− sin

(θin
2

)]2
,

for some γn → 0. Since sin θ ' θ as θ → 0, we may improve the estimate obtaining

Eεnn (θn) ≥ 8(1− γ′n)

n−1∑
i=0

[(θin
2

)2
− εn

8

]2
+

(1− γ′′n)

2

n−1∑
i=0

[(θi+1
n

2

)
−
(θin

2

)]2
,

for suitable γ′n, γ
′′
n → 0. In terms of the new order parameter vin defined by (4.4)

the previous inequality now reads

Eεnn (θn) ≥ 2θ4
εn

λn
(1− γ′n)

n−1∑
i=0

λn
[
(vin)2 − εn

2θ2
εn

]2
+
θ2
εnλn

8
(1− γ′′n)

n−1∑
i=0

λn
(vi+1

n − vin
λn

)2
,

where λn = 1
n . If we multiply both the sides by 8/

√
2ε

3/2
n , since

εn
2θ2
εn

→ 1 we get

8Eεnn (θn)
√

2ε
3/2
n

≥ 8
√

2θ4
εn

λnε
3/2
n

(1− γ′n)

n−1∑
i=0

λn
[
(vin)2 − 1

]2
+

√
2θ2
εnλn

2ε
3/2
n

(1− γ′′n)

n−1∑
i=0

λn
(vi+1

n − vin
λn

)2
.

Since θεn = arccos(1 − εn
4 ) and θεn '

√
εn√
2

as εn → 0, we note that
8
√

2θ4
εn

λnε
3/2
n

'

4
√
εn√

2λn
and

√
2θ2
εnλn

2ε
3/2
n

'
√

2λn
4
√
εn

as n→∞. Thus, we finally get

8Eεnn (θn)
√

2ε
3/2
n

≥
4
√
εn√

2λn
(1− γ̃′n)

n−1∑
i=0

λn
[
(vin)2 − 1

]2
+

√
2λn

4
√
εn

(1− γ̃′′n)

n−1∑
i=0

λn
(vi+1

n − vin
λn

)2
,

(4.10)

for suitable γ̃′n, γ̃
′′
n → 0. The estimate (4.10) implies the liminf inequality both in

case (i) and (ii) as remarked in [10], and the limsup inequality can be obtained
in both cases by the constructive argument contained therein, so we will omit the
proof.
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Remark 4.1 (asymptotic behaviour of Cα). As remarked before, Cα → 0 as α →
4−. However, we may use Theorem 4.1(i) to refine this estimate and determine
the right order of Cαn with respect to 4− αn as αn → 4.

In the regime λn <<(4− αn)1/2 we can compute the limit of energies Fαnn (v)
first as n→∞ while keeping αn ≡ α0 6= 4 fixed, and then the limit as α0 → 4−.
Thanks to Theorem 3.1 and the continuity result ensured by Proposition 3.2, we
obtain

Fα0(v) := Γ - lim
n→+∞

8Eαnn (v)√
2(4− αn)3/2

=
8Cα0√

2(4− α0)3/2
#(S(v)), (4.11)

whence, by means of Theorem 4.1(i), we get

F 0(v) := Γ - lim
α0→4

Fα0(v) =
8

3
#(S(v)). (4.12)

The convergence of minimum problems as α→ 4− finally gives

lim
α→4−

3Cα√
2(4− α)3/2

= 1. (4.13)

Thus, near the ferromagnet-helimagnet transition point, the energy Cα coin-
cides with the energy Edw ∝ (4− α)3/2 for the excitation of a chiral domain wall
separating two domains of opposite chirality, which is a well-known universal low-
temperature property of frustrated classical spin chains (see, e.g., Dmitriev and
Krivnov [14]).

5 A link with the gradient theory of phase transitions

In this section we show that the variational asymptotic behaviour of the energies
Fαn for any α ∈ [0, 4], both in the case of fixed α (Theorem 3.1) and in the case
α ' 4 (Theorem 4.1), is the same as that of a parametrized family of Modica-
Mortola type functionals, thus providing an interesting connection between frus-
trated lattice spin systems and the gradient theory of phase transitions (see also
[5, Section 6]).

In order to do that in the framework of the equivalence by Γ -convergence, we
recall some definitions about Γ -equivalence for families of parametrized function-
als, uniform equivalence, regular and singular points, as introduced by Braides and
Truskinovsky [8].

Definition 5.1 (Γ -equivalence) Let A be a set of parameters. Two families of
parametrized functionals Fαn and Gαn are equivalent at scale 1 at α0 ∈ A if Fα0

n

and Gα0
n are equivalent at scale 1, i.e.,

Γ - lim
n→+∞

Fα0
n = Γ - lim

n→+∞
Gα0
n (5.1)

and these Γ -limits are non-trivial.
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Definition 5.2 (uniform Γ -equivalence) Let A be a set of parameters. Two
families of parametrized functionals Fαn and Gαn are uniformly equivalent at scale
1 at α0 ∈ A if for all αn → α0 we have, up to subsequences,

Γ - lim
n→+∞

Fαnn = Γ - lim
n→+∞

Gαnn (5.2)

and these Γ -limits are non-trivial. They are uniformly equivalent on A if they are
uniformly equivalent at all α0 ∈ A.

Definition 5.3 (regular point) α0 ∈ A is a regular point if for all αn → α0 we
have, up to a subsequence,

Γ - lim
n→+∞

Fαnn = Γ - lim
n→+∞

Fα0
n . (5.3)

Definition 5.4 (singular point) α0 ∈ A is a singular point if it is not regular;
that is, if there exist α′n → α0, α′′n → α0 such that (up to subsequences)

Γ - lim
n→+∞

F
α′n
n 6= Γ - lim

n→+∞
F
α′′n
n . (5.4)

According to the previous definitions, each 0 ≤ α0 < 4 is a regular point for
Fαn , since, as already observed in Remark 4.1, for any sequence αn → α0, we have

Fα0(v) := Γ - lim
n→+∞

Fαnn (v) =
8Cα0√

2(4− α0)3/2
#(S(v)).

As a consequence of Theorem 4.1, instead, α0 = 4 is a singular point for Fαn .

Helimagnetic

Ferromagnetic

α

1
n

Fig. 5.1 The 1
n
− α space. In blue the failure curve 1

n
= (4 − α)1/2.

The behaviour of the system close to the transition point α = 4 can be pictured
in the 1

n–α plane (see Fig. 5.1), where the crossover line 1
n = (4−α)1/2 separates

a zone where there is helimagnetic order ( 1
n << (4 − α)1/2) from one where we

have ferromagnetic order ( 1
n >>(4− α)1/2).
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For our purposes, it is useful to recall the well known Γ -convergence result in
gradient theory of phase transitions due to Modica and Mortola [16]. Let Ω ⊂ R
be an open set, u : Ω → R and W = W (u) a non-convex energy such that W ≥ 0,
W (u) ≥ c(u2 − 1) and W = 0 if and only if u = a, b. W is called a double-well
potential. Let C > 0 and consider the energies

Fn(u) = n

∫
Ω

W (u) dx+
C2

n

∫
Ω

(u̇)2 dx, u ∈W 1,2(Ω). (5.5)

Theorem 5.1 (Modica-Mortola’s theorem) The functionals Fn above Γ -
converge as n→∞ and with respect to the L1(Ω) convergence to the functional

F∞(u) =

{
C · cW#(S(u) ∩Ω), if u ∈ {a, b} a.e.

+∞, otherwise,
(5.6)

where cW := 2
∫ b
a

√
W (s) ds.

The following theorem states the announced uniform equivalence by Γ -convergence
of the energies Fαn with parametrized Modica-Mortola type functionals.

Theorem 5.2 Setting λn,α := 2nθ4
α, Mα := 3Cα/8, µα :=

√
2(4−α)3/2

8 , the ener-
gies

Gαn(v) =


1

µα

[
λn,α

∫
I

(
v2 − 1

)2
dt+

M2
α

λn,α

∫
I

(v̇)2 dt
]
, if v ∈W 1,2

|per|(I),

+∞, otherwise in L1
loc(R),

and Fαn (v) := 1
µα
Eαn (v) are uniformly equivalent by Γ -convergence on [0, 4]. More-

over,

(i) each α0 ∈ [0, 4) is a regular point;
(ii) α0 = 4 is a singular point.

Proof As before, we put εn := 4− αn, so that εn ≥ 0.
(i) Let εn → ε0 6= 0 and {vn} be a sequence with equibounded energy. Corre-
spondingly, by (4.4) we may find a sequence {θn} such that vn = θn/θεn . The
continuity of the energies Gεn with respect to the parameter ε = εn, ensured also
by Proposition 3.2, allows us to consider, without loss of generality, the energies

Gε0n (v) =
8

√
2ε

3/2
0

[
2nθ4

ε0

∫
I

(
v2 − 1

)2
dt+

1

2nθ4
ε0

(3Cε0
8

)2
∫
I

(v̇)2 dt
]
,

where v = θ/θε0 . After simplifying the constants, we may rewrite the energies in
terms of θ as

Gε0n (θ) =
8

√
2ε

3/2
0

[
2n

∫
I

(
θ2 − θ2

ε0

)2
dt+

1

2n

(3Cε0
8θ3
ε0

)2
∫
I

(θ̇)2 dt
]
.

In order to compute the Γ -limit as n→∞ of the energies Gε0n , we may apply the
Γ -convergence result by Modica and Mortola (Theorem 5.1), thus obtaining

Gε0(θ) := Γ - lim
n→+∞

Gε0n (θ) =
8Cε0√
2ε

3/2
0

#(S(θ)),
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since

cW = 2

∫ θε0

−θε0
|θ2 − θ2

ε0 | dθ =
8

3
θ3
ε0 .

This result coincides with (4.11), once we remark that #(S(v)) = #(S(θ)).
(ii) Let εn → 0 and v ∈ W 1,2

loc (R). The estimates contained in the proof of Theo-
rem 4.1 and equation (4.13) allow us to rewrite the functional Gεnn as

Gεnn (v) =
4n
√
εn√

2
(1 + ηn)

∫
I

(
v2 − 1

)2
dt+

√
2

4n
√
εn

(1 + η′n)

∫
I

(v̇)2 dt,

for suitable sequences ηn, η
′
n → 0. In order to simplify the notation, we put

Kn :=

√
2

4n
√
εn
,

and we write

Gεnn (v) =
1

Kn
(1 + ηn)

∫
I

(
v2 − 1

)2
dt+Kn(1 + η′n)

∫
I

(v̇)2 dt.

We distinguish between three cases:
(a) Kn → 0. In this case, we apply again Theorem 5.1 (with C = 1), thus obtaining

G0(v) := Γ - lim
n→+∞

Gεnn (v) =
8

3
#(S(v)), (5.7)

since cW = 2
∫ 1

−1
|v2 − 1| dv = 8

3 .

(b) Kn → l ∈ (0,+∞). A sequence vn with equibounded energy is weakly compact
in W 1,2

|per|(I), then by lower semicontinuity in W 1,2
|per|(I) we get

lim inf
n

Gεnn (vn) ≥ 1

l

∫
I

(
v2 − 1

)2
dt+ l

∫
I

(v̇)2 dt.

In order to obtain the limsup inequality, we can argue by density considering
vn ∈W 1,2

|per|(I) ∩ C∞(I), vn → v such that

lim
n
Gεnn (vn) =

1

l

∫
I

(
v2 − 1

)2
dt+ l

∫
I

(v̇)2 dt.

(c) Kn → +∞. Let v be a constant function, and consider the constant sequence
vn ≡ v. Trivially,

lim inf
n

Gεnn (vn) = lim inf
n

( 1

Kn
(1 + ηn)

∫
I

(
v2
n − 1

)2
dt
)
≥ 0,

and
lim
n
Gεnn (vn) = 0.

The proof of point (i) of Theorem 5.2 permits us to deduce an equivalence
result also for the energies Eαn (θ) defined in (2.12) with Modica Mortola type
functionals whose potentials Wα(θ) := (θ2 − θ2

α)2 have the wells located at the
minimal angles θ = ±θα. It can be stated as follows.
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Corollary 5.1 Let α be a positive number, α ∈ [0, 4). The energies Eαn (θ) and
the family of functionals Hα

n (θ) defined on L1
loc(R) as

Hα
n (θ) =


λn,α
θ4
α

∫
I

(
θ2(t)− θ2

α

)2
dt+

M2
α

λn,αθ2
α

∫
I

(θ̇(t))2 dt, if θ ∈W 1,2
|per|(I),

+∞, otherwise,

are uniformly equivalent by Γ -convergence on [0, 4).
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