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Abstract: This paper presents a review of technical works in the field of cyber-physical attacks on
the smart grid. The paper starts by discussing two reference mathematical frameworks proposed in
the literature to model a smart grid under attack. Then, a review of cyber-physical attacks on the
smart grid is presented, starting from works on false data injection attacks against state estimation.
The aim is to present a systematic and quantitative discussion of the basic working principles of the
attacks, also in terms of the inner smart grid vulnerabilities and dynamical properties exploited by
the attack. The main contribution of the paper is the attempt to provide a unifying view, highlighting
the fundamental aspects and the common working principles shared by the attack models, even
when targeting different subsystems of the smart grid.

Keywords: cyber-physical systems; grid state estimation; false data injection attacks; switching
attacks; load altering attacks; coordinated cyber-physical attacks

1. Introduction

A cyber-physical system (CPS) is a system that works based on a strong interplay
between computing, information and communication technology functionalities, and phys-
ical processes and dynamics [1]. CPSs are pervasive in today’s society. Examples go from
miniaturized systems up to systems spanning entire nations. The smart grid is arguably
the most complex and critical CPS. Therefore, the study of security issues in smart grids
attracts a huge amount of research. Among the most recent review papers on smart grid
attacks there are: [2], providing a comprehensive survey on the security requirements,
types of attacks, countermeasures, and research challenges (mainly from the information
technology point of view) [3], an extensive survey paper including an excellent qualitative
discussion and classification of the attacks and related defense strategies [4], focusing on
CPS testbeds [5], which presents a list of possible vulnerabilities and attacks [6], presenting
a comprehensive discussion of attack-resilient architectures and methods for wide area
control and monitoring in smart grids [7], discussing the main smart grid standards and
associated vulnerabilities, and existing CPS testbeds [8], providing a classification of threats
in the smart grid [9], proposing risk assessment methodologies, and methods to evaluate
the likelihood of attacks and the resiliency of a smart grid subject to attacks [10], with a
survey of methods for secure design, detection, identification, restoration, and resilient
control of smart grids [11], discussing vulnerabilities and threats of phasor measurement
units (PMUs) and the global positioning system (GPS), which are key smart grid communi-
cation technologies [12], on generic CPSs, but presenting also a classification of attack types
in smart grids [13], presenting a high-level survey of attacks and detection methods in
industrial CPSs, and relevant also for smart grids [14], providing an excellent review of the
main control systems and operations in the different smart grid domains, as well as a com-
prehensive discussion of the existing defence strategies [15], providing a recent overview
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of cyber-physical attacks against the smart grid, and available defense strategies [16],
providing a comprehensive overview of threat modelling in energy CPSs, including the
possible attack entry points, the CPS vulnerabilities, a list of scenario-specific physical and
cyber metrics to assess the performance of the CPS under attack; the paper also presents an
elaborated adversarial model (to capture the attacker’s capabilities, resources, etc.), and an
attack model (to capture the characteristics of the attack); finally, three practical scenarios
are discussed.

Compared to the above ones, this review provides a discussion which is more com-
prehensive, by covering multiple areas of the smart grid, and multiple types of attacks.
The objective is also to provide a more in depth and critical discussion, by presenting a
quantitative formulation of the different attack models, also highlighting how ideas have
evolved from the formulation of the first, simple attack models, to the most recent and
complex ones.

Several research and innovation projects have significantly contributed to advance the
knowledge in the sector. This is the case for example of the EU-funded Viking project [17],
which contributed significantly to the investigation in the areas of state estimation (SE)
and automatic generation control (AGC). Other relevant recent innovation projects in-
clude: SPEAR (“Secure and PrivatE smArt gRid”) [18], ENERGY SHIELD (“Integrated
Cybersecurity Solution for the Vulnerability Assessment, Monitoring and Protection of
Critical Energy Infrastructures”) [19], PHOENIX (“Electrical Power System’s Shield against
complex incidents and extensive cyber and privacy attacks”) [20], DEFENDER (“Defending
the European Energy Infrastructures”) [21], SDNmicroSENSE (“SDN—microgrid reSilient
Electrical eNergy SystEm”) [22], SUCCESS (“Securing Critical Energy Infrastructures”) [23].

1.1. Purpose, Rationale and Structure of the Review

This paper presents a review of the possible cyber-physical attacks against a smart
grid. The purpose is to present a quantitative discussion, focused on explaining the
inner properties of the smart grid that the different cyber-physical attacks leverage to
cause disruption. A system-theoretic approach is adopted for the modelling and analysis
of: (i) the smart grid, seen as a CPS; (ii) the attacks, with the related assumptions and
dynamics; (iii) the effects of the attacks on the smart grid. The review proposes a wide and
comprehensive discussion, covering different areas of the smart grid, from generation, to
transmission and consumption.

The main contribution of this survey with respect to the existing literature is that it
does not only provide an overview of the main attacks on the grid studied in the literature,
but it also tries to analyse them under a unifying system-theoretic perspective, which better
highlights conceptual similarities and common working principles, showing, for example,
how ideas developed in the analysis of specific attacks can be exploited in the design of
attacks targeting different areas of the grid, or also how attack schemes can be combined to
engineer more and more complex and refined attacks.

The paper is structured into two main parts. The first one discusses two modelling
frameworks for CPSs, recently proposed in literature, which are useful for the purpose
of providing a conceptual basis to model and classify the attacks. Key nomenclature is
discussed as well. The second part reports the review of the cyber-physical attacks, focusing
on the analysis of the physical consequences (e.g., loss of service, damage to equipment,
etc.) that can be caused by either pure cyber attacks or by attacks combining cyber and
physical disruption. The review does not discuss pure cyber vulnerabilities, and the related
techniques used to launch cyber attacks.

There are several ways to classify and present attacks (e.g., by working principle, by
targeted system, etc.). In this review, we first analyse false data injection attacks (FDIAs)
against SE, one of the first attacks to be investigated in the literature. This attack impacts
one of the most critical smart grid control functions, and can have catastrophic cascade
effects at all levels of the smart grid. The review of the attacks then follows the logic flow of
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the control operations performed in the power systems, as explained in Section 3. Finally,
attacks directly targeting grid devices and customers are discussed.

The rest of the paper is organized as follows: Section 2 focuses on the modelling of
a CPS subject to attacks, also discussing a simple model of the attack space. Section 3,
reviews the main cyber-physical attacks on smart grids. Section 4 presents a discussion
of the findings and gives an overview on current research trends. Section 5 concludes
the paper.

1.2. Notation

The symbol:= means equal by definition; ∅ or {} denote the empty set; R denotes
the set of real numbers; Rn denotes the space of vectors of real numbers of dimension
n; |K| is the cardinality of set K; xi denotes the i-th entry of vector x; nv denotes the
dimension of the generic vector v; ‖x‖ = ‖x‖2 :=

√
xTx; ‖x‖W :=

√
xTWx; given x ∈ Rn,

‖x‖0 = |{xi : xi 6= 0, i = 1, . . . , n}|; col(x1, x2, . . . , xn) := [x1, x2, . . . , xn]T ; given a matrix
A ∈ Rm×n, AT denotes the transposed matrix; Ker{A} the kernel (or null space) of A:
Ker{A} := {x : Ax = 0}; Im{A} the image (also called, span, or range) of A: Im{A} :=
{y = Ax, x ∈ Rn}, ‖A‖ a matrix norm; I the identity matrix.

2. Modelling of CPSs Subject to Attacks

This section reviews two of the most relevant frameworks presented in literature for
modelling CPSs subject to attacks. The third subsection outlines how the frameworks
can be used to model some of the most important cyberattacks (bias injection, denial of
service (DoS), etc.), which are, in most of the cases, the basic building block used in the
smart grid cyber-physical attacks reviewed in Section 3.

2.1. Modelling of the CPS Subject to Attacks by Using Deterministic Linear Descriptor Systems

A first set of works, by Pasqualetti et al., which consider the cases where a CPS can be
modeled as a deterministic linear time-invariant descriptor system [24–26]:

Eẋ(t) = Ax(t) + Bu(t) (1a)

y(t) = Cx(t) + Du(t), (1b)

where x(t) ∈ Rn is the state of the system and y(t) ∈ Rp the output at time t. Matrix E is in
general singular, so that (1a) includes in general both algebraic and differential equations.
The attack is modelled through the signals Bu(t) and Du(t), which are decided by the
attacker, with u(t) ∈ Rn+p. With no loss of generality, it is assumed that u(t) can affect
independently each state and output variable (i.e., B = [In×n 0n×p] and D = [0p×n Ip×p]).
The attack set, K ⊆ {1, 2, . . . , n + p}, is the set of the components of u which are different
from zero for some t. The attack mode uK(t) is the subvector of u indexed by K. The attack
signature (BK, DK) is the couple of submatrices of B and D with columns indexed by K
(so that Bu(t) = BKuK(t) and Du(t) = DKuK(t)). Attacks such as Du = 0 are called state
attacks, since they directly target only (1a) (but they can impact the whole system), whereas
attacks such as Bu = 0 are called output attacks. Modelling the attack as an additive signal
in (1a) and (1b) allows capturing a number of different cases, such as [25] physical attacks,
which can be modelled as state attacks, attacks to actuators, also modelled as state attacks,
attacks to sensors, modelled as output attacks, and so forth.

Attack Detection and Identification

After the CPS and the adversary are modelled, in [25] the notion of monitor is charac-
terized, in a deterministic setting. The monitor hosts algorithms for attack detection (i.e., to
understand if an attack is ongoing or not), and identification (i.e., to find the attack set).
It is assumed that the monitor has full knowledge of the system model (i.e, E, A, C) and
of the measurements {y(t), t ≥ t0} (monitoring starts at t0). The monitor is defined as
a deterministic system Φ with input Λ = {E, A, C, {y(x0, uK, t), ∀t ≥ t0}}(y(x0, uK [t0,t), t),
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or, concisely, y(x0, uK, t), denotes the output of the system at t ≥ t0, when x(t0) =
x0 and the input uK [t0,t) := {u(τ), t0 ≤ τ < t} is applied between times t0 and t.
and with output Φ(Λ) = {ψ1(Λ), ψ2(Λ)} (Figure 1).

𝐸 ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐵𝑢(𝑡)

Λ = {𝐸, 𝐴, 𝐶, {𝑦 𝑡 , ∀𝑡 > 𝑡0}}

MONITOR

PLANT

𝑦 𝑡 ≔ 𝑦(𝑥0, 𝑢𝐾 , 𝑡)

𝑢𝐾 Attack signal

𝜓1(Λ)

𝜓2(Λ)

(Detection)

(Identification)

𝑥0
(Initial state)

Figure 1. Attacker-plant-monitor scheme for the CPS modelling framework in [25].

It is ψ1(Λ) ∈ {True, False}, depending on whether or not the detector reports an
attack, while ψ2(Λ) ⊆ {1, 2, . . . , n + p} is the list of components of the attack vector u that
the monitor marks as being active. The output of the monitor might or might be not in line
with the reality (e.g., false negative and false positive may happen).

Consistency properties are introduced to describe the correct behavior of the monitor.
The way the consistency properties are defined depends in general on the adopted CPS
modelling framework (for example, stochastic modelling frameworks require in general
different properties than deterministic ones). In [25], the consistency properties proposed
for the deterministic framework are:

1. ψ1(Λ) = True only if there is actually an attack. Equivalently, (ψ1(Λ) = True) =⇒
(K 6= ∅), that is, false positives are excluded;

2. ψ1(Λ) = False if and only if ψ2(Λ) = ∅ (an internal coherency property of the
detector);

3. ψ2(Λ) = S only if there is no other attack set S′, |S′| ≤ |S|, such that there exists an
initial state x1 and an attack signal uS′ such that y(t) = y(x1, uS′ , t), ∀t (i.e., no other
attack set with equal or smaller cardinality can “explain” the attack). If this cannot be
assured, then it is ψ2(Λ) = {1, 2, . . . , n + p}.

An attack (BuK, DuK) is detected by a monitor Φ if ψ1(Λ) = True. It is identified if
ψ2(Λ) = K. An attack is undetectable (unidentifiable) if and only if there is no consistent
monitor that can detect (identify) it (notice that, it is necessary to consider consistent
monitors, since, for example, any monitor such that ψ1(Λ) = True ∀Λ would detect
all attacks, but with unacceptable rate of false positives). Similarly, an attack set K is
undetectable (unidentifiable) if there exists at least an undetectable (unidentifiable) attack
(BKuK, DKuK) [25]. An undetectable attack is also unidentifiable (because of consistency
property 2). Moreover, a non-zero attack (BKuK, DKuK) is undetectable if and only if
y(x1, uK, t) = y(x2, 0, t), ∀t > t0, for some initial states x1, x2. That is, the output of the
system under attack is the same as the output under no attack, but from a different initial
state x2 (i.e., the attack produces outputs that are compatible with some normal operative
condition). In the above, the initial state x1 is supposed to be unknown to the operator.
In case instead it is known, the condition is y(x1, uK, t) = y(x1, 0, t). In addition, since
the considered CPS model is linear, the condition y(x1, uS, t) = y(x2, 0, t) for some x2 is
equivalent to the condition y(x3, uS, t) = 0, ∀t > t0, for some x3 = x1− x2. In system theory
terminology, the above means that undetectable attacks only excite the zero dynamics of
the system (i.e., state trajectories which are associated with zero output).

An attack is unidentifiable if and only if y(x1, uK, t) = y(x2, uS, t) for some x1, x2 and
for some attack signal uS, with S 6= K and |S| ≤ |K| (see consistency condition 3 above).
The papers [24,25] give a number of conditions to practically check if a given system admits
undetectable/unidentifiable attacks, and give also centralized and distributed formulations
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of detectors. For what follows, it is useful to recall here the formulation of the centralized
observer-based detector proposed in [25]:

Eẇ(t) = Aw(t) + G(Cw(t)− y(t)) (2a)

r(t) = Cw(t)− y(t), (2b)

with w the state of the detector and r the so called residual. It is proven in [25] that, under
proper assumptions, if the attack set is detectable, and the state of the detector is initialized
at the state of the plant, then r(t) = 0 ∀t if and only if uK(t) = 0 ∀t (i.e., there is no attack),
and x− w is exponentially stable (i.e., the state of the detector approximates the state of
the plant). If the initial state of the system is not known, the observer can be initialized
with an arbitrary initial state, and still the residue will converge to zero if there is no attack.
Detector (2) is just an example of the many ones proposed in literature. The study of the
mathematical properties of detectors plays a fundamental role, as one of the general goals
of an attacker is to construct attacks which can bypass the detection strategy adopted by
the operator. To conclude, Pasqualetti et al. in [25] consider mainly omniscient adversaries
(who have full knowledge of the system model), whose objective is to disrupt the system
while remaining undetected/unidentified.

2.2. Modelling of Networked CPSs under Attack

A second very interesting modelling framework is detailed by Teixeira et al. in [27,28],
and references therein from the same authors. A networked CPS is modelled as comprising
a plant, a feedback controller and a detector, all modelled as linear time invariant systems
in discrete time (k denotes the time variable). The attacker-CPS interaction is illustrated in
Figure 2.

𝒫: ቊ
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐺𝑤𝑘 + 𝐹𝑓𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘

ℱ: ቊ
𝑧𝑘+1 = 𝐴𝑐𝑧𝑘 + 𝐵𝑐 𝑦𝑘
𝑢𝑘 = 𝐶𝑐𝑧𝑘 + 𝐷𝑐 𝑦𝑘

𝐷: ቊ
𝑠𝑘+1 = 𝐴𝑒𝑠𝑘 + 𝐵𝑒𝑢𝑘 + 𝐾𝑒 𝑦𝑘
𝑟𝑘 = 𝐶𝑒𝑠𝑘 + 𝐷𝑒𝑢𝑘 + 𝐸𝑒 𝑦𝑘

𝒦 = { 𝒫, ℱ, 𝐷}

𝑌𝑦

𝑌𝑢Γ𝑢

Model Knowledge

Disclosure 
Resources

Disruption 
Resources

Attack Policy
+

+

+
+

Controller

Detector

Plant

𝑢𝑘

𝑢𝑘

𝑦𝑘

𝑦𝑘

Adversary  
Model

𝑓𝑘

𝑏𝑘
𝑢 , 𝑏𝑘

𝑦

𝑟𝑘

Γ𝑦

𝑓𝑘
𝑎𝑘 = 𝑔(𝒦, 𝑙𝑘)

Figure 2. Networked CPS coupled with the adversary model (adapted from Figure 2 in [28]).

In this modelling framework, the plant, the controller, and the detector are modelled
separately, with their respective connections and communication links (whereas in the
previous framework they are all modelled by a single descriptor system—see Figure 1).
The plant is impacted by a noise term on the state (wk), and by a noise term on the output
(vk). uk is the control, as computed by the controller, yk is the plant output, as measured
by the sensors. Attacks in this model can happen in the form of a physical disruption of



Electronics 2021, 10, 1153 6 of 39

the system and/or corruption of control and/or measurement packets. fk models physical
attacks, impacting the system according to F. ũk and ỹk denote, respectively, the control
input and the plant output measurement, as possibly corrupted by the adversary. The
system is said to have a nominal behaviour when ũk = uk, ỹk = yk and fk = 0 (i.e., when
there is no attack) [28].

2.2.1. Attack Space and Adversary Model

Teixeira et al. consider in [28] a three-dimensional attack space model, by characteriz-
ing the attacks in terms of:

1. The model knowledge, i.e., the adversary’s a priori knowledge about the CPS;
2. The disclosure resources, i.e., the information that the attacker is able to retrieve about

the system during the attack (violation of confidentiality);
3. The disruption resources, i.e., integrity/availability violations through which the

attacker compromises the system (e.g., through manipulation of the system’s control
inputs, measurements, etc.).

In [28], the adversary model is given as the combination of the adversary resources (model
knowledge, disclosure resources and disruption resources), and the attack policy g (for the
attacker to decide how to attack the system based on the information available).

The model knowledge K = {P̂ , F̂ , D̂} represents the a priori knowledge of the
adversary about the CPS. Different attacks may have different requirements in terms of
model knowledge.

The disclosure resources are the entries of uk and yk to which the adversary has
reading access. They are denoted with sets Ru ⊆ {1, 2, . . . , nu} and Ry ⊆ {1, 2, . . . , ny}.
Then, the information, lk, gathered by the adversary from a given initial time k0 up to a
generic time k ≥ k0, can be modelled as:

lk := lk−1 ∪
{[

Yu 0
0 Yy

][
uk
yk

]}
, lk0 = {}, (3)

where Yu ∈ R|Ru |×nu and Yy ∈ R|Ry |×ny are binary matrices selecting the entries of uk and
yk corresponding to the disclosure resources, respectively.

Disruption resources can be of two types: (i) physical attacks, and (ii) data deception.
fk models physical attacks, which impact on the plant dynamics. Matrix F represents the
physical attack resources. It captures how fk impacts on the system. With the data deception
resources, the attacker corrupts measurements yk and/or the computed control uk, by
injecting the attack signals bu

k and by
k . The setsRu

I ⊆ {1, 2, . . . , nu} andRy
I ⊆ {1, 2, . . . , ny}

denote the disruption resources associated with data deception [28], that is, the system’s
inputs and outputs that the adversary can corrupt, by injecting the corrupting signals
bu

k ∈ R|Ru
I | and by

k ∈ R|R
y
I |, respectively.

ũk = uk + Γubu
k (4a)

ỹk = yk + Γyby
k , (4b)

where the binary incidence matrices Γu ∈ Rnu×|Ru
I | and Γy ∈ Rny×|R

y
I | map each entry of

bk to the corresponding disruption resource. To summarize, the overall attack signal ak has
the following structure, including both physical and data deception disruption resources:

ak = [ fk
T , bu

k
T , by

k
T
]T . (5)

Finally, the attack policy g determines the physical attack fk and the data deception attack
bk, based on the model knowledge K and the accumulated data lk.
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2.2.2. Stealthy and Successful Attacks

Teixeira et al. consider in [28] a residue-based detector, which issues an alarm if
and only if the residue measured over a given detection time [di, d f ], that is, r[di ,d f ]

:=
col(rdi

, rdi+1, . . . , rd f
), lies outside of a pre-specified region U[di ,d f ]

. Two consistency proper-
ties are given for the detector. They differ from the ones in [26], also because the system
is impacted by noise. An attack is stealthy if and only if r[di ,d f ]

∈ U[di ,d f ]
(i.e., the residue

remains in the region for which no alarm is raised). An attack is successful if the state of
the CPS is driven outside a given safety region, Sx [28].

2.3. Modelling of Basic Attacks

The above frameworks allow to model most of common attacks, including for example:

• Eavesdropping attacks, in which the adversary acquires some data transmitted in the
CPS (3). The attacker posses only disclosure resources. These attacks are functional to
collect the model knowledge needed to later carry out a disruptive attack;

• FDIAs (or data deception attacks), aimed at compromising the integrity of control
and/or measurement packets, or some other information in the system. They can be
modelled as in (4a) and (4b). In bias injection attacks, the attacker injects at steady
state a constant bias in the communication channels, with the aim to cause disruption,
while remaining undetected. Simple bias injection attacks only require disruption
resources, and model knowledge, to optimize the bias value to be injected. More
complex FDIAs include for example covert attacks [29], in which the attacker can alter
the output of the system without being detected. Referring to Figure 2, this means
in practice that the attacker can arbitrarily control system output yk, while keeping
ỹk unaffected. Finally, in zero-dynamics attacks, the attack is designed so as to be
decoupled from (i.e., have no impact on) the residual (see Section 3.12);

• DoS attacks [30] are meant to interrupt some or all of the communication channels
in the system, making impossible for the sensor and/or the control data to reach the
destination. As shown in [28], they can be modelled as FDIAs by properly selecting bu

k
and bu

k in (4). No model knowledge and disclosure resources are needed to implement
simple DoS attacks. The disruption resources are the data channel that the adversary
is able to impact;

• In replay attacks [31], the attacker hijacks certain sensors, records readings from them
for a certain amount of time, and then repeats (i.e., replays) the readings on the
monitoring channels, while possibly injecting an exogenous signal into the system.
Recording can be modelled as in (3), replay as in (4). Replay can have the purpose
of covering simultaneous cyber-physical attacks, delay/impede detection, and so
forth. Disclosure resources are the channels from which the attacker can record. The
disruption resources are in general a subset of the disclosure resources, plus the
physical attack resources modelled by F. No model knowledge is needed for the
basic versions;

• In time delay attacks, the attacker injects delays in the sensing and actuating channels,
with the aim of disrupting operations. In particular, delays can have a detrimental
impact on the stability of the system. In time synchronization attacks, the attacker
breaks synchronization of data and signals, which can be crucial for the correct
functioning of the CPS (Section 3.14);

• In Structural Attacks/Tampering, the attacker physically alters the system, with the
aim to cause disruption. The effect of the attack can be modelled as a change in the
dynamics of the system, as represented in Figure 2, through the action of the attack
signal fk.
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3. Review of Cyber-Physical Attacks to the Smart Grid
3.1. Reference Smart Grid Architecture for the Review

Figure 3 reports a simplified view of the smart grid operation and control systems
relevant for the cyber-physical attacks discussed in this paper. Details on these systems can
be found, for example, in [32,33].

Figure 3. Main power system operation and control functions (adapted from [14]).

Many smart grid control systems operate based on grid SE, which is provided in
near real time (e.g., every 5 min) by the SE module of the supervisory control and data
acquisition (SCADA) system in the control center. The SE module filters and fuses the
data collected in real time from the grid through the SCADA, including primarily the
continuous signal measurements (line power flows and bus injections, voltage and cur-
rent sensors, voltage and phase angle measurements from PMUs, etc.) and logic state
measurements, that is, information on the open/close state of switches and breakers at
lines, substations, generators, loads, and so forth. Before SE, data are checked/filtered for
errors, and an observability analysis is performed, to ensure that there are enough data to
correctly perform SE. A candidate estimated network topology is also computed by the
topology processor, based on the logic measurements. SE is then performed based on the
measurements and the candidate topology. The estimated state of the grid is checked with
bad data detection (BDD) techniques, to spot the presence of faulty measurements, which
could impact SE. Error identification and correction procedures are triggered if that is the
case. Attacks against SE are discussed in Sections 3.2–3.4. In these attacks, the attacker
aims at altering the estimated state of the smart grid, by corrupting the continuous signal
and/or the logic state measurements used in SE, in a way that is not detectable by the BDD.

After passing BDD, the estimated state feeds a number of other critical operations
(Figure 3). Contingency analysis is carried out on a continuous basis, to evaluate the
current state of security of the grid, including with simulations of the effect that a list of
possible relevant contingencies (such as tripping of lines, loss of generators, etc.) would
have on the grid. In case issues are detected, a security-constrained economic dispatch
(SCED) grid optimisation is performed, which consists in an optimal power flow (OPF)
problem integrating also security constraints deriving from the contingency analysis. SCED
determines new grid setpoints (i.e., power injections and power flows in the grid) which
ensure safe grid operation, also in case the analysed contingencies materialize. Attacks
against contingency analysis, SCED and related operations are discussed in Section 3.5.

Similar to SCED, economic dispatch and other OPF-based procedures are programs
of the energy management system (EMS) which are run to determine the best grid setpoint
to ensure safe and economical operation of the grid. The outputs of these procedures
typically include power generation setpoints for the generators and locational marginal
prices (LMPs) to determine the price of the energy for producers and consumers. Attacks
against electricity markets are discussed in Section 3.7.
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In parallel, the AGC system ensures that the frequency deviations from the nominal
values (50 or 60 Hz) are minimized, and that the power exchanges among the various
areas of the grid remain close to the optimal setpoints decided in the economic dispatch
optimization. Similarly, automatic voltage control (AVC) ensures that the voltage levels
remain within the admissible bounds. Attacks against AGC and AVC are discussed,
respectively, in Sections 3.8 and 3.13.

3.2. False Data Injection Attacks against State Estimation

The literature on FDIAs against SE is mostly focused on the electricity transmission
sector, where, as is will be explained below, SE is typically based on a static model of
the grid, derived from the power flow equations. Referring to the previous Section 2,
this means that only an equation of the kind (1b) is considered in the following (i.e., the
measurement Equation (8)), while no dynamics equation of the kind (1a) is considered.
Recently however, some works have appeared focusing on dynamic SE, for example, via
Kalman filters. In this case, a dynamical model of the grid is considered. These works are
discussed briefly at the end of the next section.

3.2.1. Grid State Estimation

Grid SE is the problem of estimating the state of the electrical network based on
measurements from sensors spread across the grid and retrieved through the SCADA
system. In power flow applications, the state of the grid is typically described by the buses’
voltage magnitude and angle, since they completely determine the active and reactive
power flows [32]:

Pij = V2
i gij −ViVj[gijcos(θij) + bijsin(θij)] (6a)

Qij = −V2
i bij −ViVj[gijsin(θij)− bijcos(θij)], (6b)

and the active and reactive power injection at buses:

Pi = Vi ∑
j∈Ni

Vj[−gijcos(θij)− bijsin(θij)] + V2
i ∑

j∈Ni

gij (7a)

Qi = Vi ∑
j∈Ni

Vj[−gijsin(θij) + bijcos(θij)]−V2
i ∑

j∈Ni

bij, (7b)

where Pij and Qij are the active and reactive power flows from bus i to bus j, respectively,
Pi and Qi are the active and reactive power injections at bus i, Vi the voltage magnitude at
bus i, gij and bij are network parameters (respectively, the susceptance and conductance of
line (i, j)), θi is the voltage angle at bus i, θij = θi − θj, Ni is the set of buses connected to
bus i through a line.

FDIA against SE (concisely, SE-FDIA) has been one of the first smart grid cyber-
physical attacks studied (in [34,35]). This attack disrupts SE by altering a set of measure-
ments in a smart way, so that the attack goes undetected. Consequences can be far reaching,
possibly including physical disruption and economical losses. A key concept in SE is that
of measurement model, that is, a mathematical relation linking the state variables (to be
estimated) and the measured variables:

z = h(x) + e, (8)

with x ∈ Rn the vector of state variables, z ∈ Rm the vector of measurements, e the vector of
measurement errors (typically assumed to follow a Gaussian distribution with zero mean
and diagonal covariance matrix R), and h a nonlinear function linking the state variables to
the measurement variables. More measurements are available than variables to estimate
(i.e., m ≥ n).
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SE finds an estimate x̂ which best fits the measurements z according to (8). Several
SE techniques exist [33]. In the following, the common weighted least-squares estimation
criterion is considered:

x̂ = arg min
x

{
J(x) := (z− h(x))TW(z− h(x)) := ‖z− h(x)‖2

W

}
, (9)

with W = R−1. How to solve (9) in practice depends on the structure of h. In alternating
current (AC) SE, the nonlinear power flow and injection Equations (6) and (7) constitute
the measurement equations. Measurements typically include the active and reactive power
flows at the lines and injections at the buses. The state is given by the buses voltage angles
and magnitudes. In addition to the above, nowadays it is more and more the case that also
PMUs are deployed at some network buses, which allow to directly measure the buses’
voltage magnitude and angle, so that the measurement vector also includes in this case
voltage measurements (in addition to the power measurements).

In AC SE, the state estimate x̂ is found by solving the first-order necessary optimality
condition deriving from (9), that is, ∂

∂x J(x)|x=x̂ = 0, that is, −2 ∂
∂x h(x)|x=x̂W(z− h(x̂)) = 0,

which is a nonlinear equation that can be solved, for example, via iterative techniques [33].
The early works on FDIA against SE (starting from [34,35]) considered a simplified

setting, with a so called direct current (DC) measurement model: a reasonable assumption
in transmission network applications is to consider bus voltages all constant at 1 per
unit, and the difference in voltage angles small, so that a linear measurement model can
be derived from the linearization of (6) and (7). Based on these assumptions, it is seen
from (6b) that the reactive power flow is zero, and a linear measurement model of the
kind z = Hx + e can be considered (where matrix H derives from the Jacobian of (6)
and (7), and depends in practice on the specific network topology, the placement of meters,
the network parameters, and so forth—see, for example, [36,37] on how to compute H
from (6) and (7). In DC SE, the state is thus typically given by the buses voltage angles
(magnitudes are assumed constant), and the measurements by the active line power flows
and buses injections.

The necessary optimality condition for (9) under a DC model leads to [38] x̂ =
(HTWH)−1HTWz := Ez, with E := (HTWH)−1HTW the well-known weighted Moore-
Penrose pseudoinverse. The “estimated measurement” is: ẑ = Hx̂ = H(HTWH)−1HTWz :
= Kz, K := HE.

Even in a nominal scenario with no attacks, the measurement vector z is affected by
the presence of bad data, for example, due to sensor failures. This will make x̂ deviate from
the real state x. Therefore, BDD is performed. Several techniques exist. A common choice
is the residual-based detector, which is based on the computation of the measurement
residual, that is, the difference between the measurement z and the estimated measurement:
r = z − ẑ = (I − K)z. For instance, if the largest normalized residual test is used, an
alarm is raised if ‖r‖ ≥ τ, with τ the alarm threshold (its selection is a key issue: a low
value increases false positives, a high value increases false negatives). Several alternative
detection methods are available, like the cumulative sum, the Chi-Squared test, and so
forth. In [39], interestingly, the residual is computed by fusing also the information coming
from the cyber intrusion detection systems [40]. Figure 4 shows a typical layout of the SE
module in the smart grid, comprising also the detector.

Figure 4. FDIA impacting the SE module (adapted from Figure 1 in [41]).
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3.2.2. FDIA against DC State Estimation

FDIA corrupts z by injecting an attack vector a: za = z + a (za is the corrupted
measurement). The resulting biased residual computed by the detector is: ra = za − ẑa =
(z+ a)−K(z+ a) = (z− ẑ) + (I−K)a = r + (I−K)a. BDD effectively spots unstructured
attacks. However, if a ∈ Ker{I − K}, then ra = r, which means that za passes BDD, if
z does so. It was noticed in [34] that an a such that a ∈ Ker{I − K} always exists. It
is sufficient to take a = Hc, with arbitrary c (this is easily seen, based on the previous
definitions). In that case, it is za = H(x + c) + e, meaning that the false state x + c is
seen by the operator as a valid network state, that is, it is compatible with the attacked
measurements za through the measurement equation. In fact, the corrupted state estimate
is: x̂a = Eza = E(z + a) = E(z + Hc) = x̂ + (HTWH)−1HTWHc = x̂ + c (i.e., c is exactly
the bias the attacker injects in the SE).

The attack design must take into account that only a subset of the meters can be
attacked in practice. Let thus K ⊆ {1, 2, . . . , m} denote the attack set. Then a must be
selected such that:

a = Hc for some c ∈ Rn, s.t. (10a)

ai = 0 for i /∈ K. (10b)

If |K| > m− n, then (10) is always feasible [35], and simple algorithms exist to find an
attack based on performing linear operations and swapping on the columns of H [35]. In
several works, (10b) is written in the equivalent matrix form HKc = 0, where HKc denotes
the submatrix of H with rows indexed by the complementary set of K. Condition (10a)
(i.e., a = Hc) instead is equivalent to [35] (P− I)a = 0, with P = H(HT H)HT - a condition
which does not include c. Several categories of SE-FDIAs have been studied. In random
FDIAs [35], the attacker injects some error in the estimate. Conditions (10a) and (10b) are
the necessary and sufficient ones for random attacks. In targeted FDIAs [35], the attacker
aims to inject specific state estimate errors ci’s into specific state variables {xi}i∈T , with
T ⊆ {1, 2, . . . , n} the set of targeted state variables. In [35], two types of targeted FDIAs
are introduced: constrained targeted FDIAs, for which it is ci = 0 for every i /∈ T (i.e., the
attacker does not want to alter the estimate of the untargeted variables); unconstrained
targeted FDIAs: the untargeted variables could also be impacted as a side effect.

Another distinction is between strong FDIAs and generalized FDIAs [35]. In strong
FDIAs (the ones discussed so far) it is a = Hc, which implies r = ra. Generalized FDIAs
instead do not require a = Hc. Denote as usual with x̂a = x̂ + c the corrupted estimate,
with c the error introduced in the estimate. Following computations similar to the above
ones, the biased residual is ra = za − ẑa = (z + a)− Hx̂a = (z + a)− H(x̂ + c) = (z−
Hx̂) + (a−Hc) = (z− ẑ) + (a−Hc). Given the triangular inequality, it is ‖ra‖ ≤ ‖z− ẑ‖+
‖a− Hc‖. Hence, even when a 6= Hc, the attack remains stealthy (considering a simple
threshold-based detector) as long as ‖ra‖ ≤ τ, that is, as long as ‖a− Hc‖ ≤ τ− ‖z− ẑ‖. A
generalized FDIA is therefore any attack for which ‖a− Hc‖ ≤ τ − ‖z− ẑ‖ := τa.

In [42], it is highlighted that strong FDIAs are unobservable (i.e., undetectable) in
the sense that there exists a feasible network state (i.e., x + c) which is consistent with the
corrupted measurements (i.e., z + a) (i.e., z + a = H(x + c), the undetectability condition
presented in Section 2). In [42], observable islands are defined, which are subsets of network
buses that share the same perceived state perturbation under attack. Then, irreducible
attacks are defined in [42], as the unobservable attacks such that it is not possible to carry out
unobservable attacks with only a strict subset of the attacked meters. It is also the case that
3-, 4-, and 5-sparse irreducible attacks are characterized, in case all lines are metered (being
a k-sparse attack an attack carried out by corrupting k meters). Finally, countermeasures are
proposed in [42], noticing that placing known-secure PMUs in separate observable islands
makes the attack observable (PMUs directly observe voltage magnitudes and angles).

Early works typically consider static SE-FDIA, that is, attacks at a given time instant.
Some recent works, for example, [43], which focus on PMUs (which have a measurement
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frequency of tens of Hz), consider FDIA in a setting in which measurements over a block
of time are collected and then processed in batch. This results in a measurement equation
Z = XHT + E, where Z is the matrix of measurements (where zij is the measurement
collected by instrument j at time i), X the state vector, H the network matrix and E the
measurement errors. Unobservable attacks as usual take the form of A = CHT and
therefore Z + A = (X + C)HT + E. Matrix A = CHT is column-sparse, meaning that only
the columns corresponding to the compromised measurement units are non-zero. The
measurement matrix Z instead is low-rank [43]. Hence, in literature, convex-optimization-
based decomposition methods have been developed, able to identify the attacked PMUs by
separating the measurement matrix into a low rank matrix (the matrix of uncorrupted PMU
measurements) and a column-sparse matrix (the attack matrix). Zhang et al. show in [43]
how sophisticated attacks can be fabricated that bypass such low-rank decomposition
identification techniques.

Finally, some works in the literature discuss dynamic state estimation, and related
FDIA scenarios. Kalman filter is one of the most widely used dynamic state estimation
techniques in smart grids, see for example [44–46].

3.2.3. Security Indices and Attacker-Defender Problem Design

The analysis of an attack allows the defender to evaluate the vulnerability of the
infrastructure, and to design countermeasures. In this sense, several security indices have
been introduced to characterize the vulnerability of a grid to SE-FDIAs. In [37,38] and
earlier papers, the security index k∗ is defined, that is, the minimum number of meters the
attacker must corrupt to launch an undetectable attack:

k∗ := min
c
‖Hc‖0. (11)

Kosut et al. develop in [37] detectors for the weak attack regime, when the attacker controls
less than k∗ meters, and investigate the trade off between the attack damage and the
detection probability, as well as the possible impact of the attack on the LMPs in electricity
markets (see Section 3.7).

Other indices have been proposed [38], for example, the minimum sparsity αi, that is,
the minimum number of meters that an attacker needs to compromise to be able to inject 1
unit of attack data at meter i:

αi = min
c
‖Hc‖0, s.t. ai = Hic = 1, (12)

or the minimum magnitude αi, that is, the minimum attack signal magnitude necessary to
be able to inject 1 unit of data at meter i (with a similar mathematical formulation). Prob-
lems (11) and (12) are prototypical ones aimed at finding minimum sparsity or minimum
intensity attacks, and are often embedded in larger and more elaborated attack design
problems, as illustrated in the next sections.

There are several defense strategies largely studied in literature, including:

1. Protect a set P of strategic measurements, so that they cannot be corrupted;
2. Independently check a setQ of state variables, by directly measuring them with PMUs;
3. Design more advanced detection methods.

In a protected scenario, and assuming a DC model, the FDIA design problem becomes
the one of finding an a such that: a = Hc (to be undetectable), ai = 0 for i /∈ K (meters
outside of the attack set cannot be attacked), ai = 0 for i ∈ P (protected meters cannot
be attacked), ci = 0 for i ∈ Q (no error can be injected into the state variables which are
directly measured with PMUs). Given budget limitations, the set of protected meters P
and the set of directly measured state variables Q need to be carefully chosen. Common
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strategies are based on optimization, such as the following one [38], where the goal is to
choose P and Q which maximize a security index, while remaining in the given budget:

max
P ,Q

min
i∈M

αi, s.t. (13a)

Cost(P ,Q) ≤ budget. (13b)

Similar methods compute the minimal set of sensors to protect, such that no unobservable
attack exists.

3.2.4. Attack Design under Reduced Assumptions, PMU Measurements, and AC Models

Early works on SE-FDIA assume strong model knowledge (i.e., knowledge of H) and
disruption resources. If a DC model is assumed, as seen, no disclosure resources are needed.
Recent works proceed by relaxing/removing the strong assumptions, first of all, that of
perfect knowledge of system-wide information and parameters (see, e.g., surveys [47,48]).
In [49], only full knowledge in a limited attack region is assumed, and a bi-level SE-FDIA
model for causing physical disruption (line overloading) is discussed. The first data driven
attack procedures have also been recently proposed (see, e.g., [50,51]) which do not assume
the knowledge of matrix H.

Another line of research regards the attack design with the AC measurement model.
Among the early works are [36,52]. In [52], a topographical attack analysis is presented to
characterize an upper bound on the minimum number of meters that an attacker needs
to compromise to be able to corrupt a given sensor measurement. The key observation is
that measurement zi is impacted only by the state variables corresponding to the non-zero
entries of the i-th row of the Jacobian ∂

∂x h(x). Hence, a minimum upper bound is related to
the column corresponding to a non-zero entry of the i-th row and having the minimum
number of non-zero entries. The role of zero-injection buses is highlighted in [52]: they
add to the attack design the constraint that the total measured power injection at the bus
is zero (i.e., if the attacker needs to alter one of the power injections at the buses, he will
need to modify also some others, in order to keep the balance at zero—this extends the
attack region).

An undetectability condition often used in literature for strong FDIA against AC SE
is [36,52] a = h(x̂ + c) − h(x̂), under which it is r = ra (in fact, ra = za − h(x̂a) = z +
a + h(x)− h(x)− h(x̂a) = r + a + h(x)− h(x̂a)). Hence, in the strong AC case, disclosure
resources are needed (i.e., knowledge of x̂). In general, the AC attack is more complex, as
it requires the manipulation of more variables (voltage magnitudes and reactive powers
are neglected in the DC model). In [52], the performance of the attacks designed based on
the AC and the DC models are compared experimentally. The DC model-based attacks
can induce the attacker to inject measurement corruptions that are not compatible with the
power flow/injection equations (i.e., (6) and (7)), making their detection more likely. This
is reasonable, since the results based on DC models are valid locally. A similar analysis is
carried out in [36], which also distinguishes between perfect attacks (i.e., when the attacker
has an accurate knowledge of the disclosure resources needed to carry out the attack) and
imperfect attacks. The recent work [53] presents and studies the exact formulation (which
is non-convex) of the sparsity-constrained FDIA against AC SE, comprising: a quadratic
attack objective function, a nonlinear measurement equation (derived from the AC power
flow model), and a sparsity constraint (limiting the number of non-zero entries of the attack
vector). The quadratic objective function allows to implement several attack types, for
example, [53]: target state attacks (with an objective function of the type ‖va − vtg‖2

2), in
which the spurious state (the voltage vector va) is steered towards a target state vtg; voltage
collapse attacks (with target function ‖va‖2

2), that is, which aims at steering to zero the
perceived, spurious state; and state deviations attacks (with target function −‖va − v‖2

2),
that is, which pushes the spurious state away from the real one. The authors of [53]
provides a relaxed, convex (and thus much easier to solve) formulation of the problem, and
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analyses its theoretical properties, including an analysis of the “attackable region” (i.e., the
set of state variables that can be attacked).

In [54], the attack is designed assuming only knowledge from the attacking region. The
recent paper [55] provides a method to efficiently compute the minimum effort undetectable
FDIA against AC SE, based on the reduced row echelon form of the Jacobian. The method
shows superior performance against analogous attacks that assume a DC model (which
tend to ignore measurements that are indeed necessary to corrupt to keep undetectability).

PMUs play an important role in SE and protection against FDIAs, since they allow to
directly measure the state (i.e., voltage angles and magnitudes). In [56], the optimal PMU
placement problem is addressed. In [57], a FDIA is designed against PMU-based SE. A
measurement model is presented, with voltage and current phasors expressed in Cartesian
coordinates, which leads to a linear estimation problem. Notably, the paper considers the
constrained formulation of the SE problem resulting from the presence of zero injection
buses. In this case, the measurement equations are z = Hx + e and Jx = 0, where J is
the measurement matrix associated to the zero injection buses. In [57], an optimization
problem to find minimum sparsity attacks is then presented. The undetectability conditions
to be included are a = Hc and Jc = 0, the latter to account for zero-injection buses. An
exact mixed integer linear programming (MILP) attack design problem formulation is
presented, as well as an approximate nonlinear continuous programming reformulation,
with computational advantages. Simulations are carried out to show which sensors need
to be corrupted to be able to corrupt in an undetectable way any other given measurement
variable. Several aspects are investigated, such as the presence of multiple solutions, the
effect of zero injection measurements, the effect of measurement configuration.

Refs. [58,59] investigate SE-FDIAs in distribution grids, where many of the assump-
tions and models valid for the transmission grid case are not applicable. SE in distribution
grids is an open research area, and different SE algorithms exist, including voltage-based
ones (similar to the ones in transmission grids) and current-based ones [60]. In [58], the
branch current state estimation model is considered, where the state variables are also
given by the currents, and the measurements by the power flows. AC measurement model
is considered, and the estimation is carried out separately for the three phases. The SE–
FDIA devised in [58] targets the distribution system’s OPF routine, which is periodically
run by the operator (e.g., every hour) to optimize the network (e.g., to minimize the total
generation cost). The attack vector is built by solving a problem that mimics the distri-
bution system’s OPF problem, but which seeks instead to maximise the operation costs.
Strong assumptions on model knowledge (network parameters, operator’s procedures),
disclosure, and disruption resources are made.

3.3. Load Redistribution Attacks

In [61] and references therein, Yuan, Li, and Ren introduce load redistribution (LR)
attacks, which are SE-FDIAs in which only the measurements from the load buses and
the line power flows are corrupted, and the total power demand is not changed (so
that the effect of the attack is a load redistribution across the network). LR can lead to
economic losses and also to physical consequences, such as tripping of lines, with similar
consequences as direct attacks to lines. For example, the same paper shows how LR can
corrupt the solution of the SCED problem, which the operator uses to optimally dispatch
generators and to decide load shedding (in Section 3.5, attacks against more general SCED
formulations are addressed). Two LR attacks are introduced [61]: the immediate LR attack,
which corrupts the SCED problem so that the resulting generation dispatch and load
shedding maximise operation costs, and the delayed LR attack, which corrupts the SCED
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to enforce a solution that, once implemented, causes the tripping of lines. Immediate
attacks are modelled in [61] as a max-min, bi-level attacker-defender problem:

max
y

f (x∗(y)), s.t. (14a)

h(u, y) ≤ 0 (14b)

x∗(y) = arg min
x

f (x), s.t. g(x, y) ≤ 0. (14c)

The inner optimization problem (14c) replicates the SCED problem solved by the operator
in order to find the best (most economical) generators’ dispatch and load shedding solution,
denoted with x∗, compliant with all the applicable constraints g (including, network power
flow equations, generators and line power flow limits, generation-demand-shedding bal-
ance, etc.). Key to LR attacks, some of the constraints in g, like the power flow equations,
are a function of the attack vector, denoted with y (the vector of the load variation at
the buses, as perceived by the operator because of the attack). For a given attack vec-
tor y, Equation (14c) returns the corresponding generators’ dispatch and load shedding
(if any), as they would be computed by the operator via the SCED problem (based on the
corrupted data).

Then, with the outer optimization problem (14a) and (14b), the attacker seeks the LR
vector y which maximizes the actual cost f of network operation. Constraints h(u, y) ≤ 0
model all the conditions that the attack has to satisfy to be feasible and undetectable (e.g.,
that the modifications introduced in the power readings are compatible with the attack
set, are bounded, and their sum is zero, etc.), while u includes the attack set (i.e., the
set of attacked bus and line meters) and the variation of line flows as perceived after
the attack. Based on similar considerations, ref. [61] models the delayed LR attacks as
a three-level optimization problem: the attacker first corrupts the SCED problem with
the objective to cause line overflow, and then corrupts as well the second SCED problem
that is implemented by the operator after line tripping, aiming again at maximising the
cost of operation. Techniques for solving the above problems are discussed (e.g., Benders
decomposition or recasting into a single mixed-integer programming problem), as well as
protection schemes based on securing strategic meters. A recent and similar bi-level FDIA
attack model targeting the SCED is proposed in [62].

Such bi-level/tri-level optimization models are versatile tools adopted in many other
works, as they allow to model and embed in the attack design the multi-stage attacker-
defender interactions that take place during the attack. This allows, for example, to take
into account already at attack design stage the actions that are put in place by the operator in
response to the attack. In [63], He et al. propose a tri-level optimization problem modelling,
respectively, planning, attack and defensive actions. The complex-coordinated cyberattack
includes LR and physical attack to lines. The defence actions include planning (top level)
and relocation (third level) of distributed generators.

Finally, recent works analyse the so called combined data attacks, in which pure
integrity attacks (i.e., FDIAs) are combined with data availability attacks (e.g., DoS, jam-
ming, which often cost less resources to the attacker, since they only imply blocking data
packets). For instance, in [64], optimal combined data attacks in a limited knowledge
setting are studied. Under a combined data attack, calling D̄ the set of measurements
targeted by the availability attack, and assuming a DC model, the spurious measurements
vector is [64]: za = H̃x + ẽ + a, where a models as usual the FDIA, while H̃ is equal to H,
except for the rows indexed by D̄, which are equal to zero. Similarly for ẽ with respect to e.
Based on this, and on the computation of the residual under attack, in [64], the notions of
undetectability, security index, and so forth, defined for standard FDIAs are extended to
the case of combined data attacks. Further, combined attacks with limited knowledge of
H are characterized in [64], also in terms of quantitative risk assessment (i.e., associated
likelihood of the attack, and deriving impact).
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3.4. Topology Attacks

In [41] and a previous work, Kim and Tong have introduced topology attacks (TAs),
which are SE-FDIAs that target both the power measurements and the information on the
status (open/close) of network breakers/switches, which are used by the grid operator to
change the grid topology. The attacker deceives the operator to assume a wrong network
topology, and this can have a serious impact on a number of other operations. The topology
of the network at any given time can be represented by a vector s ∈ {0, 1}d, which
captures the status (open/close) of each switch (d is the number of breakers/switches
in the network). Equivalently, the topology can be represented as a graph G = (V , E),
with V the set of buses, E the set of connected lines. As explained, for example, in [65],
the network topology is reconstructed by the operator via a network topology processor
module in the control center, based on the telemetry data (power measurements and status
of the switches). A second module, the topology error processing module, checks that the
topology information is consistent with the metering information (e.g., that there is no
flow in disconnected lines). If an inconsistency is found, a topology error identification
procedure is initiated. If no inconsistency is found, the information on the current topology
is sent to the other modules of the control center, including the SE module (indeed, notice
that (6) and (7) depend on the grid topology, which therefore is an input to SE).

In TAs, the goal is to hack some continuous signal and/or logic state measurements
in order to change the estimated topology from the actual one to a target one Ḡ = (V , Ē)
(with Ē the set of connected lines as modified by the attacker [41]). A basic requirement
for a sophisticated TA is therefore to pass the above error checks. The attack is modelled
as z̄ = z + a and s̄ = s + b, where b ∈ {−s,−s + 1}d is the attack on the state of the
switches/breakers and a is the attack to the meter measurements. A DC measurement
model is assumed in [41], that is, z = H(Ĝ)x + e (H depends on the estimated topology Ĝ).
Notice that it is Ĝ = G in the nominal case, and Ĝ = Ḡ, under a successful attack (Ḡ is the
target topology).

A TA is undetectable if there exists a state vector x̄ (the compromised state estimated
by the operator) such that z + a = H̄x̄, where H̄ := H(Ḡ) (i.e., the corrupted state x̄ and the
corrupted measurement vector z + a are compatible through the measurement equation).
Notice that in TAs, the measurement equation itself used in SE is hacked, since it depends
on H̄. It is shown in [41] that the above condition is equivalent to the algebraic condition
Im(H) ⊂ Im(H̄,A) := Im(H̄) ∪ A, where A is the subspace of feasible attack vectors
(i.e., A = {a ∈ Rm : ai = 0 for i ∈ Js}, where Js is the set of the secured meters, which
cannot be compromised by the attacker). The paper then introduces the state-preserving
attacks, in which, for any z = Hx, the attack vector is a = (H̄ − H)x. For these attacks, it is
z + a = H̄x, and therefore they are undetectable and the SE returns the correct network
state x and a wrong topology Ḡ. Then, it is shown in [41] that, under certain conditions, the
state-preserving attacks are the ones requiring compromising the least number of meters,
and they can be launched by compromising only local meters close to the target lines.
The design of a link removal attack is proposed also, assuming an AC model and only
knowledge of local network information and parameters. Finally, the paper studies how
to place secure meters in the network in order to render undetectable attacks impossible
(based on the above mentioned condition Im(H) ⊂ Im(H̄,A)). In securing strategic meters,
a typical goal of the operator is to make undetectable TAs impossible, while minimizing
the defense cost (e.g., through minimization of |Js|).
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3.4.1. Topology Attacks on SCED and Coordinated Cyber-Physical Topology Attacks

In [65], a comprehensive model to design minimum sparsity (i.e., with minimum num-
ber of attacked measurements) undetectable TAs aimed at altering the SCED is presented.
The prototype of such problem is (see [65] for a detailed formulation):

max
a

f attack(P∗g , LMP∗, P∗l ; P×g , LMP×, P×l ; P⊗g , LMP⊗, P⊗l ), s.t. : (15a)

{P∗g , LMP∗, P∗l } = SCED(G) (15b)

{P×g , LMP×, P×l } = SCED(Ḡ) (15c)

{P⊗g , P⊗l } = PF(P×g ,G) (15d)

a = MSA(z, x). (15e)

In (15a), the attacker maximizes a given target function f attack, aiming at causing economical
or physical disruption (for example, f attack could capture the maximization of costs, losses,
line flows, etc.). In the general case, the attacker will consider the results of the nominal
SCED problem, as a baseline from which “optimizing” the disruption (the baseline being
given for example by: the optimal generators dispatch, P∗g , the optimal energy prices
in the different areas of the grid, that is, the LMPs, LMP∗, and the optimal line power
flows, P∗l , resulting from SCED). The baseline is computed in (15b), with a nominal SCED
problem (the actual topology G is considered). In (15c), the SCED run by the operator is
represented, based on the attacked topology Ḡ, which is a function of the attack vector. The
result will be the non optimal values P×g , LMP×, P×l . In particular, through the power flow
Equation (15d), P×g will determine the actual power injections and power flows P⊗g , P⊗l .
Finally, in (15e), the attack vector a obeys to, for example, minimum sparsity criteria
and undetectability constraints (similarly to (10)–(12)). The approach adopted is hence
similar to the bi-level optimization approach in [61], discussed in Section 3.3. Consistently
with [41], reference [65] classifies the topology attacks into: line-removal attacks (in which
the status of some lines if hacked from closed to open), line-addition (the opposite of line
removal) and line-switching (i.e., simultaneous line removal and addition). Simulations
show the impact that such attacks have in terms of economic losses (i.e., increased system
losses and/or generation costs) and physical disruption (i.e., line overloads).

Ref. [66] presents a bi-level problem to design FDIAs to mask the presence of single
line outages, passing BDD and PMU-based line outage detection schemes. Similarly,
ref. [67] analyses the possibility of carrying out simultaneous physical attacks (i.e., actual
line disconnections) and TAs. These are often referred to in literature as coordinated cyber-
physical TAs. The goal of the attacker is to physically disconnect the line whose loss would
cause the most impact to the grid, while at the same time lead the operator believe, via a
TA, that another line is disconnected (i.e., the physical disconnection of a line is masked by
manipulation of the measurements). This type of attack is called in [67] a line-maintaining
attack. The fake generation of a line outage is instead named a line-removing attack,
as explained above. In [68], a deep reinforcement learning (RL) strategy is proposed to
carry out a sophisticated coordinated cyber-physical TA, which combines several of the
attacks discussed so far. The goal of the attacker is to trip a well-protected and not directly
attackable critical line, whose failure would cause serious consequences. First, the attacker
physically disconnects a line, different from the target critical line. A line maintaining
attack is launched to mask the physical tripping. At the same time, a line removal attack is
launched on a different line (denoted as the cyber-tripped line), to let the operator believe
that that was the line that tripped. Finally, a minimum-effort LR attack is launched aiming
at causing the overload of the target critical line.

Another recent work on coordinated cyber-physical attacks is [69], which distinguishes
between stealthy and non-stealthy coordinated cyber-physical attacks. The former integrate
DoS attacks (in addition to FDIA), to mask a physical attack; in the latter, a typical bi-level
problem including LR and DoS is proposed to maximize load shedding, followed by a
physical attack to a line, aiming at achieving a maximum combined disruption.
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Also for TAs, researchers have addressed the problem of designing the attack without
assuming full model knowledge and disclosure resources. Among the recent works, for
example, [70] analyses local topology attacks, in which the objective is to determine the
smallest region of the grid to be attacked in order to be able to launch an undetectable topol-
ogy attack to a single line. Already in [41], the design of undetectable line removal attacks
has been addressed by using only local information, and an AC measurement equation.

3.5. FDIA against Security Assessment, Contingency Analysis, SCED and Remedial
Action Schemes

A branch of the literature analyses the impact of FDIAs against the control center
functions devoted to continuously checking and ensuring the security of the grid against
potential adverse events, such as loss of generators, lines, or other critical components.
With reference to Figure 3, the security assessment module evaluates in near-real time the
physical security of the grid with respect to possible contingencies, given the current state
of the grid. Security assessment is divided into static and dynamic security assessment [71].
The former is mainly concerned with overload and overvoltage issues following a contin-
gency, the latter is on stability issues. When a potential insecure condition is detected, the
operator implements corrective measures (generators rescheduling, load shedding, etc.) to
improve the security status.

Reference [71] is among the first to study the impact of FDIAs (on analog measures)
on static security assessment. The goal of the attacker is to disrupt the output of security
assessment, thus misleading the operators in its following actions. In [71], two different
scenarios are discussed: (i) FDIAs to mask the presence of insecure conditions, so that the
operator does not implement the needed security corrections, and (ii) FDIAs to generate
fake insecure conditions, so that the operator takes improper security corrections. This is a
typical strategy, in which the adversary aims at creating a misalignment between the real
status of the CPS, and the cyber representation that the operator has.

Reference [72] studies more in detail the impact of FDIAs on contingency analysis,
that is, the procedures used by the operator to monitor and assess the security of the grid.
Generally speaking, contingency analysis can be divided into two steps [72]: (i) contingency
selection, where a set of monitored devices and possible associated contingencies to be
evaluated is drown and, (ii) contingency evaluation, where the effect of the potential
contingencies listed is evaluated, via power flow calculations (for example, it is checked
if the contingency causes line overflow). The outcome is a contingency plan, that is, a
set of contingency constraints to be included in the SCED problem that determines the
optimal generation setpoints. Regulations worldwide often impose that the grid be N − 1
compliant, that is, that it is able to survive at least a single contingency.

Contingency analysis is based on SE, which provides the current state of the grid
against which physical security is assessed. In [72], the impact of FDIAs on contingency
analysis is investigated. SE-FDIAs based on mixed integer nonlinear programming are
proposed to remove and add security constraints deriving from contingency evaluation,
hence impacting on the SCED problem. Thus, the operator has a false perception about the
real security state of the grid, and, also, LMPs are altered.

In [73], a bi-level minimum sparsity LR attack is proposed, to disrupt the security-
constrained OPF, with the objective of making the grid N − 1 in-compliant. A DC model
is considered. In the outer level of the bi-level problem, the number of meters attacked
is minimized, subject to a series of constraints. A first set of constraints is the usual one
for LR attacks, including: zero total load variation (load redistribution), box constraints
on the error injected in the load measurements (to prevent detection), computation of the
variation of the power flow resulting from the error injected in the load measurements
(i.e., computation of the error the attacker needs to inject in the flow measurements, in
order to comply with the grid equations and hence remain undetected). A second set of
constraints is specific to N − 1 in-compliance: first, constraints are added to make sure
that the system respects all constraints under the LR, then, additional ones are included
to make sure that, under every single contingency, the system is N − 1 in-compliant, that
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is, at least one line violates the constraints in case a contingency materializes. Under a
vulnerability assessment perspective, this provides indication to the operators about the
critical lines for which increased protection is needed.

In [74], a novel analysis of the impact of coordinated cyber-physical attacks on remedial
action schemes (RASs) is presented. RAS are the set of actions put in place by the system
operator to mitigate the effects of contingencies. They are divided into event-based and
parameter-based ones. Event-based RAS are pre-determined, open loop actions, such as
load shedding and generators’ tripping, taken to prevent instability after critical contin-
gencies. Parameter-based RAS (e.g., generation and load shedding) mitigate thermal and
voltage constraint violations. The location and type of parameter-based RAS is decided
based on the analysis of the possible contingency scenarios. Reference [74] discusses
an attack in which, first, a FDIA is performed to disable the parameter-based RAS, by
falsifying their triggering signals, and, then, a bi-level LR attack is carried out, to cause
line overloading or some other contingency. Three metrics are proposed to evaluate the
resulting impact in case of contingencies: loss of observability after cascading failure and
controlled islanding, energy not served, and recoverability of the grid after the attack.
In [75], the impact of FDIA and DoS on the communication-assisted protection devices is
evaluated, especially in terms of the impact on transient stability.

3.6. FDIA against Model Parameters

Recently, in [76] and earlier works (e.g., [77]), instead of focusing only on FDIAs
on measurements, researchers have investigated the impact of FDIAs on the parameters
entering the mathematical models of the SE problem. In this case, the measurement
equation takes the form z = h(x, p) + e, with p a set of parameters, subject to FDIA. An
iterative method based on innovation theory and Newton-Raphson iteration is presented,
to detect and correct the parameters’ errors (such as, corruption of the series conductance,
series susceptance and shunt susceptance in (6) and (7)). Ref. [78] presents the case in which
the attacker modifies some network parameters (in this case, related to the transformers
on transmission lines) with the goal to reduce the number of power measurements to
be corrupted to be able to successfully launch a FDIA. The case of incomplete network
information is also considered.

3.7. Attacks to Markets

SE-FDIAs can have far-reaching consequences, including also on the electricity market
operations. In fact, in several real time markets, the computation of the energy price (e.g.,
of the LMPs) is based on the solution of a SCED problem around the actual conditions of
the network, as determined via SE (while day ahead markets typically work based on day
ahead load forecasts).

Among the first works to study the impact on market operations, ref. [79] focuses on
the Pennsylvania-New Jersey-Maryland (PJM) market. Generally speaking, PJM is divided
into a day-ahead market, in which the most economical dispatch of generators is computed
based on load forecasts, and a real time market, where the day ahead planning is adjusted
to take into account the real state of the grid (which may differ from the planned one
because of fluctuations in demand and renewable generation). Both market phases are
based on solving a SCED problem (also called, security constrained unit commitment),
which is aimed at finding the most economical dispatch of the generation units (i.e., the
generation setpoints that minimize the total generation costs), and the corresponding price
of the energy in the different locations of the grid (the LMPs, which are computed as a
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byproduct of the optimal SCED solution, to reflect the grid congestion state, as outlined
below). The day ahead problem is of the following kind:

min
Pgi

I

∑
i=1

Ci(Pgi ), s.t. (16a)

I

∑
i=1

Pgi =
J

∑
j=1

Ldj
(16b)

Pmin
gi
≤ Pgi ≤ Pmax

gi
, ∀i = 1, . . . , I (16c)

Fmin
l ≤ Fl ≤ Fmax

l , ∀l = 1, . . . , L, (16d)

where variable Pgi represents the generation power at (generation) bus i, Ldj
the forecast

power consumption at bus j, Fl the flow on line l, I the number of generators and L the
number of lines. The symbol ∗ denotes in the following the optimal solution of the day
ahead market.

The day ahead planning is then adjusted in the real time market, based on the esti-
mated state of the grid. Differently from the SE problem addressed in Section 3.2, here
the state x is given by the nodal power injections, which include the power generation
vector (which is the optimization variable in the SCED problem), and the load vector.
Considering a DC power flow model, the vector of the line power flows, F, can be com-
puted as a linear combination of the nodal injections x, as: F = Hx, where here H is the
so called distribution factor matrix [79]. In the real time market the nodal injections are
x = x∗ + w, where x∗ is the day ahead planned state, solution of (16), and w the deviation
of the real state from the day ahead planned one (w is assumed Gaussian and zero-mean).
The vector z of measurements is given by the nodal injections and the line flows. The

measurement model is hence z =

[
I
H

]
x + e := Cx + e, where e is a Gaussian zero mean

measurement noise, with covariance R. The resulting least square estimate is found by
solving x̂ = arg minx ‖z− Cx‖2

R−1 , that is, x̂ = (CT R−1C)−1CT R−1z := Pz. A traditional
residual based detector is assumed, and an alert is raised when the residue is above a given
threshold: ‖r‖ := ‖z− Cx̂‖ = ‖(I − CP)z‖ ≥ τ. Under an FDIA of the type za = z + a, the
residue is ‖ra‖ ≤ ‖r‖+ ‖(I − CP)a‖. In real time, the solution of the day ahead market is
adjusted by solving the following incremental OPF problem, centered around the estimated
state P̂gi :

min
∆Pgi

I

∑
i=1

Ci(∆Pgi + P̂gi ), s.t. (17a)

I

∑
i=1

∆Pgi = 0 (17b)

∆Pmin
gi
≤ ∆Pgi ≤ ∆Pmax

gi
∀i = 1, . . . , I (17c)

∆Fl ≤ 0 ∀l ∈ cl+ (17d)

∆Fl ≥ 0 ∀l ∈ cl−, (17e)

where cl+ (respectively, cl−) denotes the set of positively (negatively) congested lines (i.e.,
the lines for which the power flow is above or below the admissible limit, so that the
admissible increment can be in one direction only). Notice that P̂gi , cl+ and cl− depend on
SE. By altering these values, a carefully crafted FDIA can manipulate the real time LMPs
prices and steer them away from their optimal values.

The solution of (17) can be found by imposing the standard Karush–Kuhn–Tucker
(KKT) optimality conditions on the Lagrangian function L := ∑I

i=1 Ci(∆Pgi + P̂gi ) −
λ ∑I

i=1 ∆Pgi + ∑I
i=1 µi,max(∆Pgi − ∆Pmax

gi
) + ∑I

i=1 µi,min(∆Pmin
gi
− ∆Pgi ) + ∑l∈cl+ ηl∆Fl



Electronics 2021, 10, 1153 21 of 39

+ ∑l∈cl− ζl(−∆Fl). For what follows, recall from the well-known necessary optimality
conditions that it must be ηl ≥ 0, ηl∆Fl = 0, ζl ≥ 0 and ζl∆Fl = 0.

Define with λ̂i the real time LMPs at bus i, where the symbolˆis used to remind that
the LMPs arise from the solution of the real time market, and hence depend on the SE. Both
market phases are associated with actual financial settlement. For example, a generator at
bus i is paid P∗i λ∗i in the day ahead market and (P̂i − P∗i )λ̂i in the real time market.

3.7.1. Attack on the PJM Virtual Bidding Mechanism

Reference [79] studies attacks to the so called virtual bidding mechanisms of the
PJM market. To increase market liquidity, in PJM the market participants are allowed to
submit virtual biddings, which allow them to purchase (or sell) a certain amount of virtual
power P at location i in day-ahead market, to then consequently sell (or purchase) the
same amount in the real-time market [79] (i.e., closing with a zero balance). The attack
mechanism studied in [79] is as follows: (i) in the day ahead market, the attacker buys and
sell virtual power ∆P at locations j1 and j2, respectively; (ii) the attacker performs a FDIA
to manipulate the price in the real time market; (iii) in the real time market, the attacker
sells and buys virtual power ∆P at locations j1 and j2, respectively, to close the virtual
bidding. The resulting profit is: (−λDA

j1
+ λDA

j2
+ λRT

j1
− λRT

j2
)∆P := p∆P. The goal of the

attacker is to design the FDIA so that p > 0, at least on average.
It is shown in [79] that the LMPs can be rewritten as: λj = λ + ∑L

l=1(ηl − ζl)
∂Fl

∂Ldj
, or,

in matrix form, as λj = λ + HT
j (η − ζ), where Hj is the j-th column of H. In particular,

η and ζ are the KKT multipliers corresponding to the power flow constraints on the
congested lines (see the Lagrangian of (17)). Hence the profit of the virtual bid is: p =
λRT

j1
(z) − λRT

j2
(z) + λDA

j2
− λDA

j1
= (Hj1 − Hj2)

T(η(z) − ζ(z)) + λDA
j2
− λDA

j1
= ∑l(Hj1,l −

Hj2,l)
T(ηl(z)− ζl(z)) + λDA

j2
− λDA

j1
= ∑l∈L+(Hj1,l −Hj2,l)

T(ηl(z)− ζl(z)) + ∑l∈L−(Hj2,l −
Hj1,l)

T(ζl(z)− ηl(z)) + λDA
j2
− λDA

j1
, where the sum has been simply split over the sets L+

(sets of l where (Hj1,l − Hj2,l) ≥ 0) and L− (sets of l where (Hj1,l − Hj2,l) ≤ 0).
It is: p(za) = ∑l∈L+(Hj1,l − Hj2,l)

T(ηl(za)− ζl(za)) + ∑l∈L−(Hj2,l − Hj1,l)
T(ζl(za)−

ηl(za)) + λDA
j2
− λDA

j1
. The key observation in [79] is that it is p(za) ≥ 0 if the following

conditions are met:

1. λDA
j2
− λDA

j1
≥ 0 (easy to obtain based on historical data);

2. za is such that ηl(za)− ζl(za) ≥ 0;
3. za is such that ζl(za)− ηl(za) ≥ 0.

In [79], sufficient conditions are provided for (ii) and (iii). Only the second one is discussed
here. The third one can be similarly derived. Recall first of all that, from KKT theory, the
KKT multipliers ηl and ζl are always greater or equal than zero. Therefore, condition (ii)
above is satisfied if za is picked such that ζl(za) = 0. From KKT theory (i.e., by looking
at the complementary constraints ηl∆Fl = 0 and ζl∆Fl = 0) it follows that a multiplier
is equal to zero if the corresponding constraint is not active (i.e., it is not satisfied with
the equal sign). Recall that ζl is the multiplier corresponding to the negatively congested
lines. Therefore, for l ∈ L+, the attacker must ensure that the line appears as not negatively
congested: F̂a

l > Fmin
l if l ∈ L+. Similarly for condition (iii), the attacker must select

F̂a
l < Fmax

l if l ∈ L−. That is, the attacker must make the congested lines appear as if they
were decongested.
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In [79], δ -profitable attacks are defined as the solution of the following problem:

max
a∈span(Γ)

δ, s.t. (18a)

‖(I − CP)a‖2 ≤ ε (18b)

EF̂a
l ≤ Fmax

l − δ, ∀l ∈ L− (18c)

EF̂a
l ≥ Fmin

l + δ, ∀l ∈ L+ (18d)

δ > 0, (18e)

where Γ denotes the attack set (to whose span the attack vector must belong). Qualitatively
speaking, (18b) is the weak undetectability condition for a residue based detector, (18c)
and (18d) make sure that the sufficient conditions F̂a

l > Fmin
l and F̂a

l < Fmax
l for having a

positive profit are met on average. Finally, the greater is δ, the higher is the probability
that the above two conditions are met (δ is called profit confidence in [80]). Notice that,
the expected value is taken, since F̂a

l is a random variable from the perspective of the
attacker [79].

3.7.2. Market Attacks with Limited Model Knowledge and Other Bi-Level Formulations

Recently, in [80], the setting proposed in [79] was extended to the case of an adversary
with limited model knowledge. In particular, it is considered that the attacker knows only
an estimate Q̃ of the system matrix Q := CP, and that his uncertainty on Q is bounded in
norm: ‖∆Q‖ ≤ β. Hence, from the perspective of the attacker, the matrix Q belongs to a
set of the kind A(β) := {Q = Q̃ + ∆Q, ‖∆Q‖ ≤ β}, and the uncertainty on Q in the set
C(β) := {∆Q : ‖∆Q‖ ≤ β}. The attacker faces uncertainty in the choice of the attack vector
a, since it depends on Q. In [80], the worst case is considered in the design of the attack, that
is, the one leading to the highest value of ‖(I −Q)a‖ (recall that ‖ra‖ ≤ ‖r‖+ ‖(I −CP)a‖,
and Q := CP). In [80], the concept of ε-robust attack is introduced, that is, an attack
that satisfies:

sup
Q∈A(β)

‖ek(I −Q)a‖ ≤ ε, ∀k ∈ {1, 2, . . . , |z|}, (19)

where ek is the vector of all zeros and one in position k (it is introduced in (19) since in [80]
the detection condition is checked on the norm of every entry of the residual, rather than
on the norm of the entire residual). Such an attack is undetectable for every realization of
Q. Then, in [80], problem (18) is extended to the robust case, by adding to it constraint (19),
resulting into a semi-infinite non-convex quadratic program, which is intractable in practice.
In the same paper, it is shown how the problem can be converted into a tractable semi-
definite convex problem. Numerical simulations show the relation between the uncertainty
on Q and the associated profit confidence δ.

Finally, recent works [81,82] propose bi-level optimization problems for optimal cyber
attacks against the market. In the top level problem, the attacker optimizes the financial
gain. Constraints include the modelling of the attack set, the weak undetectability condi-
tions, the conservation of the total traded power, and, in the second level, the modelling of
the day ahead and the real time markets.

3.8. Attacks to Automatic Generation Control

Keeping grid frequency at the reference value (50 or 60 Hz) is one of the most impor-
tant tasks in a power system [32]. This is assured by load frequency control (LFC), which
is typically organized in three levels: primary control (or governor control), secondary
control, and tertiary control [32]. Primary control is an automatic control loop local to the
single generation units, with response times in the range of seconds. It adjusts the unit’s
generation output proportionally to the sensed frequency deviation, until the balance be-
tween power generation and consumption is re-established. It limits frequency deviations
but, alone, it is not sufficient to drive the frequency error to zero, to ensure proper sharing
of the frequency regulation effort among the generation units, and to restore cross-border
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power exchanges to their setpoint values. This is achieved through secondary control,
which is an integral control action working in the range of tens of seconds, or minutes.
Finally, tertiary control is an automatic or manual control layer aimed at optimizing the
use of secondary control power reserves, and working in the time-frame of minutes.

Most of the studies in literature on cyber-physical vulnerability of LFC focus on
secondary control, and in particular on AGC. AGC is an automatic feedback control system
in charge of driving to zero the frequency error in the control areas of the grid and driving
to the scheduled values the power flows at the tie lines connecting the control areas. The
focus on secondary control is not surprising, since it is an automatic control loop involving
exchange of measurements and control signals over a telecommunication network. Figure 5
reports a simplified scheme of AGC, where, for simplicity, only two grid areas are shown,
linked by a tie line, and hosting one generator each (load is not represented). AGC increases
or decreases the active power generation setpoint in each area based on the computation
of the area control error (ACE), which is in turn a function of the frequency deviation in
the area and the deviation of the tie line power flow from the scheduled values. AGC is
typically a proportional-integral controller.

Figure 5. Exemplified scheme of AGC over two areas.

To the best of our knowledge, attacks to AGC have been conceptualized and analysed
first in [83], in the context of a two-area power system. In [83], the opponent disables
the AGC of an area and replaces the AGC control signal with a disturbance signal. The
two-area power system under attack is modelled as a nonlinear control system ẋ = f (x, u),
where x is the vector of the state variables (area frequency errors, voltage angle difference
at the end of the tie lines and AGC signal) and u the attack signal. Reachability theory is
used to evaluate if there exist attacks able to drive the system out of a safety region K. For
this, the set Inv(t, K) is computed as the set of initial states such that the evolution of the
system from an initial time t to a final time T remains confined in the safety set, for every
possible attack signal:

Inv(t, K) = {x ∈ Rn : φ(τ, t, x, u(·)) ∈ K, ∀u(·) ∈ U[t,T], ∀τ ∈ [t, T]}, (20)

where φ(τ, t, x, u(·)) is the state evolution at time τ, when the system is initialized at state
x at time t, and control u is applied; U[t,T] is the space of admissible inputs. A successful
attack at t = 0 exists only if x /∈ Inv(0, K). Inv(t, K) can be computed [83] by evaluating
the level sets of the following function:

V(x, t) = inf
u(·)∈U[t,T]

min
τ∈[t,T]

l(φ(τ, t, x, u(·))), (21)

where l(x) is the signed distance of x from the set K (i.e., it is zero if x ∈ K, and equal to
− infx̂∈K ‖x− x̂‖ otherwise). Then, Inv(t, K) can be computed as the zero-level set of V,
that is, Inv(t, K) = {x : V(x, t) ≥ 0} (notice from (21) that V(x, t) ≥ 0 means that every
trajectory starting from x remains in K). The attack assumes full model knowledge and
disruption resources. Successful attacks exist depending on the disruption resources (i.e.,
the magnitude of the disturbance power injected).
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In [84], the time-delay-switch attack to LFC is discussed. The attack introduces
delays in the AGC feedback loop, and is modelled as a switching action between the
conditions “off”, when no delay is injected, and “delay-by-td”, where a delay of td seconds
is injected. The generic state space model of LFC in N power areas is presented, as Ẋ(t) =
AX(t) + BU(t) + ∆Pl , where X is the state vector (frequency deviations, generators power
deviation, tie-line power flows, ACEs, etc.), U the LFC action, and ∆Pl load deviations in
the areas. The system is controlled with an optimal feedback controller U = −KX. Hence,
the control action during attack is U = −K[(1− h(t))X + h(t)Xd], where Xd = X(t− td)
is the delayed state feedback and h is a step function to model the start of the attack at
given time ta, that is, h(t) = 0 for t ≤ ta and h(t) = 1 for t > ta. The attack makes LFC
unstable. Results are reported for a 2-areas power system, showing that the area frequency,
the generator power, and the tie-line power flow diverge as a result of the attack. A recent
experimental evaluation of the impact of delays in the AGC loop has been carried out
in [85], which also considers simultaneous physical line attacks, and their effect on voltage
stability.

In a similar setting, reference [86] employs switched system theory to investigate the
impact of DoS attacks on LFC. Under DoS, the measurements from the field cannot be
transmitted to the control center, and it is assumed that the last available measurements
are used. Therefore the optimal LFC controller can be stated as u(k) = Kx̃(k), where
x̃(k) = x(k) if S1 (with S1 denoting that there is no attack), and x̃(k) = x(k− 1) if S2 (with
S2 denoting that DoS is performed). It is shown, in a 2-areas power system, that there exist
switching sequences between S1 and S2 that destabilize system variables.

Reference [87] studies the effect of corrupting frequency and/or tie line power flow
measurements used to compute the ACE, which determines the adjustments operated
by AGC to keep frequency and tie line power flow regulated. It is assumed in [87] that
the attack remains undetected by standard methods as long as the corrupted ACE signals
remain below a given threshold. Two main attack scenarios are discussed: one, in which the
aim is to cause significant frequency oscillations, leading to load shedding, and a second
one, aimed at impacting the real time market, by altering the amount of power produced
(and hence billed) in the different areas. The measurement corruption types studied are:
scaling, ramp, pulse, and random attacks, in which, respectively, the measurement is
corrupted with an additive factor, with a factor increasing in time, with a pulsating signal,
and with a random signal. A detection and a resilient control strategy based on short-term
load forecast is then presented to cope with such attacks. In [88] and references therein,
it is proposed to pipeline SE with AGC: the ACE computation is fed by the estimation
(i.e., not the direct measurement) of the frequency and tie line power flow. This makes
harder to attack the AGC. Consecutive FDIAs on the power flow measurements, over
multiple AGC cycles, are considered, until unsafe frequency deviations are caused (e.g.,
until remedial actions such as loads or generators disconnection are taken). Corruption of
the frequency measurement is not considered, as it is easily detectable. A method is then
proposed for computing the optimal attack sequence, that is, the one which minimizes a
time-to-emergency metric, defined as the time from the attack start until when given safety
frequency limits are violated. Finally, it is discussed how an attacker can learn the needed
model parameters by active probing and passive monitoring (thus reducing the required
model knowledge). Detection, identification and resilient control schemes are proposed.

Reference [89] introduces resonance attacks to LFC. The measurements of input
variables to LFC are corrupted to cause instability of a controlled variable (the rate of
change of frequency, which is input of the tripping relays). The effectiveness of the attack
is tested in scenarios considering realistic and detailed models of the turbine-governor
system (which are not included in the attack design).

Finally, an updated survey on the cyber-physical attacks to LFC, and possible detection
and defense mechanisms, can be found in [90]. The survey focuses on replay attacks, FDIAs,
DoS attacks, resonance attacks, and time delay attacks, mostly focusing on AGC.
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3.9. Interdiction Attacks and Sequential Attacks

The attacks discussed in the previous sections are mostly based on data deception, that
is, an attacker corrupts data flowing in the smart grid with the aim of causing disruption,
for example, by causing the smart grid control systems and/or the operators to make wrong
decisions based on the corrupted data. In this and the following sections, the analysis will
move to cyber-physical attacks more directly targeting physical devices of the grid. In these
cases, the attacker takes control of smart grid assets via a cyber-attack, and then operates
them in a way to disrupt them and/or the grid.

Interdiction attacks are attacks in which network elements are interdicted (i.e., de-
stroyed, put out of order) by the adversary. Among the first to study in depth this type
of attack were Salmeron et al. in [91]. They propose a bi-level optimization model to
find the attack plan that will result in the most damage. Such a bi-level model has since
found numerous applications in the design of other attacks, as seen, for example, in
Sections 3.3 and 3.7. Reference [92] provides the optimal solution of the problem in [91]
by transforming the original problem into an equivalent MILP problem. The study [93]
is particularly relevant as it generalises the terrorist threat problem by allowing different
objective functions in the inner and the outer problems and by allowing constraints in
the outer problem to be also functions of the inner variables. Again, the bi-level problem
can be reduced to a single level MILP one. The study [94] proposes a tri-level problem in
which an additional defense layer is added on top to model the ex ante protection and
reinforcement of the infrastructure by the operator. Finally, reference [95] introduces global
Benders decomposition for solving large-scale, electric power grid interdiction problems.
These papers are relevant for this study as they introduce techniques which have been
used in the modelling of many cyber-physical attacks, as seen in the previous sections.

Sequential attacks are interdiction plans in which the temporal sequence of interdic-
tions is carefully designed to maximise the damage (while the works just mentioned do not
consider time dynamics but only the result of steady state OPF computation). They have
been introduced and analysed by Zhu et al., for example, in [96,97], which show how they
can lead to worst consequences than simultaneous attacks on the same set of lines. Several
strategies (e.g., enumeration, heuristics, graph-based metrics) are proposed to choose the
nodes and the order of the attacks. Finally, Ref. [98] proposes Q-Learning to find worst
case sequential attacks (at each step, a positive reward is given to the Q-Learning agent if
the current line interdiction results in disconnection of N lines after having attacked a total
of less than N lines, i.e., if there is an amplification effect).

3.10. Switching Attacks

Coordinated switching attacks have been introduced in [99,100], where they are
constructed by modelling the transmission system as a single machine infinite bus system,
with one generator and one load connected to the bus via a breaker. The attacker finds a
switching sequence for the breaker that makes the phase angle (i.e., the rotor angle) and the
frequency of the generator unstable, forcing it to disconnect. The single machine infinite
bus system is modeled as a linear switching system:

ẋ =

{
A1x + b1, s(x) > 0
A2x + b2, s(x) < 0,

(22)

where x ∈ Rn, A1 and A2 are, respectively, the dynamics matrices modelling the system
when the load is connected (i.e., when s(x) > 0) or disconnected (when s(x) < 0); s : Rn 7→
R is the switching rule (also called the switching surface). The state variables x are the
generator phase angle and frequency.

The system is said to possess a sliding mode when the state trajectories are attracted
and confined in a boundary of the switching surface s(x). The necessary and sufficient
condition s(x)ṡ(x) < 0 for the existence of a sliding mode is reported in [99]. The paper
develops a 4-step method to design linear switching rules that make (22) unstable. The
method essentially consists in finding an unstable sliding mode for the system, by overlap-
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ping the two phase portraits of the switched system (22), and searching graphically for a
switching curve s(x) such that the phase vector of the switched system points toward the
curve (which means that the sliding mode condition s(x)ṡ(x) < 0 is respected) and away
from the origin (which means that the sliding mode is unstable). In [99], it is shown how
the method can be adapted to work also in more realistic case studies.

In [101], the condition for the existence of a linear sliding mode s(x) = Cx, C ∈ R1×n,
is detailed. The general necessary and sufficient condition is s(x)ṡ(x) < 0 or, equivalently,
lims→0+ ṡ(x) < 0 and lims→0− ṡ(x) > 0, which, by computing ṡ(x), with s(x) = Cx, is
equivalent [101] to: {

C(A1x + b1) < 0, s(x) > 0
C(A2x + b2) > 0, s(x) < 0.

(23)

Reference [101] shows that (23) allows to generalise the method presented in [100]
to find a feasible coordinated switching attack. Given the transmission network at study,
a target attack switch is selected and the variable structure representation of the system
for the open and the close switch position is found (i.e., ẋ = f1(x) for s(x) > 0, and
ẋ = f2(x) for s(x) < 0). The dynamics are then linearised to recover a representation in the
form (22). Using condition (23), a linear switching surface is found such that the corre-
sponding sliding mode is unstable and its region of attraction includes the operating point
of the system at the beginning of the attack. A classification of the vulnerability of each
switch is then proposed in [101], by considering the range of vectors C for which a suc-
cessful attack exists. The authors of [99–101] consider single switch attacks, linear system
models and switching surface. The attacker needs model knowledge, disruption resources,
and disclosure resources (including the real time knowledge of the state of the system).

The above notions are rigorously formalized in [102], which also provides theorems
with conditions to ascertain the existence of sliding modes and their stability properties.
The work also considers the case of attackers with limited model knowledge (the results
are applied on a model with parameters to capture modelling errors) and the case of
limited disclosure resources (by analysing the case in which the rotor angle information
is not directly available to the attacker and needs to be estimated). In [103], the analysis
is extended to the multi-switch attack scenario, in which the opponent takes control of m
of the total M switches in a grid (line switches, generators switches, etc.) and performs
switching with the aim of causing transient instability of target generators. Accordingly,
the switching rule s(x) ∈ Rm is a m-dimensional vector. Linear switching is investigated,
that is, s = [s1, s2, . . . , sm]T = Cx, where x ∈ Rn are the state variables, given by the target
generators’ frequency and phase angle. In this setting, an attacker can exploit both the
individual sliding surfaces, si = 0, if they exist (the condition being again si(x)ṡi(x) < 0),
and also the overall sliding surface, s = [s1, s2, . . . , sm]T = 0, which exists if s(x)T ṡ(x) < 0.
Synchronized switching is investigated, in which the attacker controls the switches all
according to the same switching rule (all the rows in C are equal), concurrent switching,
where switches have different switching rules, and progressive switching, where switches
are attacked in sequence (i.e., individual sliding modes are sequentially exploited). Attack
construction methods are given. Realistic simulations show that feasible attacks exist even
when the effect of the existing excitation and governor control of generators are considered
(while they are not considered in the attack design, as the generators are modelled with
the swing equation—i.e., (24) presented below—with no controls attached). Simulations
focus on line switching, and a case study of a cascading attack is also presented. Finally,
it is shown that the required switching times are compatible with the existing switching
technology. Applying similar concepts, ref. [104] analyzes of an attacker performing a
switching attack on an energy storage system (ESS), with the aim of destabilizing a target
generator. This is relevant, given the ever increasing storage penetration in the grid (also
considering electric vehicles, virtual storage, etc.).

Recently, in [105], the analysis of switching attacks in a nonlinear setting considers
single switching, with a switching surface s(x) = Kx + ψ(x), with ψ(x) = βetanh(Kx). The
use of nonlinear switching surfaces results in faster successful conclusion of the attack and
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reduced chattering of the switches (the metrics “fastness of attack” and “swiftness of attack”
are proposed).

The recent contribution [106] presents a methodology to evaluate the risk of switching
attacks in substations based on today’s cybersecurity technologies.

Finally, an attack similar to the switching attack is the so called Aurora attack, targeting
synchronous generators. An attacker takes control of a generator’s breaker, disconnects
the generator from the grid, and then re-connects it when it is in out-of-phase with the
grid. This can lead to physical damage to the generator, because of the resulting significant
electromagnetic torque and current fluctuations in the generator. In [107], Arani et al.
extend the original Aurora attack (discussed in reference [12] in [107]), to the case in
which the attacker targets the breaker of the point of common coupling of a synchronous
generator-based microgrid with the main grid. Based on the analysis of the synchronous
generator’s swing equation (see (24)), it is shown in [107] that the angle deviation ∆δ of
the generators in the microgrid can be well approximated as ∆δ = −∆Pe

2M t2
att, where ∆Pe is

the mismatch of power generation and consumption in the microgrid, M the inertia of the
generator, tatt the duration of the attack (i.e., the time from the disconnection of the breaker
at the point of common coupling, to its re-connection). From this equation, it is observed
that the attacker needs to monitor ∆Pe, to make sure the attack is launched when there is a
high power mismatch, which results in a significant out-of-phase breaker reclosing.

3.11. Load Altering Attacks

In load altering attacks (LAAs) [108], the consumption of targeted loads is modified,
with the objective of causing line overloading. Both direct hacking of loads is discussed, as
well as indirect load variation through the corruption of, for example, the price information
broadcast to the consumers in the case of demand side management schemes. The loads
more likely to be subject to LAAs are revised in [108], and a cost-efficient selection of the
loads to protect in order to avoid circuit overflow is proposed.

In [109], dynamic load altering attacks (DLAAs) are investigated, which go beyond
the mere (abrupt) variation of load (static LAAs), by controlling the attacked load in closed
loop fashion, proportionally to the sensed frequency variation. The linearised power flow
equations are used to model the network constraints, and the linear swing equations to
model the generators’ dynamics:

δ̇i = ωi (24a)

Miω̇i = PM
i − DG

i ωi − PG
i , (24b)

being i the generic generator, Mi the rotor inertia, ωi the frequency deviation at bus i, PM
i

the mechanical power, DG
i the damping coefficient, PG

i the generated electrical power. The
mechanical input to the generator is modeled as

PM
i = −(KP

i ωi + K I
i

∫ t

0
ωi), (25)

in order to model the turbine governor (proportional controller) and the LFC (an integral
controller—see also Section 3.8). Loads at each bus are then classified into three categories:
(i) uncontrollable, (ii) controllable but frequency-insensitive, and (iii) controllable and
frequency-sensitive [109]. The load pertaining to classes (i) and (ii) is denoted with PL

i . It is
PL

i that is the target of the LAA, and it is assumed that a part of it is secured (PLS
i ) and part

vulnerable (PLV
i ). As anticipated above, the attack is finally modeled as:

PLV
ν = −KLG

ν,s ωs − KLL
ν,s φs. (26)

The index ν denotes the attacked load bus, s denotes the sensor bus, that is, the bus from
which the attacker gains a measurement of the frequency. It is either a generation bus or a
load bus. ωs is the frequency deviation at the generation bus s, φs the frequency deviation
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at the load bus s. KLG (KLL) denotes the attacker gain in case the sensor bus is a generation
(load) bus (only one of the two will be different from zero). By combining the above
equations and the attack model, the following linear state-space descriptor representation
of the system under attack is derived [109]:

I 0 0 0
0 I 0 0
0 0 −M 0
0 0 0 0




δ̇
θ̇
ω̇
φ̇

 =


0
0
0
I

PLS +


0 0 I 0
0 0 0 −I

K I + HGG HGL KP + DG 0
HLG HLL −KLG −KLL + DL




δ
θ
ω
φ

. (27)

As for the state variables, δ is the vector of voltage phase angles at the generation buses,
ω is the vector of frequency deviations at the generation buses, θ is the vector of voltage
phase angles at the load buses and φ is the vector of frequency deviations at the load buses.
It is evident from (27) that the attack gain matrices KLG and KLL influence the system
dynamics. Indeed, after transforming (27) into a standard state-space model, it is shown
in [109], via Lyapunov analysis, that an appropriate selection of the attacked buses and of
the attack gains can lead to frequency instability. Both the case in which a single load bus
is attacked (single-point attack) and multiple ones are attacked (coordinated multi-point
attacks) are investigated. A protection scheme is proposed to optimize the amount of load
to be protected at the different buses in order to ensure the system remains stable under
attack. In [110], an optimal attack model is presented to launch successive DLAAs against
aggregators responsible for direct load control. In [111], a transactive energy framework is
proposed to counteract ongoing LAAs aimed at destabilizing network frequency. Another
defence approach is proposed in [112], where invariance theory and Lyapunov arguments
are used to study the optimal placement and sizing of ESSs in the network, so as to make
destabilizing DLAAs impossible (ESSs inject and adsorbe power to counteract the power
fluctuations caused by DLAA).

Recently, in a similar setting as in [109] (i.e., (24)–(27)), Wu et al. discuss in [113] a
FDIA which corrupts in an additive way the control (25), with a destabilizing effect on
frequency. Optimal control theory is used to find the optimal attack in two cases: (i) when
the attacker targets a fixed set of control channels, and (ii) when the attacker changes
during time the attacked channels (i.e., an optimal switching sequence is found). The
target function is designed to maximize the frequency deviations, while minimizing the
magnitude of the attack signal.

Finally, a version of LAA, called load-changing attack, has been discussed by Arn-
aboldi et al. in [114] (and previously, e.g., in References [10,11] in [114]). In these works,
the attacker takes control of a large number of power devices (e.g., household appliances,
electric vehicles, etc.), and controls the power consumption of the formed botnet in order
to disrupt the grid operation.

3.12. Zero Dynamics and Covert Attacks

The zero dynamics attacks are malicious control actions leveraging the internal struc-
ture of dynamical systems. The concept of zero dynamics was originally introduced
in [115]: “a dynamical system that characterizes the internal behavior of a system once
initial conditions and inputs are chosen so as to constrain the output to be identically zero”.

The topic of zero dynamics attacks is mainly discussed in [25,26,28,116,117]. The
possibility of realizing this kind of attack arises from the consideration that, as shown, for
example, in [116], it is possible to inject signals in a system that make the internal state
diverge, while the effects of such attack are not visible from the mere observation of the
output, which in turn can be arbitrarily stabilized using an (output feedback) control.

A typical scenario, presented in [25,26], considers a power network which intercon-
nects power plants operated by different generation companies competing on the market.
Some companies form a coalition aimed at damaging the remaining power plants in the
network, while still operating most of their power plants correctly. To this purpose, the
prime mover governors of the power plants are used as attack controllers in order to
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destabilize the state of the target machines, representing the zero dynamics of the system,
and decouple it from the state of the coalition, viewed by the attacker as the system output.
This result is achieved at the cost of sacrificing one generator of the coalition.

In general terms, the attack is achieved provided that a pair of independent controls
are available to the attacker. A first control is used in order to force the state subspace
related to the zero dynamics to be a controlled invariant; then a second control is applied in
order to destabilize them. The attack, originally presented in [25,26] using the machinery of
geometric control theory, is formally summarized in the following using arguments similar
to those reported in [118]. Consider a system of the form

ẋ = Ax + BpuP + Baua

yp = Cpx,
(28)

with x ∈ Rn denotes the state of the plant, up ∈ Rm and ua ∈ R are the controls available to
the attacker, yp ∈ Rm represents an output the attacker is interested to regulate. To simplify
the presentation, consider the case in which

CpBp = Cp ABp = · · · = Cp Ar−2Bp = 0

Cp Ar−1Bp = diag(b1, b2, . . . , bm),
(29)

where bi 6= 0 for i = 1, . . . , m, that is, the case in which system (28), viewed by the attacker
as a system with input up and output yp, has vector relative degree {r, r, . . . , r} and a
diagonal “high-frequency gain matrix”. This, in fact, is the case in which system (28)
models the small-signal electromechanical behaviour of a power network, consisting in
the interconnection of a set of identical power plants, all of them independently actuated.
Nevertheless, the theory can be easily extended to other class of systems having a generic
vector relative degree {r1, r2, . . . , rm}. It is also assumed that

Cp
Cp A
· · ·

Cp Ar−1

Ba = 0, (30)

which is another feature of the class of systems at study. As it is well known, under these
assumptions, there exists a change of variables that puts system (28) in the normal form

ż = Fz + Gξ + Gaua

ξ̇i = Aiξi + Bi(Hiz + Kiξ + biupi)

ypi = Ciξi i = 1, . . . , m

(31)

in which

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

, Bi =


0
0
· · ·
0
1

, Ci =
[
1 0 · · · 0

]

and ξ = col(ξ1, . . . , ξm), dim(z) = n − mr, dim(ξi) = r. With this in mind, the zero
dynamics attack can be performed through the following two steps. Since the target of the
attack are the zero dynamics, at first the control up is designed so as to decouple the system
output from the dynamics under attack and, eventually, to assign any prescribed stable
dynamics on ξ. This is achieved by means of the control

up = B−1[−Hz− Kξ + K0ξ] , (32)
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in which B = diag(b1, b2, . . . , bm), H = col(H1, H2, . . . , Hm), K = col(K1, K2, . . . , Km) and
K0 = diag(K01, K02, . . . , K0m), where the matrices Ai + BiK0i, for i = 1, . . . , m, are Hurwitz.
Having rendered the zero dynamics unobservable through the output yp, the control ua is
consequently chosen so as to let them diverge. Assuming the pair (F, Ga) is controllable
and z is available for measurement, the residual attack ua can be chosen as

ua = Kaz, (33)

so as to assign eigenvalues with positive real parts to the matrix (F + GaKa). Finally, the
combination of controls (32) and (33) forces a closed loop system of the form

ż = (F + GaKa)z + Gξ

ξ̇i = Ai + BiK0iξi

ypi = Ciξi i = 1, . . . , m
(34)

characterized by antistable zero dynamics which are not visible from the mere observation
of the system output.

In case of application of the attack to a power system, the model (28) takes the form[
δ̇
ω̇

]
=

[
0 In

M−1(−Lgg + Lg`L−1
`` L`g) −M−1D

][
δ
ω

]
+

[
0

M−1

]
Pg

yp =
[
Im 0,

][ δ
ω

] (35)

where δ and ω denote the vectors of machines rotor angles and angular speed deviations
from synchronism, Pg is the vector of mechanical input power (whose only coalition’s
components are considered active), the matrices M and D model the inertia and damping
coefficients of the coalition’s machines, Im and In are identity matrices; finally Lgg, Lg`,
L`g and L`` are properly sized submatrices of the network Laplacian matrix. The model
describes the small-signal electromechanical behaviour of an unregulated power system,
under the effect of deviations in the mechanical power of coalition’s power plants with
respect to the steady-state values.

It is straightforward to see that model (35) is already in the form (31): the state partition
ξ represents the rotor angles and speed deviations of the generators making part of the
coalition, while the state partition z represents the same variables of the target generators
and the sacrificial one. The control of the sacrificial generator is used to destabilize the
zero dynamics, while the other controls available to the coalition are used to stabilize their
dynamics. This results in a portion of the network (the generators of the coalition minus
the sacrificial one) to work properly, decoupled under feedback from the destabilized part
of the network.

The attack reported above assumes the presence of an omniscient attacker, having
full knowledge about the structure and parameters of the plant model and availability
of measurements about the state partition under attack [26]. In [116] it is shown how to
overcome these limitations designing a zero dynamics attack that, making use of a robust
disturbance observer presented in [119], is robust in spite of model uncertainties. Several
works can be found in the literature aimed at detecting the zero dynamics attacks: the most
relevant approaches are based on the design of centralized and decentralized observers [25],
adaptive sliding mode observers [120], Kalman filter [121], or works by properly altering
the input behaviour of the plant [122].

Finally, it is interesting to note that the arguments used above to formally introduce
the attack can be applied also in the context of a defence strategy. Indeed, a scenario can be
conceived in which the output of model (28) represents a set of variables to be protected
against the spread of an attack affecting the zero dynamics. In this regard in [118] a robust
defence scheme is proposed, which makes the dynamics of a selected set of power plants
decoupled from the dynamics of the subsystem targeted by the attack, with the aid of
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an extended high-gain observer [123,124], used to robustify the control (32) in spite of
inaccurate knowledge of model parameters and lack of state measurements.

3.13. Attacks against Automatic Voltage Control

Several contributions in literature discuss cyber physical attacks on the grid voltage
control schemes. Among the first works, Ref. [125] discusses data integrity attacks to
voltage control in transmission networks, aimed at altering the settings of the flexible
alternating current transmission system (FACTS), which are electronic-based devices (se-
ries compensation, static var compensator, static synchronous compensator (STATCOM),
synchronous condenser, mechanically switched capacitors, etc.) installed at critical points
of the grid, and responsible of several tasks (increased power transfer, damping of oscilla-
tions, etc.), including voltage control. A simple sensitivity analysis is presented in [125], to
determine the FACTS to attack to cause the highest voltage disruption. In [126], a simula-
tion study is provided on the impact of bias injection attacks on voltage support devices
(voltage source converters and STATCOM) in transmission grids. The attacker injects a
bias into the bus voltage measurement taken by the devices. The impact on transient angle
and voltage stability is quantitatively assessed, with reference to two stability indicators.
Simulations show that an attack could cause system instability after a contingency, hence
making the system N − 1 in-compliant.

In [127], Teixeira et al. discuss FDIAs on voltage measurements in the Volt-VAR
control in distribution networks, discussing the undetectability conditions, and the impact
in terms of increased network losses. The recent paper [128] presents a FDIA scheme
against OPF-based AVC in distribution networks (generally speaking, an OPF is solved to
determine the optimal feeders’ voltage profiles to minimize network losses). The voltage
measurements sent from the substations to the control center are corrupted through an
RL strategy that requires minimal model knowledge. Specifically, the FDIA targets the SE
module in the control center (where the OPF is solved), which feeds the OPF problem for
losses minimization. The reward of the RL agent is proportional to the voltage deviation
caused at the buses. The method is effective in selecting the most critical bus and time of
the attack to cause the worst voltage violations, or collapse. A detection and correction SE
method is proposed to replace the suspect values with a maximum likelihood estimation
derived from historical data.

In [129], a data integrity attack scheme against centralised voltage control in active
distribution grids hosting photovoltaic (PV) generation is discussed. The attacker falsifies
the voltage readings from the field, which are used to centrally determine the optimal
positions of the transformers’ tap changers. Optimal undetectable attacks are designed,
to cause maximal voltage violations at network nodes. It is shown also that, inducing
over-voltages can lead PV plants to curtail their power output, causing significant economic
losses (renewable generation along medium voltage feeders generally increases voltage
levels, and for this reason PV plants can be equipped with power conditioning systems,
which reduce the PV output in case of over-voltages, to contribute to voltage control).

More recently, in [130], Cameron et al. discuss the impact of DoS against voltage
control in distribution grids. They experimentally evaluate the impact of burst, sequential
and continuous low rate DoS, considering both static and adaptive approaches (in the
adaptive DoS, the attacker dynamically adjusts the attack based on the response of the
defender). A commonly adopted three-layers multi agent architecture for voltage control in
distribution networks is considered, where the lower level is the customer level, typically
formed by smart meters and distributed generation; the middle layer is composed of local
controllers and data collection components; the top layer refers to a central server for
processing global data and control objectives. It is shown the effectiveness of turning the
above three-layer static architecture into a multi-agent reconfigurable one, more resilient to
the analysed attacks.

In [131], Teixeira et al. discuss attacks on voltage droop control schemes in inverter-
based microgrids. The attacks discussed include reference signals attack, in which the
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voltage setpoint of the control loop is altered, and voltage measurement routing attack, in
which a given measurement is redirected from the original sensing channel to another one.
The effects are quantitatively evaluated based on the theory of positive systems.

In [132], Ghafouri et al. propose a FDIA attack on PMU-based voltage stability moni-
toring in transmission networks. The attack is built based on the computation of the power
flow equations, and hence is stealthy to standard detectors. Detection and mitigation
strategies are proposed.

3.14. Other Cyber-Physical Attacks

This section presents a brief overview of other relevant contributions in literature ad-
dressing aspects of cyber-physical security of the smart grid. Reference [133] discusses time
synchronization attacks, in which the temporal alignment of the measurements collected
from the grid is disrupted. The case of time synchronization via GPS signal in PMUs is
considered, and the effects of an attack breaking synchronization (e.g., via GPS spoofing) in
three relevant applications (transmission line fault detection/locationing, voltage stability
monitoring and event locationing) are discussed. Reference [134] discusses the issue of
pricing attacks to home energy management systems, which is gaining more and more
relevance in the context of active demand applications. In [135], attacks against emulated
inertia control are explored. Emulated inertia refers to the control of inverter-connected de-
vices with the aim of emulating the dynamics of the rotating inertia traditionally provided
by the synchronous generators. The aim of the attacker is to cause frequency oscillations
that trip a set of target generators.

4. Discussion and Ongoing Research Directions

The works on FDIA against SE, revised in Section 3.2, have started and shaped much
of the research in the field. They have also often prompted the formulation of specific
and basic research questions and problems (e.g., the formulation of detectability and
identifiability conditions, the formulation of undetectable, sparse and maximal impacting
attacks, etc.), which have been addressed by a number of methodological papers from the
system theory and automatic control research community (a selection of these works has
been revised in Section 2). As a matter of fact, system theory provides fundamental tools
to model the smart grid as a cyber-physical system, to model and analyse cyber-physical
attacks, and to evaluate their impact on the smart grid.

The analysis of cyber-physical attacks, their working principles and their dynamics,
has a key importance for improving the security of the smart grid. It allows to discover
new vulnerabilities, and it can guide the process of strengthening the smart grid towards a
more robust and resilient system.

Several considerations can be done based on the works revised in this survey. First
of all, most of the early works, and the works introducing new attack schemes, perform
the design and the analysis of the attacks based on strong assumptions on the attacker’s
resources, in terms of model knowledge, disruption, and disclosure resources. Even though
in many cases these assumptions are too strong, considering the current state of the art, such
analysis are fundamental, especially in a risk-analysis perspective [27], since they allow
presenting the new vulnerability in a clear and simple setting, and they allow evaluating
the worst-case possible impact of the attack. As seen in the review, the strong assumptions
characterizing the first works are then progressively removed in the later works, which
present attack formulations in a range of risk scenarios characterized by reduced/no model
knowledge, disclosure, and disruption resources. In risk analysis terms, the greater the
resources assumed for the attacker, the higher is the resulting impact of the attack, and the
lower the likelihood associated with the risk scenario.

A second aspect worth to highlight is that most of the works in the field, and especially
the early ones, focus on the transmission sector, since its disruption causes significantly
larger impact than the distribution and the consumption sectors. A second reason is also
due to the fact that, until recently, the consumption and the distribution were passive sectors
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of the grid. However, with the recent transition towards an active grid and the spread of
distributed energy resources and connected devices at distribution and consumption levels
(smart home devices, electric vehicles, storage, etc.), the interest is greatly increasing also
in investigating cyber-physical vulnerabilities at these levels.

A third aspect is related with the increase in sophistication of the attack schemes
studied. Most of the early works consider the disruption arising from the implementation
by the attacker of a single type of disruption action, which, in most of the cases, consists in
the injection of malicious data into sensing or actuating channels (e.g., the FDIAs reviewed
in Section 3.2). More recently, complex, coordinated cyber-physical attacks are more and
more being studied, in which different attack types are combined together, in different steps,
typically through multi-level optimization problems, also capturing the attacker-defender
interactions (see, e.g., Sections 3.3 and 3.4.1).

Finally, regarding the attack mechanisms, at least two categories of works can be
distinguished. In some works, the attack results from the injection of false data into the
smart grid systems, which misleads the smart grid control systems and/or the operator
to assume a false state of the grid, leading to wrong control actions (e.g., Section 3.2). In
other works instead, the disruption results from the attacker targeting key components
of the grid, and operating them in a way that causes disruption (e.g., grid instability,
Sections 3.9–3.11).

Other research trends in the area include:

• A deeper understanding and analysis of known vulnerabilities and attack types,
to evaluate to which extent attacks already documented in the literature can be
formulated by relaxing assumptions on the attack model. It is normally the case in
fact that, for the discovery and the first analysis of new vulnerabilities, researchers
assume very broad and strong model knowledge and disclosure/disruption resources
for attacker. For example, some works in literature have been discussed which use
machine learning approaches, or tools from adaptive and robust control, to design
attacks requiring reduced model knowledge and/or attack resources;

• Integration of more accurate models of the system under attack. It is often the case in
fact that the early attack analysis are performed on simplified models, for example,
typically on linearized models (e.g., DC models), while it is known that most of the
smart grid systems are complex, nonlinear systems. The analysis with nonlinear (or,
more in general, more detailed system models) is more complex, but could bring
additional insights as well (as discussed for example for the case of FDIAs against SE
and switching attacks).

• Combining attack models to generate complex, coordinated multi point-attacks. Con-
cepts and tools used in the design of a given attack often find applications in the
design of new attacks. As the analysis of known attacks reveals, in real, complex
scenarios, different attack types can be combined with the aim of, for example, am-
plifying disruption, delaying the attack detection/identification, delaying response,
mitigation and service restoration, and so forth.

5. Conclusions

This paper has presented a review of the state of the art in the design of cyber-
physical attacks targeting the smart grid. This is one of the most active research areas
in the field of cyber-physical security, given the criticality for our society of the electrical
infrastructure and the increased number of vulnerabilities introduced by the ongoing smart
grid digitalization and decentralization process. This paper adopted a system theoretic
point of view in the analysis, with the objective of presenting the fundamental, inner
working principles of the attacks, which in turn depend on the properties and the dynamics
of the attacked system. 4Several known attack categories in literature have been discussed,
including a focus on models, attack dynamics and impacts, which are mainly divided into
economical and physical disruption impacts, including maximizing generation cost, the
load shedding cost, the network losses, manipulating market prices to generate undue
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financial revenues in electricity markets, and, on the physical disruption side, creating
transmission line overload, tripping of generators, violation of voltage limits, voltage,
frequency and rotor angle instability, operation of the system in an N − 1 in-compliant
security state, and so forth. Finally, current trends of research in the area have been
briefly discussed.
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The following abbreviations are used in this manuscript:

AC Alternating current
ACE Area control error
AGC Automatic generation control
AVC Automatic voltage control
BDD Bad data detection
CPS Cyber-physical system
DC Direct current
DoS Denial of service
DLAA Dynamic load altering attack
EMS Energy management system
ESS Energy storage system
FACTS Flexible alternating current transmission system
FDIA False data injection attack
GPS Global positioning system
KKT Karush–Kuhn–Tucker
LAA Load altering attack
LFC Load frequency control
LMP Locational marginal price
LR Load redistribution
MILP Mixed integer linear programming
PV Photovoltaic
PMU Phasor measurement unit
PJM Pennsylvania-New Jersey-Maryland
RAS Remedial action scheme
RL Reinforcement learning
SCADA Supervisory control and data acquisition
SCED Security-constrained economic dispatch
SE State estimation
STATCOM Static synchronous compensator
TA Topology attack
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