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Abstract Background/purpose: The non-protein thiol glutathione is protective against infec-
tion by Mycobacterium tuberculosis (MTB) and, together with the transcription factor NRF2
(the nuclear factor erythroid 2-related factor 2), plays a crucial role in counteracting MTB-
induced redox imbalance. Many genes implicated in the antioxidant response belong to the
NRF2-signalling pathway, whose central role in the pathogenesis of tuberculosis (TB) has been
recently proposed.
Methods: In this study, we measured GSH levels in blood of patients with active TB and ana-
lysed the individual NRF2-mediated redox profile, in order to provide additional tools for
discriminating the pathologic TB state and addressing therapeutic interventions.
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Results: Our findings show a systemic individual modulation of GSH and NRF2 signaling pathway
in patients with TB, with a "personalized" induction of NRF2-target genes.
Conclusion: This study can provide useful tools to monitor the course of the infection and
address patients’ treatment.
Copyright ª 2021, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Table 1 Demographic data of healthy subjects and Active
TB patients.

Healthcare
workers (Ctrls)

Active TB

Total subjects (n Z ) 40 8
Male (%) 19 (47.5%) 4 (50%)
Female (%) 21 (52.5%) 4 (50%)
Age mean (SD) 38.8 (6.9) 46.0 (20.0)
Introduction

NRF2 (Nuclear factor Erythroid 2-related Factor 2) is a
redox-sensitive transcription factor directly involved in the
transcriptional activation of genes belonging to the cellular
antioxidant response and responsible for the activation of
different cellular processes, including metabolism, sur-
vival, differentiation and inflammation.1e6 Under physio-
logical conditions, the Nrf2 protein is maintained at very
low levels in the cell by the negative regulator KEAP1
(Kelch-like ECH-associated protein 1), which sequesters
Nrf2 in the cytoplasm leading it to CUL3 E3 ligase for
ubiquitination and subsequent degradation by the protea-
some.7,8 Under stress conditions, or in presence of NRF2
inducing compounds, this negative regulation pathway is
hindered, resulting in the release of Nrf2 from KEAP1 and
promoting its stabilization and activation.7e10 In response
to oxidative stress, these events lead to the defensive
transcriptional expression of NRF2 downstream genes,
including phase II metabolism enzymes, glutathione syn-
thesis proteins, reactive oxygen species (ROS) scavengers,
and drug transporters.11 In the innate immune system,
macrophages produce an excess of ROS as defence against
pathogens, such as in Mycobacterium tuberculosis (MTB)
infection, thus causing endogenous redox imbalance.12e14

To prevent the ROS-dependent cellular damage, infected
cells induce the activation of several antioxidant pathways
but, with persistence of the infection or when excessive
ROS production overwhelms the antioxidant defense sys-
tems, an inefficient control of MTB toxicity may occur, thus
leading to unrestrained proliferation and augmentation of
mycobacterial burden.15,16

Indeed, the ROS overload due to the progression of the
infection causes multiple reactions, including the induction
of HO-1, an enzyme that catabolizes heme releasing free
iron, the decrease of levels of the main ROS-scavenger
glutathione (GSH), and the reduction of the enzyme GPX4,
actively implicated in the lipid peroxides detoxification. All
these events amplify the macrophage oxidative stress, ul-
timately causing the rupture of the plasma membrane,
mediated by lipid peroxides, and the iron-dependent cell
death by the process named ferroptosis.17 This increases
MTB replication in macrophages, further facilitating the
MTB dissemination.

Therefore, it is evident that a poor antioxidant response
and/or an excessive ROS production can be detrimental to
the host, increasing its susceptibility and the disease
severity.18e20 Nevertheless, it has also been demonstrated
a drastic suppression of macrophage death, lung tissue
necrosis, and Mtb loads after treatment of infected mice
2

with antioxidants,17,21 thus introducing the concept of
antioxidant therapy as adjuvant for TB. From all of this, the
importance of monitoring oxidative stress throughout the
infection and ongoing the conventional long-term treat-
ment appears evident.

Thus, moving from several previous findings highlighting
a central role for NRF2 signaling pathway in MTB infection,
in this study we analyzed the expression of NRF2 and its
target genes in n. 8 patients with active TB, at different
stage of disease progression and antibiotics therapy. In
addition, as it is well known that host cells synthesize
glutathione to counteract ROS, which in its reduced form
(GSH) elicits anti-mycobacterial and immune-modulating
effects,22e28 we further measured GSH levels in blood of
patients with active TB, to provide an additional tool for
better addressing therapeutic interventions.
Materials and methods

Subjects

48 subjects (40 healthcare workers controls and 8 patients
with active TB) have been enrolled for this study. Patients
with active TB were recruited at the Infectious Diseases
Unit of University La Sapienza, Rome, Italy (Table 1).
Symptoms concerned all admitted adult patients showing
high suspicious of tuberculosis (i.e., persistent cough, fever
or chills, night sweats, swollen lymph nodes, shortness of
breath, fatigue and unexplained weight loss). Diagnosis of
active TB was based on clinical and radiological findings and
was confirmed by identification of MTB by microbiological
methods (culture and nucleic acid amplification). All pa-
tients were seronegative for HIV infection and were treated
with anti-TB drugs (rifampicin, isoniazid, pyrazinamide and
ethambutol). Blood samples were taken after 4 (Pt#1), 7
(Pts#2 and 3), 10 (Pt#4), 11 (Pt#5), 18 (Pt#6), 32 (Pt#7), and
44 (Pt#8) days of therapy.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Microbiology, Immunology and Infection xxx (xxxx) xxx

+ MODEL
The healthy subjects were enrolled by the Unit of
Occupational Medicine of Bambino Gesù Children’s Hospi-
tal, Rome, Italy, a national reference hospital for chil-
dren.29 Healthcare workers (Ctrls) were selected on the
basis of the absence of any risk factors for MTB exposure, a
persistent negativity to the serial testing of Interferon-
Gamma Release Assay (IGRA), non Calmette Guerin’s Ba-
cillus (BCG)-vaccinated, and coming from and living in a
low-endemic countries for TB. Approvals by Ethical Com-
mittee of Policlinico Umberto I, University La Sapienza (Rif.
CE: 5552) and of Bambino Gesù Children’s Hospital (Prot. N.
CO-2016-023645342018) were obtained.

GSH assay

5 ml whole blood were collected into EDTA-Vacutainer Tube
(Becton Dickinson, Rutherford, NY). GSH levels have been
detected by an enzymatic re-cycling assay, using the Thi-
oStar� glutathione detection reagent (Arbor Assays, Mich-
igan, MI, USA), and the fluorescence has been measured by
an EnSpire� Multimode Plate Reader (PerkinElmer, Wal-
tham, MA, USA). After 15 min reaction, Free GSH was read,
followed by the addition of a reducing mixture that con-
verts all the oxidized glutathione, allowing the measure-
ment of Total GSH. GSH concentrations were determined by
referring to a GSH standard curve (Sigma Chemicals,
St.Louis, MO, USA), and expressed as uM. Immediately after
sampling, aliquots of blood have been collected and stored
at �80 �C until GSH analysis.

Quantitative real-time PCR (qRT-PCR)

10 ml whole blood were collected into EDTA Vacutainer
Tubes and leukocytes were isolated by adding 10% dextran
and washed in phosphate buffer (PBS), until obtaining a
clear pellet. Leukocytes were stored at �20 �C until RNA
extraction (qRT-PCR).

500 ng RNA samples was reverse transcribed with the
SuperScript� First-Strand Synthesis system and random
hexamers as primers (Life Technologies, Carlsbad, CA,
USA). The expression levels of NRF2, SOD1/2, HO-1, GCL
were measured by qRT-PCR in an ABI PRISM 7500 Sequence
Detection System (Life Technologies, Carlsbad, CA, USA)
using Power SYBR Green I dye chemistry. Data were
analyzed using the 2�DDCt method with TBP (TATA box
binding protein) as housekeeping gene, and shown as fold
change relative to controls. Primers used for qRT-PCR have
been reported in Petrillo et al.30

Interferon-gamma release assay (IGRA)

The cytokine interferon-gamma (IFN-g), which plays an
important role during the TB infection, is produced by
different cells of the immune system: CD4 T-cells, CD8 T-
cells and Natural Killer cells [European Center for Disease
Prevention and Control. Use of interferon-gamma release
assays in support of TB diagnosis. Stockholm: ECDC; 2011].
The IGRA test adopted in this study was the Quantiferon-TB
Gold � in two different releases: the QFT-GIT, which de-
tects MTB specific antigens ESAT-6, CFP-10 and TB7.7, and
the QFT Plus eliciting response for ESAT-6 and CFP-10 from
3

CD4þ and CD8þ T lymphocytes (QIAGEN Hilden, Germany e
DiaSorin Italy). After incubation for stimulation, the IFN-g is
detected by an enzyme-linked immuno-absorbent assay
(ELISA) and quantified by using the QFT analysis software
that performs a quality control assessment of the assay and
generates a standard curve. The test is reported positive
when the INF-g level in the TB antigen tube(s) is � 0.35 IU/
ml or � 25% of NIL value.31e33
Statistical analysis

Statistical analysis was performed using the GRAPHPAD/
Prism 5.0 Software (San Diego, CA, USA). Statistically sig-
nificant differences between groups were analyzed using
Student’s t-test for normally distributed variables. All data
are presented as mean � standard error. Statistical signif-
icance was defined as *p < 0.05, ))p < 0.01, )))
p < 0.001, if compared to healthcare workers (Ctrls), and
#p < 0.05, ##p < 0.01, ###p < 0.001, when compared to
individual antioxidant profile.

All subjects enrolled for the study were tested for the
risk of tuberculosis with the Interferon-gamma Release
Assay (IGRA).
Results

GSH levels

Glutathione levels have been measured three times in
blood of 8 patients with TB infection at different times of
antibiotics therapy. Blood samples were taken after 4
(Pt#1), 7 (Pts#2 and 3), 10 (Pt#4), 11 (Pt#5), 18 (Pt#6), 32
(Pt#7), and 44 (Pt#8) days of therapy. As reported in
Fig. 1A, Free GSH contents showed different contents
among patients and respect to controls, with decreased
levels in Pts#1, #4, #5, #7, #8, and increases in Pt#2, #3, #6.
Also, the amount of Total GSH was different in patients
(Fig. 1B), indicating a personalized consumption and syn-
thesis of GSH. Three patients’ samples were measured and
data were reported as mean � SEM. The statistical signifi-
cance has been evaluated by Student’s two-tailed t test,
compared with Ctrls.
NRF2 gene expression

Glutathione, together with most of antioxidants responsible
for the tissue redox defence, is strictly regulated by NRF2,
whose central role in the pathogenesis of TB has been
recently demonstrated.24,25 Thus, we analyzed the NRF2
expression in leukocytes of patients, in order to evaluate if
a common antioxidant response could occur. As for GSH, a
specific individual response has been found for NRF2 too
(Fig. 1C), with a peak of NRF2 expression in Pt#2, #3, and
#4, and a decrease in patients with longer treatments.
These findings, although on a small number of patients,
suggest a time-dependent activation of the transcription
factor, with a boost in the early days of therapy.



Figure 1. Systemic antioxidant status in TB patients. Free (A) and Total (B) GSH concentrations in blood of TB patients and Ctrls.
qRT-PCR analysis of NRF2 gene expression in leukocytes (C). Values represent mean � SEM. *p < 0.05, **p < 0.01, ***p < 0.001,
compared with Ctrls by Student’s two-tailed t test.
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Redox profiles

NRF2 regulates many genes of the antioxidant signaling
pathway, thus we wonder if also NRF2 target genes may be
differently expressed in TB patients, particularly focusing
on those involved in the GSH synthesis (the glutamate-
cysteine ligase, GCL), in the response to the inflammation
(the heme oxygenase 1, HO-1),34 and in those implicated in
the direct neutralization of ROS (the cytosolic superoxide
dismutase 1, SOD1 and the mitochondrial superoxide dis-
mutase2, SOD2). mRNA trancripts have been measured in
triplicate after 4 (Pt#1), 7 (Pts#2 and 3), 10 (Pt#4), 11
(Pt#5), 18 (Pt#6), 32 (Pt#7), and 44 (Pt#8) days of therapy,
and statistical significance was evaluated by Student’s two-
tailed t test compared to Ctrls.

As shown in Fig. 2, mRNA transcipts exhibited
different redox profiles in each patient. In particular,
Pt#1 (4th day of sampling) showed low expression levels
of all antioxidant markers (GSH, NRF2, SOD, GCL, HO-1),
while #2 and #3, who displayed high NRF2 expression
already after one week of antibiotic therapy, had all
target genes down regulated respect to controls
(Fig. 2AeD). Pt#2, in addition, exhibited a starting high
content of GSH, likely reflecting a constitutive individual
condition. Conversely, Pts #4e8, who were on treatment
for a longer time (10e40 days therapy), showed up to 30-
fold increase of NRF2 down-stream genes (Fig. 2AeD).
These data suggest a slow activation of NRF2-target
genes throughout the therapy, which also depends on
the personal antioxidant response. Therefore, even if
they need confirmation on a larger number of patients,
we believe that our findings could open the way for a
4

personalized medicine in this disease, with an eye on
tailored combined therapies.

Discussion

The non-protein thiol glutathione is protective against
infection due to MTB and, together with the transcription
factor NRF2, plays a crucial role in counteracting MTB-
induced redox imbalance.17,22,24,26e28 In this study, we
propose a new approach that combines the biochemical
GSH determination and the expression of redox gene pro-
files in blood of patients with active TB.

Oxidative stress has been implicated in the pathogenesis
of lung fibrosis in TB patients and several studies have
demonstrated that critical antioxidants are depleted in the
serum of patients.19,20,35

NRF2 is the main regulator of cell homeostasis, because
of its role in modulating oxidative, inflammatory, and
metabolic networks,1,2,36,37 thus acquiring a key role in
protecting tissues from injury caused by infections and in
pneumonia pathogenesis.38

Using knockout mouse models, Rothchild et al.25

demonstrated that NRF2 drives the expression of a cell-
protective signature in infected macrophages, impairing
the control of early bacterial growth. This host antioxidant
response is ensured by the transcriptional activation of
several genes belonging to the NRF2 signaling pathway.
Glutathione is one of them, together with HO-1, SOD 1 and
SOD2, and many others.11

Glutathione is an essential intracellular ROS scavenger,
whose synthesis occurs by a two-step, energy dependent
reaction. The first and rate-limiting step in the GSH



Figure 2. NRF2-related redox profiles in leukocytes of TB patients. qRT-PCR analysis of NRF2-target genes (SOD1, SOD2, GCL, HO-
1) in 8 patients with active TB and 40 Ctrls (AeD). Values represent mean � SEM. *p < 0.05, **p < 0.01, ***p < 0.001 compared to
Ctrls, as evaluated by Student’s two-tailed t test.
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synthesis is catalyzed by glutamate-cysteine-ligase (GCL),
which is transcriptionally regulated by NRF2.39,40 GSH has
an important role in maintaining cellular redox homeostasis
and it constitutes the most highly concentrated antioxidant
within the cell.41,42 Previously, Teskey et al.43 reported that
a virulent laboratory strain of MTB was completely cleared
through supplementation with GSH or with its precursor N-
acetyl cysteine (NAC), in conjunction with first-line anti-
biotics. Thus, despite its protective antioxidant function,
GSH has also antimycobacterial and immunomodulatory
activities, and monitoring its levels could be useful as in-
dicator of the disease status.44

The GSH depletion was associated with increased ROS,
pro-inflammatory cytokines production, and enhanced
intracellular MTB survival.26,27,44e46 Several mechanisms
can be implicated in the GSH-mediated protection: i) in the
form of S-nitrosoglutathione (GSNO), GSH can stabilize and
release, when necessary, the nitric oxide (NO), a potent
bactericidal free radical47; ii) GSH can also increase the
cytolytic activity of natural killer (NK) cells, thereby
enhancing their function against MTB48,49; iii) GSH is even
able to modulate the release of various cytokines (such as
IFN-g), resulting in the enhancement of the Th1 cell
response against MTB.50,51

Therefore, given the crucial function of GSH throughout
the infection, at first we compared total (Tot) and reduced
(Free) GSH levels in whole blood of TB patients, in order to
investigate its possible role as early systemic marker of the
disease. We found that GSH, either in its active/reduced
form, which reflects the GSH consumption, and as total
glutathione, indicative of its synthesis, greatly depends on
the individual response of the single patient. Also NRF2,
which has been reported to increase in lung lesions of
5

guinea pig during the progression of MTB infection,12

exhibited a systemic individual responsiveness to the
infection and treatment, with an apparent higher activa-
tion in the first days of infection, and antibiotic therapy,
and a decrease at longer times.

The central role of NRF2 in the pathogenesis of Tuber-
culosis (TB) has been previously suggested by Qian et al.,24

who proposed the transcription factor as a useful diagnostic
marker to differentiate TB patients from other subjects.
Recently, Rothchild et al.25 demonstrated that MTB-
infected alveolar macrophages, the first line of cells to be
infected, induced the up-regulation of a protective tran-
scriptional signature identified (by computational ap-
proaches) as the NRF2-regulated antioxidant pathway.

Nrf2 works to counteract effects of ROS, allowing for
effective defence responses against MTB, but minimizing
oxidative injury to the host cell.22 Indeed, Nrf2 displays
multiple activities in cell protection, and its activation
stimulates the transcription of a battery of antioxidant
genes (redox response), overall constituting the NRF2
signaling pathway.23

Given the individual response of NRF2 expression in our
patients, we wonder if even the NRF2-target genes could be
subjectively induced during TB infection. Thus, we
analyzed GCL, HO-1, SOD1, and SOD2 mRNA transcripts in
blood of patients, and we found differential redox profiles
for each patient. Interestingly, a boost of genes’activation
was observed in patients under about 10 days of therapy,
suggesting a slowed response to early NRF2 induction.

The enzyme HO-1 is a potent antioxidant enzyme,
induced ]by heme accumulation,52e54 exposure to toxic
compounds,55,56 hypoxia,57 starvation,58 and toll-like re-
ceptor (TLR)/cytokine-mediated cellular activation.59e61
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The enzyme exhibits anti-inflammatory and cytoprotective
effects, and increased HO-1 systemic levels were found in
patients displaying severe clinical and radiographic signs of
TB disease.52,62e66

HO-1-depleted mice were highly susceptible to MTB
infection,67 and murine and human macrophages infected
in vitro by MTB showed a significant increase of the HO-1
production.52 Furthermore, HO-1 levels correlated with
active infection in experimental mouse and rabbit, and
decreased upon antitubercular therapy.34 In line with these
previous findings, we found a consistent increase of HO-1
expression in patients collected later after diagnosis (Pt
#4-#8), while HO-1 expression was lower in patients with
early blood sampling (Pt#1-#3). The same trend was
observed for SOD 1/2 and GCL expression, indicating a late
activation of ROS neutralization mechanisms throughout
the infection.

Conclusion

The identification of personalized redox signatures
together with the systemic GSH determination throughout
the TB infection could provide useful tools for monitoring
the course of the infection and addressing patients’ treat-
ment.68 Personalized antioxidant therapies should be hy-
pothesized for each patient, in order to elicit the best drug
effectiveness, as also suggested by a recent study trial
using N-acetylcysteine as adjuvant in HIV-associated TB
patients.69 This work is a proof of concept study that needs
to be confirmed with a larger group of patients and corre-
lated to the outcome. Nonetheless, we believe that the
systemic biomarkers analyzed in this study may represent
an useful tool for designing targeted host-directed
therapies.
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