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Abstract

This thesis illustrates and puts in context two of the main research projects I
worked on during my Ph.D. program, in collaboration with several national and
international co-authors from "La Sapienza" and other prestigious universities. Both
research lines concern spatial and spatio-temporal analysis of geo-referenced datasets,
which is of broad and current interest in the statistical research literature and
applications. My focus on such an area of statistics was not meditated before the
start of the program. However, while pursuing my original research interests in the
broader domain of Bayesian statistics, I realized there was an ever-increasing demand
for viable and efficient statistical methods to analyze spatial and spatio-temporal
data. That is a consequence of the extraordinary technological development that
interested data collection systems during the last few decades. The innovative,
cutting-edge technologies conceive new devices that can record and store data and
information about the most diverse phenomena, possibly at a fine spatial scale and
with high temporal resolution. Such capabilities were just a dream up to 20 or
30 years ago. Spatial statistics methods are rapidly evolving to face this surge of
novel data structure in various application fields: geology, meteorology, ecology,
epidemiology, economics, politics, and more.

The first chapter of this thesis introduces the general idea behind spatial statistics,
that is the branch of statistics devoted to analyzing and modeling temporal and spatial
structure in time and/or geo-referenced datasets. A brief historical introduction of its
developments is provided, starting from the first (sometimes unwitting) applications
of its logic to practical and theoretical problems at the end of the XIX century. Many
methods and techniques in this domain evolved independently, driven by the specific
needs of the application fields in which they were developed. The historical ex-cursus
leads to a coarse (but reasonable) distinction in three main areas: continuous spatial
variations, discrete spatial variations, spatial point patterns. These areas present
further facets within themselves, making spatial statistics an incredibly diverse and
rich topic. A really comprehensive review would require an entire book to be written
and maybe a lifetime to be thoroughly studied. Therefore, in the following Chapters,
the discussion is focused on specific areas and techniques used in the studies. Only
those tools that proved valuable for the analysis performed in Alaimo Di Loro et al.
(2021) and Kalair et al. (2020) are extensively treated.

The second chapter focuses on analyzing continuous spatial variation, which is
the modeling of outcomes varying continuously over some space. First, the most
relevant properties for continuous spatial processes are introduced; second, some
of the most common methodologies for performing spatial interpolation of the
mean trend and stochastic modeling of the residuals are listed and sketched. In
particular, the chapter digresses on Spline Regression as a valid technique to catch
the first-order structure in spatial data. Soon after, the Geo-Statistical methods
and the Bayesian Hierarchical framework are claimed as invaluable tools to attain
the simultaneous estimation of the first and second-order structure of a process.
Extension to spatio-temporal contexts is not as trivial as it may seem but must be
approached with due care. An extensive discussion about the possible pitfalls and
viable solutions is included in the same chapter. Finally, the problems arising in the
analysis of Big spatial data are highlighted in the last section, where The Nearest
Neighbor Gaussian Process (NNGP, Datta et al. (2016a,b)) model is introduced
as a highly scalable framework for providing full inference on massive spatial and
spatio-temporal datasets.

The third chapter includes an extended version of the paper Alaimo Di Loro et al.
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(2021), currently under-review and published as a pre-print. It describes how the
aforementioned technological development has strongly affected human tracking and
monitoring capabilities, generating substantial interest in monitoring human activity.
New non-intrusive wearable devices, such as wrist-worn sensors that monitor gross
motor activity (miniature accelerometers), can continuously record individual activity
levels, producing massive amounts of high-resolution measurements. Analyzing such
data needs to account for spatial and temporal information on trajectories or paths
traversed by subjects wearing such devices. Inferential objectives include estimating
a subject’s physical activity levels along a given trajectory, identifying trajectories
that are more likely to produce higher levels of physical activity for a given subject,
and predicting expected levels of physical activity in any proposed new trajectory
for a given set of health attributes. We argue that the underlying process is more
appropriately modeled as a stochastic evolution through time while accounting for
spatial information separately. Building upon recent developments in this field, we
construct temporal processes using directed acyclic graphs (DAG) on the line of the
NNGP, include spatial dependence through penalized spline regression, and develop
optimized implementations of the collapsed Markov chain Monte Carlo (MCMC)
algorithm. The resulting Bayesian hierarchical modeling framework for the analysis of
spatial-temporal actigraphy data proves able to deliver fully model-based inference on
trajectories while accounting for subject-level health attributes and spatial-temporal
dependencies. We undertake a comprehensive analysis of an original dataset from
the Physical Activity through Sustainable Transport Approaches in Los Angeles
(PASTA-LA) study to formally ascertain spatial zones and trajectories exhibiting
significantly higher physical activity levels. Suggestions for further extensions and
improvements on the currently adopted methodology are discussed in the last section
of the chapter.

Chapter four undergoes a paradigm shift and introduces the basic theory and
tools of spatial point patterns analysis. Some common probabilistic models for
point processes are briefly discussed, with some of their properties and limitations
highlighted. The rest of the chapter is instead entirely focused on the Hawkes
process and its spatio-temporal extension. It is a particular kind of self-exciting
point process that presents a strong inter-dependence structure. While conceived in
Hawkes (1971a), its use in the statistical application has been for a long time limited
to the analysis of earthquakes dynamic. The recent escalation of data at the high
temporal resolution, sometimes accompanied by spatial information, has favored
its use in modeling events dynamics in diverse fields: finance, society, biology, etc.
In particular, its defining properties are presented and state-of-the-art estimation
methods of the spatio-temporal version are introduced.

In the fifth chapter, the semi-parametric Hawkes process with a periodic back-
ground originally introduced in Zhuang and Mateu (2019) is outlined. While very
recent, it has already revealed itself very useful to model phenomena that are likely
to present a cyclic pattern. It assumes that primary events occur as an effect of the
background intensity, while secondary events are associated with the self-excitation
effect. There are sound motivations that justify its utilization in the context of
road accident dynamics, e.g.: excitation may occur when a driver, reacting to the
disruption of one accident, triggers a subsequent accident upstream of the first one.
The proposed framework is tested on two original applications on two original sets of
data: the first one, somewhat preliminary, involves the modeling and analysis of road
accidents that occurred on the urban road network of Rome, in Italy; the second is
instead a conclusive analysis recently published in (Kalair et al., 2020), conducted
on a collection of road accidents occurred on the M25 London Orbital, in the United
Kingdom. Adaptations of the original methodology to the road accident setting were
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deemed necessary in both cases to consider specific features of car accidents and
the geometry of the underlying space. The final results permit a fruitful interpre-
tation of the temporal and spatial background that detects the typical commuting
behavior in the Roman and Londoners communities. The self-excitation component
appears to have slightly different intensities in the two contexts, suggesting excitation
mechanisms that vary between urban networks and motorways.

Finally, the sixth chapter summarizes all the main passages in the thesis, high-
lighting the previous chapters’ original contributions. It also tries to summarize
a take-home message about statistical modeling’s fundamental importance as a
scientific tool to formulate and verify hypotheses that must not be discouraged by
new challenges and technological advancements.
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Chapter 1

Motivation and introduction

Statistics is the discipline that
concerns the collection, organization,
analysis, interpretation and
presentation of data

Stanford Encyclopedia of Philosophy

The above definition does not put statistics among other sciences but defines it
with a slightly different term: discipline. Generally speaking, science can be defined
as “the study of the world which surround us, pursued for the sake of knowledge and
development” and, if we agree with such definition, statistics cannot be a science by
itself. Indeed, it is a discipline that serves science. It is the language of information,
aimed at extracting relevant features from the messy and noisy data collected during
experimental observations. Statistics is in an ambiguous position with respect to
science. It does not pursue progress and development for its own sake, but it is
powered by scientific and technological progress momentum, which it favors in its
turn. As a matter of fact, advancements in the statistical field are driven by the
scientific and technological evolution in other fields, which pose statisticians in front
of new challenges and obstacles to tackle mainly for the sake of the specific problem
at hand. This is, somehow, the luck and disgrace of statistics: it will persist and
evolve with sciences, but it is doomed to adapt to other sciences’ needs, having only
partial control over its development directions.

We may say that all the statistical problems and questions arise from data:
their nature, their structure, and their complexity. Therefore, if the data collection
tools evolve, statistical methods must evolve in order to keep up the pace with
such changes. Recent decades have seen a rapid technological development of
tracking and monitoring devices (i.e. smartwatch, smartphones), remote sensing
technologies (i.e. satellite measurements), and geographic information systems (i.e.
GPS, GLONASS). This caused a surge of real-time data of all sorts, recorded at
high frequency over large time windows and usually accompanied by geographical
information. With great information come great responsibilities, and statistical
modeling has an obligation to exploit this massive amount of available information
and account for the proper evolution of phenomena over space and time. The study
of such data is the subject of spatial statistics, which tries indeed to take into
account temporal and spatial structure in the observed patterns (and verify its
presence, whenever possible). However, while spatial statistics is not a recent topic,
the high-cost of collecting temporal and spatial data in older times made it a niche
sector dedicated to small ad-hoc studies in the environmental and biological fields.
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Methods developed in those contexts were particular to their application sectors.
They were never thought to deal with the uncontrolled form and large size of the
currently available spatio-temporal data-sets.

1.1 Spatial statistics
Spatial Statistics is the group of statistical tools and techniques devoted to the

study of the spatial distribution of the data in order to get more insights about their
structural behavior. The spatial or spatio-temporal location may either be of intrinsic
interest or just contribute directly to the definition of a suitable stochastic model
for the phenomenon under analysis. Eventually, it provides a better understanding
and explanation of the data generative process and nature and it aims at improving
the prediction accuracy of the outcome of interest at unobserved locations.

From a practical point of view, spatial modeling considers any phenomena
evolving over a space as the realization of a stochastic process in the same space. It
assumes that the process components are marginally dependent either because of
the mutual influence of one on each other and/or because of how the location itself
affects the outcome. The literature related to spatial methods is relatively recent but
considerably vast, being every possible spatial application of its own kind according
to its requirements and peculiarities. For instance, a different type of outcome
and/or spatial structure may require utterly different modeling tools. There are also
multiple kinds of different dependence structures that inevitably affect the underlying
probabilistic assumptions. The challenge of building a meaningful model for all the
spatial contexts, also including probabilistically valid and statistically manageable
dependence structures, has been tackled from different points of view and produced
a great variety of approaches, with mixed fortunes. An extensive review of methods
belonging to different perspectives can be found in Gelfand et al. (2010), but other
complete and approach-specific accounting of spatial statistics are available in Wahba
(1990); Stein (2012); Lawson (2013); Banerjee et al. (2014); Cressie (1993); Cressie
and Wikle (2015). When talking about spatial statistics one is naturally inclined
to think of the canonical bi-dimensional sub-spaces of R2. However, computation
difficulties aside, theory and methods are usually introduced and stand valid for any
euclidean subspace D ∈ Rd, with d ∈ N. From a purely geometric and mathematical
perspective, this may also include a time domain. Indeed, the temporal dimensions
is a just a peculiar case of uni-dimensional space T ∈ R characterized by an ordered
structure (i.e. there is a before and an after). While the study of phenomena evolving
along time and their modeling through temporal processes has its roots in the older
and well-established literature of time series and signal processing (Kay (1993),
Brillinger (2001)), they can also be considered in the context of spatial statistics,
which insert those in a general and consistent framework. From a phenomenological
and hence modeling point of view, specific care must be taken when dealing with
time together with space.

In the sequel, we follow Gelfand et al. (2010) and provide a historical ex-cursus
of the milestones that led to the formation of Spatial Statistics.

1.1.1 A historical introduction
One of the earliest attempts to keep into account the structure of the space on

which a phenomenon is taking place can be dated back to the early geometrical
probability literature. The most famous example of this kind is probably the Buffon’s
Needle, named after the Comte de Buffon (1707-1788). The problem supposes that
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a needle of length x is thrown at random over a table marked by parallel lines at
distance d > x. We would like to derive the probability that the needle crosses
one of the parallel lines as a function of d. In order to provide an answer to this
question, we shall first define what we mean by at random. One intuitive definition
would be that a pre-specified point of the needle (e.g. the needle center) falls at a
random uniformly distributed distance on (0, d/2) from the closest parallel line, and
the acute angle formed by the needle and the same line should be as well uniformly
distributed but on (0, π/2). However, this approach ignores what happens near
the edges of the table, whilst remaining valid only for an infinite size surface. A
proper spatial approach would require appropriate correction for the table geometry
and, if sticking to the infinite size assumption, shall provide a valid justification
and/or physical meaning to the experiment. The mathematical resolution to all
facets of this problem lies in the theory of Point Processes, an extensive review
of which can be found in Daley and Vere-Jones (2003) and Daley and Vere-Jones
(2007). It provides stochastic models for observed point patterns (i.e. locations
of events randomly distributed over space) and the necessity to take into account
the spatial structure of the underlying space is intrinsic to it. An example of point
process model is the Poisson process (perhaps the most common and widely used),
originally defined along time, and later extended to the more general spatial context
(dimension d > 1). According to Gelfand et al. (2010), the first introduction of such
process dates back to 1858, when Rudolf Causius needed to calculate the mean free
path of a molecule in a volume of gas in order to defend from criticism the then new
molecular theory of heat (Peter Guttorop, personal communication). However, the
birth of a coherent framework for analyzing statistically spatial patterns had to wait
more than one century. It was 1977 when Brian Ripley’s paper "Modeling spatial
patterns"(Ripley, 1977) was published. For more recent reviews of the statistical
analysis of spatial point patterns, the reader is referred to Moller and Waagepetersen
(2003); Illian et al. (2008); Diggle (2013).

In order to find the first spatial considerations in terms of location-specific
effects on the outcome of interest, we need to fast-forward to the twentieth century.
Between 1919 and 1933 R.A. Fisher was employed at Rothamsted Experimental
station in Hertforshire, England, and was trying to develop an effective and coherent
methodology for the analysis of data from agricultural field. In his seminal work
(included in the collection Fisher et al. (1960)) he describes how he was looking for a
model that could well-represent the data resulting from a uniformity trial conducted
at Rothamsted and reported in Mercer and Hall (1911). The experiment consisted
of 50 observations referred to the yield of wheat grain from rectangular 3.3× 2.59
meters areas, arranged over a rectangular region in 20 rows and 25 columns (see
Figure 1.1). Being all the yields from the same sown, variations among the 500
records were presumably due to spatial variations in the soil environment (e.g. soil
fertility, slope, etc.). In the first instance, it could sound reasonable to assume that
such variations were stochastic by nature. A naive modeling attempt could entail
the inclusion of random effects:

Yij = µ+ Zij , i = 1, . . . , 20, j = 1, . . . , 25,

where µ is the hypothetical population mean yield, i and j denote rows and columns,
and the Zij are independent, zero-mean random perturbations. However, from
Figure 1.1, it is evident how near-neighboring rectangles are likely to give similar
yields and thus show what we would today define as a dependence pattern. Fisher
himself noted this difficulty and commented on "the widely verified fact that patches
in close proximity are commonly more alike, as judged by the yield of crops, than
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Figure 1.1. Data from a wheat uniformity trial reported in Mercer and Hall (1911). Each
square represents a rectangular area of dimension 3.30× 2.59 meters. Squares are coded
to show the yield of wheat grain from each plot.

those which are farther apart". In order to overcome the distorting influence of an
extraneous and unknown source of variability, Fisher advocated the use of blocking
as a fundamental design principle. In practice, the study region was to be divided in
k = 1, . . . ,K portions (containing more than one rectangle) in which the contained
rectangles were assumed to partially share a common deviation from the population
mean. Such model can be expressed as follows:

Yij = µ+ βkij + Zij , ∀i, j,

where the βk’s are constrained to sum to zero and represent the amount by which
each portion deviates from the population mean, while k(i,j) links each rectangle
(i, j) to the portion it belongs to. It sounded reasonable to define blocks as groups
of contiguous arrays, and Fisher himself affirmed that "it is therefore a safe rule to
make the blocks as compact as possible"(Fisher et al. (1960), p.66). In this sentence,
Fisher is implying the existence of a spatial effect that varies systematically over the
study region and that, in particular, is assumed to be piece-wise constant within
blocks. This is the first documented example of trying to acknowledge spatial
covariates with the special role of driving similarity, but as in all revolutionary
scientific developments, it does not come alone but is soon followed by others.

Some years later Papadakis (1937) suggests that each yield should be adjusted
to take into account the average yield of neighboring rectangles. This is also a form
of covariate adjustment, and in some sense, it is a dynamical version of blocking. In
a modern interpretation it can be viewed as a conditional model for the plot yield
Yij , given the average yield ȲN(i,j) over rectangles judged to be neighbors of (i, j):

Yij | {Ykl : (k, l) 6= (i, j)} = µ+ β · (ȲN(i,j) − µ) + Zij , ∀i, j. (1.1.1)
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This model is a primitive example of the more famous Besag’s automodels, where
spatially lagged values of the observed variable itself (or combinations/transformation
of these) were treated as explanatory variables, and that nowadays would be included
in the larger context of Gaussian Markov Random Field (Rue and Held, 2005). To
be accurate, the first example of formalization in a coherent e complete framework
in the study of data such the ones in Figure 1.1 according to this logic dates back to
Dobruschin (1968). However, it is only With Besag (1974) that this specific branch
gained a popularity and a dignity of its own, and is nowadays defined as the study
of lattice systems.

At the beginning of the 20-th century, also W.F. Gosset was thinking about the
problem of spatial correlation, but from a different perspective. He was pursuing
the determination of a general model-based solution and in a letter to Karl Pearson
in December 1910 he writes: "Now, in general the correlation weakens as the unit of
time or space grows larger and I can’t help thinking that it would be a great thing to
work-out the law according to which the correlation is likely to weaken with increase
of unit"(Pearson et al., 1990). This is the first statistical approach to the first law of
geography, decades later made famous by W.Tobler with the statement "everything
is related to everything else, but near things are more related than distant things.".
Differently from Fisher, Gosset was intrinsically considering a continuous domain
and the seeds for the definition of spatial covariance function lie in his question.
Formalizing it in probabilistic terms, he is looking for a law f(·) that would regulate
the covariance between any two realizations of a stochastic process Y (·) at different
locations x and y:

Cov [Y (x), Y (y)] = f(||x− y||)),
where || · || denotes a measure of distance. It is now established that looking for
some natural, immanent, and unchangeable law of this kind is simply impossible.
However, it is possible to define a parsimonious class of models able to appropriately
account for these continuous spatial variations and approximate reality to the extent
of letting researchers reach their inferential goals. Given the complicated nature of
the problem, two very commonly used working assumptions are that the process
Z(·) is Gaussian and that, given the mean function, it is also stationary over the
domain of interest. This last assumption allows specifying the covariance just as the
product of a scalar parameter σ2 and a function of the distance between two points
ρ(·):

Cov [Z(x), Z(y)] = σ2 · ρ(||x− y||),
where σ2 = V[Z(x)] = V[Z(y)] and ρ(||x− y||) = Corr [Z(x), Z(y)]. This idea was
not fully developed until it was independently applied by Matérn (1960) on forestry
data and by Krige (1951) in mining engineering. The independent adoption of this
approach in such unrelated and distant fields was the first hint for the revolutionary
extent of this new modeling framework.

1.2 Content of the thesis
The brief historical introduction provided above has recognized, in a nutshell,

three major branches of statistics: spatial point patterns, discrete spatial variations
and continuous spatial variations. These three branches inevitably share a lot
among themselves from a theoretical point of view. However, the (sometimes large)
difference in terms of tools and methods applicable in their separate contexts and
the great variety of different applications and approaches existing in each group,
provide each of these a dignity of its own.
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During the three years of my Ph.D. program, I had the chance to apply and
produce original work in both the context of continuous spatial variations and spatial
point patterns, while only more recently I also worked on discrete spatial variations1.
Therefore, in this dissertation, I will limit the discussion to the first two areas and,
within these, only to the aspects I consider of main importance for understanding
the key passages and results of Alaimo Di Loro et al. (2021) and Kalair et al. (2020).

Chapter 2 provides a brief introduction to the problem of modeling spatial
variations over continuous domains, highlighting both theoretical and practical
motivations on which all modeling attempts in this area are based. This Chapter
only scratches the surface of the various possible methods to model continuous
data observed over a continuous domain. Nevertheless, it provides context and
outlines the most relevant passages for understanding the following Chapter. In
particular, Section 2.2 outlines the principles of Spline Regression (Wahba, 1990;
Hastie et al., 2017), with references to the spatial context; Section 2.3 concerns
Bayesian Hierarchical modeling in the Geo-Statistical setting (Gelfand et al., 2010;
Banerjee et al., 2014). Section 2.4 provides a brief consideration on some possible
extensions of spatial techniques to the spatio-temporal setting. After that, Section
2.5 introduces the issues associated with the analysis of Big spatial data, with a focus
on the Directed Acyclic Graph based approximation known as the Nearest Neighbor
Gaussian Process method for overcoming all the associated computational problems
(Datta et al., 2016a). Finally, Chapter 3 shows a novel application published in the
pre-print Alaimo Di Loro et al. (2021) and currently under review. In this, both
spline regression and NNGP are used to model physical activity level data collected
through modern accelerometer and GPS devices.

As for Chapter 2 in the case of spatial variations, Chapter 4 provides a brief
introduction to the problem of modeling spatial point patterns, highlighting both
theoretical and practical motivations on which all modeling attempts in this area are
based upon. The intention is not to give a complete ex-cursus of all the currently
known and adopted methodologies, but the discussion will be limited to the most
relevant for proper understanding of the following Chapter. Section 4.2 introduces
the general properties of the widely used Poisson Process, including the most typical
variations on it. Section 4.3 is dedicated entirely to the Hawkes Process (Hawkes,
1971b), a particular kind of self-exciting point process that is revealing itself successful
in more and more applications during recent years (Laub et al., 2015; Reinhart
et al., 2018). Finally, Chapter 5 introduces the semi-parametric spatio-temporal
Hawkes model with periodic background recently proposed by Zhuang and Mateu
(2019) for the analysis of crime data. In particular, Section 5.2 and Section 5.3
include two original applications to road accidents data. The first is a work started
during the 2019 LML Summer School under the supervision of Prof. J. Zhuang
and today is still a work in progress; it presents some important passages which I
considered valuable enough to be included in this dissertation. The latter is the
result of a fruitful collaboration with two researchers from University of Warwick
and the London Mathemathical Laboratory, K. Kalair and C. Connaughton, recently
published in Kalair et al. (2020).

1(Mingione et al., 2021)
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Chapter 2

Continuous spatial variations

This chapter will discuss some statistical approaches commonly used to deal with
data that comprise information about their spatial location. It focuses on the case
when precise knowledge of the location (spatial coordinates and/or time instant)
within a given domain of interest are available and fixed. In contrast, the realizations
of the outcome of interest at each location are random. Given the observations at
the observed set of locations, we would make inference on the parameters regulating
the underlying dependence structure and perform kriging at arbitrary locations
(from Krige (1951)), namely provide predictions at unsampled location for the
process of interest. Section 2.1 provides the basics ideas and ingredients on the
analysis of spatial stochastic processes, while Sections 2.2 and 2.3 describe Spline
Regression and Bayesian Hierarchical Modeling respectively. Finally, Section 2.5
introduces the big n problem for the estimation of models accounting for dependent
observations. Different strategies are listed, but the section entirely focuses on the
Directed Acyclic Graph (DAG) based approximation known as Nearest Neighbor
Gaussian Process (NNGP) (Datta et al., 2016a). An analogous strategy is indeed
used in the application of Chapter 3.

2.1 Analysis of spatial stochastic processes
First of all, some basic notation pervading the whole chapter is introduced. Let

us denote the domain of interest of the analysis as D ⊆ Rd, with d ∈ N+, and the set
of observed locations as S = {si}ni=1 ⊆ D. The vector of observed values is identified
by y = [yi]ni=1, where the i-th component yi ∈ Y corresponds to the outcome value
observed at the i-th location.

In approaching the analysis of a spatial dataset with the tools of spatial statistics,
we are inevitably dropping the hypothesis of independence of the outcomes. From now
on, we will see y as the finite realization of a spatial stochastic process Y (·, ·) : S → Y ,
in the sense that:

y = Y (S, ω), with
Y (S, ω) = [Y (s1, ω), . . . , Y (sn, ω)]> , ω ∈ Ω.

(2.1.1)

In loose terms, the observed vector of values y is the value assumed by this process
over the set S at the realization of a specific random trajectory ω. If ω is not fixed,
the vector Y (S, ·) is not determined, but it is a n−variate random vector with a
(possibly) well-defined joint distribution. Under desirable conditions, that we will
present hereafter, the multivariate distribution of Y (S, ·) reflects the spatial structure
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of the process at any other set of locations U ∈ D. Hence, our final objective is
to draw inferences on this general structure exploiting the information from the
realized trajectory ω that produced the observed set of data. In the sequel, for ease
of notation, the dependence of the realization on the trajectory ω will be omitted:
we will use y to denote the observed values over S, while Y (S) = Y (S, ·) to denote
the process at S as a random vector.

The distribution of the spatial stochastic process Y (·) is defined through the
specification of all its finite-dimensional joint distributions:

FY (·)(y1, . . . , yl; u1, . . . ,ul) = P(Y (u1) < y1, · · · , Y (ul) < yl), (2.1.2)

for any l and collection of locations U = {ui}li=1 in D. In particular, the process
is called strictly stationary if the family of joint finite dimensional distributions is
invariant under spatial shifts, i.e.

FY (·)(y1, . . . , yl; u1 + h, . . . ,ul + h) = FY (·)(y1, . . . , yl; u1, . . . ,ul), (2.1.3)

with h ∈ Rd. The stationarity property is of the utmost importance since it allows
to generalize information gathered from the finite set of observed locations S to any
other set of location U ⊂ D. Therefore, we do need a valid definition of (2.1.2), but
for the process to be predictable1 we also need it to be stationary in some sense.

Usually, the analysis of spatial stochastic processes does not encompass the direct
design of this finite-dimensional distribution but it focuses on suitable modeling of
its first and second moment properties. In practice, we model uniquely the mean
and covariance terms of the outcome at any finite set of locations U :

µ(U) = E
[
[Y (u1), . . . , Y (ul)]>

]
Σ(U) = Cov

[
[Y (u1), . . . , Y (ul)]>

]
.

(2.1.4)

Generally speaking, these two terms cannot be modeled independently under the most
of valid probability distributions and their arbitrary specification is not guaranteed to
produce a probabilistically valid model. Indeed, the Kolmogorov existence theorem
states that (2.1.2) is valid if and only if all the finite-dimensional joint distributions
are consistent under reordering of the sites. While such requirement is somewhat
intuitive, the formal proof is quite burdensome (refer to Billingsley (2008) for
technical details) and general sufficient conditions on (2.1.4) are not straightforward
to derive.

Nevertheless, an important special case is that of a Gaussian process (GP).
For Gaussian processes the finite dimensional distributions (2.1.2) are multivariate
Normal and thus characterized entirely and independently by their mean and
covariance terms. This identifies a straightforward criteria to define a strict stationary
Gaussian process. Indeed, strict stationarity is equivalent to weak or second order
stationarity:

E [Y (u)] = E [Y (u+ h)] = µ

Cov [Y (u), Y (u+ h)] = Cov [Y (0), Y (h)] = c(h),

where u ∈ D is a generic location and the function c(·) : Rd → R is called the
covariance function. Furthermore, the Kolmogorov condition is easy to verify in

1The way the process changes does not vary so that the evolution of the process can be modeled
and forecasted at unobserved locations
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the Gaussian case as it holds if and only if the covariance matrices corresponding
to each finite set are always non-negative definite. For these two reasons, and also
the great flexibility and easiness of use of the Gaussian distribution, Gaussianity
is a very common working assumptions in the analysis of spatial processes. The
non-Gaussian case is considerably more complex and when the nature of the outcome
of interest is incompatible with such assumption, one generally resorts to hierarchical
specifications depending on latent Gaussian components (Banerjee et al., 2014).

In practice, the validity of a Gaussian process depends uniquely on the suitable
specification of the covariance function c(·). With suitable we mean that for any
finite collection of sites the resulting covariance matrix:

Cov
[
[Y (u1), · · · , Y (ul)]>

]
=


c(0) c(u1 − u2) · · · c(u1 − ul)

c(u2 − u1) c(0) · · · c(u2 − ul)
...

... . . . ...
c(ul − u1) c(ul − u2) · · · c(0)

 (2.1.5)

shall verify Kolmogorov consistency, thus be a non-negative definite matrix. This
condition is equivalent to asking for the covariance function to be positive definite.
By Bochner’s theorem (Bochner (1933), Bochner (2005)) a real-valued continuous
function c(·) is positive definite if and only if it is the Fourier transform of a
symmetric, non-negative measure F on Rd. Assuming that the spectral measure has
a Lebesgue density f (i.e. spectral density) this reduces to:

c(h) =
∫

Rd
exp

(
ih>x

)
dF (x), (2.1.6)

for any h ∈ Rd and any measure F . A particular sub-class of second-order stationary
processes is when the covariance between different locations depends on the spatial
separation h only through its euclidean length ||h|| (distance between locations):

Cov [u,u+ h] = c(h) = σ2 · ρ(||h||), h ∈ Rd. (2.1.7)

The right-hand decomposition sees it as the product of a correlation function ρ(·)
such that ρ(0) = 1, and a multiplicative factor σ2 that controls for the general process
dispersion and allows conversion from correlation to covariance. Such processes and
the corresponding covariance functions are called isotropic, and compose the most
commonly used class of spatial processes in the literature.

In general, given the absence of a simple sufficient condition, defining a valid
covariance function in the general space is not straightforward at all. Theoretically
speaking, it is always possible to obtain one by exploiting the definition in Equation
(2.1.6) and deriving the second-order properties of the convolution of independent
valid processes; however, there are only rare cases in which analytical calculations
are forgiving. Nevertheless, different parametric families of isotropic covariance
functions have been proved to be valid (i.e. respect (2.1.5)) in the literature. Among
these we find: the Matérn class, firstly introduced in Matérn (1960); the powered
exponential family (Diggle et al., 1998); the Cauchy family (Gneiting, 2002) and
others. More details on covariance functions and the Matérn class will be provided
in Section 2.1.2, where the text focuses on the basics of the geo-statistical approach.

How can we control for both the first and second-order structure while preserving
the validity of our specification? A very convenient representation of any stochastic
process Y (·), that is also very common in practice, is the following:

Y (u) = µ(u) + ε(u), (2.1.8)
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where µ(u) = E [Y (u)] ∈ R is a deterministic and smooth mean function, while
ε(u) ∈ R is a stochastic residual term. Let us stress the point that the decomposition
(2.1.8) does not impose any kind of hypotheses on the process. µ(·) is a also called
spatial trend and it characterizes the global structure of the process, while ε(·) is
the spatial residual process and it represents local variations about the mean and
characterizes its local structure. In a standard modeling framework, we would wish for
the spatial trend to disentangle information from pure white noise, so that the spatial
residual terms are statistically independent. But the spatial trend term, however
complicated and sophisticated its expression, may not be able to properly capture
small-scale variations while accounting for the global structure without incorporating
noise. Hence, one can expect the residual terms to violate the usual independence
assumption and exhibit similar values at locations close together in space. When
this is the case, it is essential to allow for positive statistical dependence between
values of the spatial residual process at different locations, supposedly decreasing
with distance. Considering that this term is first-order stationary by definition (it
has 0 mean), weak stationarity (which is also strict in the Gaussian case) is preserved
if the original Y (·) satisfies second-order stationarity.

Therefore, the final objective of spatial modeling boils down to estimating the
expression of these two terms in order to understand and predict the behavior
of the original process Y (·) at arbitrary locations under optimal conditions (e.g.
in terms of Mean-Squared-Error (MSE)). From a practical view-point, these two
terms are convoluted and indistinguishable a-priori, but (under suitable hypotheses)
their intrinsic structure can be estimated from the observed vector y. The general
modeling strategy aims at identifying the function µ(·) in such a way that the resulting
residual process ε(·) is indistinguishable from (potentially correlated) random noise.
However, there is an inner circularity in the estimation of these first-order and second-
order structures: in order to get one, we need to know the other. Fixing a suitable
parametric (or semi-parametric) form of these two terms, there are different strategies
that allow for the contemporary estimation of both components. Nevertheless, if we
want to avoid a grueling and potentially infinite model comparison process, there is
still the issue of properly defining these forms in advance.

The typical spatial statistics analysis flow usually starts from the estimation of
the simplest possible first-order structure, which may be the naive general average
or a slightly more sophisticated 1-st degree spatial trend:

µ(S) = Sβ ← Sβ̂ = µ̂(S), (2.1.9)

where S is the n×d matrix of observed locations and β is a d×1 vector of coefficients
with estimate β̂. If the resulting residuals:

ê(S) = ê = y − µ̂(S) (2.1.10)

do not respect independence but manifest a spatial correlation pattern, then there
is a decision to make. Either a more complicated forms for the trend term µ(·)
is considered, hoping to reach independence of residuals without capturing noise
together with information; or the modeling of the dependence pattern in the residual
process is pursued, introducing a parametric expression for the covariance function
c(·). These two approaches can be seen as alternative (and usually provide similar
results), but can also be combined in a more exhaustive modeling framework2. We
refer to the former as spatial interpolation and to its parsimonious implementation
as spatial smoothing; a brief introduction to it is provided in Section 2.1.1 while

2Identifiability issues may arise and must be averted
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Section 2.2 focuses specifically on its implementation via Spline Regression. The
latter has its roots in the original geo-statistical literature and we briefly describe its
basics in Section 2.1.2; a more thorough description of the geo-statistical modeling
framework in the context of Bayesian hierarchical modeling is provided in Section
2.3.

2.1.1 Spatial Interpolation and Smoothing
One possible approach to explain changes in spatial variations considers these

as the (potentially noisy) partial observations of an unknown deterministic trend
function. The underlying assumption is that the residuals shall behave as a stationary
and independent process once the true expression of µ(·) is known. Potentially, if
there was no unobserved spatial heterogeneity, then this effect could be completely
explained by the available covariates (see land-use regression (Ryan and LeMasters,
2007; Hoek et al., 2008)). On the other hand, this is practically never the case in
real applications.

Let us initially assume the process of interest is observed without error; we are
practically asserting that the observed outcome (yi, si), i = 1, . . . , n is equal to the
value assumed by a true but unknown continuous function µ(·) : D → R at the same
location set:

y = µ(S) = [µ(s1), · · · , µ(sn)]> .
To our end, the surface µ(·) represents the effect of unobserved spatially varying
factors that affect our outcome, and therefore induces dependence between obser-
vations close in space (these factors vary continuously over D). In general, this
function may also depend on other possibly observed covariates X(·) : D → Rp

(either geo-referenced or observation specific), but for ease of explanation and without
any loss of generality, we now consider dependence upon location u ∈ D only. In this
setting, the final goal is to estimate a function µ̂(·) interpolating the observed values
at the observed locations but defined on the whole domain D. To this end, the choice
of the building blocks for the interpolating function are of the utmost importance,
since they will determine the function behavior at all unsampled locations. The
estimated function shall be continuous and, desirably, satisfies smoothness up to
some degree3. For instance, as shown in Equation (2.1.9), the analysis usually
starts from a first-order polynomial fit: this is rarely flexible enough for achieving
interpolation and capturing any small-scale variation. Nevertheless, starting from
there, one may consider the use of a higher order polynomial in the coordinates:

µ(u) ← f(u) = Poly (u, q)βq, ∀u ∈ D, (2.1.11)

where q is the order of the polynomial and Poly (u, q) is the row-vector containing
the corresponding spatial coordinates expansion. Its estimation can be tackled
as a standard linear regression problem, and fitting to the observations y can be
straightforwardly obtained through Ordinary Least Squares (OLS). The estimated
function f̂(·) will eventually achieve interpolation for large enough q. However, this
approach is not efficient from different points of views. First of all, polynomial terms
are usually highly correlated, which can jeopardize the proper estimation of the
coefficients. Secondly, perfect interpolation is likely to be achieved only for values
of q such that the number of polynomial terms q × d (and hence of coefficients to

3The resulting function does not vary wildly but preserves a soft curvature, which may be
quantified in terms of its second-order properties (e.g. second derivative in one-dimensions, Hessian
in two-dimensions)
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estimate) is close to n, making our modeling efforts of limited utility, at the very
least. Similar alternatives consider the inclusion of other non-linear terms (e.g. sines
and cosines with unknown phase, amplitude and period etc.) for improving on the
function flexibility, but the larger the dimension d the least practical such solutions
turn out to be.

This interpolation approach’s significant limitation is that it is trying to define a
global function with the requirement of achieving a practically perfect local adaptation,
which is a particularly tough task for parametric forms. Alternatively, one may
consider adopting non-parametric mean functions, whose definition depends on
the observed sample’s local behavior (Lam, 1983). Among the non-parametric
alternatives we find Kernel smoothing models (Hastie et al., 2017), which define
the function at each location u ∈ D as a weighted combination of the values in the
observed set:

f̂(u) = w(u)>y∑n
i=1wi(u) . (2.1.12)

w(u) is a n× 1 column vector whose i−th element wi(u) is the contribution of the
i−th observation yi = Y (si) to the value of the interpolating function at location u.
Intuitively, points closer to u shall have more importance. Thus, weights are usually
positive decreasing functions of the distance between the location of interest u and
the interpolation set s:

wi(u) = w(||si − u||), ∀ i = 1, . . . , n,

where w(·) : R+ → R+ and w′(·) ≥ 0. If w(·) is chosen such that the weight grows
to infinity as the distance approaches 0, then we achieve exact interpolation at the
observed location. This is the case of the well-known Inverse Distance Weighting
estimator (Shepard, 1968), part of the larger class of Inverse Power Function kernel
smoothers, but for instance it does not hold for the Negative Exponential Function
weights. They both provide continuous functions in the end, but the former achieves
exact interpolation at the cost of sacrificing smoothness (it is usually very peaked
around observed locations), while the latter generally produces surfaces which are
smoother than the data itself.

An alternative approach stems from Finite Element Methods (FEM) in geometric
domains (Zienkiewicz and Taylor, 1989), and started in the field of engineering under
a completely algorithmic perspective. Loosely speaking, it consist of partitioning the
domain of interest into polygonal sub-domains, usually with all the observed points
as vertices. These partitions are called meshes and, in the case of 2-D problems,
usually have triangular or quadrilateral shapes, while they may well be segments
in 1-dimensional problems. For instance, a very popular method for the generation
of triangular meshes on spatial domains is the Delaunay Triangulation (Shewchuk,
1996; Toth et al., 2017). Interpolation at any location within the sub-domains is
obtained as a combination of the vertices values through suitable shape functions
(linear, quadratic, polynomials etc.), specifically designed for the mesh geometric
shape so to guarantee interpolation and continuity at the bounds.

As for kernel smoothing approaches, there is not any parameter estimation
process at play, but only ad-hoc defined combinations of the observed data. A major
drawback of such completely non-parametric approaches lies in their algorithmic
nature: the chosen method (e.g. weighting function, mesh, shape function, etc.)
determines uniquely the resulting interpolator, without going through any kind of
estimation process. This creates several issues for uncertainty estimation of the
interpolated values, which will not be discussed here for the sake of brevity.
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In between the two aforementioned alternatives we find a third way, that consists
of obtaining the expression of a globally defined surface as a parametrized combination
of locally well defined functions. For instance, the global polynomial fit proposed
ad the beginning of this section could be replaced by local-polynomials. These
assume that the local curvature of the mean surface can be well-approximated by a
polynomial of a given order p; the un-sampled location u is then given a restricted
interpolation set I(u) ⊆ S, usually composed of the neighboring observations, so
that the polynomial can be locally estimated through OLS. However, the resulting
function is generally not smooth and is also likely to not be continuous4.

In light of these issues, we seek a semi-parametric procedure that guarantees to
yield a locally adaptable surface not only continuous, but in fact smooth everywhere.
In this sense, a solution is provided by the consideration of suitable basis functions
defined on the whole region of interest D, but with a flexible local behavior. The
combination of its elements through a set of parameters shall guarantee interpolation
while preserving smoothness globally. Similarly to meshes in FEM, the definition
of such bases usually requires the choice of a reference set of points called knots
K = {kj}Kj=1 ∈ D that span the considered domain. Interpolation within sections
identified by the knots is mostly determined by local adaptation, but it also accounts
for the behaviour in neighboring sections in order to retain continuity and smoothness.
The finer the grid of knots, the more locally flexible the resulting function. For
instance, if exact interpolation is the target, then we can just fix ki ≡ si, ∀ i. The
mean function is then approximated as:

µ(u)← f(u) =
K∗∑
j=1

φj · ψj(u) = ψ(u)>φ,

where ψj(·) is the j − th component of the basis, φj is the corresponding coefficient
and K∗ is the number of components (depending on the number of knots but also on
the chosen basis decomposition). Interpolation can be achieved simply by estimating
the vector of coefficients φ so that:

y = Ψ(S) φ̂ ⇐⇒ φ̂ = Ψ(S)−1y.

Very common choices are radial basis functions (Buhmann, 2003), such as standard
multivariate Normal densities and the inverse multi-quadratic functions, and spline
basis models (Bde Boor, 2001). We will not say more about the former, while we
will spend some few words on the latter. As a matter of fact, while any choice of
basis may sound arbitrary to some extent, spline basis are so-called because they
produce spline interpolation, which is very appealing for its theoretical properties.
Indeed, it is not only able to achieve interpolation while ensuring continuity and
smoothness, but it is also proved to provide the smoothest function possible given
the assumed structure. Furthermore, it is also proved to have good properties when
observations are assumed to be perturbed with random error:

yi = Y (si) = µ(si) + εi, E [εi] = 0, V [εi] = τ2 ∀ i = 1, . . . , n.

In this case, the final objective is no more exact interpolation of the observations, but
disentanglement of the true underlying function from the random noise perturbing its

4Continuity can be attained if observations in the interpolation set are appropriately weighted
according to their distance from the interpolating point u (local weighted linear interpolation
function).
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observed values: following other authors, we refer to this as spatial smoothing of the
observed process (Green and Silverman, 1993; Hastie et al., 2017). Spline functions
have a prominent role in the spatial smoothing (Eilers and Marx, 1996; Wood, 2003).
Indeed, they are very flexible and reliable, allow for steep local variation without
sacrificing smoothness and also have a very interesting interpretation in terms of
kriging predictors in the geo-statistical settings (Wahba, 1990). A more detailed
discussion about splines will be provided in Section 2.2.

2.1.2 Geo-statistics
Notwithstanding the good properties and flexibility of the chosen deterministic

trend function, it is often unable to describe the spatial variations at all scales. The
resulting fit is often not spatially homogeneous and produces residuals υ̂i = yi−µ(si)
that are spatially correlated. Differently from spatial interpolation, the geo-statistical
approach encompasses the estimation of both the first and second order structure
of the process, with special focus dedicated to the proper identification of the
second-order one. The residual term, initially neglected in Section 2.1.1, becomes
the component of main importance. Without any loss of generality, it is generally
seen as the sum of two additional terms:

Y (u) = µ(u) + ε(u) = µ(u) + η(u) + υ(u), u ∈ D, (2.1.13)

where η(·) is a zero-mean second-order stationary process with covariance function
cη(·) characterizing the spatially dependent component, while υ(·) is an uncorre-
lated random noise with variance τ2 that represents the measurement error. This
representation is known as the nugget effect covariance model, where the resulting
complete covariance function is:

Cov (Y (u), Y (u+ h)) =
{
τ2 + cη(0) h = 0
cη(h) h 6= 0

(2.1.14)

and τ2 is called nugget. The second order stationarity assumption on ε(·) implies
intrinsic stationarity on the residual process (i.e. mean and variance are invariant
to location). This allows us to define unambiguously the variance of the difference
between the error term at two different locations as a function of the spatial separation
h only. The half of this quantity is universally known as the semi-variogram, and it
is computed as:

γ(h) = 1
2 · V [ε(u)− ε(u+ h)] =

= 1
2 (V [ε(u)] + V [ε(u+ h)])− Cov [ε(u), ε(u+ h)] =

=
{

0 h = 0(
τ2 + cη(0)− cη(h)

)
h 6= 0

,

(2.1.15)

where the nugget τ2 > 0 is inducing a discontinuity at the origin.
A stronger but very common assumption, not strictly necessary but important

nonetheless, is the one of second-order isotropy. We already introduced it for
covariance functions in (2.1.7) and it naturally extends to the semi-variogram as:

γ(h) = γ(||h||), h ∈ Rd.
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Figure 2.1. Generic covariance function (on the left) and corresponding semivariogram
(on the right) with nugget τ2 and partial sill σ2 annotated

Isotropy implies that iso-level contours of the semi-variogram (and of the correlation
function) are d-dimensional spheres: all points at the same distance present analogous
correlation and covariance level. This hypothesis sensibly simplifies the analysis of
spatial processes and also looks completely reasonable in terms of spatial dependence
intuition. Nevertheless, many natural phenomena present anisotropic correlation
patterns5 but their discussion is not included in this work (Zimmerman, 1993;
Christakos et al., 2000; Anderes and Chatterjee, 2009). So, even if isotropy is not a
necessary condition for pursuing estimation through the geo-statistical approach, in
the sequel it will always be assumed to hold.

Without any loss of generality, denoting with h = ||h|| and referring to the same
notation used in (2.1.7), we can express any covariance function as c(h) = σ2 · ρ(h),
where ρ(·) is a correlation function such that ρ(0) = 1 and ρ(h) h→∞→ = 0. Thus, the
semi-variogram expression becomes:

γ (h) =
{

0 h = 0
τ2 + σ2 (1− ρ(h)) h 6= 0 , (2.1.16)

where τ2+σ2 is the effective sill (sum of nugget and partial sill of the nested structure
c(·)) and is the limiting value of the semi-variogram for h approaching infinity. An
example of isotropic covariance function and the corresponding semivariogram is
graphically represented as a function of the spatial lag h in Figure 2.1, with the sill
and nugget values properly annotated.

The semi-variogram has a key role in the context of geo-statistics. Indeed, the
second order structure of ε(·) is not estimated directly but is derived from the
corresponding estimated semi-variogram. From a practical point of view, the first
step of classical geo-statistics consists of obtaining a provisional estimate of the
mean function. Typically, it is a constant term or a linear function of the coordinates
(as in Equation (2.1.9)). In principles, nothing precludes from using higher order
polynomials or fancier modeling as the ones introduced in Section 2.1.1, but some
care must be taken in the choice of the trend function. As mentioned in Chapter 1,
we should avoid absorbing too many degrees of freedom in the large scale component

5The most tractable form of anisotropy is geometric anisotropy for which γ(h) = γ
(
h>Ah

) 1
2

where A is a positive definite matrix: in this case iso-level contours are d-dimensional ellipsoids.



2.1 Analysis of spatial stochastic processes 16

to estimate second-order properties. When geo-statistics is at play, small-scale
variations are supposed to be captured by the covariance structure. Thus, it may
be unwise to use trend surfaces that cannot be justified from prior knowledge on
the phenomenon or accurate analysis of the data: the surface trend must capture
large-scale variations only, without adapting to local ones and confounding with the
dependence structure.

Once the provisional estimate of the mean function µ̂p(·) is obtained, we can
compute the residuals at each sampled locations as:

ε̂i = ε̂(si) = Y (si)− µ̂p(si), i = 1, . . . , n.

These residuals are all referred to different locations si, and each pair (ε̂(si), ε̂(sj))
will correspond to a spatial lag sij = ||sj − si||. Partitioning the lag space H =
{u− t : u, t ∈ D} into binsH1, . . . ,HK , we can then compute the so-called empirical
semi-variogram at each bin location as:

γ̂(hk) = 1
2N(Hk)

∑
sij∈Hk

(ε̂(si)− ε̂(sj))2 , k = 1, . . . ,K, (2.1.17)

where hk is a representative of the k-th bin Hk and N(Hk) is the number of residuals’
pairs with lag sij falling into the same bin. Partitioning the lag-space also into angle-
classes leads to polar partitioning, which allows to build omni-directional variograms.
This can be very useful to check for anisotropic patterns in the observed data.
Empirical estimation of the semi-variogram, whilst being pretty practical, is not
devoid of criticism: the binning of the lag-space is quite arbitrary; terms in (2.1.17)
are not independent and this inflates variance; the provisional estimate of the mean
function (on which the residuals depend on) is inevitably biased; generally speaking
(2.1.17) is very sensitive to outliers. The resulting fit is often quite bumpy, and often
fails to be conditional non-positive definite (so that the corresponding covariance
function would be positive definite). Consequently, whilst being a useful tool for
getting an hint of the true underlying second order structure, the empirical semi-
variogram is practically never used as the final estimate of the true semi-variogram.
Typically, a smoother version is obtained by fitting to its values a function with
a pre-specified parametric form γθ(·) : R+ → R+, θ ∈ Θ. Obviously, the chosen
parametric family shall be such that the corresponding covariance function is valid
for any admissible value of θ. This validity transfers onto the semi-variogram through
the following three conditions on γθ(·).

• Vanishing at the origin: γθ(0) = 0.

• Evenness: γθ(−h) = γθ(h).

• Conditional negative definiteness:

a>γ(H)a ≤ 0

whereH is a n×n symmetric matrix of pairwise distances between n locations
and a is a n× 1 vector such that

∑n
i=1 ai = 0.

Assuming also isotropy and adding the intuitive requirement of positive monotonicity
(correlation decays with distance and values at distant locations tend to be less alike
than values at close ones), there is a large variety of models which satisfies all these
criteria. Recalling from (2.1.16) that γθ(h) = τ2 + σ2 (1− ρθ(h)) for h > 0 (it must
be equal to 0 for h = 0), we here introduce 4 of the most widely used models in
terms of the corresponding correlation function ρθ(·).
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• Exponential. Correlation decreases exponentially towards zero as:

ρθ(h) = exp {−ρ · h} , h > 0,

where ρ is a positive parameter.

• Gaussian (squared exponential). Correlation decreases towards zero with
a Gaussian behavior:

ρθ(h) = exp
{
−ρ2 · h2

}
, h > 0,

where ρ is a positive parameter.

• Matèrn. Firstly introduced in Matérn (1960), it is probably the most general
expression of a correlation function. It has the form:

ρθ(h) = 21−ν

Γ(ν) ·
(√

2ν · h
ρ

)
· Kν

(√
2ν · h

ρ

)
, h > 0,

where Γ(·) is the gamma function, ρ and ν are positive parameters and Kν is
the modified Bessel function of second type. The parameter ν is a smoothness
parameters, in the sense that the corresponding process ism times mean-square
differentiable only for m < ν. Exponential and Gaussian are particular cases
of this for ν = 1/2 and ν →∞, respectively.

• Spherical. Correlation decreases up to some range ρ and vanishes after:

ρθ(h) =
{

1− 3·h
2·ρ + h3

2·ρ3 0 < h ≤ ρ
0 h > ρ

,

where φ is a positive parameter.

A very relevant attribute of any variogram, and by then of any correlation function,
is the so-called range r. It is defined as the smallest value of the lag h for which the
variogram reaches the sill τ2 + σ2 (and the correlation function reaches 0). In case
it is only reached in the limit, we can still define the practical range r̃ as that lag for
which the 95% of (τ2 + σ2) is reached. In all the introduced families, the parameter
ρ determines the range. We have r̃ = 1

3ρ for the Exponential family; r̃ = 1√
3ρ for the

Gaussian family; r = ρ for the spherical family. In the Matérn model the practical
range r̃ depends also on the smoothness parameter ν. However, there is no general
and simple analytical way to express it, and it is usually computed numerically.
A graphical representation of the semi-variograms and corresponding correlation
functions of the four proposed models (with typical nugget and sill) is shown in
Figure 2.2.

Different procedures allow fitting a parametric family to the empirical variogram,
obtaining estimates θ̂ of the whole set of parameters θ (including the nugget τ2 and
sill σ2 + τ2). The most common are Weighted Least Squares, Maximum Likelihood
and Restricted Maximum Likelihood (Mardia and Marshall, 1984; Cressie and Lahiri,
1993; Zhang and Zimmerman, 2005). The choice of the parametric family to fit may
be performed in advance (according to visual inspection of the empirical variogram
or exploiting prior knowledge on the phenomenon) or by comparing the resulting
fit of different alternatives through goodness of fit measures (mean squared error,
likelihood, cross-validation, etc.). Once the parametric estimate γθ̂(·) has been
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Figure 2.2. Correlation functions (on the left) and semi-variograms (on the right) for the
4 proposed models, with common τ2 = 1 and σ2 = 1 and different values of the range
parameter ρ
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obtained, the value of θ̂ determines the shape of the corresponding correlation
function ρθ̂(·), and the nugget and partial sill. Thus, we can get an estimate of the
covariance function of the process:

cY,θ̂(h) =
{
τ̂2 + cη,θ̂(0)
cη,θ̂(h) =

{
τ2 h = 0
σ̂2 · ρθ̂(h) h > 0 ,

and then proceed to the re-estimation of the mean function while keeping into
account the estimated covariance structure. For instance, in a linear regression
setting, cY,θ̂(·) is used to get an estimate of the covariance function at the observed
set of locations S:

Σ(S) ← Σ̂(S) = CY,θ̂(H)
[H]ij = hij = ||sj − si||, si, sj ∈ S, ∀ i, j

where
[
CY,θ̂(H)

]
ij

= cY,θ̂(hij). Denoting Σ̂(S) = Σ̂, we can then use it as a plug-in
estimator for obtaining Generalized Least Square (GLS) estimation of the spatial
trend coefficients:

β̂EGLS = (S>Σ̂S)−1S>Σ̂Y , µ̂EGLS = Sβ̂EGLS

where EGLS means Estimated Generalized Least Squares.
Theoretically, the procedure may be re-iterated by recomputing the residuals,

refitting the variogram and finally re-estimating the mean function until some
convergence criteria is met. However, in practice, such procedure usually stops after
the first estimation.

Once the final mean surface µ̂(·) and covariance structure ĉθ̂(·) have been esti-
mated, kriging may be performed at arbitrary sampled and/or un-sampled locations
according to the model hypothesis.

However, we cannot help but notice how this approach is intrinsically flawed. The
provisional identification of the mean function, which is mainly arbitrary in both the
choice of the mean specification and the estimation technique, impacts the residual
values’ sensibly and thus the resulting variogram behavior, affecting the mean re-
estimation and the final model outcome. We would rather use techniques that allow
for the simultaneous estimation of both the first and second-order structure, looking
for the best joint combination of the two and not conditionally on the provisional
other. In this sense, likelihood-based methods provide us with a viable solution.
These methods adhere to the likelihood principle and can be proved to satisfy certain
optimality properties under mild conditions (see Chapter 4 of Gelfand et al. (2010)).
As usual, the likelihood principle may be tackled both from a frequentist and a
Bayesian approach. The general principles of the hierarchical Bayesian modeling
framework are discussed in Section 2.3.

2.2 Spline regression
In this section, we investigate more deeply the method known as spline regression.

This technique has been developed in the more general framework of functional data
analysis (Ramsay and Silverman, 2007), where interest lies in inferring the unknown,
true, underlying function from noisy observations.
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Let us consider the function f(·) : U → R as the objective of our estimation
problem, where U ⊆ Rp. Even when f(·) is non-linear in its arguments, standard
linear regression modeling would initially represent it as a linear function of these:

f(u) → f̃(u) = u>β, u ∈ U , (2.2.1)

where β is a vector of coefficients to estimate in order to get f̃(·) as the best linear
approximation of to f(·). There is no need for f(·) to be actually linear in order to
justify the linearity assumption, which is in any case a convenient representation for
many reasons: estimation of the coefficients is straightforward in a linear regression
setting; it allows for direct interpretation of the effect of u on f(·); it is avert of
over-fitting issues because of its reduced degrees of freedom.

Nevertheless, in many cases, linearity is so far from reality that it does not provide
a satisfactory approximation, and the need to express f(·) through a non-linear
representation arises. This is particularly true in the case of spatial trends, that
usually present (even steeply) varying behaviour in their domain and for which direct
interpretation of the coordinates coefficients is not of primary interest. Indeed, in
the spatial context, while an accurate estimation and representation of the surface
is key, northing and easting effects are not of interest of their own (they represent
unobserved spatial variability).

In Section 2.1.1 we introduced different methods that allow to move beyond
linearity (parametric, semi-parametric and non-parametric). The core idea behind
spline regression is to move beyond linearity by replacing the vector of arguments
u with M transformations hm(·) : U → R, m = 1, . . . ,M , and stick to the linear
regression model setting in order to perform inference in the augmented space of
input features:

f(u) ← f̃(u) = h(u)>β, u ∈ U , (2.2.2)
where h(u) = [h1(u), . . . , hM (u)].

Therefore, the representation problem reduces to choosing the most suitable set
of function h(·) for the problem at hand. According to reasonable assumptions on
the behavior of f(·), we may want to use basis functions that span the functional
space F to which it belongs. For instance, the Taylor expansions provides a rationale
for the use of polynomials. However, as mentioned in Section 2.1.1, they have
limitations both in theoretical and practical terms: their global nature causes
local adaptation to have potentially large effects on the global behavior and the
typically large correlation between the various terms make standard linear regression
estimation unreliable. In order to overcome these issues, piece-wise polynomials may
be considered; nevertheless, we argued how the resulting approximations are not
guaranteed to satisfy continuity and, unless some tweaks are contemplated, are not
smooth. A viable solution is instead represented by the so-called spline functions
and their basis decomposition.

2.2.1 Spline functions
The origin of the term spline dates back to before World War II and has its roots

in the aircraft and shipbuilding industries. Indeed, during that time, templates for
airplanes were usually designed through a technique known as lofting, which consisted
in passing thin wooden strips (called splines) through points laid down on the floor
of a large design loft. These stripes provided an interpolation of the key points
(called "ducks" in the engineering vocabulary) into smooth curves that, in particular,
would produce the minimum strain energy. Splines became mathematical objects
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later on, after proper formalization of their concept, and it is commonly accepted
that the term spline in reference to smooth, piece-wise polynomial approximation of
an objective function was first used by Schoenberg in Schoenberg (1946). They will
then prove themselves useful in a number of other mechanical applications, among
which the modeling of automobile design (Birkhoff and De Boor, 1965).

First, let us introduce what a spline function is in the uni-variate context. A
uni-variate polynomial spline ho(·) of order o (or degree o − 1) is a real-valued
function on a compact interval [k0, kK+1] ⊆ R defined through K so-called knots:

K = {k1, . . . , kK : ki < kj , ∀ i < j} ,

where the terms k0 and kK+1 are usually called boundary knots. Globally, it is a
piece-wise polynomial function over the sub-intervals {[ki−1, ki]}K−1

i=1 , satisfying the
following properties.

1. It is a polynomial of degree (o/2− 1) at the boundary sections, i.e. for
x ∈ {[k0, k1] , [kK , kK+1]}.

2. It is a polynomial of degree (o− 1) at each internal section, i.e. for x ∈
{[ki, ki+1] : i = 1, . . . ,K − 1}.

3. It has continuous derivatives up to order (o− 2) on the whole domain [k0, kK+1],
i.e. ho(·) ∈ Co−2.

From properties 1. and 2. follows that a total of (o ·K) coefficients are needed in
order to define the whole spline function:

• (o/2) to define it at the left of k1;

• (o/2) to define it at the right of kK ;

• ((K − 1) · o) are instead necessary to define it in the (K − 1) internal intervals.

The continuity conditions in 3. identify ((o− 1) ·K) of the coefficients, while the
remaining K can be uniquely identified only if the values assumed by the function at
the K knots f(k1) = f1, . . . , f(kK) = fK (or at other K distinct points) are fixed.

In particular, as proved by the work by Schoenberg (Schoenberg (1964), Schoen-
berg (1988)), the use of spline functions has strong theoretical justification in the
context of interpolation techniques. Let us consider the problem of finding:

f̂(·) = arg min
f(·)∈F̃o

∫ kK+1

k0
f (o)(x)dx (2.2.3)

under:
f(ki) = fi, ∀ i = 1, . . . ,K,

where F̃o is the Sobolev space of functions with o−1 continuous derivatives and square
integrable o-th derivative . He showed that, provided K ≥ o, this minimizer actually
is the unique polynomial spline of corresponding order satisfying the interpolation
constraint. This is the property we referred to when at the end of Section 2.1.1 we
mentioned that splines provide the smoothest function possible given the assumed
structure.

However, for a statistician, this apparently amazing property is not of great use.
Indeed, when the approximation of a function from partial observations is pursued in
statistical applications, the exact values over a set of its arguments is rarely available.



2.2 Spline regression 22

x

h1 (x
)

k1 k2

(a) Order o = 1

x

h2 (x
)

k1 k2

(b) Order o = 2

x

h3 (x
)

k1 k2

(c) Order o = 3

x
h4 (x

)
k1 k2

(d) Order o = 4

Figure 2.3. Behavior in the vicinity of the two knots k1 and k2 of spline functions
interpolating the same values, but with increasing order o.

More likely, the available observations y = [yi]ni=1 at locations X = [xi]ni=1 are
perturbed with random noise. This makes exact interpolation undesirable, but the
smoothness property of splines still stands as heavily appealing. Generally speaking,
in the statistical framework observations are modeled in the following way:

yi = f(xi) + εi, i = 1, . . . , n,

where the εi’s are independent zero-mean terms with common variance τ2 and f(·)
is known (or at least assumed) to be smooth. If we consider an analogous problem
to the one of (2.2.3), but replace the interpolation constrain with:

f(·) = arg min
f(·)∈F̃o

n∑
i=1

(yi − f(xi))2 , (2.2.4)

it was again shown by Schoenberg that the minimizer is again a polynomial spline.
In this setting, data are not interpolated anymore, but smoothed with approximation
accuracy and smoothness degree depending on the chosen degrees of freedom of
the spline (i.e. order and knots). In the sequel, we will introduce some practical
tools to define and represent spline functions so that statistical estimation of the
coefficients can be pursued in a linear regression setting. For further technical details
about spline function properties and extensions (e.g. their connection to Reproducing
Kernel Hilbert Spaces) the reader is referred to Wahba (1990).

2.2.2 Fixed-knot spline
If the knots are fixed in advance (e.g. at the observations locations), the resulting

fixed-knot splines are also known as regression splines. This name is due to the fact
that straightforward estimation of the coefficients can be obtained in a standard
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linear regression setting. In order to define a regression spline one needs to select the
number of knots, their location, and also the spline order. Figure 2.4 shows different
examples of splines interpolating the same values over the same two knots, but with
increasing orders. We can see how the order o = 1 spline is just a step-function, that
does not even satisfy continuity at the knots (by property (4) it does not belong to
C0). The order o = 2 spline of Figure 2.3b instead is piece-wise linear and satisfies
continuity, but is not smooth. On the other hand, Figures 2.3c and 2.3d show two
spline functions with orders o = 3 and o = 4, and the two satisfy both continuity and
smoothness in terms of 1-st derivative continuity. The latter is known as cubic-spline
(spline of order o = 4) and is usually claimed as the lowest-order spline for which
the knot-discontinuity is not visible to the human eye. Therefore, there is rarely the
need to use splines of order o > 4, unless continuity of higher order derivatives is
deemed necessary for theoretical reasons. In fact, cubic splines are the most widely
used in the literature (Hastie et al., 2017). But how can we represent a fixed-knot
spline in a convenient way in order to perform the coefficient estimation?

It can be shown that the space of spline functions of a particular order o and
knot-sequence k0, . . . , kK+1, denoted as Fo,KS , is a vector space spanned by a basis of
J = (K+o) elements. From this perspective, splines are low-rank smoothers, because
they are constructed from regression basis of smaller dimension than the number
of observations. There are many equivalent bases that can be used to represent
them. Among those we find: the truncated power basis (TPB), conceptually simple
but not so simple from a numerical point of view; the Bernstein Polynomials (BP),
computable through the De Casteljau’s algorithm and way more numerically stable
than the TPB; the B-Spline (BS) basis, that combines numerical stability with a
structure that allows for efficient computations even when the number of knots K
is large. Indeed, differently from its alternatives, the BS are built in such a way
that the resulting spline is discontinuous at the boundary knots, thus undefined
beyond the boundaries, and each element of the basis spans at most the support
covered by o knots. Denoting with Bo,k(U) the l × J matrix of the basis elements
evaluated at l points U = [ui]li=1, this local support property implies that many
of its elements will be equal to 0. This can be profitably exploited to reduce the
computational burden when the matrix Bo,K(U) is subject to matrix operations.
Figure 2.3 shows different examples of BS basis functions with increasing order. In
the sequel, including the Application of Chapter 3, the B-Spline basis is the standard
choice as basis representation of a spline function. For more technical details about
alternative spline basis, and in particular the B-Splines, the reader is referred to
De Boor (1978); Bde Boor (2001).

Therefore, in order to reconstruct f(·) as a spline function given our observations
(y,X), where we recall that X is a n × 1 matrix (uni-dimensional case), we can
simply express it as a linear combination of the BS basis elements evaluated at the
xi, i = 1, . . . , n locations. Recalling Equation (2.2.2), this boils down to expressing
at each support value x the approximation function as f̃(x) = B(0,k)(x)>β, where β
is a vector of unknown coefficients. Setting up the typical linear regression problem:

f̃(X) = B(o,K)(X)β ← B(o,K)(X) β̂ = f̂(X) (2.2.5)

where B(o,K)(X) =
[
B(o,K)(x1)>, . . . , B(o,K)(x1)>

]>
and β̂ is an estimate of β

obtained through any valid fitting procedure such as Ordinary Least squares (OLS),
or Maximum Likelihood Estimation (MLE).

The order of the basis and the number and positioning of the knots determine
the flexibility and smoothness of the resulting approximating function. We already
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Figure 2.4. BS basis functions at 4 evenly spaced knots between the boundaries k0 and k5,
with increasing orders o

argued in favor of the use of an order o = 4 basis. However, there is not a generally
valid criteria to determine the optimal choice of the knots. If knots overlapping with
the observations set X were chosen, then perfect interpolation would be achieved,
capturing noise together with information. On the other hand, a too little number
of knots would produce a too rough approximation with behavior between the knots
governed more by the super-imposed mathematical structure than by the information
in the data. In general, the choice of the number of knots is really problem dependent
and concerns the hypothesis of the researcher on the behavior of the true underlying
function f(·). Nevertheless, there is some general guidance on their positioning. For
instance, one may consider evenly spaced knots between the two boundaries; this
choice is reasonable when the function is assumed to have similar variations on its
whole domain. Alternatively, one may consider placing the knots at quantiles of
evenly spaced levels between 0 and 1 of the location set; the implied assumption is
that the function is allowed to present a wigglier behavior where more information
is available, while it is forced to have less freedom in sections where there is less
information.

All the aforementioned recommendations are nothing more than thumb rules,
quite arbitrary and especially not automatic. The knot selection issue is still an
open problem, usually addressed resorting to model comparisons via validation
approaches. Some automatic strategies have been introduced in order to reduce
its importance and relevance to estimation purposes. One possible solution is to
consider the execution of the fitting procedure (2.2.5) via suitable/ad-hoc penalized
regression approaches.

2.2.3 Bayesian P-Spline

The standard approach to linear regression is to estimate f̃(·) simply by mini-
mizing the squared deviations of the approximating function from the observations.



2.2 Spline regression 25

More generally, including also Generalized Linear Model settings, this encompasses
the maximization of the log-likelihood l(f̃ |y,X). Thus, f̂ is usually determined as:

f̂ = arg max
f̃∈Fo,KS

l(f̃ |y,X). (2.2.6)

However, while theoretically well-grounded, this estimation procedure is very prone
to over-fitting and this issue is exacerbated in the context of spline regression. Indeed,
if a large enough set of knots is chosen, f̂(·) is flexible enough to account for all
the variations in the data and interpolates all the observed values y incorporating
information and noise. Different methods have been proposed in the literature to
help in the choice of degree and knots, mainly based on cross-validation approaches
(Wood, 2017; Hastie et al., 2017).

Here, we introduce a method that controls for the complexity of the fit through
regularization, where the penalty is specifically designed to penalize for steep varia-
tions of the resulting spline function. This allows to avoid the knot selection problem
and, if desired, even to choose the maximal set of knots without achieving interpo-
lation. A penalty term is added to the optimization criteria, as in the case of the
Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) or
the Deviance Information Criterion (DIC) (Burnham and Anderson, 2004; Gelman
et al., 2013; Spiegelhalter et al., 2002). More in general, penalized/regularized
regression replaces the fitting criterion of Equation (2.2.6) with:

f̂ = arg max
f̃∈Fo,KS

{
l
(
f̃ |y,X

)
− λ · pen

(
f̃
)}

. (2.2.7)

where pen(·) is a penalty function on the complexity of f̃(·), and λ > 0 establishes
the trade-off between goodness of fit (first term) and penalization (second term). For
λ = 0 the criterion (2.2.7) is equivalent to (2.2.6), while for λ→∞ the estimation
process always returns the simplest possible version (e.g. linear).

In the spline regression setting, the driving idea is to penalize large variations
of the spline functions at the knots. Therefore, the penalty term shall represent a
roughness measure for the function estimate and complexity shall be measured in
terms of function non-smoothness. This is practically equivalent to the problem
of Equation (2.2.4) under condition (2.2.3) solved by Schoenberg (1988), with the
difference that instead of looking for the minimum error solution in the infinite-
dimensional Sobolev function space F , we look for the MLE solution in the restricted
space of spline functions Fo,K . When using B-splines as a basis, this kind of penalty
can be defined simply in terms of differences of coefficients referred to adjacent basis
elements. This yields the following:

λ · pen(f̃) = λ ·
J∑

j=m+1
(δmβj)2 , f̃ ∈ F (o,K)

S , (2.2.8)

where λ is called smoothing parameter, m is the derivative order for which deviations
from smoothness are penalized and:

δ1βj = βj − βj−1,

δ2βj = δ1
(
δ1βj

)
= βj − 2βj−1 + βj−2,

...
δmβj = δm−1βj − δm−1βj−1.
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Writing the whole penalty term in matrix notation, the following formulation of
(2.2.8) is obtained:

λ · pen(f̃) = λ · β>D>mDmβ = λ · β>M (m)β, f̃ ∈ F (o,K)
S , (2.2.9)

where M (m) is the penalization matrix derived from the differences matrices Dm.
Each of them can be derived through the recursive formula Dm = Dm−1D1. Re-
placing it in the maximization criterion of (2.2.7) the following is obtained:

l(β|y,X)− λ · β>M (m)β. (2.2.10)

For a given value of the smoothing parameter λ, inference on the coefficients β and
at any arbitrary set of points Z can be performed in terms of this penalized criterion
using:

β̂ =
(
X>X + λM (m)

)−1
X>y

Hλ,m = Z
(
Z>Z + λM (m)

)−1
Z>

f̂λ,m = Hλ,my,

where Hλ,m is known as the hat matrix. However, this solution is feasible only when
least square estimation is the objective (that coincides with MLE estimation only
for Gaussian outcomes), and for λ fixed to some specific value. Usually, this value
is chosen through cross-validation on some metric (or any other model comparison
methods) after estimation has been performed on a grid of reasonable values for it
(Lewis and Stevens, 1991; Wood, 2017; Hastie et al., 2017).

However, looking carefully to Equation (2.2.10), we can notice how this is
equivalent to performing Bayesian inference on the β coefficients, while using m-
order Normal random walk priors on these. Indeed, we may ascribe to the coefficients
a prior:

π(β) = exp
{
−λ · β>M (m)β

}
∝ NJ

(
β

∣∣∣∣0, 1
λ

(
M (m)

)−1
)

where λ ·M (m) is the precision matrix of the Gaussian prior, and get inference in the
same penalized framework of (2.2.7). For instance, the first order penalty matrix is:

M (1) =



1 −1 0 · · · 0
−1 2 −1

...
0 . . . . . . . . . 0
... −1 2 −1
0 · · · 0 −1 1


and it would correspond to the following set of conditional priors:

πβ1(·) ∝ const

πβj (· |β1:j−1) = N
(
·
∣∣∣∣βj−1,

1
λ

)
, j = 2, . . . , J.

The resulting joint prior is a partially improper multivariate Gaussian distribution
since, for any choice of λ and m, we have that rank

(
M (m)

)
< dim(β). This is

practically never an issue in terms of posterior inference, since the posterior will be
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proper nonetheless. Another great advantage of the Bayesian approach is that we
may also ascribe a suitable prior to the smoothing parameter λ, that in this context
is a hyper-parameter representing the overall precision of our prior on β, and make
inference on its value inside the same Markov Chain Monte-Carlo machinery used
to get posterior samples of the other parameters. A practical implementation of this
approach in a more general model is presented in Chapter 3, Section 3.2.4.

2.2.4 Multi-dimensional splines
The initial part of Section 2.2 is focused on spline models for data on a one-

dimensional domain. In the next section, a brief introduction to spline models for
multidimensional domains is provided.

The theoretical generalization of spline function to domains of arbitrary dimension
d > 1 is somewhat natural. Multidimensional splines on Rd are indeed determined
by the straightforward extension of the smoothness criteria in (2.2.3). For example,
for U ∈ R2, it becomes:

∫ ∫
R2

(δ2f(u)
δu2

1

)2

+
(
δ2f(u)
δu1δu2

)2

+
(
δ2f(u)
δu2

2

)2
 du1du2, (2.2.11)

that combined with condition (2.2.4) has a solution in the two dimensional surfaces
known as thin-plate splines (Wood, 2003). As their one-dimensional counterpart,
these can be represented through linear combination of basis functions:

f̃(u) = β0 + β>u+ h(u)>α, u ∈ U , (2.2.12)

where β0 is a constant real term and β is a d× 1 vector of coefficients and h(u) =
[h1(u), . . . , hM (u)] the vector of basis elements in u. In particular, h(u) is a set of
radial basis functions built on the set of knots {uj}Mj=1. It can actually be defined
for any arbitrary dimension d, and one possible example for d = 2 has as generic
element hj(u) = ||u− uj || log (||u− uj ||).

Once the thin-plate-spline structure has been imposed by expressing the surface
through Equation (2.2.12), the estimation reduces to the usual finite-dimensional
(eventually penalized) least-squares problem. However, differently from B-spline
basis6, the elements of a radial basis do not present any exploitable sparse structure.
In particular, the complexity cost of their evaluation scales with the order O(M3),
making the problem computationally intensive also for M of moderate size. On top
of that, approximation performances decay rapidly for a knot sequence too little for
the sample size, deterring from choosing a M << n and hindering the potential of
such representation.

Tensor product B-splines Unfortunately, there is not an exact correspondent
to the B-Spline basis in the multi-dimensional setting, and the sole reliance on
thin-plate splines is gruesome for applications with moderate to large data sizes.

An appealing alternative to thin-plate spline stems from the concept of tensor
product basis. Let us introduce this basis construction method for d = 2. Suppose
U ∈ R2 and let h1(·) of size J1 and h2(·) of size J2 be two (arbitrary) sets of basis
functions defined independently on the two dimensions. Then, the J = J1 × J2
dimensional tensor product of the two basis H(2)(·) = h1(·) ⊗ h2(·) defines the

6Recall that most of the elements of the basis are null for large sections of the domain
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Figure 2.5. Generic element of the tensor product B-Spline for increasing orders o1 = o2 = o.

corresponding tensor product basis. For a fine enough grid, it is possible to represent
any smooth two-dimensional function on U as:

f̃(u) =
J1∑
j=1

J2∑
l=1

βjlH
(2)
jl (u) =

J1∑
j=1

J2∑
l=1

βjlh1j(u)h2l(u), u ∈ U ,

where H(2)
jl (u) =

[
H(2)(u)

]
jl
. Applying the same reasoning to B-Spline basis on the

bidimensional domain, we get the so called tensor product B-Spline. This allows to
keep the useful and desirable B-spline properties in more than one dimension, while
approximating well at will the thin-plate spline solution for fine grids on rectangular
domains. On the downside, the resulting basis is not radial (i.e. contours are not
given by circles), and therefore is not invariant under rotation of the space coordinates.
Nevertheless, for a large enough degree, the non-radiality almost disappears and
(generally) does not represent much of an issue for degree > 2 (order > 3; Jie et al.
(2016); Hastie et al. (2017)). Examples of the generic element of the 2-dimensional
tensor product B-Spline for different orders are provided in Figure 2.5.

It is then possible to represent (with good approximation) the spline function as:

f̃(X) = B(2)(X)β ← B(2)(X) β̂ = f̂(X) (2.2.13)

where β̂ is an estimate of β and B(2)(·) = B(o1,K1)(·)⊗B(o2,K2)(·) and:

B(2)(X) =
[
B(2)(x1), . . . ,B(2)(xn)

]>
.
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Figure 2.6. Neighborhood examples for knots spanned on regular 2-dimensional lattices,
where the last includes diagonal neighbors

Estimation can be performed in the usual linear regression setting and the Generalized
Array Method of Currie et al. (2006) offers an efficient implementation that exploits
all the sparsity in B(2)(X). Obviously, the choice of the orders o1 and o2 and
the number and placement of the knots {kij : i = 1, 2, j = 0, . . . ,Ki} play a key
role in the structure of the resulting basis. An order o ≥ 3 (o = 4 especially) is
strongly recommended, while general guidance for knots placement is analogous to
the uni-dimensional case. In particular, the choice of evenly spaced knots along the
two dimensions correspond to regular lattices over R2 and presents a very convenient
geometric structure.

Penalized approaches Also in this case the problem of knots placement has
not a general answer and resorting to penalized approaches is highly recommended
(Wood, 2006). The extension of B-Spline penalization in the bi-variate case requires
a proper definition of the neighborhood structure of the knots and how a penalty
based on such neighborhoods can be computed. When the knots are placed on
regular lattices, neighborhoods of different orders v can be defined by taking the v
closest knots along horizontal and vertical directions or even considering the diagonal.
A graphical example is provided in Figure 2.6.

Let us first introduce the extension of first-order differences based on the four
nearest neighbors (Figure 2.6a). Let D(1)

1 and D(1)
2 be the univariate first-order

differences matrices in the two directions. The sum of the row-wise differences in the
lattice of coefficients can be computed by applying the blown-up difference matrix
IJ2 ⊗D

(1)
1 to the vector β, i.e.

β>
(
IJ2 ⊗D

(1)
1

)> (
IJ2 ⊗D

(1)
1

)
β =

J1∑
j=1

J2∑
l=1

(βjl − βj−1,l)2,

where I· is the identity matrix of size · and ⊗ is the Kronecker product. From basic
matrix algebra

(
IJ2 ⊗D

(1)
1

)> (
IJ2 ⊗D

(1)
1

)
=
(
IJ2 ⊗D

(1)
1
>
D

(1)
1

)
whereD(1)

1
>
D

(1)
1

would be the univariate penalty matrix. Similarly, the column-wise differences can
be obtained as:

β>
(
D

(1)
2 D

(1)
2
>
⊗ IJ1

)
β =

J1∑
j=1

J2∑
l=1

(βjl − βj,l−1)2 .

Finally, the two penalties along the two directions can be combined element by
element by taking their matrix sum. This yields the following form for the penalty
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matrix:
M

(1)
λ = λ

(
IJ2 ⊗M

(1)
1 +M (1)

2 ⊗ IJ1

)
, (2.2.14)

whereM (1)
1 = D

(1)
1
>
D

(1)
1 andM (1)

2 = D
(1)
2
>
D

(1)
2 are the univariate penalty matrices

and λ has been collected inside the final penalty matrix for convenience. Allowing
for more than first-order difference penalty on the horizontal and vertical directions
can be straightforwardly obtained just by replacing the univariate penalty matrices
with higher-order penalty matrices M (m1)

1 and M (m2)
2 , yielding M (m1,m2)

λ .
The final penalty is then equivalent to the one of (2.2.9) in the uni-variate

case, where the resulting penalty matrix must be pre-multiplied by a smoothing
parameter λ. Thus, all remarks about the estimation of the coefficients according to
the maximization criteria in (2.2.10) hold unchanged.

As an addendum, nothing precludes the consideration of different smoothing
parameters on different directions, which would introduce anisotropy in the degree of
smoothness. This can be achieved by replacing the simple sum of Equation (2.2.14)
by a weighted sum of the two penalty matrices with weights λ1, λ2 ∈ R+ (smoothing
parameters), as follows:

M
(m1,m2)
λ =

(
λ1 · IJ2 ⊗M

(m1)
1 + λ2 ·M (m2)

2 ⊗ IJ1

)
. (2.2.15)

That can be easily extended to dimensions d > 2 by taking multiple Kroenecker
products on various bases and then summing the penalizations over the various
neighborhood structures. However, smoothing in several dimensions is susceptible to
runaway problems with storage and computational time. Arranging the long basis
vectors into matrices/arrays allows for the implementation of efficient estimation
algorithms known as Generalized Linear Array Models, first developed in Currie
et al. (2006); Eilers et al. (2006), that strongly reduce the required computational
time. That implies a straightforward and insightful interpretation of penalized
tensor-product B-splines in terms of mixed-effect ANOVA models (Gu, 2002).

2.3 Bayesian Hierarchical modeling of Spatial Processes
An accurate and comprehensive analysis of spatial processes requires the ability

to describe properly their convoluted structure, characterized by a multitude of
uncertainty factors and various degrees of scientific knowledge. In the attempt of
considering the various components from a joint perspective, the complexity of
the problem at hand may seem overwhelming and too challenging for designing
a well-suited but manageable statistical model. When this is the case, it may be
much easier to tackle it from a conditional perspective, approaching the model
specification at multiple levels inserted in a nested structure. Indeed, if the intricate
dependence structure among the various elements at play is expressed through a
convenient graphical model (Wainwright and Jordan, 2008), the originally complex
joint distribution can be straightforwardly factored in (typically) simpler conditional
densities. For instance, it may be very difficult to specify a meaningful and valid joint
multivariate dependence structure between the spatial distribution of rain amount
and forestry in a specific area. However, if we can assume the rain to impact on the
forestry and not viceversa, it is way simpler to consider the forestry distribution
conditionally on the rain amount rather than dealing with the two processes jointly.

This is the essence of hierarchical modeling that, theoretically, is not exclusive
of either the classical or the Bayesian approach. However, the Bayesian paradigm
founds itself on the ability to integrate information from different sources (i.e. the
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sub-models) while accounting for all the uncertainty accumulated at each level.
Doing the same in a frequentist framework is cumbersome, or even unfeasible, if one
wants to stay true to the frequentist principles. The Bayesian perspective becomes
a necessity if the level of complexity is high enough, which is usually the case in
spatial statistics application. Its wide adoption, originally limited by the lack of
computational power, has been growing steadily ever since the revolution in Bayesian
computation linked to the development of effective and efficient Markov Chain Monte
Carlo (MCMC) techniques (Gelfand and Smith, 1990; Robert and Casella, 2013).
Over time the most of the literature has been developed in the Bayesian framework
(Robert, 2007; Gelman et al., 2013), and this tendency does not seem to be slowing
down.

In this section, we provide a brief explanation of the general principles of Bayesian
hierarchical modeling, with focus on its use in the context of spatial modeling as for
the course plotted by Berliner (1996) and Wikle and Cressie (1999). An extensive
review of the Bayesian hierarchical modeling for spatial data with application in R
and WinBugs7 is available in Banerjee et al. (2014). Many models are also directly
implemented in the R package spBayes (Finley et al., 2007).

2.3.1 Bayesian Hierarchical Modeling
While the hierarchical specification of a model is a bit of a stretch under the

frequentist paradigm, the hierarchical structure is something intrinsic to the Bayesian
approach, even in its simplest form. When specifying a Bayesian model, the pa-
rameters governing the data generative process are random variables and the whole
uncertainty of the phenomenon must be quantified in terms of the joint distribution
of data (data) and parameters (pars). In particular, inference is based on the
so-called posterior distribution of the pars given the data. By applying the Bayes’
Theorem, this can always be expressed as:

π(pars | data) = J(data, pars)
m(data) ∝ L(data | pars) · π(pars), (2.3.1)

where J(data, pars) is the joint distribution of data and pars; m(data) is the
marginal likelihood of data given the model (irrelevant to the end of parameters’
inference); L(data | par) is the data likelihood; π(par) is the parameters’ prior.

The left-hand side of Equation (2.3.1) highlights the strong and indissoluble
link between the posterior distribution π(cdot | cdot), which is the final inferential
objective, and the joint distribution J(·, ·). The direct specification of a joint
distribution coherent with any experimental setting is simply impractical, and
generally has little to no guidance in any Bayesian setting. Nevertheless, from the
right-hand side of Equation (2.3.1), we can see how it can be factored in two relevant
terms: L(data | par) and π(pars). The former regulates the generative process of the
data given the parameters, while the latter contains all our a-priori knowledge on the
parameters defining the model. In contrast with the joint distribution, the separate
specification of these two components is straightforward: the likelihood leads the
choice as to what best represents the data; the prior usually follows according to
convenient combinations with the Likelihood, while keeping into account eventually
available prior information. In practice, these can be specified in a hierarchy of (at
least) two levels:

7WinBUGS is a software developed as part of the BUGS project, which aims to make practi-
cal MCMC methods available to applied statisticians. URL: https://www.mrc-bsu.cam.ac.uk/
software/bugs/the-bugs-project-winbugs/

https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
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• Level 1: L(data | pars);

• Level 2: π(pars);

where each level may have additional sub-levels.
The consideration of such a hierarchical structure has been a real game-changer

in statistical modeling for complicated process, among which spatial ones. Indeed,
specifying elaborate dependence structure directly on the outcome of interest itself
(data) has several drawbacks: it makes it hard disentangling structured variance and
covariance terms from the unstructured random noise; further it sensibly complicates
the data likelihood specification, especially when the Gaussianity assumption cannot
hold for the outcome of interest.

A hierarchical specification of the statistical model allows to keep the indepen-
dence assumption at the data level, while transferring the dependence structure onto
a latent process proc at a deeper level of the hierarchy (allowing for a potentially
arbitrary choice of its distribution form). This paves the way to a conceptual scheme
that greatly simplifies the problem, well-summarized by the following three levels
skeleton (e.g. Berliner (1996)):

• Level 1: L(data | proc, pars);

• Level 2: π(proc | pars);

• Level 3: π(pars).

This framework decomposes a complicated generative process into three primary
components that are all linked by simple probability rules. This partitioning allows
to specify way simpler models at each stage that, when combined, can describe very
complex joint data, process and parameters distributions.

Obviously, the ultimate interest lies in performing inference on the model param-
eters, on the latent process (not always) and on the distribution of the outcome at
un-sampled locations of the data space. Generally speaking, all this can be pursued
in terms of the parameters’ and process’ posterior distributions:

π(proc , pars | data) ∝ L(data | proc, pars) · π(proc | pars) · π(pars) (2.3.2)

and of the posterior predictive distribution:

π(d̃ata | data) =
∫
π(d̃ata | proc, pars, data) · π(proc , pars | data) dpars dproc,

(2.3.3)
where d̃ata denotes new, unobserved data. This comes with computational concerns,
which usually suggest convenient specifications of the latent process and parameters’
priors. Nevertheless, aside from special and rare cases, Equations (2.3.2) and (2.3.3)
lack a closed form solution and their computation relies on simulation techniques
known as Markov Chain Monte Carlo (Gelfand and Smith, 1990; Robert and Casella,
2013). Hereby, we will not provide a thorough description of these methods in
a general framework, and this concludes the very brief introduction to Bayesian
statistics principles and hierarchical modeling. We merely scratched the surface
of the Bayesian potential and it has to be intended just as an introduction to
the remainder of this Chapter, which will be focused on the Bayesian hierarchical
specification of strictly spatial models. For more details about this approach and its
theoretical bases the author recommends Robert (2007); Gelman et al. (2013).
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2.3.2 Hierarchical Spatial Modeling
Let us denote with Y (·) : D → R, where D ∈ Rd, a uni-variate spatial process8

of which we have observed a realization at a finite set of locations. As argued at
the beginning of Section 2.1, we would like to use the information in y in order to
perform inference on the inherent stochastic structure of Y (·). In order to do so, we
need to specify a model (hence a distribution) for Y (·) at any set of locations U ∈ D.
This model shall take into account at the same time a great variety of factors: the
nature of the observed data (e.g. their support) and the shape of their distribution,
the effects of known external factors, the presence of variability and measurement
errors, the spatial dependence structure, etc.

The marginal specification of a model for Y (·) through fY (·) is a very complicated
(if not impossible) task that requires some sort of simplification if a viable solution
is deemed. The hierarchical approach introduced in the previous section provides a
straightforward way to produce a general model entangling all the needed complexity,
but based on the specification of simpler distributions at different levels of the
hierarchy. Indeed, is is possible to introduce an additional latent process ε(·) defined
on the same space and unload the most of the complicated dependence structure
present in Y (·) on it. As a result, the distribution of the data given the latent
process fY (· | ε) is simplified by the conditional independence assumption, and its
specification shall be focused on reflecting the data nature and distribution. At
the same time, modeling of ε(·) is not bound to any constraint and the choice of
fε(·) shall be led just by the convenient specification of the underlying dependence
structure.

Typically, the two chosen distributions depend on a set of parameters ω (in a
common parametric or semi-parametric setting). As for the Bayesian principles, also
the parameters shall be ascribed a distribution πω(·) (i.e. the prior distribution).
This distribution is usually specified under the reasonable independence assumption
between data parameters and process parameters, so that the joint distribution can
be factored as πω(·) = πωY (·) · πωε(·), where ωY and ωε are respectively the subset
of parameters on which fY (· | ε, ωY ) and fε(· |ωε) depend on. However, aside from
that, the prior specification is really model-dependent and has few general guidelines.
In many cases, these are chosen mainly (or partly) to facilitate computations and,
conditionally on that, to represent eventually available prior knowledge on the
phenomenon under analysis.

This last piece fills the third and final level in our hierarchical spatial framework,
leading to the following three levels hierarchy.

• Level 1. Observable model Y (·) ∼ fY (· | ε, ωy);

• Level 2. Process model ε(·) ∼ fε(· |ωε);

• Level 3. Parameters model θ ∼ πωy(·) · πωε(·).

This general framework can accommodate data with different support and/or align-
ment than the underlying process ε(·) (Gelfand et al., 2001; Wikle et al., 2001;
Wikle and Berliner, 2005). Actually, the real strength and power of the hierarchical
approach resides especially in the first of these two considerations. Indeed, for the
reasons given in Section 2.1, the specification of spatial dependence structure is way
easier under the Gaussianity assumption. Therefore, reliance on a latent Gaussian

8For ease of notation and explanation, we will always refer to uni-variate spatial processes.
Generalization to q-variate processes is straightforward under suitable conditional independence
assumptions and for further details the reader is referred to Chapter 7 of Banerjee et al. (2014)
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process is very common (if not necessary) in most applications. Luckily, this does
not preclude from specifying alternative distributions for the observable process Y (·)
conditionally on the latent process.

As a matter of fact, there are many real-world processes in which data cannot
certainly be assumed to be Gaussian, neither well-approximated by it, but yet exhibit
spatial dependence. Let us think to count data, very common in many biological,
ecological and environmental studies, that are defined only on discrete and positive
values and present an indiscernible mean-variance relationship. Ignoring these
structures and blindly considering the Gaussian distribution can lead to inefficiency
and bias in both estimation and prediction. Instead, it would be natural to consider
a Poisson or Negative Binomial distribution in such situations. Therefore, once the
dependence structure has been properly accounted for in the Gaussian latent process,
non-Gaussian spatial data may be formally analyzed within this same framework
simply by specifying the proper conditional model for the data. Dependence in the
latent process can then be transferred to the observables through a suitable link
function (on the mean for instance), as within the context of Generalized Linear
Mixed Models (McCulloch and Searle, 2001; Bradley et al., 2016b, 2020). Here, for
the sake of brevity, we will not navigate into further details on the spatial modeling of
non-Gaussian data. Starting from the next section, we will delve into the hierarchical
specification of the Geo-statistical model for Gaussian data. However, for further
details about the generalized version of the same model, the reader is referred to
Diggle and Ribeiro Jr (2007) and Banerjee et al. (2014).

2.3.3 The hierarchical Gaussian Geo-Statistical model
The hierarchical modeling of Gaussian variations over a continuous domain D

usually starts from the well-known geo-statistical model. As for the decomposition in
Equation (2.1.8), it expresses the target process Y (·) through the following additive
formula:

Y (u) = µ(u) + η(u) + υ(u), u ∈ D, (2.3.4)
where µ(·) is the large-scale variation term and represents the mean-structure/spatial
trend of the process, while the residual is partitioned into the sum of a small scale
variation term η(·) and a measurement error term υ(·).

As already discussed in Section 2.1.2, the mean term is a continuous deterministic
function defined on the same domain of the process, which is also usually assumed
to be smooth. In the geo-statistical setting, it is typically expressed as the linear
combination of a set of p geo-referenced covariates x(·) = [x1(·), . . . , xp(·)]> (thus
known without error) through a vector of coefficients β:

µ(u) = x(u)>β, u ∈ D, β ∈ Rp.

Suppose large scale variations due to unobserved spatial features are deemed possible.
In that case, the set of covariates can also include the spatial coordinates themselves
and/or basis expansions of these (see Section 2.1.1 and 2.2).

The small scale variation term, instead, is stochastic in its nature. It entwines
all the spatial dependence structure in the process and is typically assumed to be a
stationary zero-mean Gaussian process. Other very common assumptions are that
of isotropy and that the covariance can be expressed through parametric forms such
as the ones introduced in Section 2.1.2. Under these two last assumptions, we can
then generally write that:

η(·) ∼ GP
(
0, σ2 · ρθ(·)

)
,



2.3 Bayesian Hierarchical modeling of Spatial Processes 35

where σ2 > 0 is the sill and ρθ(·) is an isotropic correlation function depending on
the set of parameters θ.

The pure error term υ(·) is a zero-mean Gaussian process again, but with
independent components:

υ(u) ∼ N (0, τ2), ∀ u ∈ D,

where τ2 > 0 is known as the nugget. It represents random variations of the
outcome which are not related to the spatial effect. It induces a discontinuity in the
covariance structure of the main process (i.e. the nugget effect). Theoretically, it
is not necessary in order to define a valid process and may be excluded from the
model specification. However, practically and philosophically speaking, it does have
a good deal of importance. Indeed, while:

η(u+ h)− η(u) h→0→ 0,

at any u ∈ D, this never happens to:

(η(u+ h) + υ(u+ h))− (η(u) + υ(u)) .

This envisions additional variability associated with the observed process Y (·),
that can be explained as the noise associated with eventual replications of the
measurement at the same location. Practically, this encourages the means of the
spatial variables at proximate locations to be close (or equal) to each other, without
forcing the process values to be actually close. The absence of the nugget would
instead transform a dependence on average into a punctual dependence, forcing
proximate values of the process to be similar. This is not necessarily an issue, but if
explanation of the mean is of interest, the inclusion of the nugget effect becomes a
necessity.

If we consider the evaluation/realization of all the introduced components on
any finite set of locations U = {u1, . . . ,ul} ∈ D, these would present the following
structures:

µ(U) = X(U) · β :
(
Rl × Rd

)
→ Rl

η (U) ∼ Nl
(
0, σ2 ·Rθ(U)

)
υ (U) ∼ Nl

(
0, τ2 · Il

) U ∈ D, (2.3.5)

where X(U) = [x(u1), . . . ,x(ul)]> is the design matrix associated with the set of
locations U , Rθ(U) is a l× l correlation matrix such that [Rθ(·)]ij = ρθ(·), ∀ i, j and
Il is the l × l identity matrix.

Let us now denote with S = {s1, . . . , sn} the set of locations on which the vector
y of the outcome of interest has been observed. It is the observed realization of
the random vector Y (S) = [Y (s1), . . . , Y (sn)]> = Y , to which also correspond the
unknown η(S) = η and the design matrix X(S) = X. From now on, for ease of
notation, any time the location set is not specified as the argument of spatially
varying terms, we mean their values at the observed location set S.

Assigning to the parameter set ω =
{
β, σ2, θ, τ2} a prior distribution πω(·),

we can pull all the ingredients of 2.3.5 in the additive formula of Equation 2.3.4
and build-up two alternative (but equivalent) hierarchical model formulations: the
conditional model and the marginal model.
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Conditional model It is probably the most natural way to define a Bayesian
hierarchical model starting from the previous assumptions. The Gaussian pure error
term is combined with the (deterministic) large scale variation term, leading to
a Gaussian distribution at the data level. As a whole, it results in the following
three-level hierarchy:

• Level 1: Y
∣∣η,β, τ2 ∼ Nn

(
X · β + η, τ2 · In

)
• Level 2: η

∣∣σ2, θ ∼ Nn
(
0, σ2 ·Rθ

)
• Level 3:

(
β, σ2, θ, τ2) ∼ πω(·).

The data likelihood is defined conditionally on the latent process and hence presents
independent components. All the dependence is captured in its mean, stochastic
because of its dependence on η specified at the second level.

As pointed out at the end of Section 2.3.1, we ultimately seek to perform inference
on the parameters and (possibly) on the latent process in terms of their posterior
distributions. By Equation (2.3.2) we have:

π(β, σ2, θ, τ2,η|y) ∝ f(y|η, τ2) · f(η|σ2, θ) · πω(β, σ2, θ, τ2), (2.3.6)

where typically independent priors are chosen for the parameters:

πω(β, σ2, θ, τ2) = π(β) · π(σ2) · π(θ) · π(τ2).

Generally speaking, the normalizing constant of (2.3.6) does not present a closed-
form solution. Hence the posterior is not analytically computable. Therefore, one
must resort to MCMC methods to solve and simulate from it (Robert and Casella,
2013). In the considered framework, the MCMC method would update sequentially
the latent states η given the parameters and the parameters β, σ2, θ, τ2 given the
latent states.

The efficiency of such simulation methods depends on many factors, among
which a suitable choice of the prior distributions. We already picked the GP as a
prior for the latent process. However, we did not discuss the choice of priors for
the parameters. A useful candidate for β is the multivariate Normal Np (0, Vβ).
In particular, the GP prior on the latent process η(·) and the multivariate Normal
prior on β in the Gaussian setting have the great advantage of leading to closed
form solution for the respective full-conditionals:

π(β| · ) = Np
(
β
∣∣∣B−1b, B−1

)
f(η| · ) = Nn

(
η
∣∣∣E−1e, E−1

) (2.3.7)

where |· is short for all the rest and

B =
( 1
τ2X

>X + Vβ−1
)
, b = 1

τ2X
>(y − η)

E =
( 1
τ2 In + 1

σ2Rθ
−1
)
, e = 1

τ2 (y −Xβ) .
(2.3.8)

This enables the envision of a Gibbs-step for their update inside a Metropolis-within-
Gibbs algorithm, with sensible improvements in terms of mixing and convergence
(Gelfand and Smith, 1990; Casella and George, 1992).
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As a general rule, one may even adopt non-informative priors for the mean
parameters β, for which improper priors will always provide proper posteriors.
However, this choice is discouraged in the case of the remaining variance-covariance
parameters. These are usually very poorly identified (Zhang, 2004; Gelfand et al.,
2010; Tang et al., 2019), and such choice may lead to improper posteriors with
consequent MCMC convergence failure. Shape-wise, inverse-gamma is the typical
choice for σ2 and τ2, while the specification of the prior on θ is dependent on the
chosen correlation function form. If appropriate reparametrization are not considered,
these are usually updated through a block Metropolis-Hastings step (Roberts et al.,
1997).

The same Bayesian recipe can be used to get predictions at both sampled and
unsampled locations. Let us again denote with U = {u1, . . . ,ul} an arbitrary set
of un-sampled locations on which the outcome posterior distribution is of interest.
Denoting with Ỹ = Y (U) and η̃ = η(U), inference is based on the so-called posterior
predictive distribution. According to Equation (2.3.3), this is:

f
Ỹ

(ỹ|y) =
∫ ∫

f(ỹ| η̃,β, τ2,y)f(η̃,η|σ2, θ,y)·

· π(β, σ2, θ, τ2|y) dη dβ dσ2 dθ dτ2,
(2.3.9)

where f(η̃,η|σ2, θ,y) = f(η̃|η, σ2, θ,y) · f(η|σ2, θ,y). As for the posterior distri-
bution of the parameters, neither the posterior predictive distribution (2.3.9) usually
presents a closed analytical expression. Nevertheless, we can use the samples from
the posterior distribution of the parameters and the latent process provided by
the MCMC algorithm to solve/simulate it. Indeed, we recall that the conditional
distributions of multivariate Normal vectors are again multivariate Normal vectors.
This implies that given η, σ2, and θ distributed according their posterior distribution,
we can simulate from:

η̃|η, σ2, θ ∼ Nl
(
Rθ(S,U)R̃−1

θ η, σ
2 ·
(
Rθ −Rθ(S,U)R̃−1

θ Rθ(U ,S)
))

(2.3.10)

where Rθ(·, ·) is the cross-correlation matrix of its two arguments and R̃θ = Rθ(U).
Hence, by composition sampling, we can easily sample at each MCMC iteration
first from η̃|η, σ2, θ,y and after from Ỹ | η̃,β, τ2,y. This can be done during the
MCMC main run, or recycling the already simulated parameters’ chains in a second
moment.

Marginal model Theoretically speaking, one can always combine two subsequent
levels of a hierarchical model by marginalizing the stochastic components of the
lower into the upper level. The marginal model is indeed built by integrating the
latent spatial process (level 2) out of the data likelihood (level 1):

f(Y |β, σ2, θ, τ2) =
∫ ∫

Rn
f
(
Y
∣∣∣η,β, τ2

)
· f
(
η
∣∣∣σ2, θ

)
dη. (2.3.11)

The Gaussianity assumption on the latent process η(·) and on the errors ε(·),
reflected onto the data, allows for a straightforward solution of (2.3.11). Indeed,
by basic conjugacy properties of the Normal-Normal model, the solution is again a
multivariate Normal distribution with updated parameters. Let us denote the set of
parameters that govern the whole variance and covariance structure in the process
with φ =

{
σ2, θ, τ2}. The marginal model can then be expressed as a hierarchy of

the following two levels:
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• Level 1: Y |β, σ2, θ, τ2 ∼ Nn (X · β, Σφ) , Σφ = σ2 ·Rθ + τ2 · In.

• Level 2:
(
β, σ2, θ, τ2) ∼ πω(·).

Here, the data likelihood is defined marginalizing on the latent process, and therefore
the dependence structure is no longer captured by the mean but by the covariance
structure. Considerations on this model are very similar to the ones of the conditional
model, with the main difference being that dependence on the latent process is not
apparent in this case. Indeed, the expression of the parameters posterior distribution
now is:

π(β, σ2, θ, τ2|y) ∝ f(y|β, σ2, θ, τ2) · πω(β, σ2, θ, τ2). (2.3.12)
Posterior samples of the parameters are not drawn conditionally on the latent process,
but marginally. If a multivariate Normal distribution is assigned as prior to the
coefficients β, then partial conjugacy (closed-form full-conditional) still holds. Its
marginal expression is again a multivariate Normal, but the terms defining its mean
and covariance are slightly changed with respect to the ones in (2.3.8), i.e.:

B =
(
X>Σ−1

φ X + Vβ−1
)
, b = 1

τ2X
>Σ−1

φ y.

Simultaneously, the explicit absence of the latent process η implies that we can
perform inference on the parameters without sampling values from its distribution,
with potential computational advantages. However, if we are interested in its
estimation, the marginal model does not preclude the possibility of sampling from
it. Indeed, recalling that f(η|y) =

∫
f(η|β, φ) · π(β, φ|y) dβ dφ, we can exploit

composition sampling and use the posterior sample of the parameters at each iteration
of the MCMC to sample from η|y. The same can be done to obtain samples (and
thus predictions) at un-sampled locations using (2.3.10).

While the two models are theoretically equivalent to each other, the marginal
model is usually preferable from a practical perspective. This rationale stems from a
general consideration about MCMC techniques, whose efficiency increases the more
one can marginalize a model analytically. Marginalizing reduces the dimensionality
of the space that the sampler must explore, favoring good mixing and reducing
correlations. Moreover, as discussed in Banerjee et al. (2014), the covariance structure
of Σφ is way more numerically stable than the one of σ2 ·Rθ because of the additive
constant on the diagonal. Consequently, the determinant and inverse computations
on which the likelihood and full conditionals depend on are better behaved in the
marginal model than in the conditional model.

This last paragraph concludes the brief introduction to the Bayesian hierarchical
modeling of spatial processes. In these last pages, we explained the necessity to rely
on MCMC techniques to perform inference on the parameters, the latent process,
and the observable process distribution at unsampled locations. Nevertheless, we
never discussed the topic of the computational efficiency of such methods. The latter
is a pressing issue in the Big-Data era we live in, and it is one of the principal motives
of this research’s attention. In Section 2.5, just after some brief considerations on
the framework extension to the analysis of spatio-temporal processes in Section 2.4,
we will delve more deeply into this problem.

2.4 Continuous Spatio-Temporal Processes
Until now, we have considered spatial stochastic processes Y (·) : D → R, where

the domain D ⊆ Rd is assumed to be euclidean. We now briefly discuss the problem
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of analyzing stochastic processes defined over a spatio-temporal domain, i.e.:{
Y (u, τ) : (u, τ) ∈ D × G ⊆ Rd × R

}
,

that vary both as a function of the spatial location u ∈ D ⊆ Rd, and time τ ∈ G ⊆ R.
Spatio-temporal problems arise in the analysis of dynamic processes that evolve
both in space and time, and are actually pretty common in many scientific and
engineering fields: environmental sciences (Oehlert, 1993; Vyas and Christakos, 1997;
Lindström et al., 2014), climate predictions and meteorology (Armstrong et al., 1993;
Faghmous and Kumar, 2014), disease mapping (Christakos and Hristopulos, 1998;
Yanosky et al., 2008; Meliker and Sloan, 2011), etc.

We have widely seen how statistical analysis of natural and artificial phenomena
encompasses the adoption of a stochastic model for the observables. Differently
from physical models, statistical ones are not (necessarily) based on the causal
mechanistic interactions occurring at the microscopic level and generating the data.
They provide inference and predictions of unobserved outcome of the system by
learning the joint spatial and temporal dependence of the underlying process from
the observed data, under suitable probabilistic hypotheses on their structure. From
a purely mathematical perspective, spatio-temporal processes are not much different
from a (d+ 1)-dimensional spatial process, whose domain is within Rd+1 = Rd × R.
After all, time is nothing else but an additional coordinate and all the techniques
and all the results discussed above clearly extend and apply to space-time problems
defined on the augmented space. However, from a physical and practical perspective,
this approach is generally misleading and intrinsically flawed. Stochastic models
must approximate (accurately) the outcomes of true physical dynamics, and therefore
cannot neglect completely the original nature of the phenomena under study. The
temporal dimension is structurally different from spatial ones. First of all, time
moves only forward, while there is no preferred direction in space (usually). Secondly,
spatial lags are difficult, if not impossible, to compare with temporal lags since they
come in distinct units. Finally, the process may behave in completely different ways
at the same lags on the spatial and temporal dimension, e.g.: seasonality/periodicity
makes sense along time, while it is generally absent along space; isotropy is well
defined in space, while it has no meaning in a space–time context due to the intrinsic
ordering and non-reversibility of time. The specification of the combined space–time
domain D×G acknowledges these differences, and should be regarded only as a very
specific coordinate system, where observations are tagged by a spatial coordinate
vector u and a separate temporal coordinate τ .

In many contexts, spatio-temporal processes are not observed continuously along
time, but can be discretized to customary integer-spaced intervals G = {τ1, τ2, . . .}.
In this cases, the problem reduces to the analysis of a collection of temporally
varying spatial processes Yt(·), t ∈ G: different picture of the same area at different
occasions. If time is assumed to not play a direct role in the explanation of the
observed phenomenon, each spatial process may be assumed to evolve independently,
perturbed with different random errors9. Therefore, all the independent realizations
can be used to inform about the intrinsic structure of the same underlying spatial
process. Otherwise, also the potential temporal dependence between the points
belonging to different surfaces at subsequent times must be taken into account.
The analysis of such data encompasses the use of standard time series models with
spatial covariance structure (Pfeifer and Deutsch, 1980; Pfeifer and Jay Deutsch,

9Potentially, taking a switch of perspective, one may want to talk about collections of spatially
varying time-series.
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1980; Stoffer, 1986), or of the dynamic spatiotemporal models. These describe the
temporal evolution of spatial points by specifying suitable transition equations in
the space of latent features that induce temporal dependence between residuals at
different times (Huang and Cressie, 1996; Tonellato, 1997; Sanso and Guenni, 1999;
Stroud et al., 2001; Gelfand et al., 2003; West and Harrison, 2006).

Instead, we here discuss extensions of the concepts and methodologies introduced
in Section 2.1 to the spatio-temporal modeling of (univariate) continuous data, with
continuous time. Inference is thus sought at arbitrary scales, that usually are even
finer than the observed data. The corresponding spatio-temporal process is nothing
else but a random variable Y (·, ·) : D × G → Y having realizations at any spatial
location u ∈ D ⊆ Rd and instant in time τ ∈ G ⊆ R, according to a probability
distribution. As in Equation 2.1.2, the distribution is uniquely determined by the
collection of finite dimensional joint distribution, i.e.:

FY (·,·) (y1, . . . , yl; (u1, τ1), . . . , (ul, τl)) , ∀ {(ui, τi)}li=1 ⊂ D × G,

where the realizations at different space-time locations are usually dependent random
variables. Also the concepts of strict and second-order stationarity directly translate
in the spatio-temporal context as:

FY (·,·) (y1, . . . , yl; (u1, τ1), . . . , (ul, τl)) =
= FY (·,·) (y1, . . . , yl; (u1 + h, τ1 + δ), . . . , (ul + h, τl + δ))

(2.4.1)
and

E [Y (u, τ)] = E [Y (u+ h, τ + δ)]
Cov [Y (u, τ), Y (u+ h, τ + δ)] = Cov [Y (0, 0), Y (h, δ)] (2.4.2)

for any {(ui, τi)}li=1 ⊂ D × G and (h, δ) ∈ Rd × R. We recall that in the case of
Gaussian processes, second order stationarity implies strict stationarity.

Whilst convenient, stationarity is hardly matched by natural processes observed
over large regions or span of times. Usually, this non-stationarity is limited to the
presence of a mean/trend component that may be dependent on the location or the
time instant (for instance because of space-time varying unobserved heterogeneity).
The stationarity assumption is then not entirely abandoned, but used to properly
model any residual variation from such trend. Without any loss of generality, we can
easily extend the representation of Equation (2.1.8) to the spatio-temporal case as:

Y (u, τ) = µ(u, τ) + υ(u, τ), u ∈ Rd, τ ∈ R (2.4.3)

were µ(·) : Rd × R → R denotes the deterministic space-time mean structure and
υ(·) : Rd × R → R the residual term. Analysis and inference on the underlying
process from a set of realizations y = [yi]ni=1 at O = {(si, ti)}ni=1 ⊂ D × G goes
through suitable modeling of either or both the deterministic mean function and
residual terms covariance structure. As for the spatial case, we will refer to the
former as spatial interpolation or spatial smoothing; we briefly introduce some spatio-
temporal methods in Section 2.4.1, with some additional care devoted to adaptation
of B-spline regression. We refer to the latter as geo-statistical modeling, while being
aware that this last category evokes a larger set of techniques; Section 2.4.2 explores
the difficulties and peculiarities of defining a valid and meaningful spatio-temporal
covariance function.
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2.4.1 Interpolation, smoothing and spline regression
If the spatio-temporal changes could be explained in terms of large scale variations

only, then the underlying assumption is that the residuals υ(u, τ) of Equation
(2.4.3) shall behave as a stationary and independent process once the deterministic
expression of µ(u, τ) is known. If space-time heterogeneity was completely observed
and known, then this effect could be completely explained by the available space-
time covariates, as in the case of land-use regression (Ryan and LeMasters, 2007;
Hoek et al., 2008). On the other hand, this is practically never the case in real
applications. Alternatively, we could look for a mathematical expression of the
space-time trend function µ(·, ·) that well interpolates or smooths the observed data,
leaving uncorrelated residuals (or zero residuals under the assumption that data are
observed without error). Theoretically speaking, when dealing with the expression
of the trend function, techniques do not vary much with respect to what we already
introduced for the spatial context in Section 2.1.1.

In the GIS literature, it is usually made a distinction between two classes of
approaches: the reduction and the extension approach (Li and Revesz, 2002, 2004).
The former defines a hierarchy between the spatial and the temporal components. It
encompasses the subsequent use of two interpolating techniques, where the second is
used conditionally on the results of the first. The whole space-time is either sliced
into as many d-dimensional spatial sub-spaces as many different time-points are
observed, or viceversa (i.e. as many temporal 1-dimensional spaces as many different
space-points). A first interpolating techniques is used the smooth independently
all the slices and, conditionally on that, the slices are finally joined altogether by
using a second interpolation technique on the initially excluded temporal dimension.
The interpolators may either be Kernel-Smoothers (such as the Inverse Distance
Weighting), or FEM based shape functions, but also local polynomials, splines etc.
(Mauser and Prasch, 2015; Xiao et al., 2016). From a practical point of view, this
corresponds to a sequence of spatial interpolation problems occurred in different
time-series (or viceversa). For instance, we first exclude the temporal dimension
and build a collection of independently interpolated surfaces. Then, the resulting
surfaces are connected point by point by interpolating those belonging to different
surfaces along their common temporal dimension. This approach is clearly only
viable if samples are always taken in the same locations, all at the same times. When
this is not the case, each slice may contain few (or none) points and interpolation
would become unfeasible.

In the extension setting time is instead treated as an additional dimension.
Therefore, spatio-temporal interpolation is simply handled as a one higher dimension
spatial interpolation, directly extending any of the methodologies introduced in
Section 2.1.1. This does not require the observed data to be recorded over regular
space-time grids but, on the downside, can result computationally expensive to
be computed. Furthermore, it requires additional care in defining an appropriate
time-scale that would (at least approximately) adapt to the different behaviors of
the spatial and temporal dimensions. Being these methods non-parametric, hence
not model-based, this is usually attained via brute force by cross validating results
obtained on different time scales (Li et al., 2020).

These non-parametric interpolation methods have been mainly produced in the
engineering and GIS literature. For a review we refer to (Eldrandaly and Abdelmouty,
2017) and references therein, that include different works in applied science that
have seen the application and comparison of many of these. Generally speaking, they
all present much focus on the practical aspects of obtaining a point-wise accurate
interpolated surface, able to provide estimates at unsampled locations, but only



2.4 Continuous Spatio-Temporal Processes 42

little care to the statistical and inferential properties of the estimation process. As
a matter of fact, such surfaces are computed from the given data, and not really
estimated.

As for the spatial case, we would rather switch perspective and transform the
interpolation/smoothing task into an estimation problem. In the simplest case, we
can assume the so-called space-time separability to hold at the mean function level
(Loader and Switzer, 1992). This means that the trend function decomposes into
the sum, or product, of a purely spatial and purely temporal component:

µ(u, τ) = µs(u) + µt(τ)
µ(u, τ) = µs(u) · µt(τ) u ∈ Rd, τ ∈ R,

where the additive composition of the two effects implies total neutrality between
the two components, while the multiplicative one (additive on the log-scale) denotes
an augmentative/diminutive mutual effect. This allows modeling space and time
effects independently, respecting their own peculiarities. The spatial component can
be modeled using any of the methodologies introduced in Section 2.1.1, e.g. Spline
Smoothing from Section 2.2. The same holds for the temporal component, that on
the other hand may also include the contribution of trigonometric functions in order
to reflect diurnal or seasonal effects. The estimation is not much different from what
is usually done in the larger context of Generalized Additive Models (MacNab and
Dean, 2001; Fahrmeir et al., 2004; Kneib and Fahrmeir, 2006; Hastie et al., 2017)

This kind of decomposition is very convenient from a model specification and
estimation point of view. However, it assumes that the temporal effect is constant over
the space, while the spatial effect is constant trough time. It neglects any structural
interactions between the spatial and temporal components, often characterizing
observed data that manifest different spatial behaviors at different times and/or
viceversa. In such cases, space-time separability does not hold and the deterministic
trend component must be modeled using non-separable structures. This can be
attained by modeling the trend as:

µ(u, τ)← µ̃(u, τ) =
J∑
j=1

L∑
l=1

βjlφjl(u, τ) = Φ(u, τ)>β, ∀(u, τ) ∈ D × G,

where {φjl(·, ·)}J,Lj,l=1 are elements of a space-time basis function chosen to fit the
average variation of the data, then collected over the vector Φ(·, ·), and combined
through coefficients {βjl}J,Lj,l=1 that must be estimated by a fitting procedure (Kyr-
iakidis and Journel, 1999; De Luna and Genton, 2005; Wang and Wang, 2009).
This can include periodic terms along the time axis and polynomial terms to model
smooth variations in space. For instance, Dimitrakopoulos and Luo (1997) proposes
three different forms: traditional polynomial functions along all dimensions, Fouriers
expressions (i.e. periodic functions) along all dimensions, a combination of both.
Obviously, each dimension can be modeled using different shapes and/or orders,
allowing flexibility in its specification. Without diving into any more details, this
encompasses the expression of the space-time trend through basis elements of globally
defined functions. Section 2.1.1 discussed how spatial data, hence spatio-temporal
data too, present local behaviors that can harshly vary among different regions of
the domain. Seeking a good fit by mean of globally defined functions is a path full
of pitfalls, that usually leads to over-parametrized models which are rarely able to
provide homogeneous fitting performance on the whole considered domain. This
often produces residuals that violate the stationarity hypothesis.
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Therefore, considering functions that benefit from local flexibility, but still
guarantee desirable global properties, is a more convenient strategy: local-polynomials
(Haas, 1995; Wang and Wang, 2009), thin-plate splines (Aberg et al., 2005; Hancock
and Hutchinson, 2006), spline basis and penalized splines (Brezger and Lang, 2006;
Lee and Durbán, 2011; Rodriguez-Alvarez et al., 2018; Spiegel et al., 2020) etc.

B-Spline Space-Time regression We here focus on the specification of a suitable
space-time B-spline regression approach, hence express the space-time trend function
as:

µ(u, τ)← µ̃(u, τ) = Bs,t(u, τ)>β,
where Bs,t(·, ·) is the vector of the elements of a spatio-temporal B-spline basis
and β is a vector of coefficients. Let us denote with y = [yi]ni=1 the column
vector of observed values at the spatial locations S = {si}ni=1 ⊂ D and time-points
T = {ti}ni=1 ⊂ G. We already introduced the straightforward extension of B-spline
basis to the multidimensional case in Section 2.2.4, focusing on the 2-dimensional case.
This encompasses building two independently defined B-spline bases B(o1,K1)(·),
B(o2,K2)(·) with J1 and J2 elements (depending on the order and number of knots
of each). Their Kroenecker (tensor) product B(2)(·) = B(o1,K1)(·) ⊗ B(o2,K2)(·)
yields the combined B-spline basis. The same procedure can be used to extend
the 2-dimensional basis to further dimensions, and hence time. Without any loss
of generality, the spatial basis B(2)(·) can be extended to the additional temporal
dimension by taking the following tensor product:

B(3)(u, τ) = B(2)(u)⊗B(o3,K3)(τ),

where B(3)(·, ·) is the resulting spatio-temporal basis and B(o3,K3)(·) is a B-spline
basis of order o3 and with knots {k3j : j = 0, . . . ,K3} placed over T , with Jt elements.
The independent choice of degree and knots over the three dimensions gives much
space in the definition of an anisotropic basis. This is particularly useful over
spatio-temporal domains. Indeed, as mentioned above, while it may be reasonable
to assume isotropy along space and consider analogous basis over the two spatial
dimensions (i.e. o1 = o2, K1 = K2), a different structure may be necessary in order
to model the behavior along the temporal dimension. Evaluating the basis at the
observed locations, the vector of coefficients β can then be estimated by setting up
the usual optimization problem:

β̂ = arg max
β

{
l
(
y |B(3)(S, T ), β

)}
, (2.4.4)

where:
B(3)(S, T ) =

[
B(3)(s1, t1), . . . ,B(3)(sn, tn)

]>
.

Efficient implementations in this setting are discussed in Currie et al. (2006); Spiegel
et al. (2020). The choice of the orders o1, o2 and o3 and the number and placement
of the knots {kij : i = 1, 2, 3, j = 0, . . . ,Ki} play a key role in the structure of
the resulting basis. An order of 2 or 3 is usually sufficient for achieving sufficient
flexibility, while placing too many knots or too few may result in under or over-fitting.
A general guidance is to consider evenly spaced knots along all dimensions, with
finer resolutions at areas (or dimensions) over the one the mean function is expected
to vary more wildly. Usually, different candidates from a shortlist are compared
through cross-validation approach, but in the spatio-temporal setting this may entail
an incredibly long computational time.
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Figure 2.7. Neighboring structure of the 3 dimensional B-Spline coefficients.

A viable and automatic solution is to not waste time in the knots placement
decision, but pick the upper bound given the available computational resources
while resorting to penalized approaches. This corresponds to replacing the criteria
of Equation (2.4.4) with:

β̂ = arg max
β

{
l
(
y
∣∣∣B(3)(S, T ), β

)
− penλ (β)

}
,

where penλ(·) puts a penalty on the vector of parameters, modulated by one (or
more) shrinkage parameter λ. We have already introduced this approach in Section
2.2.3, adopting a Bayesian perspective in which the penalty is represented by a
suitable choice of covariance structure in the prior:

π(β) = exp
{
−β>M (m)

λ β
}
∝ NJ

(
β

∣∣∣∣0, (M (m)
λ

)−1
)
.

If knots are placed on regular lattices along space and time, the concept of neighbor-
hood is easily extendable to the spatio-temporal context. Indeed, every knot will
also be a neighbor of itself at the previous and following times. This can include
also higher order neighborhood structures along time and space, or crossing the two
dimensions (i.e. being a neighbor of the spatial neighbors at previous and following
times). 2.2.3.

When cross-neighborhoods are not included, the overall penalization matrix
can be easily computed using the same passages of Section Let ms and mt be the
chosen order differences over space and time, and let us denote the corresponding
univariate difference matrices along the three dimensions as D(ms)

1 , D(ms)
2 and

D
(mt)
3 . We can then compute the sum of row-wise (spatial dimension 1), column-

wise (spatial dimension 2) and layer-wise (temporal dimension) differences in the
lattice of coefficients, placed as in Figure 2.7. The matricial expression goes through
the definition of the blown-up difference matrices, summed all together in the
following penalty matrix:

M
(ms,mt)
λ =λs

(
IJ3 ⊗ IJ2 ⊗M

(ms)
1 + IJ3 ⊗M

(ms)
2 ⊗ IJ1

)
+

+ λt
(
IJ3 ⊗ IJ2 ⊗M

(mt)
3

)
,
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whereM (ms)
1 = D

(ms)
1

>
D

(ms)
1 ,M (ms)

2 = D
(ms)
2

>
D

(ms)
2 andM (mt)

3 = D
(mt)
3

>
D

(mt)
3

are the univariate penalty matrices. In the penalized scenario, the choice of knots
and order cannot anymore be addressed toward inducing anisotropy, but the same
can be achieved by considering different shrinkage parameters to the penalty along
space λs and along time λt. The upside is that the penalization parameter can be
estimated together with any other parameter (especially in a Bayesian context), and
therefore the degree of anisotropy between space and time can be automatically
detected by the model. Obviously, as for the purely spatial case, nothing precludes
from considering different penalties on the two different spatial directions.

The smooth-ANOVA representation in Gu (2002) would also allow further de-
composition of the mean trend function as:

µ̃(u, τ) = Bs(u)>βs +Bt(τ)>βt +Bs,t(u, τ)>βs,t,

where the first is a purely spatial term, the second a purely temporal term and the
last an interaction term (Lee and Durbán, 2011). Particular care must be adopted
in this setting, since there are overlapping components in the pure and interaction
terms. Nevertheless, the mixed model representation of Gu (2002) allows for the
identification such components and remove them, or apply constraints to guarantee
identifiability. The reader is referred to the original paper for further details.

2.4.2 The geo-statistical model and Hierarchical Modeling
The fit of a deterministic space-time trend function is often unable to describe

the spatio-temporal variations present in the data at all scales. As a consequence,
the difference between observations and the estimated trend, computed as:

υ̂i = yi − µ(si, ti), ∀ i = 1, . . . , n,

does not results in correlated residuals. In the geo-statistical setting we do not
exclude the existence of a deterministic trend function, but unload part of the fitting
burden to the second-order structure of the process residuals. Following Equation
(2.1.13) from Section 2.3, we decompose the residual term in two components and
express the spatio-temporal process as the following sum:

Y (u, τ) = µ(u, τ) + η(u, τ) + ν(u, τ), ∀ (u, τ) ∈ D × G,

where η(·, ·) is known as the small-scale variation term and represents the dependence
structure of the process, while ν(·, ·) is an independent pure error term (zero-mean,
independent components).

The small scale variation η(·, ·) is usually assumed to be a zero-mean second-order
stationary spatio-temporal process, with continuous paths on Rd × R = Rd+1. The
covariance between observations at different space-time locations can be expressed in
terms of a space-time covariance function cη(·, ·). In order to guarantee continuous
paths and second-order stationarity, this function must belong to C0 and its value
must depend only on the separation vector between locations:

Cov [η(u, τ), η(u+ h, τ + δ)] = cη(h, δ), ∀u,h ∈ Rd, τ, δ ∈ R.

Its margins cη(0, ·) and cη(·, 0) are purely spatial and purely temporal covariance
functions, respectively. A very common additional assumption is that η(·, ·) is a
spatio-temporal Gaussian process GP (0, cη(·, ·)), for which second-order stationarity
implies strict stationarity (see Equation (2.4.1)). This does not necessarily preclude
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the modeling of non-Gaussian outcomes, that can be related to a latent Gaussian
process that drives dependence using suitable link functions (McCulloch and Searle,
2001; Bradley et al., 2018, 2020).

The pure error term ν(·, ·) represents uncorrelated measurement errors that
increase the variability of the collected outcome. It induces a discontinuity in the
paths of the overall residuals υ(u, τ) = η(u, τ) +ν(u, τ) through the so-called nugget
effect. In the space-time setting, this can include a purely spatial, purely temporal,
and a spatio-temporal term:

Cov [ν(u, τ), ν(u+ h, τ + δ)] = τ2
stI(0,0)(h, δ) + τ2

s I(0)(h) + τ2
t I0(δ),

with τ2
st, τ

2
s and τ2

t positive constants. Following Equation (2.1.14), this implies the
following covariance structure on the process of interest:

Cov (Y (u, τ), Y (u+ h, τ + δ)) =


τ2
st + τ2

s + τ2
t + cη(0, 0) h = 0, δ = 0

τ2
s + cη(0, δ) h = 0, δ 6= 0
τ2
t + cη(h, 0) h 6= 0, δ = 0
cη(h, δ) h 6= 0, δ 6= 0.

(2.4.5)

Inference for such a spatio-temporal process in the Bayesian Hierarchical modeling
setting is not much different from what we have already seen in Section 2.3.1. The
conditional and marginal models specification also hold in the space-time setting, as
long as we can find a valid parametric form for specifying the covariance function
of the small scale term cη,θ (·, ·). Just as in the spatial case, the chosen parametric
form must satisfy positive definiteness, i.e. any corresponding covariance matrix of
the form:

Σθ (U) = cη,θ (U) =


cη,θ (0, 0) cη,θ (h12, δ12) · · · cη,θ (h1m, δ1m)

cη,θ (h21, δ21) cη,θ (0, 0) · · · cη,θ (h2m, δ2m)
...

... . . . ...
cη,θ (hm1, δm1) cη,θ (hm2, δm2) · · · cη,θ (0, 0)

 ,
must be positive definite for any set of space-time locations U = {(ui, τi)}mi=1 ∈ Rd×R,
where hij = ui−uj and δij = τi− τj for any i, j = 1, . . . ,m. This allows performing
inference by computing the inverse and getting a valid joint density (and likelihood)
for the underlying Gaussian process at any possible set of observed locations.

Mathematically speaking, Bochner’s theorem (introduced in Section 2.3, see
Equation 2.1.6) holds also at the space-time level when considering time just as an
additional coordinate. As a matter of fact, any of the isotropic covariance functions
introduced in Section 2.3 is a valid choice on the product space Rd+1, and therefore
can be used to model spatio-temporal processes. However, we have already discussed
in Section 2.4 how this view is conceptually flawed. Time and space are intrinsically
different and dependence along these dimensions must be accounted for with different
strategies.

There are different techniques to build valid but structurally well-suited spatio-
temporal covariance functions. Some derive from physically inspired probability
models, and their specification is particular of the stochastic partial differential
equation regulating the underlying physical mechanism (Cox and Isham, 1988;
Brillinger, 1997; Brown et al., 2000; Kelbert et al., 2005; Prévôt and Röckner,
2007; Gneiting and Guttorp, 2010). Such covariances are not necessarily stationary,
since stationarity may not be satisfied in practice, and may even not be compactly
supported. For statistical modeling purposes, especially in the Geostatistical and
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Figure 2.8. Graphical scheme of the classes covariance functions can belong to. In red,
the class on which our discussion focuses.

Bayesian Hierarchical framework, the attention is usually restricted to stationary
covariance functions with a compact support (see e.g. Cressie and Huang (1999);
Kyriakidis and Journel (1999); Gneiting (2002); Allcroft and Glasbey (2003); Stein
(2005); Gneiting et al. (2006)). General purposes covariance functions are also often
fully symmetric, i.e.:

cη,θ (h, δ) = cη,θ (−h, δ) = cη,θ (h,−δ) = cη,θ (−h,−δ) ,

for all (h, δ) ∈ Rd×R. Symmetry along the temporal dimension can result particularly
unattractive in some practical space-time setting (e.g. time moves only forward,
and air or water flows have pre-determined direction in time). We refer to Gneiting
et al. (2006) for an extensive reference list of non-symmetric space-time covariance
functions.

Figure 2.8 reports a graphical scheme of some key properties of space-time
covariance functions. In the sequel, we will discuss the construction and implications
of some belonging to the class highlighted in red: stationary, compactly supported,
separable and non-separable covariance functions.

Separable covariance functions A straightforward way to construct valid space-
time covariance functions stems from the closure of the class of positive definite
functions with respect to the operators of sum and product. Therefore, we may
construct mathematically valid spatio-temporal covariance functions simply by taking
the sum or the product of a purely spatial and a purely temporal covariance function.
These two decompositions are:

cη,θ (h, δ) = cη,θs (h) + cη,θt (δ) , (2.4.6)

and:
cη,θ (h, δ) = cη,θs (h) · cη,θt (δ) , (2.4.7)

for all (h, δ) ∈ Rd×R. Such models arise from two separate processes (one temporal
and one spatial) that act independently one from each other (Jones and Zhang, 1997).
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The additive decomposition of Equation (2.4.6) corresponds to a zonal anisotropy
model (e.g. in Bilonick (1985)), and implies that the spatial behavior is exactly the
same at all time-instants10 (Cressie and Huang, 1999). It essentially assumes the un-
derlying spatio-temporal process can be decomposed into the sum of two independent
purely spatial and purely temporal processes ηst(·, ·) = ηs(·) + ηt(·), resulting very
prone to identifiability issues of these two components. Indeed, there is no guideline
for inferring separately on the two structures, since it would require having observed
sets of spatial lags at common temporal lags and viceversa. Furthermore, it can lead
to invalid inferences for data collected on specific configurations (e.g. rectangular)
when the composing terms are not strictly positive definite (Dimitrakopoulos and
Luo, 1994). Generally speaking, such an additive structure shall be selected only
when there is substantial evidence that the spatial and temporal components do act
at different levels.

The multiplicative decomposition of Equation (2.4.7), while sharing similar
limitations with the zonal anisotropy specifications in terms of identifiability of
the two components, does not present general inferential issues. Temporal and
spatial terms have a multiplicative interaction, where dependence attenuates across
space and time. On the contrary, it is very convenient from a specification point of
view since it leaves complete liberty in the choice of suitable spatial and temporal
dependence structures. It is is also mathematically congenial, since it admits the
representation as a Kronecker product of the purely spatial and purely temporal
term, in a way analogous to the spatio-temporal Spline Regression model of Section
2.4.1. Indeed, following Rodríguez-Iturbe and Mejía (1974) and then Mardia and
Goodall (1993), a frequently used form for Equation (2.4.7) is:

cη,θ (h, δ) = σ2 · ρη,θs (h) · ρη,θt (δ) ,
where σ2 is a common sill, and ρη,θs(·) and ρη,θt(·) are valid spatial and temporal
correlation functions. For any set of spatial locations Us = {ui}Ii=1 and time points
Ut = {τi}Ji=1, the full covariance matrix can then be expressed as:

Σθ (Us ⊗ Ut) = σ2 ·Rθs (Us)⊗Rθt (Ut) ,
where Rθs (Us) = [ρη,θs (hij)]ij and Rθt (Ut) [ρη,θt (δij)]ij are I × I and J × J corre-
lation matrices, respectively. Just as in the spatial case, the likelihood evaluation
encompasses the computation of determinant and inverse of Σθ (Us ⊗ Ut) that, by
properties of the Kronecker product, can be simplified as:

det {Σθ (Us ⊗ Ut)} = (σ2)IJ · det {Rθs (Us)}I · det {Rθt (Ut)}J ,

{Σθ (Us ⊗ Ut)}−1 = 1
σ2 · {Rθs (Us)}−1 · {Rθt (Ut)}−1 ,

needing only determinant and inverse for an I × I and J × J matrix. Kriging
(predictions) at unobserved locations can take advantage of the same properties (see
Chapter 8.2 of Banerjee et al. (2014) for further details).

Nevertheless, whilst convenient in terms of computation and interpretability,
separable models do not allow for arbitrary interaction of the spatial and temporal
dimensions (e.g. different spatial dependence at different temporal lags and viceversa)
and are necessarily fully symmetric. These yield simplistic dependence patterns
that frequently fail to represent the complex spatio-temporal variations of real
phenomena. When the practical divide between observed data and the separable
model is unbridgeable, resorting to non-separable covariance functions becomes a
necessity.

10The same holds for the temporal behavior at all spatial locations
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Non-Separable covariance functions The naivest approach to build a non-
separable space-time covariance function is to consider time just as an additional
coordinate and take a valid covariance function on the euclidean space Rd+1. However,
the fallacy of this king of approach has already been widely discussed in the previous
sections.

If the same functional form can sufficiently well describe the marginal variability
on both the spatial and temporal dimensions, geometric anisotropy is a very conve-
nient strategy to account for different behaviors along the two while maintaining
non-separability. Rather than a technique for building a space-time covariance
function, it consists of defining a particular metric on Rd+1 implying a certain degree
of anisotropy:

cη,θ (h, δ) = c∗η,θ

(√
a1||h||2 + a2δ

)
,

where a1, a2 are positive constants and c∗η,θ(·) is a valid covariance function on
Rd+1 (Armstrong et al., 1993; Christakos et al., 2000). Whilst representing a very
convenient solution, a common functional form is (almost) never able to model
appropriately the fundamental differences in the variability along the temporal and
the spatial axes.

Another straightforward alternative is mixing (Ma, 2002, 2008), as in the product-
sum model introduced by De Iaco et al. (2001). It expresses the process of interest
as the sum of two auxiliary processes, each independent and with its own separable
covariance structure (one additive, one multiplicative): η(u, τ) = η1(u, τ) + η2(u, τ).
The resulting overall spatio-temporal covariance function is:

cη,θ (h, δ) = a0c
0
η,θs (h) c0

η,θt (δ) + a1c
1
η,θs (h) + c2

η,θt (δ) ,

where a0, a1 and a2 are positive constants and c0
η,θs

(·), c0
η,θt

(·), c1
η,θs

(·), c1
η,θt

(·) are
purely spatial and purely temporal covariance functions. The result is then clearly
non-separable.

More sophisticated methods for building valid non-separable space-time covari-
ance functions are based on the spectral domain. Indeed, the only requirements to
specify a non-separable second-order structure in the frequency domain are those of
non-negativity and integrability of the spectral density. Cressie and Huang (1999)
and Stein (2005) use this strategy to introduce different alternatives of stationary
non-separable covariance functions, with the latter extending the well-known Matérn
family of spatial covariance functions. Unfortunately, suitable specification on the
spectral domain is translatable to the original domain only when a closed solution of
the Fourier inverse is available, which happens only in very special cases. Gneiting
(2002) formulated a criterion based on the same construction technique, but does
not depend on the Fourier inversion. He proved that given a completely monotone11

function g(·) : R+ → R and a positive function with completely monotone derivative
ψ(·) : R+ → R, then any function of the following form:

cη,θ(h, τ) = 1
ψ(τ2)d/2

g

(
||h||2

ψ(τ2)

)
, h ∈ Rd, τ ∈ R,

is a valid space time covariance function over the product space Rd × R. There
are various possible combinations of functions that satisfy the above mentioned

11A function f(·) is completely monotone if it possesses derivatives f (n)(·) of all orders and
(−1)nf (n)(r) > 0, ∀ r > 0
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Figure 2.9. Reparametrized form of the simplified Gneiting spatio-temporal covariance
function of Equation (2.4.9) over R2 × R, for τ = 1, β = 0.8, α = 0.5 and γ = 0.5

properties, but a very common and useful specification is the following:

cη,θ(h, τ) = σ2

(1 + τ2α)κ+βd/2 · exp
{
− ||h||2γ

(1 + τ2α)βγ

}
, h ∈ Rd, τ ∈ R, (2.4.8)

where σ2, κ > 0 and α, γ ∈ (0, 1] are smoothness parameters (i.e. the fractal
dimension of the spatial and temporal sections) and β ∈ [0, 1] is an interaction
parameter. The spatial margins belong to the powered exponential family, and the
temporal margin to the Cauchy class.

In many instances, Equation (2.4.8) is reparametrized in a simpler form by
replacing κ+ β · d/2 with a constant χ ≥ βd/2:

cη,θ(h, τ) = σ2

(1 + τ2α)χ · exp{− ||h||2γ

(1 + τ2α)βγ
}, h ∈ Rd, τ ∈ R. (2.4.9)

In this case, the role of the parameter β as interaction regulator is even more evident.
Indeed, the two marginals are independent of its value and β = 0 corresponds to
a separable model (multiplicative). On the contrary, the larger the value of β and
the stronger is the interaction between the two terms. Figure 2.9 shows marginals
and joint behavior of this covariance function for a specific choice of the parameters’
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values. Both the expression of Equation (2.4.8) and (2.4.9) can be enriched by the
inclusion of two positive parameters a1, a2 > 0 to scale lags along the spatial and
temporal dimension.

Once the parametric form of the covariance function has been chosen, and net of
eventual computational issues, inference and predictions can be performed in the
same exact fashion of the spatial setting (see Section 2.3.1). For further practical
details, the reader is referred to Banerjee et al. (2014).

2.5 Big data issues and the Nearest Neighbor Gaussian
Process

During its early development, spatial statistics applications were usually designed
to model datasets of limited sizes (n < 103). Considering that an accurate collection
of time-stamped and/or geo-referenced data requires technologically advanced and
expensive tools and techniques, this is particularly true for data collected on con-
tinuous domains. As long as data sizes have been significantly bounded by these
technical limitations, the previously discussed estimation methods dis not present
any particular computational complication and could be implemented using basic
computer programs for matrix manipulations.

However, recent years have seen a rapidly increasing usage and growing capabili-
ties of tracking and monitoring devices, remote sensing technologies, and Geographic
Information Systems. Such development provided the scientific community with
extraordinary opportunities to understand processes’ spatial and temporal complex-
ity at broad scales. Something that earlier was just fantasy developed spawning
considerable research to model large spatial datasets in diverse disciplines: natural
and environmental sciences, economics, biometry, social sciences, etc. Suddenly,
in no more than a decade, spatial statistics applications have transitioned from a
data poor to a data rich setting. The scale of such Big Data easily extends to the
order of millions of spatial and/or temporal points, which can also include a large
number of covariates. This is particularly true for spatio-temporal applications, in
which the additional temporal dimension can easily make the data-size explode. All
these factors insert most of the modern spatial statistics application in the Big Data
analysis setting, for which traditional methods were not conceived. Indeed, whether
one takes a Bayesian or frequentist perspective, fitting of geostatistical models can
incur onerous computational costs that severely hinder their implementation for
massive datasets. The critical bottleneck stems from storage and computations
involving the massive covariance matrices representing the dependence in the data.

For instance, implementing MCMC algorithms to estimate Bayesian hierarchical
models requires repeated evaluations of various full-conditional density functions. At
the same time, likelihood-based approaches require repeated evaluation of the likeli-
hood inside the optimization routine. This process encompasses the computation of
inverse and determinant of the n×n covariance matrices defining the latent Gaussian
process covariance structure (where n is the size of the dataset). These matrices
are typically dense and carry no exploitable structure to facilitate computations.
Hence the two aforementioned operations require no less than O(n3) operations and
O(n2) memory to be executed. We will refer to this setting as the full Gaussian
process. For large n, the computations can then can be very slow, even unfeasible.
In practice, even for a modestly large number of observations (n ≈ 103 or greater),
computational demands may become prohibitive and preclude inference. Banerjee
et al. (2014) informally refers to this situation as "the big n problem" (Lasinio et al.,
2013).
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When this is the case, one must adopt some additional strategies in order to
reduce significantly the computational burden of fitting a full Gaussian process.
A substantial literature in statistics exists on methodologies aimed at achieving
that, which is already too vast to be summarized. These methods often exploit
low-rank structures in order to approximate the original Gaussian process and/or
multi-core and multi-threaded computing environments to hasten computations. We
here propose a series of references pointing out to the most successful attempts, in
chronological order.

Early solutions attempted at reformulating in a convenient way the original
process, rather than work on approximations. This included factoring the joint
density (and hence the likelihood and the full-conditionals) into a series of conditional
distributions (Vecchia, 1988; Stein et al., 2004), the use of pseudo-likelihoods (Varin
et al., 2011; Fuentes, 2007) or of tapered covariance functions (Furrer et al., 2006;
Kaufman et al., 2008; Stein et al., 2013). However, the reduction in computational
burden was not sufficient to keep the pace with the ever-increasing dataset sizes.

Beginning in the late 2000’s, several approaches based on low-rank approximations
to Gaussian processes were developed (or became popular) including discrete process
convolutions (Higdon, 2002; Lemos and Sansó, 2009), fixed rank kriging (Cressie
and Johannesson, 2006; Kang et al., 2009; Katzfuss, 2017), predictive processes
(Banerjee et al., 2008; Finley et al., 2009), lattice kriging (Nychka et al., 2015),
Gaussian Markov random fields with Integrated Nested Laplace Approximations (Rue
and Held, 2005) and stochastic partial differential equations (Lindgren et al., 2011).
Sun et al. (2012), Bradley et al. (2016a) and Liu et al. (2020) provide exceptional
reviews of most of these methods, demonstrating their effectiveness for modeling
spatial data at large scales. After several years of their use, however, scientists have
started to observe shortcomings in many of the above methods for approximating
full Gaussian Processes: propensity to over-smooth the data (Simpson et al., 2012;
Stein, 2014) and even, for some of these methods, an upper limit on the size of the
dataset that can be modeled. The most recent scientific research in this area has
focused on the efficient use of modern computing platforms and the development of
parallelizable methods. For example, Paciorek et al. (2015) showed how Gaussian
Process related computations can be calculated using parallel computing. Katzfuss
and Hammerling (2017) and Katzfuss (2017) developed a basis-function approach
that lends itself to distributed computing. Alternatively, Barbian and Assunção
(2017), and Guhaniyogi and Banerjee (2018) proposed dividing the data into a large
number of subsets, draw inference on the subsets in parallel, and then combining the
inferences. More recently, Datta et al. (2016a) and Katzfuss and Guinness (2021)
build upon Vecchia (1988) by developing novel approaches to factoring the joint
model as a series of conditional distributions based only on nearest neighbors. Other
recent works that explore this direction are Katzfuss et al. (2020), Katzfuss and
Guinness (2021).

Various extensions of each of these methodologies have been proposed in the
spatio-temporal settings. For instance, Cressie et al. (2010); Finley et al. (2012);
Katzfuss and Cressie (2012) adapt the low-rank approximation, while Xu et al. (2015)
opts for the GMRF. However, their solutions are valid only for dynamic models,
and hence require the data to be collected at fixed temporal lags. Other similar
opportunities for non-Gaussian outcomes are discussed in Bradley et al. (2018, 2020).

Attempts that actually tackle the challenge of continuous space-time modeling
of large dataset are instead present in Bai et al. (2012) and Bevilacqua et al. (2012),
who used composite likelihoods in order to achieve parameter estimation in such
set-up. This approach is limited by the impossibility to provide full inference (i.e.
characterize the distribution and uncertainty) at arbitrary locations. Alternatively,
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the Dynamic Nerarest Neighbor Gaussian Process (DNNGP) proposed in Datta et al.
(2016b) as an extension of the NNGP (Datta et al., 2016a) offers a highly scalable
spatio-temporal process that provides full inference at all scales for continuous
space-time modeling.

The very recent work in Heaton et al. (2019) tries to bring some order to the
plethora of available choices to analyze large spatial data-sets. It describes a case-
study competition among the fathers of some of the most promising techniques
mentioned above who agreed and were able to participate. Indeed, the competition
took place between the various research groups across the world, each implementing
its own method to analyze the same spatial dataset, so that it would be used at its
best. Without going too far into the competition’s details, all methods have been
compared in terms of their prediction ability, uncertainty estimation, and run-time.
All performed sufficiently well from various points of view. Nevertheless, the Nearest
Neighbor Gaussian Process (NNGP) methodology introduced by Datta et al. (2016a)
has emerged among the others for its generalized good performances at all tasks
combined with an incredibly reduced run-time. It also presents theoretical advantages
over many of its competitors. Indeed, the NNGP is not just a mathematical
approximation to the Full Gaussian Process it is built upon, but it defines a valid
process of its own. For all these reasons, it is the method chosen for the original
application in Alaimo Di Loro et al. (2021), described at Chapter 3 of this dissertation.

In the remainder of this Section, a broad introduction of the NNGP methodology
is provided, following the seminal and other papers. In particular, Section 2.5.4
introduces the spatio-temporal extension of the method proposed by the same author
in Datta et al. (2016b).

2.5.1 The Nearest Neighbor Gaussian Process (NNGP)
The Nearest Neighbor Gaussian process is a precision sparsity-inducing method

originally introduced in the seminal paper by Datta et al. (2016a). Its introduction
is motivated by the computational issues of fitting geostatistical models for massive
spatial data-sets. From a practical point of view, these are mostly related to the latent
Gaussian process’ dense covariance structure defining the underlying dependence
structure of the process of interest Y (·).

For example, let us consider the same estimation problem of Section 2.3.3. Under
the Full GP prior on the latent process η(·) we generally have that:

η(S) ∼ N
(
0, σ2 ·Rθ(S)

)
.

The covariance matrix σ2 ·Rθ(S) is a family of covariance matrices, indexed by an
unknown set of parameters θ, that generally presents a full and dense structure. This
is also true for the corresponding precision matrix

(
σ2 ·Rθ(S)

)−1, not offering any
exploitable structure to facilitate the matrix operations it is involved in. In particular,
the computation of the inverse and determinant of the covariance matrix are necessary
in order to fit both the conditional and the marginal models introduced in Section
2.3.3. The former requires these to sample from the latent process full conditional
of Equation (2.3.7), while the latter for the exact data likelihood evaluation (in
case inference on the latent process is of interest, also for sampling from η(S)’s
posterior distribution). That implies that model fitting typically requires O(n3)
floating-point operations and O(n2) storage, at each MCMC iteration, that rapidly
becomes prohibitive for large n.

As presented in the introduction to this section, a large variety of methods to
overcome this issue have been proposed in the literature. Loosely speaking, we can
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classify them in three categories: low-rank models (see e.g. Higdon (2002); Banerjee
et al. (2008); Finley et al. (2009) etc.), covariance sparsity-inducing methods (Furrer
et al., 2006; Kaufman et al., 2008) and precision sparsity-inducing methods (Rue
and Held, 2005; Vecchia, 1988; Stein et al., 2004; Eidsvik et al., 2014; Katzfuss
et al., 2020; Datta et al., 2016a). The NNGP is part of the last class but, differently
from the others, defines a valid process that extends to new random variables at
arbitrary locations. The latter allows for proper uncertainty quantification of spatial
predictions. This is instead the Achille’s heel of Gaussian Markov random field
approximations (Rue and Held, 2005) and composite likelihood approaches (Eidsvik
et al., 2014).

The NNGP methodology’s idea is to replace the Gaussian process prior specifica-
tion on the latent process with a sparsity-inducing spatial process prior derived from
the parent (original) Gaussian process. Sparsity is achieved by exploiting neighbors
sets constructed from Directed Acyclic Graphs (DAG), starting from the Vecchia
approximation (Vecchia, 1988). The resulting process is a valid process defined on
the whole process domain, whose finite-dimensional distributions are still Normal
distributed but have sparse precision matrices available in closed form.

The seminal paper Datta et al. (2016a) introduces the NNGP within the versatile
spatially-varying regression framework of Gelfand et al. (2003), considering q-variate
Gaussian processes. For the sake of clarity and coherency with the rest of this
dissertation, Section 2.3.3 will focus on the univariate case. Generalization to q-
variate setting is trivial, and the reader is referred to the seminal paper for insights.

2.5.2 Definition of the NNGP
Let us consider a zero-mean Gaussian process w(·) : D → R defined over Rd:

w(·) ∼ GP (0, cθ(·, ·)) ,
where cθ(·, ·) = σ2 · ρθ(·, ·) is a valid covariance function that defines uniquely the
dependence structure in w. Here, when referring to the covariance function instead
of the correlation function, the sill σ2 is included in the set of parameters θ. By basic
properties of Gaussian processes, on any finite set of locations U = {u1, . . . ,ul} ⊆ D
the following holds:

w(U) ∼ N (0,CU ) , (2.5.1)
whereCU = Cθ(U) is a l×l positive definite matrix such that [CU ]ij = cθ(ui,uj), i, j =
1, . . . , l. Let w = [w1, . . . , wl]> be a realization from w(U). Performing inference
through (2.5.1) is computationally burdensome for large l, because the computation
of the joint density fθ(w) entails inverse and determinant of Cθ(U).

A convenient representation of the joint density is based on the following condi-
tional identity:

fθ(w) = fθ(w1) · fθ(w2|w1) · · · fθ(wl|w1, . . . , wl−1) =

= fθ(w1) ·
l∏

i=2
fθ (wi |w (PU (ui))) ,

(2.5.2)

where PU(ui) = {u1, . . . ,ui−1} is the full conditioning set of location i over the
locations set U . In practice, Equation (2.5.2) is representing the joint structure
of the vector w through a Directed Acyclic Graph (DAG) G = (U ,PU ) where the
corresponding locations ui are nodes, and edges represent conditional dependence
relationships between the process values at the nodes 12.

12A Directed Acyiclic Graph is a directed graph with no directed cycles (Bang-Jensen and Gutin,
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Figure 2.10. Transition from a 4 nodes full DAG G to the sparse G∗, using Vecchia
approximation on with m = 1 neighbors sets composed of just the previous node.

While convenient for decomposing the dependence pattern in the joint density,
(2.5.2) does not provide much help in facilitating computations. Indeed, the condi-
tional densities are again multivariate Normals, and their evaluation encompasses
the solution of linear systems involving the covariance matrix of the conditioning
set. This may not be an issue for the first terms, but deeper ones present extensive
conditioning sets and jeopardize the initial computational advantages.

In light of this observation, as in Vecchia (1988), Stein et al. (2004) and Gramacy
and Apley (2015), we may propose to replace the larger conditioning sets in (2.5.2)
with smaller, carefully chosen, conditioning sets of size m, where m << l. The
resulting approximation to the original joint density is:

fθ(w) ← f̃θ(w) = fθ(w1) ·
l∏

i=2
fθ (wi|w (NU (ui))) , (2.5.3)

where NU (ui) ⊂ U \ {ui, . . . ,ul} is the set of m neighbors of ui in the conditioning
set PU(ui). Therefore, the original DAG G is modified by cutting edges in such a
way that each node has at most m edges pointing at it (i.e. m edges starting from its
m neighbors). Let us denote with G∗ = {U , NU} the new DAG. Figure 2.10 shows
the passage from G to G∗ in an example with 4 nodes (l = 4) and neighbor sets of
size m = 1 composed of the m previous locations.

Being G∗ a DAG, it can be proved that f̃θ(w) is a proper multivariate joint
density no matter the initial joint density fθ(w) (Lauritzen, 1996). This is especially
useful in the context of Gaussian processes. Indeed, if fθ(w) is a multivariate
Gaussian (which it is), standard distribution theory reveals that:

f̃θ(w) =
l∏

i=1
N
(
wi
∣∣∣ buiwNU (ui), dui

)
(2.5.4)

2008)
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where:

bui = Cθ(ui, NU (ui))Cθ (NU (ui))−1 ,

dui = cθ(ui,ui)−Cθ(ui, NU (ui))Cθ (NU (ui))−1Cθ(NU (ui),ui),
(2.5.5)

and Cθ(·, ·) denotes the cross-covariance between the elements of its two arguments.
This product of Gaussian conditional densities yields a multivariate Gaussian as
joint distribution:

f̃θ(w) = N
(
w
∣∣∣0, C̃U) , (2.5.6)

where C̃U is such that its inverse C̃−1
U is sparse with at most l ·m · (m+1)/2 non-zero

entries. Indeed, the explicit expression of the joint density in (2.5.6) is proportional
to:

1∏l
i=1 dui

exp
{
−1

2

l∑
i=1

(
wi − buiwNU (ui)

)> 1
dui

(
wi − buiwNU (ui)

)}
, (2.5.7)

where some manipulation may be necessary in order to clearly visualize the typical
Gaussian kernel. Let us denote with bi the 1× l vector defined in the following way:

[bi]j =


1 i = j

− [bui ]d uj = [NU (ui)]d for some d
0 otherwise

so that
(
wi − buiwNU (ui)

)
= biw. Stacking all the bi’s altogether into BU =[

b>1 , . . . , b
>
l

]>
, the exponent of (2.5.7) can be expressed in terms of the precision

matrix in the following compact way:

− 1
2
(
w>C̃−1

U w
)

= −1
2
(
w>BU

>DU
−1BUw

)
, (2.5.8)

whereDU = diag (du1 , . . . , dul). In particular, given the structure of the bi’s building
up BU , the (i, j)-th element of the inverse with i < j is such that:

[
C̃−1
U

]
ij

=
l∑

k=j

( 1
duk

[bk]i · [bk]j
)
, (2.5.9)

where the expression on the right-hand side is different from 0 if and only if there is
one k > j such that ui ∈ NU(k) and uj is either equal to uk or belongs to NU(k).
Since every neighbor set has at most m elements, there are at most l ·m · (m+ 1)/2
such pairs, and hence the sparsity of C̃−1

U .
All these considerations are valid for any criteria to select neighbors NU (·) into

the conditioning sets PU (·), since this always ensures the needed DAG structure. A
natural choice may be the one of selecting the closest ones in terms of some distance
between the locations (Vecchia, 1988; Stroud et al., 2017), but this is quite arbitrary
and any other logic may be applied according to application-specific features (see,
e.g., Peruzzi et al. (2020a)). Whatever the choice, the resulting neighboring sets
always depend on the ordering of the locations. This is not an issue in temporal
applications, but spatial locations are not ordered naturally. Therefore, one shall
impose an order (e.g., according to one of the coordinates, random order, etc.). Stein
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et al. (2004) and Gramacy and Apley (2015) have shown that this does not have a
discernible impact on the accuracy of the approximation. As a matter of fact, the
approximation’s effectiveness is mostly determined by the size of the neighbor sets
and not by the specific ordering. In particular, for m = (l− 1), the approximation is
perfect and the original joint density of (2.5.2) is obtained. Thus the NNGP can
approximate, well at will, the joint density over a finite set of locations of a parent
Gaussian process. That is something that a lot of other techniques, even simpler
than this one, can achieve. However, the great potentiality of the NNGP resides in
f̃θ(·) defining a legitimate process on the original GP’s space.

Let us consider a set T = {t1, . . . , tg} ⊂ D such that V = T \U and let us denote
with wT and wV realizations of w(T ) and w(V) respectively. Consistently with
the definition of NU , let {NU (vi) : vi ∈ V} be the set of m-nearest neighbors to the
elements of V in U . Akin to (2.5.3), we can define the nearest neighbors density of
wV conditional on w as:

f̃θ(wV |w) = fθ(wV i) ·
r∏
i=2

fθ
(
wV i|wNU (vi)

)
.

This ensures a proper conditional density on any subset of D as T , indeed:

f̃θ(wT ) =
∫ ∫

f̃θ(wV |w)f̃θ(w)
∏

i:ui∈U\T
∂wi, (2.5.10)

where f̃θ(wV |w) = 1 if V is empty and integration is not necessary if U \ T = ∅.
The probability densities defined as in (2.5.10), defined on topologies, conform to
Kolmogorov’s consistency criteria and thus correspond to a valid process over D
(technical details included in the supplementary material of Datta et al. (2016a)).
So, given a reference set U and a parent process, it is possible to construct a new
process over D just exploiting a collection of neighbors in U . This is called the
Nearest Neighbor Process.

In particular, for a GP(0, cθ(·, ·)) parent process, the following holds:

f̃θ(wV |w) =
r∏
i=1
N
(
wV i

∣∣∣ bviwNU (vi), dvi)
)

= N (wV |BVw, DV) ,

where bvi , dvi , BV and DV are defined analogously to their counterparts in (2.5.5).
In particular, DV = diag (dv1 , . . . , dvr) and BV is a sparse r × l matrix with each
row having at most m non-zero entries.

So, the result of the integration in (2.5.10) is:

f̃θ(wT ) = N
(
wT

∣∣∣ 0, C̃θ(T )
)
, (2.5.11)

where C̃θ(T ) is the covariance matrix obtained through the application of the
following cross-covariance function:

c̃θ(t, t′) =



[
C̃U
]
i,j

t = ui, t
′ = uj

bt
[
C̃U
]
NU (t′),uj

t /∈ U , t′ = uj

bt
[
C̃U
]
NU (t),NU (t′)

bt′
> + It(t′) · dt t, t′ /∈ U

, (2.5.12)
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with t and t′ arbitrary locations in D,
[
C̃U
]
A,B

denoting submatrices of C̃U indexed
by locations in the sets A and B and IA(·) indicator function over the set A. This
completes the construction of a well-defined and non-degenerate process over D,
derived from a parent GP(0, cθ(·, ·)), that is named Nearest Neighbor Gaussian
Process NNGP (0, c̃θ(·, ·)). Let us here point out that the reference set U on which
the NNGP is defined can be large at will, even larger than the data-set itself:
reduction in computational complexity is still achieved by sparsity and only depends
on the number of neighbors m.

In the next section, we will see how we can use the NNGP to facilitate computation
in the Bayesian hierarchical geostatistical models’ estimation process.

2.5.3 Bayesian implementation of the NNGP
Let us consider the Geostatistical setting of Section 2.3.3, where the observed

vector of outcomes y = {y1, . . . , yn} at locations S = {s1, . . . , sn} is assumed to be
a realization from:

Y (si) = x(si)>β + η(si) + υ(si), si ∈ S ⊆ D,

where x(·) is a p× 1 vector of spatially varying covariates, η(·) is a latent process
generally assumed to be a GP(0, cθ(·, ·)) and υ(·) ∼ GP(0, τ2). This generally yields
a covariance matrix over the observed set with a full-dense inverse, both at the
latent (Cθ(S)−1 = C−1

θ ) and at the observables (Σθ(S)−1 = Σ−1
θ =

(
Cθ + τ2In

)−1)
levels. The bottlenecks of the estimation for the conditional and marginal models
introduced in Section 2.3.3 were the following.

• Conditional model. As by Equations (2.3.7) and (2.3.8) the block update
of η requires the computation of |E| and E−1 where:

E =
( 1
τ2 In +C−1

θ

)
.

• Marginal model. Both the marginal likelihood for the block-metropolis
update of θ and the Gibbs update of the β coefficients require the evaluation
of |Σφ| and Σ−1

φ with:
Σφ =

(
τ2In +Cθ

)
,

where φ =
{
σ2, θ, τ2}.

For scalability, the GP prior on the latent process can be replaced with a Nearest
Neighbor Gaussian process prior:

η(·) ← η̃(·) ∼ NNGP (0, c̃θ(·)) ,

where c̃θ(·) is the sparsity inducing covariance function derived from cθ(·) through
the Nearest Neighbor approximation over a reference set U ⊆ D. Generally speaking,
since it does not have any discernible impact on the estimation accuracy (Datta
et al., 2016a), we may use any arbitrary reference set to define the NNGP. Here, we
will consider the case in which the reference set for the NNGP coincides with the
observation set U = S.

The NNGP prior on the latent process allows to replace the originally dense
inverse C−1

θ with the sparse C̃−1
θ . This has an immediate advantage in the setting
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of the conditional model. Indeed, sparsity of C̃−1
θ can be leveraged to compute its

sparse Cholesky factorization:

C̃−1
θ = (I −A)>D−1 (I −A) ,

directly from Cθ. This entails solving n− 1 linear systems of size at most m×m,
which can be performed in O(n×m3) operations (m << n implies n×m3 << n3).
Indeed, elaborating on Equation (2.5.8), the matrix A is lower triangular with at
most m elements at each row i (the non-zero values corresponds to columns of si’s
neighbors). These can be computed as:

[A]i,NS(si) =
(
[Cθ]NS(si),NS(si)

)−1
[Cθ]NS(si),i , i = 1, . . . , n. (2.5.13)

Furthermore, D is a diagonal matrix with elements on the diagonal given by:

[D]ii = [Cθ]ii − [Cθ]NS(si),i [A]i,NS(si) , i = 1, . . . , n. (2.5.14)

Operations in (2.5.13) and (2.5.14) can also be performed in parallel as the compu-
tation of each element is independent from the other, allowing for efficient routines
that can sensibly improve on the global run-time.

The sparse-Cholesky factorization of C̃−1
θ , other than being cheap in its own

computation, facilitates the computation of the determinant C̃−1
θ =

∏n
i=1 [D]ii and

of linear systems or quadratic forms involving C̃θ or C̃−1
θ (that can be computed

in O(n × m)). In particular, these computational advantages are preserved also
for Ẽ =

(
1
τ2 In + C̃−1

θ

)
, since 1

τ2 is diagonal and preserves C̃−1
θ sparsity pattern.

Exploiting it, the computation time required for sampling from the full-conditional
w in its sequential update into the conditional model MCMC machinery is incredibly
lowered. It also reduces the burden of sampling from the posterior predictive
distribution at un-sampled locations η̃ through (2.3.10). The adoption of the NNGP
prior in the context of the conditional model yields what is known as the Sequential
NNGP.

On the other hand, the computational advantages of the NNGP are not so
apparent in the case of the marginal model. Indeed, even if C̃−1

θ is sparse and has a
sparse-Cholesky factorization, the corresponding:

Σ̃φ =
(
τ2In + C̃θ

)
,

does not enjoy such a convenient factorization and, in general, its inverse Σ̃−1
φ is not

even guaranteed to be sparse. However, using the Sherman-Woodboory-Morrison
formula (SWM), one can write:

Σ̃−1
φ = 1

τ2 In −
1
τ4 Ẽ

−1.

This implies that the determinant, linear systems and quadratic forms involving
Σ̃φ and Σ̃−1

φ can be computed in terms of Ẽ, thus sharing its same computational
advantages and settling to the same computational complexity of the Sequential
NNGP (O(n×m3)). This formulation of the NNGP, which works marginally on the
latent process, is known as the Collapsed NNGP.

The computational complexity in both settings highlights how the choice of the
neighbor sets’ size regulates the trade-off between the accuracy of the approximation
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and the computational advantages of the NNGP. As just shown, the computational
complexity is linear in the number of observed locations n, but it is cubic in the
number of neighbors m. Therefore, for n very large, a low number of m is critical
in reducing the required operations’ number. Simulation studies in Datta et al.
(2016a) show that values of m ≈ 10 provide inference almost indistinguishable to full
geostatistical models, either when the model is or is not well-specified. Generally,
a precautionary recommendation is to pick m ≥ 10, but m < 20 typically suffices,
and greater values are usually ineffective in improving estimation and prediction
accuracy.

For a more detailed description of the MCMC algorithms implementation of
the Sequential and Collapsed NNGP and for ulterior alternative formulations (e.g.
Response NNGP, Conjugate NNGP), the reader is referred to Finley et al. (2019).
Please note that the Sequential NNGP, Response NNGP and Conjugate NNGP
are already implemented in a user-friendly R-package named spNNGP (Finley et al.,
2017a).

2.5.4 The Spatio-temporal NNGP
Datta et al. (2016b) introduces a Dynamic version of the NNGP that can account

for separable or non-separable dependence structure in spatio-temporal Gaussian
processes. It provides a highly-scalable framework for the space-time setting, which
is currently scant of effective alternatives able to provide full inference on the
underlying process. Indeed, as its only spatial version, it delivers a substantially
superior approximation than other state of the art techniques such as low-rank
approximations (see Stein (2014)).

Theoretical derivations and computational complexity are completely analogous
to the ones of the purely spatial NNGP. Let w(·, ·) : D × G → R defined over Rd × R
be:

w(·) ∼ GP (0, cθ(·, ·)) ,
where cθ(·, ·) is an arbitrary spatio-temporal covariance function. Let us then
consider a set of space-time locations U = {(ui, τi)}li=1 ⊆ Rd × R. As for spatial
processes, also spatio-temporal Gaussian processes are such that:

w(U) ∼ N (0,CU ) ,

whereCU = Cθ(U) = [(ui, τi]ij is the l×l covariance matrix. Letw = [w(u1, τ1), . . . , w(ul, τl)]>

be a realization from w(U) and construct space-time neighbor sets {N(ui, τi)}li=1
of size |N(ui)| = m << l for each ui ∈ U . Following the derivations of Section
2.5.2, Equations (2.5.3) and (2.5.4) can be applied in sequence. As a matter of fact,
the application of the former is even more natural since the temporal dimension is
characterized by a natural ordering among observations (absent in the solely spatial
case). The resulting outcome is analogous to the one of Equation (2.5.6):

w̃ ∼ f̃θ(w) = N
(
w
∣∣∣0, C̃U) ,

where C̃U is such that its inverse C̃−1
U is sparse with at most l ·m · (m+1)/2 non-zero

entries. Storage and computation of the inverse and determinant of this matrix
is then reduced to O(l ·m3). Using Equations (2.5.10) and (2.5.11), the validity
of the resulting process extends to arbitrary set of space-time locations in D × G,
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Figure 2.11. True and simple neighbor sets on a 20 × 20 spatio-temporal datasets
with one-dimensional spatial domain and covariance function cθ ((si, ti), (sj , tj)) =
exp

{
−|si − sj |2 − θ|ti − tj |2

}
. Points are ordered from left tow right, from bottom to

top. Hence only points below the chosen one (in red) belong to its conditioning set.
Black points belong to the corresponding neighboring set, with size fixed to m = 9. We
see how for increasing values of θ distance along the temporal dimension becomes more
relevant.

with a structure of the approximated cross-covariance function c̃θ(·, ·) analogous to
Equation (2.5.12). This process is denoted as:

w̃(·) ∼ DNNGP ((0, 0), c̃θ(·, ·)) . (2.5.15)

So far, the extension of the NNGP methodology to the space-time setting required
only some notation adaptation. Nevertheless, we just glossed over the conceptual
question about the proper definition of space-time neighbor sets. Indeed, spatial
correlation functions usually decay with distance and therefore the definition of
neighbor sets based on the inter-site distance is completely natural. On the contrary,
the definition of a reasonable criteria for establishing neighborhood relationships
between space-time locations is not as trivial. Spatial lags are not comparable to
temporal lags, hence the naive euclidean distance in Rd+1 is not a viable choice.
Following the first law of geography, closer points shall present higher covariance
cθ(·, ·). Thus covariance values themselves may be used as a general distance metric:

dθ ((ui, τi), (uj , τj)) ∝ (cθ(ui − uj , τi − τj))−1 , ∀ (ui, τi), (uj , τj) ∈ D × G.

However, isotropic spatio temporal covariance functions (non-separable or separable)
depend on both the spatial and temporal lag, and the decay and interaction between
these two dimensions is regulated by some set of unknown parameters θ. This often
precludes the definition of a universal distance metric d ((·, ·), (·, ·)) :

(
Rd × R

)2
→ R

such that cθ(·, ·) will be monotonic with respect to d ((·, ·), (·, ·)) for all choices
of θ. Loosely speaking, this means that the distance (thus the neighborhood
relationships between locations) depend on the unknown value assumed by the
parameters regulating the covariance function, impeding an absolute choice of static
neighbor sets. This is clear from Figures 2.11a and 2.11b, that show the drastic
change of the neighboring structure at variation of the parameter θ in a simplified
framework. Datta et al. (2016b) provides two solutions to overcome this issue.

Simple neighbor sets Neighboring structures are defined by treating separately
and giving equal importance to the temporal and spatial dimension. Given a neighbor
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set of size m which is a perfect square, the
√
m nearest neighbor in space and the√

m nearest neighbors in time are selected to compose the complete neighborhood.
Let us take a reference set over a regular space-time grid, where S = {si}Ii=1
and T = {tj}Ji=1 are the two sets of spatial and temporal locations, respectively.
Let Ci = {s1, . . . , si−1} be the conditioning sets of each spatial location given a
certain order, and Ns(s, C,m) be the set of m neighbors of s in C. For any point
(si, tj) ∈ S × T the simple neighbor set is defined as:

N(si, tj) =
(
∪
√
m−1

k=1
{
(s, tj−k|s ∈ Ns(si,S,

√
m)
})
∪
{
(s, tj |s ∈ Ns(si, Ci,

√
m)
}
.

(2.5.16)
This construction implies that the neighbor set of any point in S × T includes the√
m nearest neighbors of the preceding

√
m time points (including itself at previous

times). For any other points (s, t) /∈ S × T (e.g. any (u, τ) ∈ U), the neighbor set
in the reference set is simply defined as the Cartesian product of the

√
m nearest

neighbors in space and time. An example of such neighborhood is reported in Figure
2.11c. A good property of such neighboring structure is that, in case the chosen
covariance function satisfies natural monotonicity13, then neighborhoods constructed
as in Equation (2.5.16) are guaranteed to contain at least the actual

√
m− 1 nearest

neighbors for any value of the parameter θ.

Dynamic neighbor sets The simple neighbor scheme has a clear advantage from
a computational point of view, since neighbors sets stay fixed along MCMC iterations.
However, it is not exact and in some cases may contain very few of the true neighbors
(see Figure 2.11). This issue is exacerbated when the correlation decays rapidly in
one direction but not in the other. Ideally, if θ was known, one could have fixed
neighbor sets {Nθ(ui, τi)}li=1 by evaluating the pairwise covariances between any
point in the reference set (ui, τi) ∈ U and all those in its conditioning set Ci, yielding
dynamic neighbor sets {Nθ(ui, τi)}li=1.

While θ is generally unknown, it does assume a specific value at each iteration of
the typical MCMC machinery used for estimation in a Bayesian setting. This permits
the consideration of an adaptive neighbor selection scheme where the neighbor sets
Nθ(·) dynamically vary at each iteration of the MCMC algorithm, readjusting to the
new values assumed by θ. Whilst attractive from a theoretical point of view, this
approach requires a search for neighbors at every iteration and becomes more and
more computationally challenging as the conditioning set grows. For instance, given
n observed data-points and a l-sized reference set, the flops amount to O(l2 + nl) at
each iteration. Indeed, the conditioning sets of the l-th point in the reference set
and of the n observed locations contain l − 1 and l points respectively, which are all
possible neighbors. Hence, for large datasets, this kind of adaptive strategy becomes
rapidly unfeasible. The inefficiency of this approach is clearly related to the size of
the set of eligible points for the neighborhood on which the search is performed, that
is generally composed of all points in the conditioning set. Jones and Zhang (1997)
tries to alleviate this difficulty by permitting only points within a prefixed (small)
temporal lag to be neighbors, but this assumption inevitably fails to capture any
long term temporal dependence.

Exploiting the same logic, Datta et al. (2016b) instead formulated an algorithm
that can efficiently update the neighbor sets at every update of the parameter θ
cropping in advance the set of eligible points, while still guaranteeing the presence

13cθ(h, δ) is decreasing in h for fixed δ and viceversa. All Matèrn based space-time covariance
functions have this property Stein et al. (2013); Omidi and Mohammadzadeh (2016)
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(a) Ineligible point (b) Eligible point (c) Eligible set

Figure 2.12. Construction of eligible sets for finding nearest neighbor sets of size m = 7:
In figure (a), the black point is ineligible because there are 7 ≥ m = 7 other points closer
both in space and time. In figure (b), the blue point is eligible because there are only
6 < m = t other points closer both in space and time. Figure (c) shows the final eligible
set obtained by applying the same logic to all points in the conditioning set.

of the true m nearest neighbors. This is achieved by specifying carefully constructed
small subsets of the conditioning sets. They noticed that if the spatio-temporal
covariance function satisfies natural monotonicity, not all points in the conditioning
set are actually eligible for a neighborhood relationship, but the search can be
restricted to a set of ≈ 4m points determined in terms of their temporal and spatial
distance. The logic behind this scheme starts from the two most extreme scenarios:
the case in which temporal covariance is irrelevant, hence the m nearest neighbors
would be the m closest in space, and viceversa. As the importance of the irrelevant
dimension increases, one point of the previous set will be excluded to make space
to a new one which is close on the other dimension. If all points are ordered along
two axis representing the corresponding spatial and temporal lags, it is indisputable
how all mid-ways possibilities must be composed of points close in both space and
time. Thus, points that are too far in both dimensions can be painlessly excluded.
Let us assume the interest lies in finding all eligible neighbors of point a, and in a
random scan the point b is considered. The rule is that if there are at least m other
points closer both in space and time to a than b, then b is clearly ineligible as
neighbor (will not ever be a neighbor of a for any choice of θ). The visualization of
such eligible set is straightforward on a regular grid such as the one introduced for
the simple neighbor set: a point (u, τ) is eligible for neighborhood with (si, tj) if
the smallest rectangle of points preceding (si, tj) in which it is contained has size
< m. An example is provided in Figure 2.12. Using this strategy, the eligible sets
can be computed only once before the MCMC implementation and the cost of the
neighbor search at each iteration reduces to O(4m(n+ l)). For further details on
this neighbor search algorithm the reader is referred to the Supplementary Material
of Datta et al. (2016b).

Whilst important for hasting convergence and improving the quality of the
inferential result, we must recall that the NNGP and DNNGP frameworks are valid
for any arbitrary specification of neighbor sets. Potentially, these may even be chosen
at random. As proved in the seminal papers, these methods proved to be robust with
respect to different neighborhood constructions, and the improvement guaranteed
by the adaptive strategy is hardly noticeable in standard settings (especially when
m grows). Nothing excludes that in particularly imbalanced contexts (the most of
the dependence is driven by time or space), the improvement would be more evident
and thus a careful choice of the neighboring set is always strongly advised.
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These last considerations conclude the last section of Chapter 2. It provided
an extensive introduction to the NNGP methodology, exalting its potential and
flexibility. As promised, it does offer a highly scalable model (rather than an
approximation) for large to massive spatial data-sets that has also proved to be
robust with respect to its tuning parameters (i.e., ordering of locations, neighbor
sets’ size etc.). Implementation guidelines in the context of linear and Gaussian
geostatistical models have been described, with references to other alternatives. A
tentative extension to Generalized linear geostatistical models is already present in
Datta et al. (2016a), but it is a setting undergoing further developments. Other
alternatives based on the same logic are being developed (e.g., Peruzzi et al. (2020a)),
and ever-increasing numbers of applications from different fields are making successful
use of it (Abdalla et al., 2018; Finley et al., 2017b; Shirota et al., 2019; Grenier
and Sansó, 2019; DiFranzo et al., 2020; Segura et al., 2020; Peruzzi et al., 2020b).
All things considered, this is a reasonably innovative methodology only recently
invented, and it has already drawn an exceptional lot of attention.
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Chapter 3

Combining NNGP and Spline
regression for modeling physical
activity level in a large scale
population study

Promoting a healthy lifestyle continues to stoke substantial research activities
in public health. The "Physical Activity Guidelines for Americans" (2nd edition)
suggests that most individuals, depending on age and body composition, receive
150-300 minutes of moderate to vigorous physical activity (MVPA) weekly (Piercy
et al., 2018). In general, the scientific community agrees that regular physical
activity can have immediate and long-term health benefits (Reiner et al., 2013;
Bull et al., 2020). Despite these well-known benefits, most Americans fail to meet
recommended requirements (Piercy et al., 2018). Specifically, only 1 in 5 high-school
adolescents and 1 in 4 adults meet recommended levels of physical activity. Given the
well-established relationships between lack of physical activity and several leading
chronic conditions such as heart disease, type 2 diabetes, and cancer as well as many
physical and mental health benefits, an urgent need exists to improve monitoring of
physical activity and to establish public health programs that promote more physical
activity 1.

Data science technologies for monitoring various physical parameters (e.g. step
rates, blood pressure, heartbeat, activity counts, etc.) and promoting physical
activity continue to emerge and develop. Many devices also include Global Positioning
System (GPS) sensors that allow for recorded parameters to be paired with location
tracking. Such data are gathered directly with wearable sensors or indirectly through
smart-phone mobile applications, and record repeated measures at a predetermined
(potentially very high) frequency. Collected data are easily downloaded and promptly
analyzed in order to get insights about their pattern and structure. In general,
analyzing such data is sought for several reasons: (i) assessing health effects of
different physical activity intensities (Pate et al., 2008; Smuck et al., 2014; Farooq
et al., 2020); (ii) improving classification accuracy of activity intensity (e.g. sedentary,
light, moderate, vigorous; Degroote et al. (2020); Sagelv et al. (2020)); (iii) assessing
the effectiveness of interventions and health promotion techniques (Troped et al.,
2010; Dunton et al., 2014; Hartman et al., 2018).

Physical Activity (PA) tracking is especially attractive for research as it allows
1More details at https://www.cdc.gov/chronicdisease/resources/publications/

factsheets/physical-activity.htm

https://www.cdc.gov/chronicdisease/resources/publications/factsheets/physical-activity.htm
https://www.cdc.gov/chronicdisease/resources/publications/factsheets/physical-activity.htm
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for a better understanding of what behavioral and environmental factors influence
population and individual health and, hence, aid in public health recommendation
and policy. Research however is often hindered by the challenge of employing a
valid, reliable measure for energy expenditure (EE) that also adequately satisfies the
research question or design. The current gold standard is known as Doubly Labeled
Water (DLW), which uses the total EE derived from daily biological measurement
as a proxy for the average level of physical activity. While being objective and
accurate, and promising as a tool to serve as criterion measure for other instruments
(Westerterp, 2009), the DLW remains impractically expensive for large-scale studies.
Consequently, physical activity assessment is still often based on (1) self-report
questionnaires (Schuch et al., 2017), (2) self-report activity logs or diaries (Bedard
et al., 2020), and (3) direct measurement (Maher et al., 2019). While the (1) and
(2) are relatively cheap with the second one implying a significant burden on the
respondent, (3) is highly demanding in time and energy. More importantly, all three
lack an objective measure of EE (Hidding et al., 2018).

New tools for monitoring instant physiological markers related to objective
measures of physical activity have been recently developed, enabling comparability
with the tools usually adopted for measuring EE in controlled studies such as the
VO2 (Miller et al., 2010). Accelerometers, in particular, motion sensors that allow to
quantify gross motor activity over time and are increasingly conspicuous because of
their affordability, increasing accuracy, and their availability in common devices such
as smart-phones, smart-watches, and other wearable devices. More generally, such
devices can be administered to individuals in their normal surroundings and allow for
individual-specific Actigraphy2 analysis. That’s why, in this context, these are usually
referred as Actigraph Units (Plasqui and Westerterp (2007); Westerterp (2009) Sikka
et al. (2019)). These tools have been widely deployed in controlled studies for deriving
the EE corresponding to pre-determined physical activities (Abel et al., 2011), but
their characteristics makes them superior to surveys for the objective assessment of
physical activity also in population studies (Strath et al., 2013; Tudor-Locke et al.,
2010) or large studies (Troiano et al., 2014; Berkemeyer et al., 2016; Doherty et al.,
2017; Pearce et al., 2020). They however have several well-known limitations. For
example, accelerometers usually underestimate energy expenditure of activities such
as cycling, swimming, weight lifting, and many household chores. Physical activity
estimates can also vary depending on subjective decisions in data reduction such
as the choice of cut-points for intensity levels, the minimum number of valid days,
the minimum number of valid hours per day, and the definition of non-wear time
(Rachele et al., 2012). To mitigate the effects of some of these limitations, it is
desirable to use the data at high (or fine) resolutions instead of descriptive analysis
or regression modeling on the average level of activity aggregated at the individual
level (Mitchell et al., 2017). For an extensive review of physical activity assessment
methods see Sylvia et al. (2014) and references within.

We pursue a comprehensive analysis of an original actigraphy data set from the
Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-
LA) study. These data were compiled as part of a longitudinal study conducted by
the Fielding School of Public Health of the University of California, Los Angeles
(UCLA) that enrolled a cohort of 460 individuals, followed through different tools
and devices for approximately 2 years. In this work, we focus on three particular
tasks: (i) estimating a subject’s physical activity levels along a given trajectory;
(ii) identifying trajectories that are more likely to produce higher levels of physical
activity for a given subject; and (iii) predicting expected levels of physical activity in

2Actigraphy is a non-invasive method of monitoring human rest/activity cycles.
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any proposed new trajectory for a given set of health attributes. We propose a fully
model-based approach where data points are not aggregated at the individual level,
but only at the epoch level (set of contiguous instants). Each record is characterized
by a time-stamp and (when equipped with a GPS device) by the corresponding
geo-referenced location. Hence, it is natural to choose from the rich classes of spatial
and spatio-temporal models introduced in Chapter 2. Nevertheless, actigraph data
generally present some notable challenges. First, repeated-measures of accelerometry
data produce vast amounts of data, even for sample sizes of only a few individuals
monitored for short periods of time (e.g. days or weeks). We overcome this limitation
by exploiting some inherent data structures and by considering the Nearest Neighbor
Gaussian Process (Datta et al., 2016a), or (NNGP), to deal with massive temporal
scales (see Section 2.5.1). Second, consecutive recording exhibit dependence along
trajectories that must be accounted while predicting PA along arbitrary (unobserved)
trajectories (Kestens et al., 2017). We argue against a customary spatiotemporal
process over R2 and disentangle spatial effects from dependence along trajectories.

The balance of this chapter is organized as follows. Section 3.1 introduces the
accelerometry data. The model for the temporal correlation is extensively introduced
in Section 3.2, while spatial effects are specifically discussed in Section 3.2.4. An
extensive simulation study validating our model is proposed in Section 3.2.5. Data
analysis, including model assessment and comparisons, are presented in Section 3.3.
Finally, the application is concluded with a discussion in Section 3.4. Some promising
future developments are finally sketched in Section A.2.

3.1 Data
3.1.1 Data collection

Our data for the current project has been compiled from the Physical Activity
through Sustainable Transport Approaches - Los Angeles (PASTA-LA) study. The
Fielding School of Public Health of UCLA has conducted this study on a cohort
of 460 individuals. These individuals were monitored for a period of two years
(2017 and 2018) to verify the effect of the introduction of the Bruin Bike Sharing
system on their physical activity level. Data were collected through different sources:
online questionnaires, a smartphone app named MOVES, a GPS device (GlobalSat
DG-500), and a wearable Actigraph unit (Actigraph GT3X+). While 460 is the
sample size for the full study, the GPS and Actigraph devices were deployed only
on a nested sample of 163 individuals due to cost considerations. Data collected
through the MOVES app, whose reliability and comparability across individuals
(different devices) must still be verified and discussed, are not considered in the
domain of this paper. Here, we rather focus on the values recorded by the Actigraph
and GPS devices, worn for only two one-week periods (one in 2017 and one in 2018),
because of their constant recording frequency and the wider literature concerning
their use and study.

Study protocol for safeguarding participant information received institutional
review board (IRB) approval from the UCLA Human Research Protection Program.
A final composite directory housed all data, separated by participant. This data
was stored on a secure computer, and a redacted version was created for purposes of
data sharing and research collaboration. We do not pursue all of the aims of the
PASTA-LA study, but we build and test the framework proposed in Section 3.2 for
modeling of high-frequency sampled data related to different individuals.



3.1 Data 68

Questionnaires The online questionnaire was supposed to be repeated six times on
the whole population, three times before the intervention (Bruin Bike Share Launch)
and three times after: this included two baseline surveys and four follow-up surveys.
Each survey included a maximum of 184 variable responses per participant pertaining
to the user’s demographics and transportation habits. Not all participants completed
all questionnaires, and the survey available on the largest part of participants is the
First baseline questionnaire, which contains mostly demographic information such
as sex, age, BMI3, ethnicity and other socioeconomic factors. For this reason, in the
domain of this paper, only data resulting from this survey have been included. A
user ID has been assigned to each survey response data and a redacted master key
was generated using all ID types for joining with other study data.

Actigraph The Actigraph units were provided to a nested sample of 163 individuals
for two one-week periods, before and after the Bruin Bike Share launch. As described
in Trost (2007), an Actigraph unit is an accelerometer measuring 38×37×18 mm and
weighing 27 g. These devices can be worn in numerous places on the body, including
wrist, hip, and thigh and measure the directional acceleration at a pre-specified
time frequency (generally 10 Hz to 30 Hz). The most recent models, such as the
Actigraph GT3X+ used for the PASTA survey, can detect movements in up to three
orthogonal planes (anteroposterior, mediolateral, and vertical). Data are stored in an
internal memory and can be downloaded to other hardware for performing analysis
through a proprietary software. During download, the proprietary software converts
the raw acceleration information to activity counts, step counts, caloric expenditure,
and activity levels, aggregated at the level of sample epochs that can be specified
by the user. Unfortunately, the software is proprietary and precludes recovering
the raw data once they have been processed in the download phase. In our case,
the 163 participants were asked to keep the Actigraph unit (on the wrist of their
choosing) on them at all times other than during bathing and sleeping (awake time
approximately from 7 am to 11 pm). Therefore, observations recorded outside this
daily time-window have been deleted. Additionally, the devices were not supposed
to be a nuisance for the participants, so they were allowed to take it off if needed.
Troiano et al. (2014), showed that such a protocol naturally results in huge amounts
of missing data, not random but biased toward an increased general level of physical
activity (i.e. people who kept the accelerometer on during these times are likely
to be the ones who would be performing physical activity). Here, we focus upon
estimating the physical activity level during the active time.

When participants arrived at the research offices to drop off devices, some
described issues of efficacy in the ability to keep the device on or charged. Indeed,
while the actigraphs were supposed to hold a charge long enough to last the whole
week, this was not always the case (possibly due to external conditions affecting the
battery life or variations in manufacturing). Hence, we anticipated a large amount
of missing data.

During download, the data were aggregated in sample epochs (proprietary unit
of time of Actigraph) that span 10 seconds and include the activity counts for the
three axles and step counts as these are computed by the proprietary software. Time-
stamps of each final measurement (hour, minute, and second) have been obtained as
the mid-point between the beginning and the end of the epoch.

Furthermore, the Actigraph GT3X+ automatically recorded a measure of light
exposure (lux) and inclinometer values on how many of the 10 seconds epoch have

3binned according to the World Health organization (WHO) guidance (https://apps.who.int/
bmi/index.jsp?introPage=intro_3.html)

https://apps.who.int/bmi/index.jsp?introPage=intro_3.html
https://apps.who.int/bmi/index.jsp?introPage=intro_3.html
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Figure 3.1. Missing data pattern after inclinometer-based dropping for the Actigraph data
during daytime for 4 individuals: blank spots are missing data, black spots are observed
values

been spent by the participant lying down (inclinometer.lying), sitting (inclinome-
ter.sitting), standing (inclinometer.standing) or without wearing the accelerometer
(inclinometer.off ). These variables were not of primary interest to the PASTA-LA
study and were not directly addressed in their data collection protocol for quality
assurance. For example, there was no guidance about keeping the device open to the
light (e.g. not covered by clothing). Regarding the inclinometer4, it has reported
error rates up to 30% when worn in the most accurate location, and likely less
accurate when worn on the wrist (Peterson et al., 2015). We sought to exploit
convergence of accelerometry and inclinometer data to derive periods of inactivity
in the study data. We checked that large values of inclinometer.off corresponded to
low (∼ 0) values of activity in all the possible endpoints. Therefore, observations
with inclinometer.off larger than 5s (i.e., the accelerometer was inactive for more
than half of the epoch) have been dropped as likely to actually represent non-wear
time. Despite this first pre-processing step, the dataset still presented many records
of activity values exactly equal to 0 (≈ 30% of all the records). A more detailed
analysis revealed how such values were mostly associated to participants lying or
sitting, thence practically inactive. In a comprehensive analysis, this huge inflation
of 0s should be taken properly into account5. However, this is out of the scope of
the project and will be considered in future work.
Here, as specified above, we sought to analyze activity levels only throughout the
“active time”–when the Actigraph device records the individual as being physically
active— and excluded all the inactive times (i.e. MAG = 0). This pre-processing
resulted in ≈ 6.4× 106 scattered observations, exhibiting missingness patterns such

4see https://actigraphcorp.com/research-database/validity-of-the-actigraph-inclinometer-algorithm-for-detecting-sitting-and-standing-postures/
for details

5For instance, standard approaches include mixtures of distributions or hidden Markov models
that allow to model jointly state and activity level (Cappé et al., 2006).

https://actigraphcorp.com/research-database/validity-of-the-actigraph-inclinometer-algorithm-for-detecting-sitting-and-standing-postures/
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as in Figure 3.1.

GPS The Global Positioning System (GPS) is a satellite-based radio-navigation
system. It does not require the user to transmit any data, and it operates indepen-
dently of any telephonic or internet reception. Any GPS unit can be set to record
and store the geo-referenced location at a pre-specified time frequency so that they
could be downloaded and subsequently analyzed in a second moment. It is worth
mentioning that obstacles such as mountains and buildings can block the relatively
weak GPS signals and cause the device to not record or record meaningless locations
by time to time (Wing et al., 2005).

The GlobalSat DG-500 was provided to the same nested sample of PASTA-LA
study participants together with the Actigraph unit (163 individuals), with the
specific task of taking it with them at any time during the two weeks (e.g. in pants
pocket or in the backpack). The GPS unit recorded the location every 15 seconds
and the downloaded data contained: date and time of localization (time-stamp),
latitude, longitude, altitude in meters (mostly missing), and speed in kilometers per
hour (computed as distance over time through linear interpolation). Participants
were eligible for recruitment if they worked or lived in the Westwood and UCLA
areas. Consequently, Westwood is the zone presenting the highest and most uniform
density of observations. Hence, in order avoid a geographical imbalance that could
bias and invalidate the model estimates, we decided to restrict the spatial analysis
only to GPS records falling inside its boundaries. This allowed, in one shot, to
exclude some of the clearly unreasonable GPS values resulting from connection
problems or participants that would forget to turn off the tracking during long-range
travels (e.g. on a flight). The remaining clear errors (e.g. jumps of > 10 mile in the
span of 15 seconds) were detected by verifying coherency rules and dropped before
the analysis.

Joining GPS and accelerometer data were all assigned a participant ID, coherent
with the questionnaires’ masterkey to facilitate joining across all ID types (including
email) while redacting and encrypting user data. The first baseline questionnaire,
Actigraph and GPS were all available for a group of 134 individuals. Thus, from
now on we will refer to this specific group of units. We then build two different sets
of data.

• The first dataset, D1, compres N ' 5× 106 records is obtained by joining the
first baseline questionnaire with Actigraph data and includes the outcome of
interest and all the individual predictors at each timestamp, but no spatial
information.

• The second dataset, D2, contains N ' 5× 105 measurements (see Figure 3.2).
It is obtained by joining D1 with GPS data, and the reduction of the sample
size is due to the joining process. Indeed, data collected by the Actigraph and
the GPS unit are not temporally aligned. We linearly interpolated the GPS
locations on the same temporal grid as the Actigraph data, but retained only
those interpolated values where the two subsequent GPS measurements were
less than 30 seconds away. This decision relied on the assumption that the
across such a little time-span, individual’s trajectories can be well-approximated
by a piece-wise linear curves.
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Figure 3.2. (a): Observed locations over the Westwood area. (b): Observed physical
activity levels over the Westwood area on a subset of 10 individuals.

3.1.2 Measure of the physical activity
The Actigraph GTX3+ provides three possible endpoints: step counts, z-axis

activity counts, y-axis activity counts and x-axis activity counts. Information about
step counts and z-axis activity counts is redundant since the former is derived
directly from the latter. While z-axis measurements explain most of body movement
variation, recent literature has proved how the best prediction of energy expenditure
can be achieved by vector summation of the absolute values of all the three axes of
orthogonal force measurement. For this reason, our primary endpoint of analysis is
the MAG (Magnitude of Acceleration) defined as:

MAGkt =
√
x2
kt + y2

kt + z2
kt, k = 1, . . . ,K, t = tk1, . . . , tkT , (3.1.1)

where tkj is the j-th time point for the k-th individual; and x, y and z are the activity
counts of the three axes (Ott et al., 2000). There are substantial investigations
into the statistical relationships between accelerometer measurements and energy
expenditure measures (EE) (Freedson et al., 2012; Taraldsen et al., 2012) and, in
particular, the Metabolic Equivalent of Task (METs) which is currently the standard
measure of rate of activity intensity (Crouter et al., 2006; Hall et al., 2013; Lyden et al.,
2014). Migueles et al. (2017) offers an extensive review of proposed accelerometer
measurement cut-points and transformation into physical activity metrics. More
specifically, Sasaki et al. (2011), Santos-Lozano et al. (2013) and Kamada et al.
(2016) investigated axis counts and vector magnitudes resulting from the GT3X+
accelerometer in both controlled and free-living environments, while Aguilar-Farias
et al. (2019) investigated the accuracy of relationships between MAGs and METs in
comparison to those based on the vertical axis counts only and validated the results
with the EE and METs as quantified by a portable calorimeter.

The MAG-to-MET relationship expounded in Sasaki et al. (2011) is expressed as
a function of the MAG per minute, which we rescale to our 10 seconds aggregated
counts as:

METkt = (0.000863× 6) ·MAGkt + 0.668876. (3.1.2)
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Activity intensity MET range MAG
Sedentary or light [0, 3) [0, 493)
Moderate [3, 6) [493, 1029)
Hard [6, 9) [1029, 1608)
Very hard [9, ∞) [1608, ∞)

Table 3.1. MAG activity count cut-points for different PA intensity levels

The same rescaling is applied to the corresponding cut points for different PA intensity
levels (Table 3.1). Based upon the aforementioned literature, inference for the MAG
is transformed into METs through (3.1.2) to interpret results from a physical activity
perspective. Nevertheless, equations directly relating accelerometer measurements
with physical activity metrics in free-living studies must be interpreted with caution.
Relationships between MAG and MET have been posited in controlled studies and
validated while patients are performing specific tasks (i.e. walking on a treadmill,
gardening etc.). The relationship between the recorded movement (acceleration) and
the corresponding energy expenditure, can vary significantly across different tasks
affecting the reliability of acceleration-based energy expenditure metrics (Lyden
et al., 2011; Freedson et al., 2012; Montoye et al., 2018).

3.2 The model
We devise a class of models to analyze high-frequency temporal observations

belonging to different individuals. The proposed model takes into account the
dependence structure among different realizations belonging to the same individual.
Computations emanating from the massive dataset are addressed exploiting the
properties of the uni-dimensional (temporal) setting and efficient approximations for
sparse matrix multiplication and inversion.

The outputs corresponding to the K individuals are referenced with respect
to the time at which they are recorded and the position in the trajectory. Let
us point out that an individual can visit the same location numerous times in
his/her trajectory, and the revisits may occur at distant time points. This suggests
that the proximity of two spatial locations in a trajectory needs not to result in
strongly dependent measurements. Hence, it seems much more reasonable to model
dependence between MAGs through a temporal process. In fact, such temporal
processes can be motivated by the position vectors defining the trajectories as we
describe below.

Let Zk(·) : R2 → R be a spatial process corresponding to individual k. The domain
of Zk(·) is restricted to the trajectories γk(t) =

(
γxk (t), γyk(t)

)
, where k = 1, . . . ,K

and t ∈ R+, which defines the movements of the k-th individual along time. As
shown in Figure 3.3, the process actually belongs to a one-dimensional space, for
which we need to define a proper distance measure d(tki, tkj) = ‖γk(tkj)− γk(tki)‖,
where tki denotes the i-th recorded time point of individual k. A similar problem has
been addressed in Abdalla et al. (2018), where the geographic distance along a coast
has been replaced by a piece-wise linear approximation over a coarse grid. Here, we
instead approximate distances along trajectories with the elapsed time between the
two points d(tki, tkj) = |tkj − tki|. This results in an exact approximation (up to a
proportionality constant) of the spatial distance as long as individual k is moving at
constant speed. On the other hand, given two equally distant locations, the faster an
individual is moving from one to the other and the shorter the time elapsed, resulting
in higher correlation between the two measurements. This is still reasonable in our
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Figure 3.3. Example of observed points (a) and trajectory (b): black dots are realizations,
grey line is domain of the process.

experimental setting, where we can expect PA variations to be affected more by the
temporal than the spatial scale.

In practice, we are assuming the elapsed separation across time will reflect
dependence better than the straight spatial distance. Hence, we may decide to
parametrize the process just in terms of the time t, considering the composition

Zk ◦ γk(·) ≡ Yk(·) : R+ → R,

which, by construction, is a valid stochastic process (Abdalla et al., 2018).
This will form the edifice of the model in Section 3.2.1, where we are modeling

the dependence by solely considering stochastic evolution through time. How should
spatial information be introduced in the model? While it may be tempting to work
with a spatiotemporal process, dependence introduced by such processes may not be
appropriate.

Two individuals at the same spatial coordinate experience the same spatial effect
but different temporal effects because their physical activities are a function of
their individual trajectory evolution. An added complication is that trajectories
intersect and overlap and, in practice, can have multiple observations at the same
location. Even more flexible spatiotemporal covariance kernels (e.g., nonseparable or
nonstationarity) will struggle to recognize the above features. Hence, the spatial effect
must act independently from the intrinsic temporal individual process. Therefore,
in order to not over-complicate the dependence structure of the observed process,
we decide to unload the spatial effect on the mean term and we do so by spline
regression in Section 3.2.4.

3.2.1 Temporal model

Let T = ∪Kk=1Tk where Tk = {tki}Tki=1 and tki ∈ R+ be the set of the n =
∑K
k=1 TK

observed time points. In a first instance, we may suppose that Y (T ) is the finite
realization of a K-variate process Y (·) over R+:

Y (t) = X(t,γ(t))β +w(t) + ε(t), t ∈ R+, (3.2.1)

where Y (t) = (Y1(t), Y2(t), . . . , YK(t))> is a K × 1 vector of measurements at time t
on the K individuals, X(t,γ(t)) is a p×K matrix, each row being the values of a
covariate for the K individuals, w(t) = (w1(t), w2(t), . . . , wK(t))> is a K × 1 vector
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comprising a temporal process for each individual, and ε(t) ∼ NK(0, τ2 ·IK), τ2 ∈ R+

is a white noise process for measurement error. X(t,γ(t))β is also known as the
large scale variation, while w(·) as the small scale variation.

Assuming independence among all the components of the random temporal
process w(t), we can use Gaussian Processes (GP) for modeling the stochastic
behaviour of each single component wk(·):

wk(t) ∼ GP (0, cθk(·, ·)) , ∀k = 1, . . . ,K, (3.2.2)

where cθk(·, ·) is a common covariance function depending on a set of parameters
θk ∈ Θ.

Let yki and xki denote the outcome and the covariates of individual k at the
generic time point tki, respectively, so:

{(yki,xki) : k = 1, . . . ,K, i = 1, . . . Tk}

is the observed data. Let yk be Tk × 1 vectors comprising all measurements on
patient k, respectively. We will then refer to the joint n× 1 vector of the outcomes
and n× p matrix of the predictors as:

y =
[
y>1· y>2· · · · y>K·

]>
, X =

[
X>1· X>2·

... X>K·

]>
,

where Xk· is the Tk × p matrix of predictors corresponding to yk and values are
first ordered by individual and then by time. Let us then denote with {wk}Kk=1 the
Tk × 1 vectors comprising all the random effects on patient k, forming the n × 1
vector w =

[
w>1· w>2· · · · w>K·

]>.
The modeling in (3.2.1) implies the following distribution on our finite realization

(y,X):
y = Xβ +w + ε,
w ∼ Nn (0,Cθ) ,

ε ∼ Nn
(
0, τ2 · In

)
,

(3.2.3)

where the n × n covariance matrix Cθ is such that the i-th row and j-th column
entrance is:

[Cθ]ij = c∗θ(tkp, tlq) =
{
cθk(tkp, tlq) k = l

0 k 6= l
.

Therefore, Cθ = diag (Cθ1,1,Cθ2,2, . . . ,CθK ,K) is n× n block-diagonal with Cθk,k =
[cθ(tki, tkj)] as the Tk×Tk temporal covariance matrix corresponding to individual k.
Each individual is allowed its own covariance parameters, θk, and θ = {θ1, θ2, . . . , θK}
is the collection of all the covariance kernel parameters. In what follows, we will
refer to Cθ as C.

Full inference from (3.2.3) is straightforwardly set up by ascribing to the set of
parameters (β,θ) a suitable prior π(β,θ) and deriving the posterior distribution as:

π(β, θ |y) ∝ Nn
(
y |Xβ, τ2 · In

)
×Nn (w | 0,C)× π(β, θ).

While this solution looks complete and elegant, its application is usually limited by
the size of the observed sample. Indeed, applying it involves the computation of the
density:

Nn (w | 0,C) = 1√
det(C)

exp
{1

2w
>C−1w

}
, (3.2.4)



3.2 The model 75

that encompasses the evaluation of det(C) and of C−1, which require O(n2) storage
space and O(n3) floating point operations (flops). This makes the estimation of such
a model unfeasible for the majority of contemporary applications, and in particular
for the data in consideration that include more than 106 observations.

Our set of data has characteristics that may ease the troublesome computational
burden. Indeed, the covariance between observations belonging to different units is
set to 0, and we can exploit the block-diagonal structure of the resulting covariance
matrix. The inverse can be easily computed by inverting independently each sub-
matrix on the diagonal and the determinant can be obtained by multiplying the
determinants of the all the sub-matrices:

C−1 = ⊕Kk=1C
−1
k

det(C) =
K∏
k=1

det(Ck)
(3.2.5)

This reduces the flop count from O(n3) = O((
∑K
k=1 Tk)3) to O(K

∑K
k=1(Tk)3), with

a significant saving of calculations, especially when the Tk’s are reasonably small
(< 104). Furthermore, each Ck can be computed in parallel rendering further
scalability to the algorithm.6

Nevertheless, considering all the data included in the Actigraph dataset (see
Section 3.1), some of the individuals present more than 105 observations. This means
that in order to get full inference on the parameters in a reasonable amount of time,
we need to adopt some ad-hoc strategy in order to ease the computations also over
each single covariance submatrix {Ck}Kk=1.

As discussed in Section 2.5, different strategies have been proposed to overcome
the dimensionality issues in the spatial and spatio-temporal literature, e.g.: low-rank
approximations (Banerjee et al., 2008; Finley et al., 2009), covariance tapering
(Furrer et al., 2010), Gaussian Markov Random Field (GMRF) (Rue and Held, 2005),
Nearest Neighbor Gaussian processes (NNGP) (Datta et al., 2016a,b) and other
Vecchia-based approximations (Katzfuss et al., 2020; Katzfuss and Guinness, 2021;
Peruzzi et al., 2020a) etc.

We will pursue a DAG-based approximation due to Vecchia (Vecchia, 1988) in
the spirit of the NNGP.

3.2.2 Independent DAG models over individuals
Datta et al. (2016a) introduced the NNGP approximation in the general case

of observations scattered on a set D ⊂ Rd. Here, we give a brief summary of its
principles in the context of the process wk(·) referred to the k-th individual, whose
finite realization is wk = [wki]Tki=1.

The NNGP stems from the parent GP through the conditioning argument
p(wk) = p(wk1)

∏Tk
i=2 p(wki |wk(1:i−1)) and the definition of arbitrary neighbour sets

{N(i)}Tki=1 of fixed size m. Exploiting a variation of the Vecchia approximation
(Vecchia, 1988), we can define w̃k(·) such that:

p(wk) ≈ p(w̃k) = p(wk1)
Tk∏
i=2

p(wki |wkN∗(i)). (3.2.6)

6Notice that, even if we are assuming the individual latent effects wk(·) to evolve independently
over time, we are still pooling the information coming from all the individuals for the estimation of
the common vector of coefficients β and (eventually) covariance parameters θ.
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where N∗(i) = N(i) ∩ {1, . . . , i− 1} is the set of m neighbours included in the
conditioning set. The theory of Directed Acyclic Graphs (DAG) can be used to prove
that the resulting multivariate distribution is probabilistically valid and consistent
with respect to the parent process, as far as the size of the neighbour sets tends
to the full size Tk. While this kind of approximation is valid in general (Lauritzen,
1996; Stein et al., 2004; Murphy, 2012), when dealing with the multivariate Gaussian
densities stemming from a parent GP it has the desirable property of preserving
Gaussianity. The connection between sparsity and conditional independence follows
by writing (3.2.6) as a linear model:

wk = Akwk + ηk,
ηk ∼ NTk(0,Dk)

(3.2.7)

where Ak is a Tk × Tk strictly lower triangular matrix with all positive elements and
Dk is a Tk×Tk diagonal matrix such that [Dk]ii = dii = Var (wki | {wkj , j < i}) , i =
1, . . . , Tk. On the one hand, there is no apparent gain in using the Cholesky
decomposition to compute the inverse of Ck, since the calculation of Ak and Dk is
still of the order of O(n3). On the other hand, elements of Ak can be set to 0 in
order to obtain a sparse version (i.e. sparse Cholesky) C̃−1

k of C−1
k

7.
This DAG representation imposes a lower-triangular structure on Ak, but addi-

tional sparsity is achieved by allowing its (i, j)-th (i < j) entry to be nonzero only
for j ∈ N∗(i). Therefore, each row of Ak has at most m nonzero entries and:

C̃−1
k = (ITk −Ak)>D−1

k (ITk −Ak),

is sparse, where we recall that C̃−1
k is the precision matrix of w̃k. This corresponds

to the sparse Cholesky decomposition of C−1
k . The key observation is that the

nonzero elements of the i-th row of Ak is the solution ak of the m×m linear system
Cθ,k[N(i), N(i)]ak = Cθ,k[N(i), i], where [·, ·] indicates submatrices defined by the
given row and column index sets. Obtaining the nonzero elements of Ak and Dk

costs O(Tkm3) (scales linearly with Tk) instead of O(T 3
k ) as would have been without

sparsity. This cheaply delivers the quadratic form w>k C̃
−1
k wk in terms of Ak and

Dk and the determinant det(C̃k) =
∏Tk
i=1 dii at almost no additional cost. Algorithm

1 shows how it is possible to compute the sparse versions of L = (I − A)> and
R = D−1(I −A), where A = ⊕Kk=1Ak and D = ⊕Kk=1Dk.

Hence, we can approximate the parent Gaussian latent process wk with its NNGP
version w̃k and replace the original density in Eq. (3.2.4) withNTk(w̃k |0, C̃k), whose
computation requires ' O(Tk) flops.

Although Datta et al. (2016a) demonstrated to have no discernible impact on the
final approximation, one of the biggest critical points of the NNGP process is that the
results in Eq. (3.2.6) and (3.2.7) depend upon an ordering of the observations. Unlike
spatial locations, temporal observations possess a natural order. Indeed, observations
along time can be ordered from the least to the most recent tk1 < tk2 < · · · < tkTk ,
with the additional property to be arranged according to their mutual distance.
More precisely, the neighbour set of each time-point tki is always composed by its m
preceding values, if they exist:

N∗(tk1) = ∅, N∗(tki) = {tkmax(i−m,1), . . . , tk(i−1)}, i = 1, . . . , Tk.

As a result, the lower triangular resulting matrix Ak is not just sparse but is banded,
with a lower bandwidth equal to m. Consequently, also the inverse of the covariance

7the structure of Ak suggests this solution immediately
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Algorithm 1: Sparsity inducing computation of L = (In −A)>, d and
R = D−1(In −A)
Input: {Ck}Kk=1
Output: L, R, d
for k in 1 : K do

Lk[1, 1] = 1
dk[1] = Ck[1, 1]
Rk[1, 1] = 1/dk[1]
for i in 1 : (Tk − 1) do

Lk[i+ 1, i+ 1] = 1
Lk[i+ 1, N(i+ 1)] = −Ck[N(i+ 1), N(i+ 1)]−1 ·Ck[N(i+ 1), i+ 1]
dk[i+ 1] = C[i+ 1, i+ 1]−Ck[i+ 1, N(i+ 1)] ·Lk[i+ 1, N(i+ 1)]>
Rk[i+ 1, i+ 1] = 1/dk[i+ 1]
Rk[N(i+ 1), i+ 1] = Lk[i+ 1, N(i+ 1)]>/dk[i+ 1]

L[(Tk−1 + 1 : Tk), (Tk−1 + 1 : Tk)] = Lk
R[(Tk−1 + 1 : Tk), (Tk−1 + 1 : Tk)] = Rk

d[Tk−1 + 1 : Tk] = dk

matrix C̃k
−1 is banded with lower and upper bandwidth equal to m. This specific

sparsity pattern enables even more efficient matrix manipulation routines and can
sensibly boost the computations in Eq. (3.2.4) and (3.2.7).

Finally, assigning an independent NNGP prior to the latent random effect wk of
each individual k = 1, . . . ,K, we get the following density:

w ∼ Nn
(
0, C̃

)
, (3.2.8)

where C̃ = ⊕Kk=1C̃k. Exploiting the block diagonal structure, inverse and determi-
nant can then be obtained by operating independently on the single individuals with
a overall computational cost of O(

∑K
k=1 Tkm

3) = O(nm3).

3.2.3 Implementation using collapsed models
The Bayesian hierarchical model considered in (3.2.3), both in its classical

and NNGP version, allows for the useful interpretation of the latent temporal
component. Its estimation can be crucial in many applications, since it can help
in the understanding of the phenomenon behaviour over its domain. The standard
representation of the NNGP methodology, known as Sequential NNGP, can be
estimated using a sequential sampler that envisions a direct Gibbs sampling with
random walk Metropolis steps. It exploits the full conditional distributions in closed
form for {β,w} and also for τ2 with an IG(aτ , bτ ) prior. However, this convenient
representation is often nullified in practice by strong autocorrelation and poor mixing
of the chains (Liu et al., 1994).

Nevertheless, the flexibility of the Bayesian approach allows for the definition of
alternative valid estimation procedures for both the vector of regression coefficients β
and covariance parameters θ. Several specific samplers for spatial DAG-based models
have been devised, explored and compared in Finley et al. (2019), and collapsed
samplers (marginalized over the latent component w̃) have been seen to considerably
improve convergence. In particular, the author compared three alternatives to the
original sequential sampler that try to improve on its performances through the
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exploitation of high-performance computing libraries to obviate expensive numerical
linear algebra. These have been named as the Collapsed NNGP, the NNGP for the
response and the Conjugate NNGP. As a matter of fact, the Collapsed NNGP is
the only valid fully Bayesian alternative to the original sequential version. Indeed,
it allows for the full recovery of the latent process while offering improved chain
convergence. The other alternatives are supposed to outperform the first one in terms
of computational speed, but do not represent an appropriate choice if the objective
is to provide full inference on the latent component. In the sequel, we describe the
implementation of the collapsed NNGP in the specific context of temporal processes.
In particular, we describe some computational shortcuts linked to convenient patterns
arising from the temporal structure.

Starting from the two-stage hierarchical specification of the model in Eq. (3.2.3),
the collapsed model is obtained by integrating out the latent process w(·), thereby
“collapsing” the parameter space to a much smaller domain without w. The resulting
complete likelihood is:

L (y |β, θ) = N (y |Xβ, Λ̃),

where Λ̃ = C̃ + τ2 · In. Hence, instead of (3.2.3), we sample from:

p(β,θ, τ2 |y) ∝ p(θ, τ2)×N(β |µβ,Vβ)×N(y |Xβ, C̃θ + τ2In). (3.2.9)

In this framework, it is common practice to assign a flat or conjugate prior
Np (µβ,Vβ) to the coefficient vector β and an inverse-gamma prior IG(a, b) to the
variance of the error term τ2. On the other hand, the prior for θ varies according to
the form of the covariance function. Without loss of generality, we will denote the
prior of θ as π(θ). A Gibbs-sampler can be used to update β, but a Metropolis step
is needed in order to update θ and τ . The latter requires the computation of the
likelihood in Eq. (3.2.3) which, as in the full model, cannot skip the computation of
the inverse of Λ̃. Unfortunately, Λ̃−1 does not share the same convenient factorization
of C̃−1 and is also not guaranteed to be sparse. Nevertheless, as pointed out in
Finley et al. (2019), the Sherman-Woodbury-Morrison formula allows the expression:

Λ̃−1 = τ−2I − τ−4Ω−1, with Ω =
(
C̃−1 + τ−2I

)
, (3.2.10)

where Ω enjoys the same sparsity of C−1 and, from basic linear algebra properties,
det(Λ̃) = τ2ndet(C̃)det(Ω). The core of the algorithm is therefore to compute Λ−1

through Ω. In our application, the random effect is assumed to be the realization of
K independent NNGP. As discussed in Section 3.2.2, this implies a block-diagonal
structure for C̃ that can be shown to be shared also by Ω (see Eq. (3.2.10)). Each
block Ωk of Ω can be computed independently for each individual and, by the same
properties used in Eq. (3.2.5), the same holds for its inverse and its determinant. This
means that the body of the algorithm will consist of a loop over all the individuals,
which allows for straightforward parallelization. Unlike in spatial DAGs (Datta et al.,
2016a; Finley et al., 2019), we do not need fill-reducing permutation methods since
neighbors sets for temporal processes consist of contiguous observations and {Ωk}Kk=1
are banded matrices with no gaps. We devised a Gibbs sampler with Metropolis
random walk updates for (3.2.9), where β is updated from its full conditional
distribution, while {θ, τ2} are updated using an adaptive Metropolis step based on
Haario et al. (2001). Here, after the first few iterations, a new proposal covariance
matrix is regularly computed on the run according to the empirical covariance of the
current chain. Subsequently, a mixture of the original and adaptive proposal is used
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Algorithm 2: Sampling from the posterior of the collapsed Temporal
NNGP

0: Initialization
begin

for k = 1, . . . ,K do
a: Compute dkij = |tj − ti|, ∀tj , ti ∈ Tk
b: Find the neighbour sets {Nk(i)}Tk

i=1

1: Metropolis-Hastings update for {θ, τ2}
p(θ, τ2|·) ∝ p(θ, τ2)× 1√

det Λ̃
exp
(
− 1

2 (y −Xβ)> Λ̃−1 (y −Xβ)
)

begin
for k = 1, . . . ,K do

a: Compute Lk = (ITk −Ak)>, dk = diag(Dk) and Rk = D−1
k (ITk −Ak) using

Ck and {Nk(i)}Tk
i=1

b: Compute Ωk = Lk ·Rk + τ−2ITk exploiting sparsity
c: Compute rk = yk· −Xk·β and δDk =

∏Tk

i=1 dk,i
d: Compute vk = Ω−1

k rk, uk = Ω−1
k Xk· and δΩk = det(Ωk) exploiting the sparse

Cholesky decomposition of Ωk
e: Collect rk, vk and uk into r, v and u, respectively.

f: Compute q1 = τ2n ·
∏K

k=1 δDk ·
∏K

k=1 δΩk and q2 = r>r/τ2 − r>v/τ4

g: Get p(θ, τ2|·) ∝ exp(−q2/2)√
q1

· (θ, τ2)

2: Gibbs’ sampler update for β
β|· ∼ Np(B−1b,B−1), where B = X>Λ̃−1X + V −1

β and b = X>Λ̃−1y + V −1
β µβ

begin
a: Compute F = V −1

β and = V−1
β µβ

b: Compute b = y>X/τ2 − y>v/τ4+ and B = X>X/τ2 −X>v/τ4 + F
c: Generate β ∼ Np(B−1b,B−1)

Repeat steps 1 and 2 to obtain M MCMC samples for {β, θ, τ2}

as the new proposal. Convergence toward the desired acceptance rate is assured
for an appropriate choice of the variance terms and of the adaptation rule (Neal
et al. (2006); Roberts and Rosenthal (2009)). The algorithm has been coded using
R 4.0.1 statistical environment and C++, exploiting the interface provided by the
Rcpp packageEddelbuettel et al. (2011). All expensive computations are managed
by Eigen library (version 3.3.7, Guennebaud et al. (2010)), which provides efficient
routines for linear algebra, matrix and vector operations and numerical solvers, with
an emphasis on sparse matrices. Our implementation of (3.2.9) outperforms the
algorithms that update w in terms of computational speed as it is implemented in
the spNNGP package (Finley et al., 2017a). We present these comparisons in the
Appendix A.

3.2.4 Including spatial effects
The inclusion of spatial covariates in such an experimental setting is often

cumbersome from a practical perspective. Indeed, the (potentially retrievable)
spatially-referenced features may be recorded at different resolutions, either among
them or with respect to the observed process. A thorough preliminary data analysis
would be required to build a coherent dataset and to not invalidate inference.

We circumvent the aforementioned issues by accounting for spatial heterogeneity
through an unobserved (latent) predictable surface, as in the methods described
in Chapter 2. In the considered setting, we build upon the temporal framework
of Section 3.2.1 and rather than complicating the already convoluted dependence
structure, we unload the spatial effect upon the mean. The underlying assumption is
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that the contribution of environmental factors on the process mean varies smoothly
over the domain of interest, and this ground truth can be expressed through a
smooth function fS(·) : R2 → R. We can then approximate it using spline basis
representation, as exposed in Section 2.2.1 (see, e.g., Ramsay and Silverman, 2007;
Nürnberger and Zeilfelder, 2000; Goodman and Hardin, 2006).

Let Jx and Jy be the dimensions of independently defined B-spline basis ex-
pansions on the x and y coordinates, respectively. Then fS ((x, y)) ≈ f̃S ((x, y)) =∑JX
jX=1

∑JY
jY =1 βS,(jX ,jY )Bx,jx(x)By,jy(y), where Bx,jx = [Bx]jx and By,jy = [By]jy

are the jx-th and jy-th element of the B-spline basis along the two axis. For any
location (x, y) ∈ R2 the elements of the previous sum can be more compactly ex-
pressed through the tensor product basis BS(x, y) = (Bx ⊗By) (x, y). The size of
this basis is JS = Jx · Jy and depends on the size of the two original spline basis,
which in turn depends on the chosen number of knots knotsx, knotsy and degree
degx, degy (namely Jc = knotsc + degc for c = x, y). We can now modify (3.2.1) to
include the spline regression term as:

Y (t) = X(t)β +BS (γ(t))βS +w(t) + ε(t), t ∈ R+ , (3.2.11)

where γ(t) = (γ1(t),γ2(t), . . . ,γK(t))>, γk(·) = (γk,x(t), γk,y(t)) : R+ → R2 is the
trajectory function mapping time t for individual k to its position and BS (γ(t))
is the K × JS matrix with row k corresponding to the JS basis elements for the
coordinates at time point t for individual k. Tuning of JS (i.e. knots and degree) is
required to fit a spline surface flexible enough to describe the spatial variations at
the scale of interest without incurring in over-fitting. We must consider that our
Actigraph data includes millions of observations in a limited study area, of which
some assume different values in the same location (or in its immediate vicinity).
Unless an incredibly fine grid of knots is chosen, over-fitting will not be an issue in
most of the considered domain.

Let us denote with B = BS (γ(T )) the n× JS matrix containing the B-spline
basis elements evaluated at the observed location of each individual γ(T ) =
[γ1(t11), γ1(t12), . . . , γK(tKTK )]>. Following Equation (3.2.9), posterior inference
can be attained by sampling from:

p(β,βS , θ, τ2 |y) ∝ p(θ, τ2)×pS(βS)×N(β |µβ,Vβ)×N(y |Xβ+BβS , C̃θ+τ2In) ,
(3.2.12)

where pS(·) is the prior over the spline regression coefficients.
We must consider that the collected data are sparsely distributed across the

Westwood area, with some areas presenting only few observed points (trajectories are
not uniformly distributed, see Figure 3.2). This may cause coefficients corresponding
to those regions to be weakly identified, making the function locally prone to over-
fitting and inducing large variance in the estimates. To control for the balance of
these two components, we may assign ad-hoc priors to the spatial spline regression
coefficients (Eilers and Marx, 1996) for penalizing deviation from a certain degree of
smoothness and favoring identifiability. This yields the Bayesian P-Spline (Carter
and Kohn, 1994; Hastie et al., 2000; Lang and Brezger, 2004) previously discussed
in Section 2.2.3. While retaining a multivariate Gaussian as a prior, we effectuate
shrinkage by choosing a suitable precision matrix P and introducing a shrinkage
parameter λ at a deeper level of the hierarchy. To be precise:

βS |λ ∝ exp
{
−λ2 · βSPβ

>
S

}
, λ ∼ Ga(αλ, βλ).
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We consider two possible forms for P , which imply different penalization on the
values of the coefficients:

• Ridge-like prior, which is to say P = PRL = IJS ;

• First-order random walk prior, which is to say:

P = PRW : [PRW ]ij =


ni i = j

−1 i ∼ j
0 otherwise

where ni is the number of neighbors of knot i and i ∼ j denotes a neighboring
relationship between the knots.

Both precision matrices provide a multivariate Gaussian prior distribution on the
coefficients. However, the latter is improper since rank (PRW ) < JS . Nevertheless,
if the B-Spline basis elements are collected together with the other covariates
X∗ = [X,B] and the corresponding coefficients are stacked into the joint vector
ψ = [β,βS ], then the posterior distribution of the latter is a proper multivariate
Gaussian with full conditional distribution

ψ | · ∝ NJ
(
ψ
∣∣∣G−1g, G−1

)
G = X∗>Λ̃−1X∗ + V −1

ψ

g = X∗>Λ̃−1y + V −1
ψ µψ

where:
V −1
ψ =

[
V −1
β 0
0 λ · P

]
, g =

[
µβ
µβS

]
= 0.

Moreover, the Gamma prior on λ implies a Gamma full-conditional with updated
parameters:

λ | · ∝ Ga
(
λ
∣∣∣αλ + 1/2, βλ + β>SPβS

)
.

Estimating the model in (3.2.11) is achieved through a straightforward extension
of Algorithm 2, where ψ and λ can be jointly updated from their full conditional
distributions. Algorithm 3 shows how the Gibbs’ sampling step of Algorithm 2
can be modified in order to get full inference also on the spline coefficients βS and
the shrinkage parameter λ. In practical terms, this requires JS additional linear
coefficients to be estimated, whose size p∗ = p+ JS may undermine the efficiency
of the algorithm. For example, calculations in Step 1b are quadratic with respect
to p∗ → O(np∗2). Fortunately, some tweaks can be contemplated in order to limit
the additional computational cost. For instance, Steps 1a and 1b (i.e. the most
expensive in p∗) must be executed in the first iteration and, subsequently, only
in those iterations where new values of θ are accepted. When θ is rejected, the
previously computed value would stay unchanged and can be retained in memory
with few storage burden. Thus, if attain an optimal acceptance rate of ≈ 20%− 30%
is attained in the Metropolis Hastings step on θ, the computation is avoided in the
majority of cases and this yields a sensible improvement in computation time and
speed.
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Algorithm 3: ψ and λ Gibbs’ update in the collapsed algorithm with
shrinkage
1: Gibbs’ sampler update for ψ
ψ|· ∼ NJ(G−1g,G−1), where G = X∗>Λ̃−1X∗ + V −1

ψ and
g = X∗>Λ̃−1y + V −1

ψ µψ
begin

a: Compute F = V −1
ψ and = V−1

ψ µψ

b: Compute g = y>X∗/τ2 − y>v/τ4+ and G = X∗>X∗/τ2 −X∗>v/τ4 + F
c: Generate ψ ∼ Np∗(G−1g,G−1)

2: Gibbs’ sampler update for λ
λ|· ∼ Ga (α∗λ, β∗λ), where α∗λ = αλ + 1/2 and β∗λ = βλ + β>S PβS
begin

a: Compute h = β>S PβS and get: α∗λ = αλ + 1/2 and β∗λ = βλ + h
b: Generate λ ∼ G (α∗λ, β∗λ)

3.2.5 Simulations
We conduct simulation experiments to evaluate the model described in Sec-

tion 3.2.4 and compare the performances of our algorithm in terms of fitting,
prediction error and computational speed with other routines already available
in the spNNGP package. Additional comparative experiments are provided in the
supplementary material.

All the computations were performed using Cluster Terastat, an HPC infrastruc-
ture developed by the Department of Statistical Sciences (DSS) in the University of
Rome “La Sapienza”, in collaboration with CINECA, for the resolution of math-
ematical and statistical models on big data. It is currently equipped with 12
modern computational nodes with 16 cores each (bringing the overall number of
cores to 192), roughly equivalent to 3 TeraFlop/sec, and 64Gb of RAM (https:
//www.dss.uniroma1.it/en/node/5870/technical-specifications). Each of
the following jobs, including the real data applications in Section 3.3, have been
executed on a single node exploiting, whenever possible, all 16 cores.

In this simulation experiment we demonstrate our model’s ability to disentangle
the true temporal and spatial components, recovering the parameters of the temporal
covariance and the spatial effect over the region of interest, when observing points
belonging to random trajectories evolving in space. Tk = 2 × 104 time points
have been randomly generated for K = 5 individuals, where each time point tki
has been obtained assuming exponential waiting times between observations, i.e.
tki =

∑i−1
h=1 δh, and δh ∼ Exp(5), ∀h. Given the time points, fictitious spatial

trajectories γk(·) have been obtained by simulating a vector of locations sk =
[γk(tk1), . . . , γk(tkTk)]>, where subsequent components are independent Gaussian
Random walks over the square S = (1, 10)× (1, 10), with the variance of each step
along the horizontal and vertical axis proportional to the elapsed time between two
subsequent observations. Should the trajectory leave the squared domain, it would
be projected onto the border and the following step would resume from there. The
simulated trajectories are shown in Figure 3.4a. Conditionally on the time points
and positions, the latent temporal Gaussian processes {wk}5k=1 have been generated
(independently for each individual). Common covariance parameters θk = θ∀k have
been chosen, with the covariance function belonging to the exponential family:

Covθ
[
w(t), w(t′)

]
= cθ(t, t′) = σ2e−φ·|t−t

′|, σ2, φ ∈ R+. (3.2.13)

https://www.dss.uniroma1.it/en/node/5870/technical-specifications
https://www.dss.uniroma1.it/en/node/5870/technical-specifications
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Figure 3.4. Example of observed trajectories (a) and observed points (b) for the simulated
dataset

We here recall that σ2 > 0 represents the variance of the process (sill), φ is the decay
in temporal correlation (range) and τ2 the residual variance (nugget). The spatial
effects have been then introduced through spline function fS(·) built as the tensor
product of independent spline bases of degree 2, with 9 knots uniformly spread over
the squared domain (including boundary knots). The spline coefficients βS have
been fixed to randomly generated values from N81 (0, λI81) with λ = 0.5. The model
also included an individual intercept for each individual {β0k}5k=1 and the effect
of 3 covariates with random values drawn independently at each location from a
N (0, 1) distribution, leading to covariate vectors {xki}Tki=1 , k = 1, . . . ,K. The effect
of the covariates is assumed to be common across individuals, as it is determined by
three random slopes β = [β1, β2, β3]. Finally, the outcome values for individual k at
time tki and location ski = γk(tki) have been generated according to the generative
process of Equation (3.2.11) with parameters fixed as above.

This whole simulation setting produced a simulated datasetDsim =
{

(Indj , tj , sj , yj ,x>j )
}n
j=1

of n = 105 observations, where Indj denotes the individual corresponding to row
j. The spatio-temporal model proposed in Section 3.2.4 is trained on the 70%
of the total observations belonging to Dsim, while the the remaining 30% have
been excluded to assess the out-of-sample predictive performances in terms Relative
Mean Squared Prediction Error (RMSPE), Root Mean Squared Prediction Error
(rMSPE), Coverage, Predictive Interval Width (PIW). Chain convergence has been
verified through visual inspection of the chain behavior (traceplots, autocorrelations
etc.) and automatic diagnostic tools (Geweke, Raftery, Heidelberger from the coda
package (Plummer et al., 2006)). Intercept and slope regression parameters have
been given a flat normal prior distribution N (0, 106); the variance components, σ2

and τ2, were both assigned inverse Gamma IG(2, 2) priors; the decay parameter
φ received a Gamma prior G(1, 1). For the spline coefficients, we considered both
the penalized versions proposed in Section 3.2.4; the first one will be denoted as
S-Spline (shrinking splines), the second as P-Spline (penalized splines).
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Param. (True) S-Spline P-Spline
Point Interval Point Interval

β01 (−3.76) -3.799 (-3.846,-3.752) -3.797 (-3.844,-3.75)
β02 (0.65) 0.572 (0.523,0.62) 0.575 (0.526,0.623)
β03 (−0.60) -0.649 (-0.697,-0.6) -0.646 (-0.693,-0.598)
β04 (2.36) 2.326 (2.277,2.374) 2.328 (2.28,2.376)
β05 (−0.33) -0.359 (-0.408,-0.31) -0.356 (-0.404,-0.308)
β1 (2.59) 2.599 (2.59,2.608) 2.599 (2.59,2.608)
β2 (2.70) 2.691 (2.683,2.7) 2.691 (2.683,2.7)
β3 (−0.58) -0.586 (-0.595,-0.577) -0.586 (-0.595,-0.577)
σ2 (1) 1.001 (0.973,1.032) 0.993 (0.965,1.023)
φ (1) 0.994 (0.948,1.04) 1.01 (0.964,1.063)
τ2 (1) 1.001 (0.984,1.018) 1.001 (0.984,1.018)
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.95 0.99 0.95 0.99
RMSPE (r) 0.07 (1.18) 0.03 (0.84) 0.07 (1.19) 0.03 (0.84)
PIW 4.66 4.44 4.66 4.44
DIC 115’543 115’556
Fitting time (h) 2.18 2.2

Table 3.2. Parameter estimates, predictive validation and fitting times (hours) on the
simulated dataset for all the considered models.
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Figure 3.6

Table 3.2 presents the posterior estimates, performance metrics, and the fitting
time for both models 8. Performances under the two priors appear to be almost
identical, but the DIC values suggest a slight better fit of the S-Spline model. This
is not surprising, since the data have been generated using an analogous shrinkage
prior for the βS ’s. Figure 3.5 presents the posterior estimate of the spatial surface.
The true latent surface is compared with the two (practically identical) estimates.
The differences between the true spline surface and the estimates are visualized in
Figure 3.6 and depicts a negligible upward bias.

8For the sake of brevity and readability, we did not include the spline coefficients in the table.
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(c) Estimated P-Splines

Figure 3.5. True (top left) and estimated spline surfaces (bottom left and right), including
the point-wise difference between the true one and the S-Spline estimated (top right).
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Figure 3.7. Observed MAG (a) and lMAG (b) in the whole sample.

3.3 Application
The data processing and merging of Actigraph data with GPS locations resulted

in two final datasets (Section 3.1). These are treated separately, assuming the
exponential covariance function on the underlying temporal process as in Eq. (3.2.13).
Common covariance parameters θk = θ ∀ k are assumed across individuals. In both
applications, the 70% of the total observations are used as training set, while
the the remaining 30% have been excluded to assess the out-of-sample predictive
performances in terms Relative Mean Squared Prediction Error (RMSPE), Root
Mean Squared Prediction Error (rMSPE), Coverage, Predictive Interval Width (PIW).
Performance of our model are always compared to standard linear regression, which
is the current standard in the field.

3.3.1 Temporal model
We first analyze D1. All numerical variables have been centered for improving

the efficiency of the MCMC sampling (Gilks and Roberts, 1996). A dummy variable
indicating if the measures are referred to the period before the Bruin Bike Share
(BBS) launch (i.e. year 2017) or after (i.e. year 2018) has been included, so that the
model could detect any effect of this new specific policy which aims at improving
the physical activity level of the participants.

We account for the daily periodic behavior that characterizes most human
activities by modeling the impact of the hour of the day on the physical activity level
as a non-linear function fH(·) : [7, 23)→ R, which is approximated by a finite linear
combination of JH spline basis functions φj(·) with unknown coefficients βH,j ’s,
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fH(h) ≈ f̃H(h) =
JH∑
j=1

βH,jBH,j(h) = BH(h)βH .

The full process specification yields:

Y (t) = X(t)β +BH (h(t))βH +w(t) + ε(t), t ∈ R+, (3.3.1)

where h(·) : R+ → [7, 23) links each time point to the corresponding hour of the day
and BH (·) : [7, 23)→ RJH links each hour of the day to the values of the spline at
that point. The hour of the day spline is approximated using 4 internal knots, spread
uniformly over the day times. Collecting the basis elements in the design matrix and
stacking the coefficients as for the spatial model of Section 3.2.4, this boils down
to simply introducing 6 additional columns in the design matrix (i.e. the spline
basis functions evaluated at the observed time-points). Hence only 6 additional
parameters need to be estimated in β and this is beneficial in that, given the large
number of data points in each section of time and the reduced number of knots
considered, we do not need to concern ourselves with over-fitting and robustness of
inference.

Figure 3.7a shows the MAG distribution and highlights how it is heavily skewed.
In order to correct for the skewness and to have the response variable belonging
to a domain coherent with the Gaussian assumption, we consider its logarithmic
transformation (see Figure 3.7b):

lMAGk(t) = log(MAGk(t)), k = 1, . . . ,K, t = tk1, . . . , tkTk . (3.3.2)

Let varname be a short form (first three letters) of any variable name. We denote the
parameter associated to each variable as βvarname and the levels of each categorical
covariate as varname(j), with j = 1, . . . , Jvarname. Hence, the final model specification
can be written as:

lMAGk(t) = β0 + µk + µk(t) + wk(t) + εk(t)

µk =
JEth∑
j=2

βEth,j · I
(
Ethnicityk = Eth(j)

)
+
JAge∑
j=2

βAge,j · I
(
AgeClassk = Age(j)

)
+

+ βBMI · BMIk +
JSex∑
j=2

βSex,j · I
(
Sexk = Sex(j)

)

µk(t) = βBBS · BruinBikeShare(t) +
JH∑
j=1

βH,jBH,j (h(t))

wk(t)
ind∼ NNGP (0, cθ(·, ·))

εk(t)
ind∼ N

(
0, τ2

)
(3.3.3)

where I(·) is the indicator function of the statement between brackets and summation
over categorical variables’ levels starts from 2 because the corner constraint9 has
been adopted in order to guarantee the coefficients identifiability. Let us point
out that, the baseline individual has been chosen (at random) as an Asian female
with age in [20, 25) years. Furthermore, since all the numerical variables have been
centered about their mean, the baseline individual is the one with the mean value

9For each categorical variable one level is taken as the baseline and the coefficients referred to
the remaining levels represent the variations with respect to the baseline
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Figure 3.8. Variograms of the standard linear regression residuals on individuals 109 and
139

in all the numerical features. Other socioeconomic factors (e.g. education and
income level) have been excluded from the analysis since highly associated with
the already included ethnicity and age-class, while the Lux variable (detecting light
exposition) has been dropped away after a preliminary run that highlighted its
low predictive power10. The original wk(·) is assigned a NNGP(0, c̃θ(·, ·)) prior,
with c̃θ(t, t′) being the DAG-based approximation (Section 3.2.2) stemming from
an exponential covariance function. The choice of the covariance family has been
driven by an initial residual analysis of individual-specific ordinary least squares
linear regressions. Figure 3.8 shows two examples of residual variograms and does
reveals a stationary temporal structure, seemingly well-model by an exponential
variogram.

We have assigned priors such as:

β ∼ NJ
(
0, 106 · IJ

)
σ2 ∼ IG(2, 2), φ ∼ Γ(1, 1), τ2 ∼ IG(2, 2),

with J being the total number of β coefficients.
Inference from (3.3.3) has been based on 10000 posterior samples after discarding

an initial 5000 iterations as initial burn-in for the MCMC algorithm in Algorithm 2,
where point estimates from the standard linear model were used as starting values for
the regression coefficients. The run-time of the collapsed sampler (Section 3.2.3) on
D1 was ≈ 15 hours, achieving a desirable acceptance rate of ≈ 28% at convergence.

3.3.2 Results from temporal analysis
Posterior estimates and performance metrics are presented in Table 3.3. The

regression coefficients were slightly different from the ordinary least squares model,
but presented very similar inference. African Americans, Latinos and Whites
revealed higher values of lMAG than Asian-Americans as did males over females. As
expected, higher age-groups revealed lower lMAG. Unsurprisingly, the introduction
of the temporal process effectuates slightly wider credible intervals for the regression
parameters. This results in BMI being marginally less credible from the temporal
process model than from linear regression. What is more surprising in both models

10The PASTA study did not contemplate a rigorous protocol for the light exposition sensor, and
hence this variable is likely to not have been recorded accurately
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Parameter Collapsed NNGP Linear regression
Point Interval Point Interval

Intercept 5.514 (5.507, 5.520) 5.872 (5.854, 5.888)
Eth. Latin-American 0.166 (0.149, 0.183) 0.136 (0.131, 0.142)
Eth. White 0.073 (0.005, 0.095) 0.081 (0.076, 0.086)
Eth. Black or other 0.203 (0.184, 0.221) 0.164 (0.158, 0.170)
Sex Male 0.017 (0.003, 0.033) 0.023 (0.019, 0.027)
BMI 0.004 (-0.002, 0.01) 0.003 (0.002, 0.004)
Age [25-35) -0.106 (-0.121, -0.091) -0.124 (-0.129, -0.119)
Age [35-50) -0.110 (-0.131, -0.09) -0.123 (-0.129, -0.117)
Age [50-70] -0.092 (-0.121, -0.065) -0.144 (-0.152, -0.137)
BBS -0.051 (-0.066, -0.037) -0.067 (-0.071, -0.064)
σ2 1.537 (1.528, 1.546)
φ 0.315 (0.312, 0.319)
τ2 1.138 (1.135, 1.141)
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.94 0.97 0.94 0.94
RMSPE (r) 0.60 (1.24) 0.34 (0.93) 1 (1.59) 1 (1.59)
PIW 4.80 4.62 6.24 6.24

Table 3.3. Parameter credible intervals, 95%(2.5%, 97.5%) and predictive validation for
15× 103 MCMC iterations on D1.

is the slightly negative effect of BBS on physical activity. This, however, is likely
a consequence of the fact that at least 2 · 106 data points in D1 corresponded to
individuals outside of Westwood without access to the program. Any conclusion on
its effect shall be further investigated.

The average of the lMAG for the reference individual is represented by the
common intercept, which is estimated ≈ 5.514 by our model. This implies a MAG
per minute count of 1, 488, which corresponds to hard physical activity and an
average MET of ≈ 7 according to the Table 3.1 and (3.1.2). This value, while large,
is not surprising as we are modeling the epochs corresponding to active time.

Turning to the temporal decay, φ, we find a fairly sharp decline in temporal
association with it dropping to below 0.05 after ≈ 1 minute. This time is derived
from the practical range that, for the exponential covariance function, is computed
as 1

3φ . While the estimated variance of the temporal process, σ2, is slightly larger
than τ2, the latter’s estimate indicates substantial residual variation beyond the
temporal process—motivating our analysis in Section 3.3.3.

Comparison between the estimates of the hour of the day spline term is shown
in Figure 3.9. The two models provide coherent patterns, but with slightly different
magnitudes. It is way more pronounced in the linear model than in the temporal
process model, where some of the temporal effect is likely to be absorbed by the
temporal latent component. Combination of the hour of the day spline and of the
temporal process can capture subject-specific diurnal variation in physical activity.
This implies that our model can delivers statistical estimates (with uncertainty
quantification) of personalized daily PA profiles for any individual for any day. For
instance, Figure 3.10 presents the posterior estimates of daily MAGs (log) of two
such individuals (number 204 (a) and 188 (b)) throughout the day to evince the
inter-subject variation. This figure illustrates the need to accommodate variations
among subjects when predicting their daily physical activities.

Eventually, the dependence structure of the temporal process sensibly improves
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Figure 3.9. f̂H for the linear model (left) and the NNGP model (right), with 95% credible
intervals in dashed lines.
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Figure 3.10. Personalized PA profiles for two individuals estimated with 95% credible
intervals (dashed lines) using the spline daily effect and the temporal process in (3.3.3).

the predictive performances either in terms of MSPE or PIW. While both modeling
alternatives provide satisfactory coverage, the temporal process largely outperforms
the standard linear model in all the other indices both in the training and in the
testing set. An example of the out-of-sample predictions of the temporal process
for a set of 100 subsequent points from one specific subject (number 77) is shown
in Figure 3.11, which demonstrates the proposed model’s ability to interpolate the
lMAG values at unobserved time-points or intervals. The interpolated values (red
dots) provide a slightly over-smoothed but accurate reconstruction of the held out
lMAG (grey dots), which is always included in the corresponding 95% predictive
bounds. This smoother behavior characterizes both in-sample and out-of-sample
predictions when compared to the true values and is not necessarily a limitation of
our model. Indeed, accelerations recorded by accelerometers are generally noisy, and
the predicted values may be interpreted as a denoised version of the raw signal.

3.3.3 Spatial-temporal model
For the fit of the spatio-temporal model of Section 3.2.4 we consider D2, where

we can exploit the GPS information. We here recall that D2 is restricted to only
those observations recorded in the Westwood neighborhood of Los Angeles, which
is one of the most popular districts on the Westside of the city and is the home of
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Figure 3.11. Out-of-sample predictions for two random individuals: black dots (observed
values), grey dots (test set), pink dots (oos predictions), dashed line (95% confidence
intervals)
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Figure 3.12. Observed locations (a) and knots (b) over the Westwood area.

UCLA.
The model accounts for unobserved spatial heterogeneity through a Bayesian

Spline Regression, where the bi-variate spline basis has been obtained through
the tensor product of two analogous uni-variate B-spline basis on longitude and
latitude. The use of such approximation implies a rectangular domain, and hence the
analysis is pursued on the square enveloping the Westwood area. There exist more
sophisticated (yet computationally expensive) methods based on finite element basis
theory and thin-plate splines that allow to build polynomial basis functions also over
non rectangular domains (Sangalli et al. (2013)). Implementation and optimization
of such methods will not be discussed here but is currently under consideration for
future developments.

Two bases of degree 2 with 9 equally spaced knots over a square encompassing
Westwood have been chosen. This sums up to JS = (7 + 2)× (7 + 2) = 81 terms for
the complete spline basis, including the boundary knots. The position of the knots
over the considered study area is shown in Figure 3.12b.

In practice, since locations are functions of time through the trajectory function
γk(·), k = 1, . . . ,K of each individual, the time dependent component of the process
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mean can be rewritten as:

µk(t) = βBBS · BruinBikeShare(t) +
JH∑
j=1

βH,jBH,j (h(t)) +
JS∑
j=1

βS,jBS,j (γk(t)) ,

where BS = BX ⊗ BY is the tensor product bivariate spline. Given the reduced
number of knots and the high spatial density of observations in several areas of the
map (see Figure 3.12a), over-fitting is not a concern. However, there are also areas of
Westwood which present sparsely observed data-points and the model can struggle
to identify the spline coefficients referred to those areas, jeopardizing convergence of
the MCMC algorithm. Therefore, the S-Spline (Ridge-like prior) has been ascribed
to the spatial splines coefficients. The shrinkage parameter λ has been assigned a
G(1, 1) prior. Other parameters have been assigned the same priors of the temporal
application in Section 3.3.1.

We ran 10000 MCMC iterations here. Adequate convergence was diagnosed after
5, 000 iterations and the last 5, 000 iterations were retained for posterior inference.
Fitting the model to D2 required ≈ 30 hours on Cluster Terastat. The acceptance
rate obtained is ≈ 28%, supporting the consistency of our adaptive strategy.

3.3.4 Results from spatial-temporal analysis
Table 3.4 presents parameter estimates and predictive performances of the

spatio-temporal model, comparing it with the same model without the spatial
spline component (i.e. the same of Section 3.3.1) and with a standard linear
regression including the spatial spline terms (but neglecting any temporal dependence
structure).

The coefficients estimated by the temporal model mimic those already obtained
in Section 3.3.1, manifesting a good degree of consistency between the two datasets.
Conclusions on the obtained regression coefficients, while apparently similar across
the three different models, manifests some important differences. The general
intercept is estimated to be ≈ 5.31 by the S-Spline model, implying MAG per
minute count of 1214 (slightly lower than in the temporal application). This would
correspond to vigorous physical activity and a MET of ≈ 6.5. In particular, this is
a way lower value than the one attained by solely temporal model; this is probably
because the former is able to fit area presenting particularly high PA intensities
through the spline surface, without implying overall larger levels of PA. Furthermore,
it is possible to notice a magnitude switch between coefficients associated to some
relevant individual covariates (e.g. the ethnicity and the age class) after the spatial
effect is included. There is then some confounding between individual characteristics
and the areas where different people spend most of their time. The spatial model
is discounting for this previously confounded factor and, for instance, provides a
more reasonable interpretation of the age-group regression coefficients: the older
the person the lower is the expected physical activity level. The BBS coefficient is
estimated once again (by all alternatives) to have a negative impact on the physical
activity level. This somewhat surprising finding, since individuals in D2 were all
exposed to the program. Howeer, there are still some few factors that may negatively
affect the estimation of the BBS variable. First, the observations after the BBS
launch are mostly from the winter season (February to April, the coldest months in
L.A. together with December), while the others include summer and autumn (June
to November, the warmest months). Given that physical activity levels tend to be
lower in the colder months, there is indication of some possible confounding between
the BBS effect and seasonality. Second, there is no guarantee that a wrist-worn
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Param. Linear regression Temporal S-Spline
Intercept 5.613 (5.536, 5.689) 6.13 (6.102, 6.146) 5.31 (5.29, 5.33)
Eth. Latin-American 0.093 (0.079, 0.108) 0.105 (0.063, 0.149) 0.114 (0.069, 0.159)
Eth. White 0.053 (0.040, 0.067) 0.042 (-0.009, 0.095) 0.053 (0.004, 0.102)
Eth. Black or other 0.066 (0.052, 0.080) 0.111 (0.063, 0.157) 0.095 (0.054, 0.135)
Sex Male 0.019 (0.008, 0.029) 0.017 (-0.019, 0.053) 0.021 (-0.014, 0.055)
BMI 0.005 (0.003, 0.006) 0 (-0.014, 0.014) 0.006 (-0.007, 0.02)
Age [25-35) -0.170 (-0.183, -0.156) -0.373 (-0.408, -0.333) -0.191 (-0.227, -0.155)
Age [35-50) -0.217 (-0.233, -0.201) -0.609 (-0.683, -0.531) -0.249 (-0.298, -0.199)
Age [50-70] -0.381 (-0.404, -0.359) -0.429 (-0.48, -0.378) -0.456 (-0.528, -0.384)
BBS -0.008 (-0.091, -0.071) -0.098 (-0.133, -0.062) -0.107 (-0.140, -0.073)
σ2 1.556 (1.531, 1.580) 1.489 (1.461, 1.517)
φ 0.336 (0.327, 0.346) 0.364 (0.351, 0.376)
τ2 0.783 (0.776, 0.791) 0.777 (0.768, 0.786)
Metric (In-sample)
Coverage 0.94 (0.95) 0.93 (0.97) 0.95 (0.99)
RMSPE 0.95 (0.94) 0.53 (0.26) 0.52 (0.25)
PIW 5.62 (5.60) 4.3 (4.1) 4.78 (4.74)

Table 3.4. Parameter estimates and predictive validation of the three models on D2.

actigraph may be able to detect properly the PA exerted while biking as compared
to walking/running.
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Figure 3.13. (a) Spatially smoothed estimates from a shrinkage spline over Westwood, Los
Angeles; (b) width of 95% posterior predictive intervals for the shrinkage spline.

The estimate of φ implies that the dependence drops to ≈ 0 in less than a minute
for both models including temporal dependence. Unsurprisingly, the temporal
dependence provides the larger improvement in terms of performances, but the
inclusion of the spatial effects is able to further improve the predictive performances
in terms of RMSPE. In particular, the spatial-temporal model also delivers very
satisfactory coverage, outperforming its competitors, but at the cost of a larger
predictive interval width with respect to the only temporal model. This happening
in correspondence to an improved coverage (both on training and test set) implies
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that the model is able to better quantify the uncertainty in the observed data.
Figure 3.13a shows the estimated spatial surface, while Figure 3.13b presents the

width of the posterior predictive intervals. The map clearly evinces zones (darker
shades of red highlighted with white contours) that tend to depict high levels of
physical activity. For example, the largest dark red blob in the north center-left
almost perfectly tracks the UCLA campus boundary reflecting a campus environment
with active mobility (walking, running, biking). Other zones of high activity identify
with locations where more participants in the study live, including those residing
in student dorms (northwest corner) and residential areas immediately around and
in the predefined Westwood/UCLA study area (such as the south central zone) or
Century City shopping center (to the east). Lighter shades (orange) correspond
to areas that are less developed (open space), such as the areas in the north east;
or they are areas with a high degree of transportation infrastructure and traffic
(e.g., toward the western boundary). These correspond to highways (such as the
Interstate-405 highway or other vehicular transportation corridors) that often have
lower levels of activity because they inhibit outdoor physical activities due to noise,
pollution, safety, etc. Our analysis reveals three additional high activity areas that
are not gleaned from non-spatial models: the Los Angeles National Veteran Park;
the Century City shopping center and the Stone Canyon Park. The color gradient
closely follows the spatial characteristics of the Westwood neighborhood and reveal
how spatial patterns can impact physical activity behavior after accounting for
variation attributable to known explanatory variables.

Figure 3.14 shows two examples of observed (left) and reconstructed (right)
MAGs along trajectories carved out by two subjects. We find a good degree of
agreement between the two plots, and the ability of our model to recover the lMAG
in locations where it has not been observed. The reliability of the predictions can be
proved through different metrics and, unsurprisingly, including the spatial effect and
the temporal process improves predictive performances either in terms of MSPE or
PIW. We deliver these personalized trajectory plots for every subject in the study
and also predict personalized MAGs for each subject along any new trajectory. This
enables personalized recommendations based upon an individual’s health attributes
including suggestions for more effective paths to follow for optimal physical activities,
while also informing community level interventions in the built environment.

3.4 Conclusions and further developments
We have developed and executed a Bayesian modeling framework to conduct fully

model-based inference for high-resolution accelerometer data. Our key data analytic
developments included (i) modeling dependence over trajectories; (ii) accounting
for subject-specific spatial-temporal variation for daily mobility; (iii) predicting or
interpolating PA levels across trajectories; and (iv) identify zones of high physical
activity in Westwood, Los Angeles. Our spatiotemporal analysis offers richer inference
and evinces relationships between physical activity levels and a variety of factors,
both at the subject level (e.g., personal attributes) and as a function of space
and time. The temporal process was able to effectively glean the features of the
data at finer resolutions, while the spatial splines accounted for residual spatial
heterogeneity. Accommodating both temporal dependence and spatial heterogeneity
demonstrably improved predictive ability and enabled us to effectively delineate zones
of high physical activity. Furthermore, the ability of the model to pool information
across individuals at all time points allows us to infer about those who present
sparsely observed space-time points (due to technical issues or protocol violation).



3.4 Conclusions and further developments 94

start

end

34.071

34.072

34.073

34.074

−118.454 −118.453 −118.452 −118.451 −118.450 −118.449
Longitude

La
tit

ud
e

start

end

34.071

34.072

34.073

34.074

−118.454 −118.453 −118.452 −118.451 −118.450 −118.449
Longitude

La
tit

ud
e

0.0

2.5

5.0

7.5

lMAG

(a)

start

end

34.068

34.070

34.072

−118.4525 −118.4500 −118.4475 −118.4450 −118.4425
Longitude

La
tit

ud
e

start

end

34.068

34.070

34.072

−118.4525 −118.4500 −118.4475 −118.4450 −118.4425
Longitude

La
tit

ud
e

0.0

2.5

5.0

7.5

lMAG

(b)

Figure 3.14. Two randomly chosen lMAG trajectories over Westwood from individual 204
(a) and individual 566 (b). Observed trajectories with gaps are seen on the left panels;
spatially reconstructed (predicted) trajectories are seen on the right panels.

In particular, given our improved predictive power, we can fill gaps and infer about
PA levels with good accuracy and ensure the desired coverage by our prediction
intervals.

Our analysis also resolves practical difficulties in using actigraph data. It is
not cost-effective to deploy research-grade GlobalSat GPS and Actigraph units
as they are very expensive and continued usage requires heavy staff involvement.
Our methods can be applied to analogous, but less complete, data derived from
smart phones and smart watches, then such devices could be deployed in much
larger studies with much larger sample sizes at a fraction of the cost. Given the
spatiotemporal nature of outdoor PA research, our ability to predict in areas of data
missingness drastically improves inference related to the impacts of the built and
natural environments on physical activity and active mobility.

While our approach offers trajectory-based inference for actigraph data, we rec-
ognize that there are several avenues for further research. Our DAG-based approach
for scalable temporal processes can be further enriched with recent developments
(Katzfuss and Guinness, 2021; Peruzzi et al., 2020a), although any of the methods
reviewed and evaluated by Heaton et al. (2019) can be incorporated into our frame-
work. Finally, there is possible merit in modeling the activity counts in each axis
jointly and relaxing the assumptions of Gaussianity using recent developments in
multivariate spatiotemporal count models and for non-Gaussian outcomes (see, e.g.
Bradley et al., 2018, 2020).
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Recent public health reviews call for interdisciplinary technological advances to
more effectively measure spatiotemporal energetics of activity spaces in obesity and
chronic disease research (James et al., 2016; Kestens et al., 2017; Drewnowski et al.,
2020). Individual-level data, at aggregate, can be used to identify anchor points for
physical activity and reveal causal pathways between built environment exposures
and health. Our work is a novel contribution demonstrating methodologies for how
these pressing research questions may be answered.
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Chapter 4

Point patterns

Chapter 2 discussed the analysis of continuous spatial variations, namely the
study of dependence patterns between measurements recorded at different times
and/or locations on continuous domains. The time and location of sampling occasions
are seen as deterministic, known values. It is conditionally upon them that inference
on the distribution of the outcome of interest is performed.

This approach is entirely reasonable when observation points are pre-determined
by a specific sampling design, defined a-priori of the data-collection process. However,
in many applications, the researcher has no control over the sampling locations’
positioning. This can happen either because they are determined by nature, or he
is just an observer of events happening out of his control, e.g.: locations of trees
in a forest (Gerrard et al., 1969), crimes committed in a city (Mohler et al., 2011),
nuclei in a microscopic section of tissue (Diggle, 1986), etc. In such cases, the set of
irregularly scattered observed locations S ⊂ Rd is a random object by itself. If the
interest still lies in the sole study of spatial variations, then this additional source of
randomness may be ignored (as long as sampling bias can be reasonably excluded).

Nevertheless, there are many contexts in which the spatial distribution of locations
is relevant from a topological perspective. For example, in species sampling in
ecological sciences (Cormack, 1979; Baddeley and Turner, 2000; Perry et al., 2006),
where the sightings of individuals belonging to different species are used to infer
their mutual distribution in a region. In epidemiological applications (Breslow et al.,
1980; Besag and Newell, 1991), where points are reference locations for a disease’s
number of cases in a geographical region. In finance (Björk et al., 1997; Bauwens
and Hautsch, 2009; Hawkes, 2018), where the events may be market shocks and
identifying regularities can drive future investments. We generally refer to this kind
of data as point pattern data, and refer to the locations as events (to distinguish these
from arbitrary points in the region). The main inferential objective of their study
lies in distinguishing areas (sub-regions) of the underlying domain by the level of
presence/risk of an event. In practice, the researcher seeks to find interpretable and
predictable deviations of the observed pattern from the so-called Complete Spatial
Randomness (CSR), that corresponds to events dropped uniformly over the domain.
Loosely speaking, these deviations may be due to: clustering, in which events are
more likely to appear close in space; inhibition, in which events are likely to appear at
some distance from each other; regularity, when the events’ density changes regularly
over the domain. Three illustrative examples are shown in Figure 4.1. The one we
proposed is an over-simplification of the essential characteristics a point pattern may
exhibit, which should be opportunely qualified in more comprehensive summary
statistics or by identifying the underlying generative mechanism.
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(a) CSR (b) Clustering (c) Uneven distribution

Figure 4.1. Examples of random point patterns on the unit square.

As an extension, one may also consider assigning labels Y (s), s ∈ S to the
events; the latter yields a marked point pattern, where marks may be features of any
kind (e.g., qualitative, discrete or continuous measures). The introduction of marks
enlarges the space of interest’s dimension, bridging the gap with spatial variations.
Indeed, one may think of modeling the point pattern first, and the distribution of
the marks given the pattern of points after.

This chapter will first give an introduction to the basics of standard point patterns
analysis (Sections 4.1, 4.2). The literature is very vast and embraces many different
perspective. Here, we take the generative mechanism angle and provide a brief
description of stochastic processes (and models) that have a pattern of events as their
realization: point processes. Basic references are Daley and Vere-Jones (2007) for the
general theory of point processes, Last and Brandt (1995) for temporal and Moller
and Waagepetersen (2003) and Diggle (2013) for spatial analysis of point patterns.
Later on, Section 4.3 focuses on the Hawkes process and its spatio-temporal version,
of which a more comprehensive account is provided (Laub et al., 2015; Reinhart
et al., 2018). Such focus on the Hawkes process is because it is the key feature of the
model adopted in the two applications of Chapter 5 on road accidents occurrences.
Let me point out that the second application is the result of a collaboration with
colleagues from the University of Warwick, recently published in Kalair et al. (2020).

4.1 Analysis of spatial point patterns
A point pattern over a specified region D ∈ Rd is a set of locations S =

{s1, . . . , sn} where the locations are viewed as random. Randomness concerns both
the number of locations and their configuration over the region D. Proper modeling
considerations about the realized point patterns shall consider different aspects of
the mechanism that generated it, among which the study region and sampling from
it are the most important.

Standard literature usually puts a division between sparse sampling, where limited
information is recorded from a large number of smaller regions (Du Rietz, 1929;
Cottam and Curtis, 1949; Cox, 1955; Diggle and Cox, 1983), and intensive mapping,
where the events in a region are recorded at the point-scale level (Baddeley and
Turner, 2000; Diggle, 2013; Illian et al., 2008; Moller and Waagepetersen, 2003). The
former alternative was more common in the original ecological and epidemiological
literature, mostly because of the technological limitations that did not allow accurate
mapping at the exact location level. These can generally be tackled within the
context of discrete spatial variations (Besag, 1974; Diggle et al., 1976)(lattice models,
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Markov random fields, etc.) and will not be discussed in the sequel.
On the other hand, the last decades have seen a surge in the application of

point patterns presenting the exact location information that was, indeed, not
often available in the past. Historically, their study has been developed within
a very formal probabilistic framework without proper attention to inference and
applications. This has substantially changed over the last 20 years.

Another interesting aspect is whether the realized point pattern extends over the
boundaries of the region D and belongs to a larger (potentially infinite) region, or
exists only over D. In the first case, the edge-effects and the shape of the region might
matter, and appropriate tweaks must be contemplated not to invalidate inference
(buffering regions, on-average adjustments, wrapping the region onto itself, etc.).

The typical modeling of a point pattern starts from considering it is as the real-
ization of a point process P over D. The next section provides a brief introduction to
the theory of finite point processes, highlighting some essential theoretical properties
in terms of summary functions regulating their behavior. Section 4.1.2 mirrors the
previous one, introducing the empirical counterparts of these theoretical summaries.

4.1.1 A brief introduction to finite point processes
Most point patterns encountered in practice are observed in bounded regions,

either because it is the whole domain where the phenomenon occurs, either because
data have been mapped in a smaller window for convenience. In any case, the
resulting map always contains a finite number of points and hence the focus is
usually restricted to processes satisfying the finiteness condition. Loosely speaking,
it is possible to define a (simple) finite point process X over a bounded and connected
D ⊂ Rd as a stochastic process whose generic realization X is a finite set of locations
in D. In general spaces these realizations are unordered sets of distinct points:

X = {x1, . . . ,xl} ∈ X ⊂ Dl,

where l ∈ {0, 1, . . .} is not fixed but a feature of the random realization1. In
particular, the finite-ness implies that:

N(D) =
∑
x1∈X

ID(xi) <∞ ∀X ∈ X ,

where N(·) is the counting measure of X defined for any subset A ⊆ D and IA(xi)
is the indicator function over the set A.

A probabilistic model for X must place a distribution over all its possible
realizations. Let us suppose that D is equipped with a measure 0 < ν(D) <∞ on
its Borel sets B(D). Then, it is sufficient to specify:

• a discrete probability distribution p(·) : N0 → [0, 1] for the number of points in
the whole domain N(D) = l;

• a family of multivariate symmetric probability location densities fl(·) : Dl →
R+, l ∈ N with respect to the l-fold product of ν(·) for the points themselves.

The symmetry requirement is necessary in order to make sure that patterns generated
by fl(·) are permutation invariant, and therefore do not depend on the order in
which the points are listed. It is then possible to formally define the point process

1If one dimension is time, then it induces an order among locations and some peculiarities of
this specific case are discussed in Section 4.3.1.
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distribution through a marginal-conditional form known as the Janossy density
(Jánossy, 1950):

jl(x1, . . . ,xl) = p(l) · fl(x1, . . . ,xl) · l!, l ∈ N0, (4.1.1)

where the l! appears because the x1, . . . ,xl points can be assigned to the l locations
in l! ways. In an infinitesimal sense jl(x1, . . . ,xl)

∏l
i=1 δ(xi) is the probability of

finding exactly l points, one at each infinitesimal region centered at x1, . . . ,xl.
Stationarity of the process is assessed in terms of the location distribution, and is
verified if and only if:

fl(x1, . . . ,xl) = fl(x1 + h, . . . ,xl + h)

for all l, X = {x1, . . . ,xl} and h. While looking intuitive, finding the right ingre-
dients to define a valid point process using the Janossy distribution is challenging
and presents a viable solution only in rare cases. Nevertheless, any point pattern
realization can equivalently be expressed in terms of the corresponding counting
measure N(·) : B(D)→ N0 over Borel sets of its domain, including void sets. There
is indeed a one-to-one relationship between point processes on general spaces (even
not bounded) and this measure. Informally, it is evident how a point pattern must
determine the counting measure for any A ∈ B(D); by converse, it is trivial how
isolating all points through arbitrary union and intersection of sets in B(D) the
point pattern can be uniquely determined from the counting measure. Therefore,
mathematically speaking, the family of all joint distributions (N(A1), . . . , N(Am))
over collections of disjoint sets Ai ∈ B(D) defines uniquely the point process X.
This perspective represents a more attractive (and often more flexible) alternative
to define point processes on general spaces. For a more detailed and technical
illustration, the reader is referred to Chapter 16 of Gelfand et al. (2010) and Daley
and Vere-Jones (2007).

The most relevant properties of point processes can be defined in terms of
moments of the counting measure (Campbell measure, Palm distributions, etc.).
Here, without delving into the most formal aspects, we discuss some common first
and second-order properties and ignore higher-order ones.

First-order properties consider the points individually (i.e. do not consider
interactions). In particular, the first moment measure is the set function M(A) =
E [N(A)] with A ∈ B(D), which returns the expected number of points falling into
any subset of D. If M(·) is absolutely continuous with respect to the Lebesgue
measure, then it can be computed as:

M(A) =
∫
A
λ(x)dx,

where λ(·) is referred to as the intensity function of the process:

λ(x) = lim
|dx|→0

E [N(dx)]
|dx|

. (4.1.2)

For a simple point process (no multiple points can fall into the same infinitesimal
region) we have that E [N(dx)] ≈ P (N(dx) > 0) ≈ λ(x)dx. Thus, under mild
assumptions, it is interpretable as the density of points over D. The intensity function
is the counterpart of the mean-function for Gaussian processes (see Section 1.1) and
indeed, for a stationary point process over D, the following holds: λ(x) = λ ∀x ∈ D.
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Second-order properties refer to properties of the model that consider the points
in pairs. The second moment measure M(A1 × A2) = E

[∑
x,x′∈X IA1(x)IA2(x′)

]
counts the expected number of pairs of points with one falling in A1 and the other
in A2. Under measurability it can be expressed as:

M(A1 ×A2) =
∫
A1

∫
A2
λ2(x,x′)dxdx′,

with M(A1 ×A2) = E [N(A1) ·N(A2)] for disjoint sets A1 ∩A2 = ∅. Hence, second
order intensity function can be defined as:

λ2(x,x′) = lim
|dx|→0,|dx′|→0

E [N(dx) ·N(dx′)]
|dx||dx′|

. (4.1.3)

Under second-order stationarity λ2(x, x+h) = λ2(h) and, if isotropy holds, λ2(x,x+
h) = λ2(h), with h = ||h||. Considering that:

E
[
N(dx)N(dx′)

]
≈ P

(
N(dx) > 0, N(dx′) > 0

)
≈ λ2(x,x′)dxdx′,

a limiting interpretation of the second order intensity is as the probability of observing
two points in the infinitesimal regions dx and dx′, respectively. In practice, it can
be interpreted as the density of inter-point distances.

From the second moment measure it is possible to derive the pair correlation
function, namely:

g(x,x′) = λ2(x,x′)
λ(x)λ(x′) , (4.1.4)

that simplifies to λ2(x,x′)
λ2 for a stationary process. If the correlation function depends

only on the spatial separation between the two points g(x,x+h) = g(h) the process
is said to be intensity re-weighted second order stationary (Moller and Waagepetersen,
2003). It simplifies to g(h) under isotropy.

An alternative characterization of the second-order properties for a stationary
and isotropic process is provided by the so-called K-function, one definition of which
is:

K(h) = λ−1E [No(h)] ,
where No(h) is the number of events within distance h from an arbitrary event o.
The formal definition of an arbitrary event is quite complicated, and the reader is
referred to Daley and Vere-Jones (2007) for a more technical discussion. Intuitively,
it is possible to define it as an event selected at random from the population, hence
a point distributed uniformly over D. For instance, under stationarity, any point
is a typical point and is equivalent to each other. The link between this function
and the second-order properties is contained in the so-called Papangelou conditional
intensity of a process:

λ(x |X) =
{
λ(x |X \ x) x ∈X
λ(x |X) x /∈X.

(4.1.5)

It is the intensity at a location x given the realization of a configuration X where,
roughly speaking, λ(dx|X) represents the probability of observing a point in dx
given that the remaining points are outside of dx. Under mild assumptions, it is
always possible to write:

λ(x|X) = f({x, X})
f(X) ,
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where f(·) is the probability measure over alternative configurations of the process,
and {x, X} is the configuration obtained by adding point x to configuration X.
Whilst apparently puzzling, the Papangelou conditional intensity is a very powerful
tool through which a lot of interesting processes can be easily defined through with
respect to other more simplistic processes .

Considering points in pairs is practically equivalent to take X as the single
arbitrary point o and then study the conditional density of an additional point x:

λ(x |o) = λ2(x, o)
λ(o) = λ2(h)

λ
,

where h = ||x − o|| and the last equality holds under isotropy and stationarity.
Hence, the expected number of events within distance h of an arbitrary event o (in
a circle of radius h centered in o) does not depend on o and can be computed as:

K(h) = λ−1 ·
∫ 2π

0

∫ h

0
h · λ(h |o) dh dθ = 2π

λ

∫ h

0
h · λ2(h)

λ
dh

= 2π
λ2

∫ h

0
h · λ2(h) dh.

(4.1.6)

4.1.2 Empirical estimation of summary properties
All the theoretical quantities introduced in the previous section have empirical

counterparts, computable on any observed point pattern. The typical flow of the
analysis starts by comparing the empirical estimates obtained on the observed
patterns with the theoretical forms arising from the probabilistic properties of known
point processes. Indeed, differently from the mean and covariance function approach
of Chapter 2, there is no practical way to specify theoretical parametric forms for
these summary functions as models on their own right while ensuring the validity of
the resulting point process. The theoretical shapes must instead be derived directly
from the underlying stochastic model, as the result of the specific generative process.
The baseline comparison terms are usually represented by CSR and by the concepts
of clustering, inhibition, and stationarity.

Let S = {s1, . . . , sn} be an observed point pattern over D. Under the assumption
of stationarity, the study of its properties starts from the analysis of its empirical
second order structure. It is usually investigated in terms of the so-called nearest
neighbor G(·) and empty space F (·) distributions:

G(h) = P (nearest event ≤ h), F (h) = P (nearest event ≤ h),

where the first consider event to event distances, while the latter any point to
event distance. Theoretical benchmarks for G(·) and F (·) can be computed via
Monte-Carlo integration, simulating point patterns according to the chosen random
mechanism and computing the corresponding typical distributions. For instance,
under CSR, we have that G(h) = F (h) = 1 − exp(−λh) for points in R and
G(h) = F (h) = 1 − exp(−λπh2) for points in R2. This results arise from the
correspondence of CSR with the Poisson process, which is defined and described in
Section 4.2. Empirical estimates of G(·) arise from the n observed nearest neighbor
distances:

h̃i = arg min
j=1,...,n

||si − sj ||, i = 1, . . . , n,

where the estimation shall also take proper account of edge effects, when performed
on bounded regions. Indeed, if si is at distance h̃maxi from the edge, then events



4.1 Analysis of spatial point patterns 102

further than h̃maxi cannot be observed. An example of edge-corrected empirical
estimate is obtained as:

Ĝ(h) =
n∑
i=1

I(̃hi ,̃hmaxi )(h)

I(0,̃hmaxi )(h) .

The empty space distribution F (·) can be estimated analogously, where a grid of
arbitrary points X = {x1, . . . ,xl} is super-imposed on D and the l nearest neighbor
distances from these are considered to build-up F̂ (·). The arbitrariness of the grid
choice slightly diminishes the value of this diagnostic tool. However, the fact that
under CSR G(h) = F (h) can be exploited. Indeed, it is possible to define a new
function as the ratio of the two:

J(h) = 1−G(h)
1− F (h) ,

which is 1 in the case of CSR, while indicates clustering for J(h) < 1 and inhibition
for J(h) > 1. The corresponding customary estimate is:

Ĵ(h) = 1− Ĝ(h)
1− F̂ (h)

,

and its value informs about the observed direction and magnitude of the (eventual)
deviation from CSR.

Next, we may consider the K-function introduced in Equation (4.1.6). Also here
the theoretical forms, when not available analytically, can be approximated through
Monte-Carlo simulations. It can be proved that under CSR K(h) = h for point
processes over R and K(h) = πh2 for processes over R2. An empirical estimate of
K(·) can be obtained as:

K̂(h) = λ̂−1
n∑
i=1

n∑
j=1,j 6=i

I(0,hij)(h)
n

= (n · λ̂)−1
n∑
i=1

rhi ,

where λ̂ = n
|D| is an estimate of the overall intensity, hij = ||sj − si|| ∀ i, j and rhi

is the number of events in the observed configuration S at distance lower than h
from si. Actually, edge correction through weights wij is necessary in order to get a
proper contribute from si’s close to the boundaries. On average this can be done by
rescaling every term by the portion of space that lies at distance h from it within D.
As with Ĵ(·), also K̂(·) can be compared to some numerical benchmarks, that are
nonetheless different according to the dimensionality of the space. For instance, if
the point process is over R2 then: K̂(h) ≈ πh2 implies CSR; K̂(h) < πh2 implies
inhibition; K̂(h) > πh2 implies clustering.

Given an estimate of K̂(·), there is a simple way to estimate the pair correlation
function. Equation (4.1.6) establishes a indirect relationship between K(·) and
g(·) = λ2(·), which becomes apparent after applying the derivative at both sides.
The empirical counterpart can then be obtained by substituting K̂ ′(·) for K ′(·).
Strictly speaking, K̂(·) is a step-function, and therefore non-differentiable. However,
it is usually evaluated at a discrete set of equally spaced values and interpolated
linearly. Consequently, its derivative K̂ ′(·) is piece-wise constant and yields a
histogram-like estimator for λ2(·):

λ̂2(h) = (2πh)−1K̂
′(h), h > 0. (4.1.7)
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All the previous summary statistics and benchmarks hold for point processes
that deviate from CSR but are stationary in the sense that, marginally, λ(·) = λ.
For non-stationary processes moving away from CSR, it is incredibly useful to get
also estimates λ̂(·) of their first-order intensity λ(·) : D → R+. Either because it is of
primary interest, or just because it can be used to re-scale (thin) the original process
into a stationary version (on which second-order properties can be investigated).
Given the general absence of a sufficiently comprehensive parametric expression for
it, its estimation is usually attained through non-parametric methods based on the
theory of density estimation. After all, as argued in Section 4.1.1, the concept of
intensity is representing (under mild assumptions) nothing else but the density of
points over the region D.

The most naive estimate is equivalent to an histogram and starts from defining
a refined grid (or partition) A = {A1, . . . , Am} of D, where ∪mi=1Ai = D and
Ai ∩Aj = ∅ ∀ i, j. Then, for each element of the grid, this is built up as:

λ(x) = N̂(Ai)
|Ai|

, x ∈ Ai, (4.1.8)

where N̂(Ai) is the empirical counting measure of the observed configuration. This
yields a discontinuous function (step function in R and step surface in R2) resembling
an histogram, whose volume is proportional to the number of points in the pattern.

The continuous (and slightly more sophisticated) alternative attains a smooth
version of (4.1.8) using a kernel function: Kernel density estimation (Silverman,
1986). With very similar spirit, this estimate takes the following form:

λ̂b(x) =
n∑
i=1

kb(||x− si||/b), x ∈ D,

where kb(·) is the so-called kernel function and b is a scaling factor named bandwidth.
The latter regulates the freedom/smoothness of the resulting approximation. On
bounded domains, edge effects can be corrected (on average) by re-scaling the kernel
so that it integrates to 1 on it:

k̃b(hi/b) = kb(hi/b)∫
HD kb(hi/b)dhi

, (4.1.9)

where hi = ||x−si||. Let us specify that the Kernel function generally is a decreasing
and symmetric function, which in this context is used to quantifies the influence of
point si on the intensity at location x. A lot of alternatives have been proposed in
the literature. We here list some very common in 1-dimensional settings: rectangular
(or Parzen), triangular, quadratic (or Epanechnkikov) and Gaussian. The last one is
probably the most common, and presents the following form:

kb(h) = 1
2πb exp

{
− 1

2bh
2
}
. (4.1.10)

Higher-dimension kernels can be constructed from lower-dimensional ones by com-
position, namely taking the product of the two. In the case of d−dimensional
composition of a Gaussian kernel, the result is a Gaussian multivariate kernel with
independent components:

kb(h) = 1
2π
∏d
i=1 bi

exp
{
−1

2h
>Bh

}
, (4.1.11)
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where bi is the bandwidth of the i-th dimension and B = diag(b1, . . . , bd). Multi-
dimensional kernels obtained through composition are called separable.

These last considerations conclude the brief introduction to some of most widely
known tools to analyze point patterns. Other important metrics are the Average
Nearest Neighbor (ANN), the L-function derived from K(·), the Scan Statistics based
on the Kulldorf’s distance (Kulldorff, 1999), and others. For a lengthier exposition
the reader is referred to Last and Brandt (1995) and Diggle (2013) for temporal and
spatial point patterns respectively.

4.2 The Poisson process
The list of notable point processes originating from different probabilistic as-

sumptions on their stochastic behavior is incredibly vast. Providing a comprehensive
description of all of them and their properties would be an interminable and compli-
cated task which, by the way, is out of this work main scope. Instead, this section
provides a brief account of some of the most famous examples of point processes,
some of which present properties relevant to the analysis of the Hawkes processes
(more extensively discussed in Section 4.3).

The Poisson process is the cornerstone upon which many other processes are
built upon. Its most basic version is known as the Homogeneous Poisson (HP)
process with constant intensity λ. In applications it is used as an idealized standard
for CSR. It is conveniently defined through the following three postulates.

HP1 For some λ > 0 and any bounded region A ⊂ D, the counting measure satisfies:
N(A) ∼ Poi(λ|A|),

where | · | denotes the d-dimensional size (area, volume,. . . ) of the argument.

HP2 Given N(A) = l, the l events are uniformly distributed over A.

HP3 For any two disjoint regions A,B : A ∩ B = ∅, we have that the random
variables N(A) and N(B) are independent.

It can be easily proved that these three properties are self-consistent with each other,
and the reader is referred to Diggle (2013) or to Daley and Vere-Jones (2007) for
the formal proof. Derivation of the components of the Janossy density (hence of the
likelihood) over D for the homogeneous Poisson process is trivial. Indeed, from HP1
and HP2 follows that:

p(l|D) = (λ · |D|)l

l! · e−λ|D| and fl(x1, . . . ,xl|D) = |D|−l,

and then:
jl(x1, . . . ,xl |D) = Lλ(x1, . . . ,xl|D) = λl · e−λ|D|, (4.2.1)

where Lλ(·|D) denotes the likelihood of λ given the observed pattern on D.
As a matter of fact, while rarely useful to describe any interesting process hap-

pening in practice, the HP process is very useful as a CSR benchmark. Furthermore,
one may construct a wide range of point process models by specifying their proba-
bility density with respect to a homogeneous Poisson process. This can be done by
conditioning, superimposition, thinning, etc.

The most trivial example is the Inhomogeneous Poisson (IP) process, for which
the stationarity assumption is dropped and the constant intensity term is replaced
with an arbitrary intensity function λ(·) : D → R+. It retains the most important
properties of the Poisson process, with some slight modification.
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IP1 For any bounded region A ⊂ D the counting measure satisfies:

N(A) ∼ Poi (λ(A)) , (4.2.2)

where λ(A) =
∫
A λ(x)dx

IP2 Given N(A) = l, the l events are distributed over A according to density
induced by λ(·).

IP3 For any two disjoint regions A,B : A ∩ B = ∅, we have that the random
variables N(A) and N(B) are independent.

Following IP1 and IP2, the likelihood can be obtained according to similar consider-
ations to the homogeneous case. First, the number of events over D can be assigned
probabilities as:

p(l) = λ(D)l · e−λ(D).

Then the realized locations are modeled conditionally on N(D) = l by rescaling the
local intensity by the intensity of whole area:

f(x1, . . . ,xl|N(D) = l) =
l∏

i=1

λ(xi)
λ(D) .

This yields the following joint density:

Lλ(·)(x1, . . . ,xl) = λ(D)l · e−λ(D) ·
l∏

i=1

λ(xi)
λ(D) = e−λ(D) ·

l∏
i=1

λ(xi)l, (4.2.3)

which is a function of the whole surface and not just of the observed point pattern.
Loosely speaking, the first term explains the observed pattern, while the second
accounts for the chance of observing other points over the whole region D. The
computation of the likelihood can be useful to compare the inhomogeneous model
with other alternatives or, if a parametric model for λ(x) = λθ(x) is proposed, to
perform inference on the set of parameters θ.

4.2.1 General Cox Processes
The Inhomogeneous Poisson process denies the first-order stationarity assumption

of the process. It can produce apparent clusters in regions with relatively high
intensity, but still retaining independence at all levels. A trivial extension that
allows to include dependence to some extent is the Cox process (CP, Cox (1955)).
Technically, this defines a class of doubly stochastic processes, in which the intensity
function varies stochastically over the region D. Its validity can be proved through
a conditioning argument, for which the reader is referred to Chapter 6 of Daley and
Vere-Jones (2007).

It is defined by the following properties.

CP1 Λ(x) : D → R+ is a non-negative valued stochastic process.

CP2 Conditionally on Λ(x) = λ(x), the corresponding point process is an inhomo-
geneous Poisson process with intensity function λ(x).
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The likelihood can be computed analogously to the (4.2.3), with the relevant com-
plication that Λ(D) is not anymore a standard integral but a stochastic integral
(McKean, 1969; Kuo, 2006). These are never available explicitly and require integral
approximation, which must be ensured to converge (as a random variable) to the
actual integral.

For doubly stochastic processes first and second-order properties are determined
in terms of expectations with respect to the random measure governing Λ(·). For
instance, the process is stationary if:

E [Λ(x)] = λ,

while isotropy is verified for:

λ2(x,x+ h) = E [Λ(x) · Λ(x+ h)] = λ2(h),

with h = ||h||.
A great variety of Cox processes can be defined by alternative specifications of

the driving process Λ(·). The most common and widely used is the Log-Gaussian
Cox process, where log (Λ(·)) ∼ GP (µ, c(·, ·)): the log-scale is necessary in order to
guarantee the almost certain non-negativeness of the intensity at all locations.

4.2.2 Poisson cluster processes
Poisson cluster processes were initially introduced by Neyman and Scott (1958).

These incorporate an explicit form of spatial clustering and can be adopted to model
aggregate spatial point patterns. The typical clustering process is known as the
Neyman-Scott (NS) process, obtained as the superimposition of a parent process
with multiple offspring processes stemming from each of the parent events. It can
be defined through the following three postulates:
NS1 Parent events form a Poisson process with intensity λ(·) (originally λ(·) = λ).

NS2 Each parent produces a random number K of offspring, realized independently
and identically for each parent according to a probability distribution pk =
P (K = k), k = 0, 1, . . . .

NS3 The positions of the offspring relative to their parents are independently and
identically distributed according to a bivariate density gs(·).

In practice, this process is obtained by initially generating parent events from a
standard Poisson process, and afterward, producing a random number of offspring
in the parents’ neighborhoods. Conventionally, the final pattern consists of the
offspring only but this is not strictly necessary for the general process properties to
hold. We refer to the most common specification that considers offsprings only in
the sequel.

The resulting point process is stationary, with intensity depending on the parent
and offspring processes intensities as λ ·µ, where µ = E [K]. Moreover, it is isotropic
whenever NS3 specifies a radially symmetric density gs(·). Usually, bivariate
Gaussian densities or uniform distributions over circles are considered, leading to
particular cases known in the literature as the Modified Thomas process and the
Matèrn process (Illian et al., 2008).

The corresponding second-order properties can be identified by deriving the
density of the vector difference between the positions of two offsprings from the
same parent:

g(2)
s (x) =

∫
gs(x)gs(x− y)dx,
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and the corresponding cumulative distribution function G(2)
s (·). Taking into account

the probability distribution of the size of each cluster to which an arbitrary event
belongs (i.e. p∗k(k) = k · pk(·)/µ), the expected number of related events within
distance t of an arbitrary event is E [K(K − 1)]G(2)

s (·)/µ. Instead, being unrelated
events located independently of the original event, their expected number is just
λπt2. Therefore, the resulting K-function is:

K(t) = πt2 + E [K(K − 1)] G
(2)
s (·)
λµ

and, differentiating, the resulting pair correlation function is:

λ2(t) = λ2 + ρE [K(K − 1)] g(2)
s (·).

Many other properties (e.g. quadrat counts, empty space distance and nearest
neighbor distributions) can be derived starting from the NS postulates. Here, we
will not mingle in further details but refer again the reader to Daley and Vere-Jones
(2003) and Diggle (2013) for a deeper probabilistic and statistical investigation of its
properties. Let us just mention that the Poisson cluster process construction can be
easily extended to multi-generation processes, in which the offspring is the parent of
a next generations, and so on. Generally speaking, this type of construction tends to
generate mathematically intractable summaries and it is very complicated to detect
simple properties starting from its (apparently simple) defining postulates. However,
when the reproduction occurs (also or only) along time according to some well-
defined distribution, its study can be tackled in the old and well-researched domain
of branching processes (renewal processes, immigration-birth processes) (Daley and
Vere-Jones, 2003; Inés et al., 2016). In particular, the Hawkes process introduced in
the next section is a peculiar kind of temporal (or spatio-temporal) point process
that exhibits an events inter-dependence with dynamics analogous to branching (in
time) and clustering (in space) process. Being it the primary building block of the
application in Chapter 5, its properties and analysis are extensively discussed in the
next section.

4.3 Self-excitation and the Hawkes process
Hawkes processes are a very interesting class of point processes named after

its creator, Alan G. Hawkes, first published in the seminal paper Hawkes (1971b).
Their defining characteristic is the peculiar kind of inter-independence induced by a
self-exciting mechanism. Each event occurrence increases the probability of observing
another event in its spatial proximity and immediate future. In practice, events have
the ability to trigger others just after they happened, naturally originating patterns
that present a clustered behavior. This is particularly useful to model phenomena
that tend to exhibit such pattern under the effect of similar physical mechanics,
e.g.: earthquakes and after-shocks (Ogata, 1988), crime and retaliations/imitations
(Mohler et al., 2011; Zhuang and Mateu, 2019), financial shocks and market reactions
(Azizpour et al., 2018; Hawkes, 2018), primary and secondary road accidents (Li
et al., 2018; Kalair et al., 2020) etc.

Let us emphasize that the triggering/excitation effect can spread along both
time and space, but only events that occurred in the past can affect the process’s
future, and not vice-versa. The existence of a past and a future is necessary to
define a Hawkes process, and hence it cannot dispense of the temporal dimension.
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Figure 4.2. Example of temporal point process realization over a bounded window and
corresponding counting measure N(t)

In Section 4.3.1 we introduce a building method for temporal point processes based
on the so-called conditional intensity function2. We then define the Hawkes process
through the proper specification of this one and provide an interesting analogy as
a branching process in 4.3.2. Finally, Section 4.3.3 concerns the spatio-temporal
extension of the classic Hawkes process and the following two sections (4.3.4, 4.3.5)
briefly introduce some of the most common estimation methods.

4.3.1 Temporal point processes and conditional intensity functions
A (simple) temporal point process X is a sequence of random variables X =

{T1, T2, . . .} taking values in [0, ∞) such that 0 < Tk < Tk+1 ∀ k. Each Tk is the time
of the k-th arrival (event) in the process. Let us recall that any point process can also
be represented in terms of the corresponding counting measure. In the temporal case,
it is a random-valued function N(·) : R+ → N0 defined on the half-lines [0, t], t ∈ R+

and such that: N(0) = 0, N(t) is almost surely finite ∀ t, N(·) is a right-continuous
step function with increments of size +1. In practice, each N(t) is a random variable
counting the number of arrivals Tk happened before t, for all t, and has a one-to-one
relationship with the point process itself (see Figure 4.2).

Section 4.1.1 argued how providing a general characterization of the process
distribution is a very challenging task that (theoretically) can be tackled from either
the point of view of the arrival times Tk or of the counting measure N(·). The
latter usually provides a viable option to define some relevant characteristics of the
process. When independence between disjoint sets holds (e.g., Poisson process), it
can also be used to define all its finite-dimensional-distributions. However, when
complex dependence relationships are at play, its specification on general spaces is no
longer obvious. Fortunately, when the process takes place along time, an alternative
approach can be considered to specify a (finite) point processes distribution uniquely.

Let the domain of the process be a bounded region (interval) D = [t0, T ] ⊂ R+

where, without any loss of generality, the initial point is usually set to t0 = 0. That
does not necessarily mean that the process started in t0 = 0, but this implies that any

2To not be confused with the Papangelou conditional intensity
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dependence on events before t0 shall be null or already incorporated in the density
specification. Under these hypotheses and assuming mild regularity of the process
(simple and finite), suitable specification of the Janossy densities jl(· | D) for any l
uniquely determines all finite dimensional distributions on D. Valid specification of
such densities is not obvious at all and, in general cases, is a dead-end. However, it
is possible exploit that realizations of a temporal point process over D are ordered
sets of points Tl = {t1, . . . , tl} ⊂ [0, T ], such that 0 < t1 < · · · < tl < T , to make the
problem more tractable. Indeed, the ordering induced by the temporal dimension
allows for an evolutionary interpretation of the process, for which survival functions
Sk(t|t1, . . . , tk−1) of the k-th event Tk given the previous k − 1 events can be easily
defined:

Sk(t | t1, . . . , tk−1) = P (Tk > t | t1, . . . , tk−1),
together with the corresponding conditional densities:

pk(t | t1, . . . , tk−1) = − d

dt
Sk(t | t1, . . . , tk−1) =

= P (Tk ∈ dt | t1, . . . , tk−1) .
Using a straightforward conditioning argument, it is possible to express any Janossy
density in [0, T ] through the following expressions:

j0(∅ |T ) = S1(T ),
jl(t1, . . . , tl |T ) = p1(t1)p2(t2|t1) · · · pl(tl|t1, . . . tl−1)·

· Sl+1(T |t1, . . . , tl), l = 1, . . . .
(4.3.1)

Therefore, for any given family of survival functions (and conditional densities),
all the finite dimensional distributions of the temporal point process are uniquely
identified. In particular, undertaking a slight shift of view, it is possible to define
the hazard function of the k-th event Tk given the previous k − 1 events as:

hk(t | t1, . . . , tk−1) = pk(t | t1, . . . , tk−1)
Sk(t | t1, . . . , tk−1) , (4.3.2)

where, by basic calculus, the following holds:

Sk(t | t1, . . . , tk−1) = exp
{∫ t

tk−1
hk(τ | t1, . . . , tk−1)dτ

}
.

The conditional densities can then be obtained as a function of the hazard functions
through manipulation of (4.3.2):
pk(t | t1, . . . , tk−1) = hk(t | t1, . . . , tk−1) · Sk(t | t1, . . . , tk−1) =

= hk(t | t1, . . . , tk−1) · exp
{∫ t

tk−1
hk(τ | t1, . . . , tk−1)dτ

}
,
(4.3.3)

and the Janossy densities of Equation (4.3.1) can finally be expressed in terms of
the hazard functions only:

j0(∅ |T ) = exp
{∫ T

0
h1(τ )dτ

}
,

jl(t1, . . . , tl |T ) = h1(t1)
l∏

k=2
hk(tk|t1, . . . , tk−1)·

exp
{∫ t1

0
h1(τ) +

l∑
k=2

∫ tk

tk−1
hk(τ |t1, . . . , tk−1) +

∫ T

tl

hl+2(τ |t1, . . . , tl)
}
.
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The definition of an amalgam of all the hazard functions can remarkably ease the
expression of the last formula. It results in the following piece-wise continuous
function:

λc(t) =
{
h1(t) t ≤ t1
hk(t|t1, . . . , tk−1) tk−1 < t ≤ tk,

which is commonly known as the conditional intensity function3. Indeed, at each
time point t, it has the very interesting interpretation as instantaneous intensity
of the process given the observed past H(t) = {ti : ti ≤ t}. It can be proved to be
equivalent to:

λc(t) = lim
dt→0

E [N(t+ dt)−N(t) |H(t) ]
dt

, (4.3.4)

and, by definition, it has a one-to-one relationship with the family of hazard functions
of the process. The Janossy densities can then be expressed as a function of the
conditional intensity function:

jl(t1, . . . , tl |T ) =
l∏

k=1
λc(tk) · exp

{∫ T

0
λc(τ)dτ

}
=

=
l∏

k=1
λc(tk) · exp {Λc(T )} ,

(4.3.5)

where Λc(t) =
∫ t

0 λc(τ)dτ is commonly known as the compensator and exists even
when the conditional intensity function does not.

All this implies that λc(·) determines hk(·) for all k, which in turn determine the
Janossy densities for any l and so determine the probability structure of the point
process uniquely. For instance, for λc(·) = λ the resulting process is an Homogeneous
Poisson process (see Equation (4.2.1)); while λc(·) = λ(·) that does not depend
on the history of the process identifies the Inhomogeneous Poisson process (see
Equation (4.2.3)).

For a more formal and detailed discussion of these results, the reader is referred
to Chapter 7 of Daley and Vere-Jones (2007). However, to the end of this section,
the take-home message is that a temporal point process can be defined uniquely
by specifying its conditional intensity function. The latter provides a very flexible
tool to define processes through an interpretable causal description with interesting
implications for the specification of several temporal dependence structures. This is
precisely the scheme through which the Hawkes process is defined.

4.3.2 The Hawkes process
The Hawkes process was introduced in Hawkes (1971b) as a new type of point

process with the defining characteristic of exhibiting a self-exciting behavior. In the
original paper it is described as the (simple) temporal point process induced by the
following conditional intensity function:

λc(t) = µ+
∫ t

0
g(t− τ)dN(τ), (4.3.6)

where µ > 0, g(·) : [0,∞) → R+ and N(·) is the counting measure of the process
itself. The constant term µ is the background intensity of the process, while g(·)

3To not be confused with the Papangelou conditional intensity, introduced in Equation (4.1.5).
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Figure 4.3. Example of Hawkes process realization over a bounded window and corre-
sponding conditional intensity function λc(·)

is generally known as the excitation/triggering function and determines the extent
of the self-excitation. Equation (4.3.6) involves the computation of a stochastic
integral on the past history of the point process (from which the self-dependence
and the excitation). Therefore, marginally, the conditional intensity function is a
random object that depends on the process’s random realization. That writing,
while consistent with the literature, may obscure the intuition behind it. A clearer
expression can be provided conditionally on the observed sequence T = {t1, . . . , tl}
over the window of interest [0, T ]. Indeed, for a known past, the value of Equation
(4.3.6) in t ∈ [0, T ] is no more a random object, but it is a deterministic function
with the following form:

λc(t) = µ+
∑
ti<t

g(t− ti). (4.3.7)

It is now evident how the conditional intensity of the process at time t is determined
by its past history Ht, where each previous event ti contributes to λc(t) through
a function g(·) of the time elapsed since its occurrence. The function g(·) must
be a positive function, usually monotone decreasing, that accounts for a sort of
memory effect: events further back in time shall have smaller effect on the current
intensity of the process. Figure 4.3 shows the values assumed by the conditional
intensity function corresponding to a Hawkes process realization. After an initial
time with constant rate µ, the intensity bumps of g(0+) just after the first event
occurrence, and then slowly decays back to the background intensity as long as other
events do not occur. It is completely intuitive how such behavior causes a cluster
of events in time (as a consequence of a random event occurrence that increased
the current rate), followed by times of apparent calm. Figure 4.3 also highlights
how the conditional intensity is defined as left-continuous, coherently with the ti < t
indexing in Equation (4.3.7). That is not as evident from the original expression in
(4.3.6), but nonetheless, it is a fundamental property. Otherwise, the intensity in t
would also be influenced by what happens in t itself, creating an inner circularity
with no escape.

Generally speaking, the structure of λc(·) is quite flexible and allows for the various
specification of both the background intensity µ and the excitation function g(·). In
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its most basic version, the background rate µ is just constant and positive. Concerning
the excitation function, a very common choice is the exponential parametrized by
α > 0 (instantaneous increase in the intensity) and β > 0 (exponential decay):

g(τ) = α · e−βτ , τ ∈ R+.

The exponential decay, besides providing flexible and reasonable modeling for the
memory effect, also sensibly simplifies the theoretical derivation of the spectral laws
of the process (Hawkes, 1971b). Under this excitation shape, Hawkes (1971a) also
extends the definition of the Hawkes process to a larger class of multivariate self and
mutually exciting point process. These are not discussed here for the sake of brevity.

Another widespread choice for the excitation is the power law function:

g(τ) = α

(c+ τ)p , τ ∈ R+,

where c, α and p are positive scalars. This power-law form is very well-known in
the geological literature as the Omori’s law, used to predict the rate of aftershocks
caused by an earthquake (Ogata, 1999). Its utilization in the context of the Hawkes
process is strictly related to the wide adoption of this last as a model for earthquakes
aftershock sequences since Ogata (1988).

Many other different semi-parametric and non-parametric versions of excitation
functions (piece-wise linear, splines, kernel smoothers) have been proposed in the
literature. This includes applications in a great variety of fields, e.g.: finance
(Bauwens and Hautsch, 2009; Bacry et al., 2015), neurology (Johnson, 1996), crime
(Mohler et al., 2011; Porter et al., 2012), car accidents (Kalair et al., 2020), etc.. .
All different alternatives cannot be discussed in detail, but the remainder of this
Section will generally refer to an arbitrary function g(·).

Branching process representation Interestingly, Hawkes and Oakes (1974)
provides an alternative branching process representation of the Hawkes process. This
can be very useful as an interpretation tool and as a different point of view that can
ease the derivation of some stability properties of the process. In practice, the events
resulting from a Hawkes process can be partitioned in two disjoint processes: a
background process of cluster centers, realizations of a homogeneous Poisson process
with the constant rate µ; separate offspring processes of triggered events, one for each
cluster, whose intensities are determined by g(·). Figure 4.4 shows an illuminating
graphical representation of this branching structure.

Each event ti that enters the system (either it is a background event or it is
a triggered event) produces offsprings at future times t > ti with rate g(t − ti).
Direct offsprings of background events are part of the first-generation. In turn, their
offsprings comprise the second-generation and so on. Members of the union of all
these generations are generally called descendants of the ti arrival. In particular, if
Zi is the random number of offspring spawned by the event ti, the following holds:

Zi ∼ Poi(mi), mi =
∫ T

ti

g(τ − ti)dτ.

This would yield mi ≈ m̃ =
∫∞

0 g(τ)dτ if the process continued indefinitely and, in
particular, the shape of g(τ) determines the temporal/spatial distribution of the
future offsprings over [ti,∞] (after proper normalization over the bounded window).
The long term mean m̃ is known as the branching ratio of the process and determines
whether its counting measure explodes or not.
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Figure 4.4. Image taken from Reinhart et al. (2018). At the top, a hypothetical observed
self-exciting point process of events. Below, the separation of that process into a
background process and two generations of offspring processes. Arrows indicate the
cluster-trigger relationships; solid circles are background events, and open circles and
squares are triggered events. At the bottom, the combined process with generations
indicated by shapes and shading.

To see this, let us consider the behavior of the marginal intensity of the process,
or rather of the conditional intensity function marginally on all the possible histories.
Conditioning on the time of the first jump, by the Hawkes process specification of
the conditional intensity function, the following holds:

λ(t) = E [λc(t)] = µ+
∫ t

0
g(t− τ)E [dN(τ)] , (4.3.8)

and by definition:

λ(t) = E [λc(t)] = E [E [dN(t)|H(t)]]
dt

= E [dN(t)]
dt

. (4.3.9)

From Equation (4.3.8) follows that:

E [dN(t)] = λ(t)dt,

and therefore, substituting in Equation (4.3.9):

λ(t) = µ+
∫ t

0
g(t− τ)λ(τ)dτ. (4.3.10)

Equation (4.3.10) is a renewal-tipe equation that corresponds to the convolution
λ = µ + g ~ λ. It has different solutions according to the value of m =

∫ t
0 g(τ)dτ .

Grimmet et al. (2020) shows that it is possible to distinguish in three main cases:
the defective case for m < 1; the proper case for m = 1; the excessive case for m > 1.
For m ≤ 1 the long term marginal rate (for t→∞) will settle about a positive and
finite value. On the other hand, for the excessive case, the rate grows exponentially
quickly and hence the number of events N(t) t→∞→ ∞. In particular, the process
is stationary if λ(·) = λ, meaning that the process has a long-term mean. Under
the stationarity assumption, derivation of the second-order properties and power
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spectrum of the process is trivial, and we refer to Hawkes (1971b), Hawkes and
Oakes (1974) and Laub et al. (2015) for their discussion.

Generalizations of the Hawkes process to consider non-linear effects in a temporal
setting have been recently considered (Brémaud and Massoulié, 1996; Zhu, 2013), but
will not be dealt within this work. On the other hand, the next section introduces
a spatio-temporal extension of the Hawkes process which has been widely used in
the study of clustered spatio-temporal patterns. For this last, being a more general
version of the solely temporal model and being the model applied in Chapter 5, we
will also introduce the likelihood of the corresponding model and the most common
estimation methods.

4.3.3 The spatio-temporal Hawkes process
In some contexts, events happening along time occur at different locations in a

bounded region D. The spatio-temporal form of the Hawkes process extends the
conditional intensity to account for spatial variability of the background rate and
spatial propagation of the excitation function. As in Chapter 10 of Diggle (2013), a
spatio-temporal point-process can be defined analogously to Equation (4.3.4) with
the dependence on the location s ∈ D ∈ Rd made explicit in the conditional intensity
expression:

λc(s, t) = lim
dsdt→0

E [N (ds× dt) |H(t) ]
ds · dt

,

where N(·) is a counting measures over sets of B (Q), with Q = D × [0, T ]. Thus, a
self-exciting spatio-temporal point process is defined as one with conditional intensity:

λc(s, t) = µ(s, t) +
∫ t

0

∫
D
g(s− x, t− τ)dN(dx× dτ) =

= µ(s, t) +
∑
i:Ti<t

g(s− Si, t− Ti),
(4.3.11)

where {Si, Ti}N(Q)
i=1 denotes the random set of locations and times of event occurrences.

As for the temporal case, the function g(·, ·) shall be non-negative and, most likely,
decay along both space and time. It is often a kernel or power law decay function,
usually assumed to be separable in space and time:

g(σ, τ) = gs(σ) · gt(τ),

similarly to some covariance functions in spatio-temporal geo-statistical models (see
Section 2.4). When a parametric form for the excitation is hard to establish a-priori,
also non-parametric construction techniques have been considered (Marsan and
Lengline, 2008; Mohler et al., 2011; Johnson et al., 2018; Zhuang and Mateu, 2019).

It is obvious that also the spatio-temporal version of the Hawkes process can be
represented as a Poisson cluster process. The number of offsprings Zi of each event
(si, ti) is:

Zi ∼ Poi(mi), mi =
∫ T

ti

∫
D

(si)g(σ − si, τ − ti)dσdτ,

where D(s) =
{
σ ∈ R2 : s− σ ∈ D

}
. If properly normalized over the whole region

Q, the excitation function induces a probability distribution for the location and
times of the offspring events.
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Likelihood and maximization Let us assume the realization of a self-exciting
process with event locations S = {s1, . . . , sn} and times T = {t1, . . . , tn} has
been observed over the bounded space-time region Q. If a reasonable parametric
model for the conditional intensity function is available, then model-based inference
(either in the frequentist or Bayesian setting) can be based on the computation and
optimization/integration of the likelihood (or log-likelihood). As shown for Poisson
processes in Section 4.2, the likelihood of a finite point process model over bounded
domains coincides with the corresponding n-dimensional Janossy density. Hence,
substituting the conditional intensity function in Equation (4.3.5) with (4.3.3), the
result is:

Lλc(S, T ) =
n∏
i=1

λc(si, ti) · exp
{
−
∫ T

0

∫
D
λc(σ, τ)dσdτ

}
,

that on the log-scale becomes:

lλc(S, T ) =
n∑
i=1

log (λc(si, ti))−
∫ T

0

∫
D
λc(σ, τ)dσdτ. (4.3.12)

This log-likelihood is not easy to evaluate. Indeed, while the first term is just a trivial
finite sum of logarithms, the second involves computing the integral of the conditional
intensity function over the Q. Integration over bounded domains of various shapes
cannot be computed analytically, but an approximation can be achieved through
cubatures or other methods over a grid of ms × ms × mt points (Meyer et al.,
2012). However, the conditional intensity is generally ill-behaved because of the
discontinuities arising at each observation time and location (as an effect of the
excitation). Therefore, to obtain a good approximation of the integral, the use of
a fine grid is highly recommended. At the same time, that is unfortunate because
the log-likelihood must be evaluated multiple times inside numerical optimization
routines and the computational complexity steeply increases with the grid resolution.
Optimization can easily become overwhelming in terms of computing time, even for
moderate data-sizes.

In order to ease the approximation of the integral, Schoenberg (2013) suggests
considering a large enough buffer zone so that the excitation would be mostly
contained in the area. With only a little margin of error, the bounded integral over
Q could be replaced with the unbounded one over R2 × R+, which in some cases
presents an analytical solution (e.g., Gaussian kernels). However, this can induce a
significant bias in the estimation procedure and Lippiello et al. (2014) observes that
the bias is more pronounced when applying the unbounded approximation in the
temporal dimension. Since the spatial excitation shall decrease radially around each
event, he proposes shifting to polar coordinates for its expression in order to improve
the approximation’s accuracy while considering not too fine grids for efficiency. This
strategy however attains very little computational gain.

On top of all that, Veen and Schoenberg (2008) shows that the resulting log-
likelihood, even if well-approximated, can be nearly flat for different forms of the
conditional intensity function. That troubles numerical maximization algorithms
and makes convergence slow or even to fail altogether in some instances. These
issues also affect proper Bayesian estimation through Markov Chain Monte Carlo
methods. Indeed, even if some alternatives based on a Metropolis-Within-Gibbs
update have been proposed in Rasmussen (2013) and Loeffler and Flaxman (2018),
as the data-size and the need for accuracy increases also these methods become soon
impractical. The poor identifiability of the model is the cause of poor mixing of
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the chains, which reach convergence only after suitable tuning and many iterations
(i.e., of likelihood evaluations) or do not reach convergence at all (Ross, 2016).
Simultaneously, it also often happens that different starting points lead to different
stationary regions, jeopardizing any inferential conclusion on the true underlying
process intensity.

Even if this looks like a helpless situation, a viable solution is available in the
cluster-process representation of the self-exciting process. Indeed, if labels indicating
whether any event is background or triggered were available, then the form of
the corresponding log-likelihood would be less ill-conditioned and identified (Veen
and Schoenberg, 2008). Such a label is never available in practice, but marginal
estimation can be performed in the augmented space, including latent labels. In
a frequentist setting, this can be tackled in the same spirit of the Expectation-
Maximization algorithm for the mixture of distributions (Dempster et al., 1977),
while in a Bayesian setting through a sequential MCMC update of latent quantities
and parameters (Ross, 2016). This approach is based on the so-called Complete Data
Likelihood, and more details about this latent variable representation are discussed
in Section 4.3.4.

Simulations In order to test estimation algorithms to verify the coherence of the
model with the observed dataset, it is generally valuable to be able to simulate fake
data from the model itself.

A first ad-hoc simulation method for self-exciting point processes has been
proposed in Ogata (1998). Basically, simulation over the spatio-temporal region Q
is performed in two steps. The conditional intensity is integrated along the spatial
dimension s ∈ D and decomposed in the following product:

λc(s, t) = λc(s|t) · λc(t),

where λc(t) =
∫
D λc(s, t)ds. This decomposition is usually straightforward under

the space-time separability assumption. Even if both components’ evaluation can be
computationally intensive. All the event times are generated in advance according
to the temporal marginal conditional model, while locations are simulated afterward
conditionally on the simulated times. The latter encompasses the simulation from
an inhomogeneous Poisson process in [0, T ] first, and distributing all the generated
events according to λc(·|t) across D after. The actual procedure is a bit more
convoluted, and all technicalities are detailed in Ogata (1988).

Later, Zhuang et al. (2004) proposes an alternative and more efficient sim-
ulation strategy based on the branching-representation of the process. First,
background events are generated as an inhomogeneous Poisson process governed
by the background intensity µ(s, t) only. This yields a background catalogue
of events G0 = {(si, ti)}N0

i=1. After that, a first generation offsprings catalogue

G̃1 =
{

(s̃i, t̃i)
}Ñ1

i=1
is created by simulating an inhomogeneous Poisson processes

governed by the excitation function g(σ, τ) for each event in G0. Only events of G̃1
that are in Q are retained and the two catalogues are then joined into a common
catalogue G1 = G0 ∪

(
G̃1 ∩Q

)
.

The same procedure is repeated for all the events in G̃1 to produce the second-
generation catalog G̃2, which will be joined to G1 after the intersection with Q. The
procedure is iterated up to generation l, where the l-th generation catalog G̃l is the
first one that does not contain any event in Q.
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Edge effects One crucial warning about the model estimation through the log-
likelihood and the simulation procedures is that, even if the observed region is a
bounded domain Q, the underlying process may extend outside it. In these cases,
the estimate of the conditional intensity function will be biased by boundary effects
in similar ways to the kernel density estimation context (Silverman, 1986; Cowling
and Hall, 1996). This issue is exacerbated when a self-exciting mechanism is taking
place (Zhuang et al., 2004). Indeed, unobserved events just outside Q can produce
observed offspring in the observed region that cannot but be erroneously attributed
to the background from the observer point of view. That can sensibly bias upward
the estimate of the background intensity at the edges. At the same time, events next
to the boundaries will produce unobserved offsprings outside of Q, which can sensibly
bias downward the intensity and range of the excitation effect. That also evidently
affects the comparability between simulated and real data because simulation will
not consider the effect of points out of Q.

Such biases can be significantly reduced by always considering the larger region
V ⊃ Q and using the area V \ Q as a buffering zone. In the estimation step, those
events will be considered as potential triggers or offspring of events in Q, but will
not be included in the likelihood evaluation. In the simulation, while simulating the
process over the whole V, only events over Q will be retained (Zhuang et al., 2004).

Marked process One of the original applications of the spatio-temporal Hawkes
process was in earthquakes after-shock sequence modeling (Ogata, 1988). In that
context, also the magnitude of each earthquake K = {ki}ni=1 is recorded as an
additional observed feature. Generally (and reasonably), it is assumed to be an
essential part of the process: the number and distribution of after-shocks (offsprings)
may depend on it. Therefore, the need to include the magnitude in the model
specification arises. That may also hold in other application fields, such as criminal
activity or road accidents (the more serious the parent and the greater is the triggering
ability). The effect of an additional observed variable can be trivially included as in
the standard modeling framework of marked spatio-temporal point process (Chapter
6 of Daley and Vere-Jones (2007)). The mark distribution is usually specified at a
higher level of the hierarchy, conditionally on the ground process conditional intensity,
as follows:

λ∗c(s, t, k) = λc(s, t) · fc(k|s, t),
where fc(·|s, t) is the conditional density of the mark at time t and location s given
the history of the process up to t. λc(·, ·) depends on H(t), which can include
both times, locations and marks of previous events according to our (free at will)
specification of the excitation function. Nevertheless, when this conditional writing
holds and as long as marks are fixed and known variables, their presence does not
change much in the discussion of general properties or estimation methods. Indeed,
following Section 7.3 of Daley and Vere-Jones (2007), the log-likelihood would just
include an additional term:

lλ∗c (S, T ,K) =
n∑
i=1

log (λc(si, ti)) +
n∑
i=1

log (fc(ki|si, ti))−
∫ T

0

∫
D
λc(σ, τ)dσdτ.

For simplicity of notation, we will always refer to un-marked processes from here on.

4.3.4 The complete-data likelihood
The complete data-likelihood (i.e. including background/triggered labels) associ-

ated to the cluster representation of a self-exciting process has been first derived by
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Veen and Schoenberg (2008).
Let us recall that we observed a realization of a Hawkes process at locations

S = {s1, . . . , sn} and time T = {t1, . . . , tn} over Q. Let us now denote with
U = {ui}ni=1 the latent label indicating whether event (si, ti) is part of the background
(ui = 0) or was triggered by a previous event (sj , tj) with tj < ti (ui = j). Following
the cluster representation discussed above, if ui = 0, then the i-th event is a cluster
center; otherwise, it is the descendent of a cluster center (direct or indirect offspring).
Conditionally on the branching structure, the log-likelihood of Equation (4.3.12) can
be expressed as:

lλc(S, T |U) =
n∑
i=1

I(ui = 0) log (µ(si, ti)) +

+
n∑
i=1

n∑
j=1

I(ui = j) log (g(si − sj , ti − tj)−
∫ T

0

∫
D
λc(σ, τ)dσdτ,

where I(·) is the indicator function of its argument. The branching structure
dramatically simplifies the log-likelihood as each event’s intensity comes only from
its trigger or from the background. This does not avoid the computation of the
integral of the conditional intensity λc(·), but favors the identification of background
and triggering components easing the convergence of optimization and integration
algorithms.

As pointed out above, this approach is not really viable as the labels ui are never
known. On the other hand, if both the conditional intensity components were known,
it would be possible to obtain the background and triggering probabilities as:

ρij = E [ui = j] = P (ui = j) =
{
g(si−sj ,ti−tj)

λc(si,ti) tj < ti

0 tj ≥ ti
, (4.3.13)

φi = E [ui = 0] = P (ui = 0) = 1−
∑

j:tj<ti
ρij = µ(si, ti)

λc(si, ti)
. (4.3.14)

A Bayesian approach would sequentially sample from the posterior distribution
of λc(·) given U , and from the labels distribution given the conditional intensity
function. The procedure would go on until stationarity and a satisfactory chain
mixing is achieved. Suitable choice of the priors can favor efficient update of both
terms (Ross, 2016).

In a frequentist setting, the probabilities of Equations (4.3.13) and (4.3.14) can
instead be directly inserted into the complete-data log-likelihood and yield the
so-called expected complete-data log-likelihood:

EU [lλc(S, T |U)] =
n∑
i=1

φi log (µ(si, ti)) +

+
n∑
i=1

n∑
j=1

ρij log (g(si − sj , ti − tj)−
∫ T

0

∫
D
λc(σ, τ)dσdτ.

(4.3.15)
This, as its non-stochastic counterpart, is much easier to numerically maximize with
respect to the shape of the conditional intensity function λc(·). A standard EM
algorithm implementation would then alternate between maximizing (4.3.15) and
updating the probabilities in (4.3.13) and (4.3.14) until some convergence criterion
(e.g. increase in the log-likelihood) is met.
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4.3.5 Stochastic declustering and reconstruction
Direct implementation of likelihood-based approaches is feasible whenever all

the conditional intensity function components can be assigned a suitable parametric
form. However, in most point pattern applications, expressing the intensity surface
as a function of some parameters is far too limiting. Indeed, it is way more commonly
fitted non-parametrically from the observed data through methods such as kernel
density estimation (Silverman, 1986).

In the context of self-exciting processes, the same issue immediately arises for
the expression of the background intensity µ(·) (Zhuang et al., 2002). At the same
time, in some cases, the researcher deems a non-parametric expression also for the
excitation function g(·, ·). However, to build a kernel-density estimator of the two
components, disentangling the background and the excitation contribution to the
overall intensity at all locations become necessary. The first solution proposed in
the literature is stochastic declustering (Zhuang et al., 2002), shortly followed by the
stochastic reconstruction (Zhuang et al., 2004).

Stochastic declustering Stochastic declustering has been initially introduced
in Zhuang et al. (2002) in the context of the Epidemic-Type Aftershock Sequences
(ETAS) models. In this original application the authors consider fitting a non
parametric background intensity (assumed to be constant across time), while keeping
a parametric expression for the excitation function:

λc(s, t|θ) = µ(s) +
∑
ti<t

gθ(s− si, t− ti). (4.3.16)

Identification is eased by assuming space-time separability on the excitation function:
gθ(s− si, t− ti) = gtθt(t− ti) · g

s
θs

(s− si), θ = {θt, θs}.
The underlying idea of stochastic declustering starts from considering the total

spatial intensity function:

m(s) = lim
T→∞

1
T

∫ T

0
λc(s, τ |θ)dτ, (4.3.17)

where T is the length of the observation period. Since in practice only a finite
window [0, T ] is ever observed, the limit can be ignored. The total intensity is a
function of all the events, background and not. Hence, estimation of it does not
require declustering and, assuming stationarity of the background over time, can be
achieved through the following kernel approximation:

m̂(s) = 1
T

(
n∑
i=1

k̃b(s− si/b)
)
,

where k̃b(·) is a suitably scaled kernel with bandwidth b as it is introduced in
Equation (4.1.9). In particular, by substituting (4.3.16) in (4.3.17), the integral is
approximately equal to:

m(s) ≈ 1
T

∫ T

0
µ(s) +

∑
ti<t

gθ(s− si, τ − ti)dτ =

= µ(s) + 1
T

n∑
i=1

gsθ(s− si)
∫ T

ti

gtθ(τ − ti)dτ,
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and therefore:

µ(s) ≈ m(s)− 1
T

n∑
i=1

gsθ(s− si)
∫ T

ti

gtθ(τ − ti)dτ =

= m(s)− 1
T
γ(s− si),

(4.3.18)

where γ(·) represents the contribution of triggered events to the total spatial intensity
function: the cluster process intensity. If the labels ui indicating what events are
triggered and what are background were known, γ(·) can be estimated by using only
the triggers. Or, if at least the probabilities of Equation (4.3.14) and (4.3.13) were
known, a weighted kernel estimate of γ(·) can be set-up as:

γ̂(s) = 1
T

n∑
i=1

P (ui 6= 0) · k̃b(s− si/b) =

= 1
T

n∑
i=1

(1− φi) · k̃b(s− si/b).

This leads to the following kernel weighted estimator of the background intensity:

µ̂(s) = m̂(s)− γ̂(s) =

= 1
T

n∑
i=1

φi · k̃b(s− si/b),
(4.3.19)

as long as the same kernel is used for both the total spatial intensity function and
the cluster process intensity.

Equation (4.3.19) thus represents a weighted kernel estimation method for the
background that works conditionally on {φi}ni=1. However, in order to know these
last quantities, both the excitation function and the background intensity knowledge
are necessary. There is an inner circularity in this problem that can be solved in the
EM algorithm’s spirit, as in the pseudo-code here below.

Stochastic Declustering

0: Let i = 1 and set µ̂0(s) = 1 initially.

1: Given µ̂i−1(s), get an estimate θi of the parameters of the excitation function
(4.3.16) through maximum likelihood.

2: Calculate the background probabilities {φi}ni=1 using µ̂i−1(s) and θi in Equa-
tions (4.3.14) and (4.3.13).

3: Get a new non-parametric estimate of the background µ̂i(s) using the new
background probabilities

4: If maxs |µ̂i(s)− µ̂i−1(s)| < ε, for ε < 0 small, stop. Otherwise, go to step 1.

The final result, particularly the background intensity estimate, depends on the
choice of the bandwidth b for the kernel smoothing procedure. Zhuang et al. (2002)
implements an adaptive approach, in which each point has an individual bandwidth
selected so that at least np are included in the kernel (relevant) range. There is no
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proper guidance about an optimal strategy, but the adaptive approach proves to
work fine in practice.

Once the conditional intensity function has been estimated, it is possible to
build stochastically declustered catalogs of events. Each event is assigned to a
tree that connects it to its trigger (background or another event). Each event i is
assigned either to the background or the triggering tree of another event j according
to the final φi and {ρij}j 6=i. Given the randomness of the assignment procedure,
results are stochastic and can change at every execution. While it may be seen as
a drawback, the same authors argue that it is, instead, an advantage. Indeed, it
permits quantifying the uncertainty of the declustering.

Stochastic reconstruction The first mention to stochastic reconstruction dates
back to Zhuang et al. (2004) and was then more clearly formalized in Zhuang (2006).
It consists of a very similar method to stochastic declustering in the spirit, but
that allows for non-parametric estimation of the excitation function by inspecting
the process’s second-order properties. The necessity for such a non-parametric
estimation arises especially out of the ETAS model context. Indeed, there is
more than a century of literature about the triggering abilities of earthquakes that
extrapolate valid parametric forms for the excitation function (e.g., Omori’s law).
Unfortunately, the same does not hold for other application fields, in which the
introduction of an excitation effect is rather recent.

The first example of application of the stochastic reconstruction is in the context
of crime modeling (Marsan and Lengline, 2008), in which the authors assume a
constant background intensity and the excitation to be a step-wise constant function.
Later, Mohler et al. (2011) generalize the Marsan-Lengline implementation by
including the possibility to account also for spatial and temporal heterogeneity in
the background. This algorithm has been after identified as an EM algorithm in
fact by Fox et al. (2016a). We here introduce the main ingredients of the stochastic
reconstruction, referring to the self-exciting model considered by Mohler et al. (2011):

λc(s, t|θ) = µ(s, t) +
∑
ti<t

g(x− xi, y − yi, t− ti), (4.3.20)

where x and y of s = (x, y) denote the two dimensions of D, excitation is not
necessarily isotropic and space-time separability is assumed both for the background
intensity and the excitation function:

µ(s, t) = µs(s) · µt(t), g(x, y, t) = g(x, y) · g(t).

The founding idea of the algorithm is that each event is partially caused by the back-
ground, and partially by the triggering effect of previous events. In particular, given
an event i, the probabilities φi and {ρij}nj=1,j 6=i represent the expected contribution of
the background (the first) and of other events’ triggers (the second) to its occurrence.
This scheme is summarized in Figure 4.5. Therefore, given a set of weights {φi}ni=1
and {ρij}ni,j=1,j 6=i, background and excitation can be smoothed through two weighted
kernels. The background smoother considers points individually, and weighs each
point by the background contribution:

µ̂s(s) =
n∑
i=1

φi · k̃bs(s− si/bs), µ̂t(t) =
n∑
i=1

φi · k̃bt(t− ti/bt), (4.3.21)
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Figure 4.5. Contribution of background and triggering in 4 events from a self-exciting
process

while the excitation function smoother considers points in pairs and each pair is
weighted according to the probability that the second was triggered by the first:

ĝs(x, y) =
n∑
i=1

∑
tj<ti

ρij · k̃hx,hy((x− (xi − xj))/hx, (y − (yi − yj))/hy),

ĝt(t) =
n∑
i=1

∑
tj<ti

ρij · k̃ht((t− (ti − tj))/ht).
(4.3.22)

As usual, all the kernels depend on a specific bandwidth and are scaled to integrate
to 1 in the corresponding domain.

As for stochastic declustering, weights are needed to compute background and
excitation, but background and excitation are needed to get the weights. The circu-
larity can be solved in the same fashion by setting initial values for the background
intensity and excitation function, updating the weights, recomputing the first, and
so on. The algorithm is sketched here below.

Stochastic Reconstruction

0: Let i = 1 and set µ̂0(s, t) and ĝ0(x, y, t) to some initial values (e.g. background
equal to one, excitation with exponential decay in all dimensions).

1: Given µ̂i−1(s) and ĝi−1(x, y, t) compute the background and triggering proba-
bilities {φi}ni=1, {ρij}

n
i,j=1,j 6=i from Equations (4.3.14) and (4.3.13).

2: Get the updated smoothing estimates of the background and excitation µ̂i(s),
ĝ0(x, y, t) using Equations (4.3.21) and (4.3.22).

3: If convergence is reached (only small variations in the background and excita-
tion), stop. Otherwise, go to step 1.

In this case, the choice of bandwidths plays a key role in determining the final results.
However, at the moment, there is no general recommendation about their choice.
Either automatic selection or adaptive methods borrowed from the more general
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theory of kernel density estimation methods can be considered. According to the
peculiarities of the data at hand, the choice is left to the researcher’s sensibility.

This algorithm is not devoid of other issues. First of all, when the size of the
dataset is large, it can get highly computationally expensive (especially in terms of
the excitation function smoothing that scales with O(n2)). Secondly, the complete
non-parametric fit of the two components makes proper identification hard, and
different runs starting from different initial guesses can lead to potentially very
different results. Last but not least, the stopping rule is vague (to put it mildly).

The more recent work by Zhuang and Mateu (2019) provides an analogous
procedure that includes two relaxation coefficients and also includes a likelihood-
based stopping rule. It has been successfully implemented for the estimation of a
slightly more complicated model. The same model and estimation method has also
been adopted in Kalair et al. (2020), and a more detailed description is provided in
Chapter 5.
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Chapter 5

A Periodic Spatio-Temporal
Hawkes Model for road
accidents

There is much work focusing on spatial and temporal analysis of traffic accidents,
with a discussion of the evidence for spatial auto-correlation in accidents data
given in Aguero-Valverde and Jovanis (2008). Here, the authors discuss previously
used descriptive analysis methods, including K-function analysis and comparison
to complete spatially random patterns, and detail how they showed evidence of
spatial correlation among event locations. They furthered this by incorporating
spatial components into an auto-regressive model, finding it improved upon models
disregarding the spatial correlation in the data. Additional analysis is provided
in Fan et al. (2018), where the authors analysed the evolution of event hot-spots
through time on an urban network in China. They extended and applied kernel
density estimation on networks, Moran’s I (Moran, 1950) and Local Indicators of
Mobility Associations (LIMA) to offer exploratory analysis of the dataset from
multiple perspectives. Further spatial-temporal analysis was completed in Song et al.
(2018), where the authors used Kulldorff’s space-time scan statistics to determine
statistically significant clusters of traffic accidents across the entire UK in 2016. They
found two significant clusters, both in the north of the country, but conceded that
they did not explicitly account for the network structure in their analysis. Al these
works were focused on a descriptive analysis of the data, rather than formulating
a model incorporating the observed features. Other tools and techniques for such
descriptive spatial analysis have already been briefly introduced in Section 4.1.2, but
more details on K-function analysis can be found in Dixon (2014), on Kulldorff’s
space-time scan statistic in Kulldorff (2001) and on LIMA in Rey (2016).

The approach proposed in this chapter is fundamentally different from the ones
discussed above, as it seeks to achieve model-based inference for the clustered point
patterns arising from road accidents data. Hence, we model the car accidents’
dynamics as a point-process and do not limit the discussion to a descriptive analysis
and discovery of locations with statistically significant clusters. After all, there is
already some literature on the application of spatio-temporal point-process models to
traffic events and road accidents are nothing but a particular kind of the former. For
instance, Moradi and Mateu (2019) considers extensions of these models on linear
networks for traffic event modeling. Considering road-networks in Houston, Medellin
and Eastbourne, the authors investigated what features the network-constrained
data showed. They find statically significant evidence that events on the network
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did not follow a uniform spatial-temporal Poisson process but indicate an evident
clustering of data in space and time. A point of particular interest to the approach we
are introducing arises from the modeling of traffic crashes in Acker and Yuan (2019).
Here, logistic regression and random forest models are used to predict the likelihood
of event occurrences. In-particular, the models incorporates a significant ‘cascading
effect’ variable, in which the presence of an event showed significant influence on
the likelihood of another nearby in space and time. Although this is not inserted
in the point-process context, there is clearly a sense that cascading effects are a
real component in some traffic data that one may want to incorporate into a model.
From the results in Acker and Yuan (2019) is however unclear what time and length
scales are associated with the cascading effect, and on what kind of roads this is
more or less accentuated.

From this brief review of the literature it is clear that one could ask if point-
process models incorporating a self excitation component may capture this apparent
cascading effect. Hawkes Process based models, introduced in Section 4.3, are natural
candidates to this end. As a matter of fact, they have already been successfully
applied to a wide range of real-world problems. Historically, they have been initially
used as a model for earthquakes’ aftershock sequences (Ogata, 1988, 1999; Zhuang
et al., 2004; Zhuang, 2011). There are indeed physical justifications and strong
statistical evidence that an initial large earthquake leads to aftershocks, allowing
for a clearly interpretable ‘self-excitation’ component at play. For long, the use
of Hawkes Processes has been almost completely limited to the geological sector,
but there has been a surge in the application of self-exciting point-process models
to problems of various nature during the last two decades. For instance, their
application has been discussed also in the context of crime modeling and forecasting
(Mohler et al., 2011; Mohler, 2014a), where self-excitation can be seen (in practical
terms) as retaliation or imitation crimes. They have also been considered in epidemic
forecasting (Schoenberg et al., 2019), and modelling events on social-networks (Fox
et al., 2016b). Finally, one of the most novel applications concerns the modeling of
the COVID-19 spread, although this is still in its infancy (Lesage, 2020).

This surge of new application areas is probably related to the improvement of
data-collection systems in different fields. Recording events at a such fine spatial
and temporal scale to make point-process modeling feasible is now possible in almost
any sector of scientific research, at reasonable costs. Nevertheless, at the author’s
knowledge, there is little on applying them to traffic events. One paper that does
look at this is Li et al. (2018), where a self-exciting point-process model that could
theoretically be fit to real data is proposed. However, this proposal is only verified
on simulated data, thus giving only a snapshot of its potential fitting performance.
Additionally, a somewhat similar idea is considered in Lim et al. (2016), where the
authors consider traffic flow data to be ‘events’ and try to use self-excitation to
model the idea that often traffic flow occurs in clusters. The authors use the Hawkes
process to model the traffic flow in Sydney, but there is no clear conclusion as to if the
model is statistically defensible and captures all features of the data, or if alternative
traffic forecasting methods are preferable. There is still an enormous amount of
work to be done applying this methodology to real data in order to understand
what components of it are important, the actual amount of self-excitation present in
traffic data, and the appropriate time and length scales it occurs on. Throughout
the applications in Section 5.2 and 5.3, we try to offer some insightful discussion on
these questions.

Let us recall that when talking about self-exciting point processes, there is
some sense of a ‘background’ component, that models the typical behaviour, and a
‘triggering’ component that allows for self-excitation. There is much discussion as to
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what functional form the components should take, in particular when referring to
the triggering component. We argued in 4.3.2 that in the original applications on
earthquakes after-shock sequences, one usually supposes some reasonable parametric
forms on the triggering function drawing from the geological literature. Then, it
is possible to determine which is most appropriate through inspection of the log-
likelihood value or other information criteria. These choices have been initially
extended also to other fields and included some form of exponential, Gaussian or
power-law decay of triggering in time and space. However, recent work in Zhuang
and Mateu (2019) proposes a spatio-temporal Hawkes process model for crime data
without assuming any functional form on either the background and excitation
components. Exploiting the methods originally introduced in Zhuang (2006) they
show one can determine which events in the data appear to be background and
which appear to be triggered, and then smooth data based on this to reconstruct
the desired components. The general technique has been briefly explained in Section
4.3.5, but Zhuang (2006) considers a slightly more sophisticated model and estimation
procedure, which is extensively illustrated in Section 5.1.4. This is particularly useful
for novel applications in which there is no guidance in the literature about how the
excitation shall decay along space and time, if any. Therefore, it comes useful in our
modeling attempt of road accidents occurrences.

5.1 A periodic semi-parametric model
The final objective of our analysis is to describe the dynamic of traffic collisions

(events) observed over a spatio-temporal domain Q = D × [0, T ], where D denotes
the spatial dimension. In general terms, the dimension and nature of D is arbitrary
and peculiar to the application setting. Let us here consider the use case of D ⊂ R2.

We deem to model the distribution of the number of car-crashes N(B × [t1, t2]),
where B ⊂ D and [t1, t2] ⊂ [0, T ]. The founding assumption of the proposed approach
is that the random mechanism governing the occurrences distribution over Q is
a simple and (locally) finite spatio-temporal point process. Exploiting the order
induced by the temporal dimension, following Section 4.3.1, it can be defined through
the suitable specification of the corresponding conditional intensity function:

λc(s, t) = lim
ds,dt→0

E [N(ds, dt) |H(t) ]
ds · dt

, (5.1.1)

where H(t) is the history of the process up to time t.
The introduction to this chapter suggested that point patterns arising from road

accidents present an irregular behavior in time and space, usually accompanied
by a clustered structure. Hence, the form of Equation (5.1.1) shall take a form
which is potentially able to account for all the causes of such inhomogeneity. First,
the risk of a road accident occurring at an arbitrary point in space and instant in
time is generally not spread uniformly along the observed region Q. Indeed, this is
definitely affected by risk factors such as the condition and shape of the roads, the
current traffic level, the climatic conditions and other environmental factors that
can vary, sometimes much, in the region of interest. Second, we can imagine that
the occurrence of a car accident can cause sudden and unexpected slowdowns and
traffic events, which in turn may increase the risk and trigger additional accidents in
their immediate proximity (in space and time). While the former factor of variability
can be easily modeled through the wide-known and applied inhomogeneous Poisson
Process or Cox process, the second factor includes a very particular kind of inter-
dependence never considered in previous modeling. As a matter of fact, the actual
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presence of such a triggering is not yet certified in any study and it is an hypothesis
that we would like to verify.

The Spatio-temporal Hawkes process discussed in Section 4.3 provides a very
compelling model to include both components: a potentially space-time varying
overall intensity that can be instantly modified by the triggering effect of other events.
Let us report here below the conditional intensity function (Equation (4.3.11)) in
the general spatio-temporal Hawkes process framework:

λc(s, t) = µ(s, t) +
∫ t

0

∫
D
g(s− σ, t− τ)dN(dσ × dτ),

where µ(·, ·) is the background intensity and g(·, ·) is the excitation function account-
ing for the effect of all previous events. This work is largely inspired and based on
the specification of these two components proposed in Zhuang and Mateu (2019),
which is different from the typical version in two main aspects:

• includes a periodic component in the background rate;

• introduces relaxation coefficients to ease the model identification (and estima-
tion).

Background The background component is a function describing the varying
general risk of a car accident occurring at different times and locations. Whilst not
always consistent with the reality of things, a very common working assumption
is the one of space-time separability. Namely, space and time factors combine in a
multiplicative fashion:

µ(s, t) = µs(s) · µt(t), (5.1.2)
where µs(·) is the spatial background and µt(·) is the temporal background. The
spatial background is assumed to be static along time and accounts for different
locations having differing rates of accidents. This can happen because of low
visibility, higher presence of intersections, generalized higher level of traffic, etc. It
practically accounts for the combined effect of unobserved spatial factors, that can
vary irregularly (but possibly continuously) over D. The temporal background is
instead assumed to present some sort of regularity and is further modulated through
three additional components:

µt(t) = µd (t) · µw (t) · µtr (t) , (5.1.3)

where µd(·) = µd(d(·)) is the daily variation, µw(w(·)) is the weekly variation and
µtr(·) is the eventual long-term trend; d(t) and w(t) represent the time of the day and
day of the week corresponding to instant t, respectively. Daily and weekly seasonality
is a ubiquitous feature of traffic data reflecting daily ‘rush-hour’ commuting patterns,
and weekly differences such as between the 5-day working week to the 2-day weekend.
Annual seasonality may also be present, but it is not considered in the original or
this work since data spans no more than one year, and such variation must then be
captured by the trend.

Excitation As for the background, also self-excitation is assumed to be separable
in space and time. In particular, as specified in Section 4.3.5, Zhuang and Mateu
(2019) considers a potentially anisotropic excitation in space. The excitation function
can then be expressed as follows:

g(s− s′, t− t′) = gs(x− x′, y − y′) · gt(t− t′), (5.1.4)
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where s = (x, y) and s′ = (x′ , y′). The potential anisotropy of the spatial excitation
is implied by the dependence of the function value on the whole separation vector
s− s′ = (x− x′, y − y′) and not just on the Euclidean distance ||s− s′|| = h.

Relaxation coefficients Let us consider the specifications of the background
intensity resulting from Equations (5.1.2) and (5.1.3), and of the excitation function
in Equation (5.1.4). This would yield a Hawkes model with the following expression
of the conditional intensity function:

λc(s, t) = µs(s) · µd (t) · µw (t) · µtr (t) +

+
∫ t

0

∫
D
gs(s1 − u, s2 − v) · gt(t− τ)N (du× dv × dτ) ,

(5.1.5)

where s = (s1, s2). Pursuing a completely non-parametric estimation of such a
complex model may suffer of a number of numerical and statistical complications.
For instance, the multiplicative structure of the two components makes the single
elements unidentifiable up to a multiplicative constant, jeopardizing the reliability
and interpretability of the final estimates. The idea of Zhuang and Mateu (2019)
to overcome this issue is to introduce two additional parameters µ0 > 0 and A >
0, named in the original paper relaxation coefficients. The first represents the
background overall level, while the second the excitation overall level. Estimation of
the single elements in (5.1.5) is then stabilized by forcing background and excitation
elements to represent only relative variations with respect to these two general values:
background elements are normalized to have average equal to 1, while excitation
components are forced to integrate to 1. After these adjustments, the final expression
of the model conditional intensity function becomes:

λc(s, t) = µ0 · µ̃s(s) · µ̃d (t) · µ̃w (t) · µ̃t (t) +

+A ·
∫ t

0

∫
D
g̃s(s1 − u, s2 − v) · g̃t(t− τ)N (du× dv × dτ) ,

(5.1.6)

where µ̃·(·) and g̃·(·) represent the normalized versions of background and excitation
elements.

Now, let us assume a point pattern with n points {(si, ti)}ni=1 over the region
Q had been observed. We would like to pursue the estimation of every component
of (5.1.6) in a data-driven way, taking advantage of the stochastic reconstruction
algorithm. However, neither the relaxation coefficients and the periodic components
of the background rate in the considered model formulation can be directly estimated
by using the standard method introduced in Section 4.3.5. But, considering some
little modifications based on the residual analysis developed in Zhuang (2006), it
can be generalized to deal with the estimation problem at hand. The key point of
the residual analysis methodology for our purposes is that the conditional intensity
of a point process has the following property.

Property 5.1.1. For any counting process N(·) equipped with an arbitrary condi-
tional intensity function λc(·, ·) and a predictable process f(t, x) ≥ 0 over a time
domain [T1, T2] and space domain S, we can write:

E

[∫
[T1,T2]×S

f(σ, τ)dN(dτ × dσ)
]

= E

[∫ T2

T1

∫
S
f(σ, τ)λc(σ, τ)dσdτ

]
, (5.1.7)

provided that the integrals on either sides exist.
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Proofs and details are included in Daley and Vere-Jones (2003). Sections 5.1.1
and 5.1.2 outline how it is possible to exploit this property to define of suitable
weights to smooth all the considered components (up to a proportionality constant,
which is instead included in the respective relaxation coefficient).

5.1.1 Reconstructing background components
The smoothing of each background component is performed separately. The

general technique is always the one of weighted kernel averaging, but suitable weights
must be identified for each piece. The discussion of the appropriate smoothing for
each piece is split in subsection, where the first focuses on the spatial background,
and the second on the temporal background.

Spatial Background The background spatial term µs(·) can be constructed as
for the more typical separable model without periodicity. In order to prove that, it
is possible to define the usual background weights of (4.3.14) as a function of time
and location:

φ(s, t) = µ0
µ̃s(s) · µ̃d(t)µ̃w(t)µ̃t(t)

λc(s, t)
, (5.1.8)

where φ(si, ti) = φi, ∀ i in the observed set.
Assuming that the background is sufficiently smooth, the number of points falling

into a square ∆s ⊂ D is an approximation to the expected number of points in the
same square. Hence, by Equation (5.1.7):

n∑
i=1

φ(si, ti)I∆s(si) ≈
∫ T

0

∫
D
φ(σ, τ)λc(σ, τ)I∆s(σ)dσdτ =

=
∫ T

0

∫
D

µ̃0µ̃d(τ)µ̃w(τ)µ̃t(τ)µ̃s(σ)
λc(σ, τ) λc(σ, τ)I∆s(σ)dσdτ =

= µ̃0

(∫ T

0
µ̃d(τ)µ̃w(τ)µ̃t(τ)dτ

)(∫
∆s
µ̃s(σ)dσ

)
≈

≈ µ̃0

(∫ T

0
µ̃d(τ)µ̃w(τ)µ̃t(τ)dτ

)
|∆s|µ̃s(s) ∝

∝ µ̃s(s),
(5.1.9)

where |∆s| is the measure of ∆s that shall be taken small. Hence, this suggests the
following writing:

µ̂s(s) ≈ const ·
n∑
i=1

φiI∆s(si) ∝
n∑
i=1

φiI∆s(si), (5.1.10)

that essentially yields a histogram estimate of µ̃s(·). It is possible to pass from
this histogram estimate to a smoother version through kernel smoothing according
to some normalized kernel function k̃bs(·). For instance, one may consider the
two-dimensional Gaussian kernel:

k̃bs(σ) ∝ exp
{
− 1

2 · b2s
||σ||2

}
, (5.1.11)
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where ||σ|| is the norm of σ. Hence, applying this smoothing, the final smoothed
estimate is obtained as:

µ̂s(s) ∝
n∑
i=1

φi
kbs(s− si)∫

D(s) kωs(s− σ)dσ =
n∑
i=1

φi · k̃bs(s− si), (5.1.12)

where D(s) =
{
σ ∈ R2 : s− σ ∈ D

}
is the domain on which the kernel must be

normalized at each point s ∈ D in order to correct the edge effects "on average":
there is no mass leaking out of the considered domain.

Temporal Background The temporal background terms require the reconstruc-
tion of three components: the daily term µ̃d(·), the weekly term µ̃w(·) and the
long-trend term µ̃t(·). These can be re-constructed very similarly, and share a
common justification behind the shape of the corresponding weight functions:

φa(s, t) = µ̃a(t)µ̃s(s)
λc(s, t)

, φai = φa(si, ti), (5.1.13)

with a ∈ {d,w, t} and implicitly µ̃a(t) = µ̃a(a(t)). The function a(·) maps the raw
time t to the corresponding point in the period identified by a. Let us consider a
periodic domain on [0,ma], i.e. partition the interval [0, T ] in sub-intervals (periods):

[0, T ] = [0,ma] ∪ (ma, 2 ·ma] ∪ · · · ∪ (Ta ·ma, T ],

where Ta = bT/mac. Any t can be mapped into the corresponding interval point as
a(t) = t −ma

⌊
t
ma

⌋
. For instance, if t is on the scale of hours, then md = 24 and

mw = 168, while mt = T in any case.
Then, similarly to the spatial background, let us consider a sub-interval ∆t of

[0, T ] and observe that:

n∑
i=1

φa(si, ti)I∆t(ti) ≈
∫ T

0

∫
D
φa(σ, τ)λc(σ, τ)I∆t(τ)dσdτ =

=
∫ T

0

∫
D

µ̃a(τ)µ̃s(σ)
λc(σ, τ) λc(σ, τ)I∆t(τ)dσdτ =

=
(∫
D
µ̃s(σ)dσ

)
·
(∫

∆t
µ̃a(τ)dτ

)
≈

≈
(∫
D
µ̃s(σ)dσ

)
· |∆t|µ̃a(t) ∝

∝ µ̃a(t),

(5.1.14)

where |∆t| is the measure of ∆t that shall be taken small. Equation (5.1.14) is
a histogram estimate of the temporal background components µ̃a(·), that can be
smoothed considering a suitable normalized kernel function k̃ba(·). The kernels are
indexed by a since different components can have different bandwidths and are
normalized over different domains [0,ma]. For instance, one may consider Gaussian
kernels for all the temporal components:

k̃ba(τ) ∝ exp
{
− 1

2 · b2a
τ2
}
. (5.1.15)



5.1 A periodic semi-parametric model 131

The final smoothed estimate is:

µ̂a(t) ∝
n∑
i=1

φai
kba(a(t)− a(ti))∫
Ta(t) kba(a(t)− τ)dτ =

n∑
i=1

φai · k̃ba(a(t)− a(ti)), (5.1.16)

where Ta(t) = {τ ∈ R : a(t)− τ ∈ [0,ma]} is the domain on which the kernel must
be normalized at each point t ∈ [0, T ].

5.1.2 Reconstructing excitation components
The reconstruction of the temporal and spatial excitation components is obtained

by weighted Kernel smoothing of all the observed pairwise space and time lags. Given
two arbitrary points p = (s, t) and p′ = (s′, t′), the spatial lag is evaluated separately
along the two dimensions through the lag vector is p− p′ = (s1 − s′1, s2 − s′2, t− t′).

The required weights are the triggering probabilities already introduced in
Equation (4.3.13), which can be expressed as a function of any pair as:

ρ(s, t, s′, t′) ==

A·̃gs(s1−s′1,s2−s′2)·̃gt(t−t′)
λc(s′,t′) t < t′

0 t ≥ t′,
(5.1.17)

with ρ(si, ti, sj , tj) = ρij ∀ i, j.
Theoretical justification to this weights is analogous to the ones of the background

components, and relies on the fact that for any fixed p = (s, t) the weight function
of Equation (5.1.17) is deterministic (hence predictable). Therefore, fixing one
observation (si, ti), (5.1.7) can be applied in order to justify the weights of the
temporal excitation:
n∑
j=1

ρijI∆t(tj − ti) ≈
∫ T

0

∫
D
ρ(si, ti,σ, τ)λc(σ, τ)I∆t(τ − ti)dσdτ

= A ·
∫ T

ti

∫
D

g̃t(τ − ti)g̃s(σ1 − s1, σ2 − s2)
λc(σ, τ) λc(σ, τ)I∆t(τ − ti)dσdτ

= A ·
(∫ T

ti

g̃t(τ − ti)I∆t(τ − ti)dτ
)(∫

D
g̃s(σ1 − s1, σ2 − s2)dσ

)
.

Replacing u = τ − ti then:
n∑
j=1

ρijI∆t(tj − ti) ≈ A ·
(∫ T−ti

0
g̃t(u)I∆t(u)du

)(∫
D
g̃s(σ1 − s1, σ2 − s2)dσ

)
=

= A ·
(∫

∆t
g̃t(u)du

)(∫
D
g̃s(σ1 − s1, σ2 − s2)dσ

)
≈

≈ A · |∆t| · g̃t(t) ·
(∫
D
gs(σ1 − s1, σ2 − s2)dσ

)
∝

∝ g̃t(t),
(5.1.18)

where the last passage does not depend on the time or location (si, ti). Therefore:

n∑
i=1

 n∑
j=1

ρijI∆t(tj − ti)

 ≈ n · n∑
j=1

ρijI∆t(tj − ti),
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and the histogram estimate of the temporal excitation function results to be:

ĝ(t) ∝
n∑

i,j=1
ρijI∆t(tj − ti). (5.1.19)

Similarly, the histogram estimate of the spatial excitation can be obtained as:

ĝs(s1, s2) ∝
n∑

i,j=1
ρijI∆s1(sj1 − si1)I∆s2(sj2 − si2), (5.1.20)

where si = (si1, si2) and sj = (sj1, sj2).
As usual, these histogram estimates can be converted into a smooth version

via some suitable kernel function. For the temporal triggering histogram estimate
of Equation (5.1.19) one may consider a uni-variate Gaussian kernel as the one of
Equation (4.1.10):

ĝt(t) ∝
n∑

i,j=1
ρi,j

kht (t− (ti − tj))∫ T−ti
0 kht (τ − (ti − tj)) dτ

=
n∑

i,j=1
ρi,j · k̃ht (t− (ti − tj)) , (5.1.21)

where k̃ht (·) denotes the normalized kernel.
The spatial triggering histogram estimate is instead estimated through composi-

tion of two uni-dimensional Gaussian kernels over the two spatial dimensions. This
yields the following:

ĝs(σ1, σ2) ∝
n∑

i,j=1
ρi,j

khs (σ1 − (si1 − sj1)) · khs (σ2 − (si2 − sj2))∫
D khs (σ1 − (si1 − sj1)) · khs (σ2 − (si2 − sj2)) dσ , (5.1.22)

where σ = (σ1, σ2) and the composition kernel is scaled altogether.

5.1.3 Determining relaxation coefficients
Once all the functions involved in the expression of the conditional intensity

function have been estimated up to a proportionality constant, we must recall that
the model includes two relaxation coefficients µ0 and A. These are supposed to
globally adjust for the missing constants and pull background (the first) and intensity
(the second) toward the most suitable level for the observed pattern. Conceptually,
these specify how much or little of the triggering and background components
respectively enters the conditional intensity function. It should be noted that A can
be interpreted as the proportion (on average) of the impact of the triggering function
on the total intensity: a high A value suggests data is dominated by triggering and
the converse for a small value. In particular, for A > 1 the counts will eventually
explode for a large enough time-window (see Section 4.3.2).

The most natural way to estimate the value of µ0 and A that best fit the
observed point pattern would be Maximum Likelihood Estimation, conditionally on
the non-parametrically estimated background and intensity functions.

The log-likelihood function of {(si, ti)}ni=1, realization of a finite and simple
spatial-temporal point process over a bounded domain Q = D× [0, T ], is known and
can be evaluated as:

log(Lλc) =
n∑
i=1

log (λc(si, ti, ))−
∫ T

0

∫
D
λc(σ, τ)dσdτ, (5.1.23)
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for whatever λc(·, ·). Replacing the conditional intensity function form of Equation
(5.1.6) into it:

log(Lµ0,A) =
n∑
i=1

log

µ0µ̃d(ti)µ̃w(ti)µ̃t(ti)µ̃s(si) +A
∑
tj<ti

gt(ti − tj)gs(si − sj)

+

−
∫ T

0

∫
D
µ0µ̃d(τ)µ̃w(τ)µ̃t(τ)µ̃s(τ) +A

∑
tj<τ

gt(τ − tj)gs(σ − sj)dσdτ

=
n∑
i=1

log

µ0µ̃d(ti)µ̃w(ti)µ̃t(ti)µs(si) +A
∑
tj<ti

gt(ti − tj)gs(si − sj)

+

− µ̃0

∫ T

0

∫
D
µ̃d(τ)µ̃w(τ)µ̃t(τ)µ̃s(τ)dσdτ −A

∫ T

0

∫
D

∑
tj<τ

gt(τ − tj)gs(σ − sj)dσdτ

=
n∑
i=1

log

µ0µ̃d(ti)µ̃w(ti)µ̃t(ti)µs(si) +A
∑
tj<ti

gt(ti − tj)gs(si − sj)

+

− µ0

∫ T

0

∫
D
µ̃d(τ)µ̃w(τ)µ̃t(τ)µ̃s(τ)dσdτ −A

n∑
j=1

∫ T

tj

∫
D
gt(τ − tj)gs(σ − sj)dσdτ.

The following computations are performed conditionally on all the background and
intensity components but µ0 and A, hence for the sake of brevity let us denote:

U =
∫ T

0

∫
D
µd(τ)µw(τ)µtr(τ)µs(σ)dσdτ,

G =
n∑
j=1

∫ T

tj

∫
D
gt(τ − tj)hs(σ − sj)dσdτ.

Computing the partial derivatives of the log-likelihood with respect to A and µ0 the
result is:

d log(Lµ0,A)
dµ0

=
n∑
i=1

µd(ti)µw(ti)µtr(ti)µs(si)
λc(ti, si)

− U,

d log(Lµ0,A)
dA

=
n∑
i=1

∑
tj<ti gt(ti − tj)gs(si − sj)

λc(ti, xi)
−G.

Finally, setting these equal to 0 and solving the system one attains the following
iterative system of equations:

ψ
(ζ)
i = µ

(ζ)
0 µd(ti)µw(ti)µtr(ti)µs(xi)

µ
(ζ)
0 µd(ti)µw(ti)µtr(ti)µs(si) +A(ζ)∑

tj<ti gt(ti − tj)gs(si − sj)

Aζ+1 = n−
∑n
i=1 ψ

(ζ)
i

G

µζ+1
0 = n−A(ζ+1)G

U
,

(5.1.24)

which can be iteratively solved in order to optimize all components in the log-
likelihood while saving the computation time of numerical optimization.
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Alternatively, one may consider numerical optimization methods of any sort.
Exploiting (5.1.24) to determine suitable starting points and then searching for the
optimum numerically can result in faster and more stable results.

5.1.4 Stochastic Reconstruction
The procedures described in Section 5.1.1 and 5.1.2 allow to reconstruct back-

ground and excitation components given the relaxation coefficients, which are
necessary in order to compute the weights of Equations (5.1.8), (5.1.13) and (5.1.17).
At the same time, Section 5.1.3 outlines an optimization method to determine µ0
and A given the reconstructed background and excitation components.

This circularity can be solved in the spirit of the EM algorithm, by alternating
between finding the optimal relaxation coefficients given background and excitation
forms and viceversa. We refer again to the original work Zhuang and Mateu (2019)
for a version of the stochastic reconstruction implementing this exact logic. Its
description is detailed in Algorithm 4.

Algorithm 4: Semi-parametric Stochastic reconstruction

Input: Initial guesses µ(0)
s , µ

(0)
d , µ

(0)
w , µ

(0)
t , g

(0)
t , g

(0)
s , A(0), µ

(0)
0

Set k = 1
while Not converged do

Compute φdi , φwi , φti, φi, ρi,j for all valid (i, j) using Eq. (5.1.8), (5.1.13)
and (5.1.17) using the current components
Reconstruct µ(k)

s , µ
(k)
d , µ

(k)
w , µ

(k)
t , g

(k)
t , g

(k)
s using Eq. (5.1.12), (5.1.16),

(5.1.21), (5.1.21) and (5.1.22) with the current weights.
Determine optimal A(k) and µ(k)

0 using Eq. (5.1.24) given the current
components
Check convergence

Output: Optimized components µd, µw, µtr, µs, g, h,A, µ0

Convergence can be checked using different criteria. Zhuang and Mateu (2019)
suggests fixing a small value ε > 0 and stop if the increase in the log-likelihood with
respect to the previous iteration is lower than that, i.e. if:

log(L
λ

(k)
c

)− log(L
λ

(k−1)
c

) < ε, with ε small.

Eventually, after a reasonable number of iterations (which is application-dependent),
the log-likelihood increments flatten and a (local) maximum has been found. There is
no guarantee that the optimum is global, therefore multiple runs starting from differ-
ent initial guesses are suggested. For those interested in an implementation of the orig-
inal methodology detailed in Zhuang and Mateu (2019), this can be found at https:
//rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-a-datasets.

One main drawback of this algorithm resides in its computational complexity,
that is mostly affected by the smoothing of the excitation function (that scales
quadratically with the number of points) and the likelihood maximization. One idea
to reduce the burden of the former, is to assume that triggering gets negligible after
a pre-specified distance in time and/or space (excitation tapering). This can sensibly
reduce the number of eligible pairs for the smoothing. Mohler (2014b) also suggests
to perform each iteration only on a random subset of all the points. However, while
this reduces the burden of each iteration, may require a larger number of iterations
to reach convergence.

https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-a-datasets
https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-a-datasets
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The next sections describe two applications to real data that present some slight
variations with respect to the more general methodology outlined until now. The
first one is on road accidents occurred on the urban network of the City of Rome; it
is very preliminary and will see further developments in the near future. The second
one is on car accidents occurred on the M25 London Orbital, a British motorway; it
is final and has been recently published in Kalair et al. (2020).

5.2 Preliminary application to road-accidents in Rome
Since the second half of the 21st century, car accidents have determined a

significant portion of the global death toll. The World Health Organization (WHO)
estimates that approximately 1.35 million people are cut short every year as a result
of a road traffic crash, putting them at the 9-th position among all the causes of
deaths ranked by number of victims. In particular, they are the leading cause of
death for young people aged between 18 and 35 years in a great number of Nations,
among which Italy. According to the latest annual report of the "Italian Statistical
Office", 172, 183 road accidents resulting in death or injury occurred in Italy during
2019, of which 3, 173 were deaths (within 30 days). The social cost of the road
accidents for the same year, calculated on the basis of parameters indicated by the
Ministry of Infrastructure and Transport, at constant 2010 values, is equal to 16.9
billion euros (ACI and ISTAT, 2019).

It is therefore obvious how during the last decades the need for accurate modeling
of car accidents occurrences has become a priority for national and supra-national
organizations. This is needed in order to identify the major causes of the crashes,
verify the impact of implemented policies and drive future ones (La Torre et al.,
2007). However, apart from the widespread and very common epidemiological
studies based on medical records, poor effort has been addressed toward direct
modeling of the spatial distribution of these events. This is probably due to the
historical lack of data about the exact space-time location of the vehicles at the
moment of the accident, whose retrieval has always been a challenge. Recent
technological developments are finally enabling straightforward and cheap ways
of recording these information. For instance, since 2014, road authorities of the
City of Rome have been equipped with a GPS device and are assigned the task to
record time and location of every car accident on which their intervention is required.
These geo-referenced records are collected monthly and, in the spirit of the open-
data era we are living in (https://opendefinition.org/; Dominici (2015)), pub-
lished for public use at https://dati.comune.roma.it/catalog/dataset?tags=
Incidenti&groups=sicurezza-urbana. This gold-mine of public data, whose struc-
ture was before reserved to small ad-hoc studies, has already drawn some attention
(Alaimo Di Loro, 2016; Comi et al., 2018; Alaimo Di Loro et al., 2019).

This work investigates the presence of a spatial and temporal excitation mecha-
nism between road accidents occurring on the Rome urban road network. To the
author’s knowledge, this is technically the first attempt to apply the spatio-temporal
Hawkes process as a model for spatial and temporal clustering in this context (Li et al.
(2018) considers only time). The following application is the result of a collaboration
with Prof. Zhuang Jiancang during the LML 2019 Summer School and, as specified
in the title, it is only a preliminary attempt that requires further investigation and
adaptation of the original model. This has been included in this dissertation since it
presents some simple but interesting ideas and it is the milestone that allowed the
following production of the paper Kalair et al. (2020), later exposed in Section 5.3.

https://opendefinition.org/
https://dati.comune.roma.it/catalog/dataset?tags=Incidenti&groups=sicurezza-urbana
https://dati.comune.roma.it/catalog/dataset?tags=Incidenti&groups=sicurezza-urbana
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Figure 5.1. Spatial distribution of the road accidents occurred in the territory of Rome
between May and September 2017: all events colored by time over the whole territory of
Rome (left); spatial density of the events over the urban area (right).

5.2.1 Data
The data considered for the following application have been downloaded from the

Open Data website of the City of Rome1. On this web-page, a great variety of data-
sets resulting from administrative inquiries are made available for download, with a
Creative Commons licence that allows for their free visualization and utilization for
any scope.

As mentioned in the introduction, the City of Rome has been publishing monthly
data-sets that contain all the road accidents occurred in its territory during each
month of every year since 2006. Each dataset contains all the road accidents a police
patrol intervened at, but does not include all the cases in which the involved subjects
achieved a friendly agreement. In particular, all accidents occurred on the Grande
Raccordo Anulare (road-ring circling Rome) are not included in the dataset.

The records are not referred one-to-one to every accident, but to every involved
subject. In practice, to each road accident correspond as many records as the
individuals involved in it. These individuals may be pedestrians, bikes or vehicles.
Nevertheless, different records referred to the same accidents can be easily recognized
thanks to a common protocol-ID which is accident-specific. Every record is also
accompanied by different features that describe the context and characteristics of
the event, as well as general information about the involved person. The relevant
information on the accident is retrieved from the report compiled by the Police
officer at the scene and generally includes: date and time, road name and closest
civic number, accident nature, road type, weather and traffic conditions, lighting,
number of involved people, deceased and injured, and many other individual specific
variables. Since 2014, each record also reports the exact geo-referenced location of
the crash. This yields a point pattern and, hence, makes the data viable for analysis
through point processes.

This preliminary application considers all the road accidents recorded between
May and September 2017, with the aim to verify whether the crashes exhibit some
clustering and, possibly, triggering effect. The latter is verified through the fit of the
non-parametric spatio-temporal Hawkes process with periodic background model,
using the Stochastic Reconstruction algorithm. The reason why only a subset of all
the available data is being used lies in the high computational cost of Algorithm

1https://dati.comune.roma.it/od/en/progetto.page

https://dati.comune.roma.it/od/en/progetto.page
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ĝTrans(r)
gPois(r)

Figure 5.2. Estimated spatial Pair correlation functions at lag r with Ripley’s (full black)
and translation (dashed red) correction, as compared to the Homogeneous Poisson
correlation function (dotted green).

4, that scales quadratically with the number of events. Indeed, the reduced subset
already counts n = 11365 records and requires the algorithm to run for several hours
on a standard computing machine before reaching convergence.

More computational power and time may be deployed, but the final application
is on hold for the implementation of some (later discussed) improvements. As a
matter of fact, the method is not yet refined to deal properly with road accidents
data recorded on a urban network. The current version operates under the working
assumption that the events occur over a compact surface S ⊂ R2, while road accidents
actually take place on a much different domain: the geometrically structured space
of the road network. Ad-hoc methods and adaptation of the general methodology to
the case at hand are currently under development.

A graphical representation of the spatial distribution of events is shown in Figure
5.1. The accidents in 5.1a are divided between those occurred in the urban (scale
of reds) and in the suburban area (gray). While all road accidents will be involved
in the fitting procedure, the suburban area is used only as a buffering zone: events
happening there will be exploited in the computation of the smoothed estimates of
the various components, but won’t be considered in the likelihood maximization of
Algorithm 4. The use of such a buffering zone is done in order to alleviate the edge
effects of the smoothing estimates, both in the background and in the triggering
(see Section 4.3.5 and Zhuang et al. (2004)). The urban accidents are ≈ 78% of
all the road accidents, with a total number of n∗ = 8835. Figure 5.1b provides a
naive non parametric estimate of the road accidents density in the urban area, and
it highlights how the spatial distribution is not homogeneous. This can be due to
variations of traffic and road conditions across the city. However, previous studies
on road accidents (see the Introduction to Chapter 5) proved that these do not just
exhibit inhomogeneity, but also clustering in space. This can be further verified by
computing the pair correlation function (or g-function), theoretically introduced in
Section 4.1.1 at Equation (4.1.4), and whose estimate has been briefly described in
Section 4.1.2 at Equation 4.1.7. Figure 5.2 shows how the observed spatial point
pattern presents an evident clustering behavior as compared to a standard Poisson
process.
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Figure 5.3. Empirical counting measure of the road accidents occurred in the urban area
od Rome between May and September 2017

The clustering effect is way more evident using a visual inspection along the
temporal dimension. Figure 5.3 shows the increments in the counting measure for
every unit increment of time. An homogeneous process would show an approximately
linear behavior. An inhomogeneous process would present smooth accelerations
of the increments on some sections. A clustering process, instead, would present
(apparently random) sudden increments in the counting measure, followed by flat
sections (Diggle and Ribeiro Jr, 2007). Figure 5.3a presents all the data on the
original scale: the behavior seems coherent with an inhomogeneous process, with
some spikes barely visible. Figure 5.3b zooms in, focusing on just the first two days:
the behaviour of the counting measure highlights the evident clustering pattern of
the events.

We would like to verify if some of it can be explained through a triggering effect
of the car accidents on others.

5.2.2 Model variations
Before fitting the periodic non-parametric spatio-temporal Hawkes process model

for the considered data, we consider some slight variations with respect to its original
version. The first one acts at the model specification level, and consists of modifying
the smoothing of the spatial excitation enforcing isotropy (i.e. triggering decays with
the euclidean distance). The second instead introduces some ad-hoc edge corrections
on the smoothing of the different model components.

Isotropic spatial excitation In the original semi-parametric estimation of the
spatial excitation function introduced in Section 5.1.2, the excitation is a function of
two arguments gs(·, ·) : R2 → R+. It allows the triggering effect to decay differently
along the two geo-spatial dimensions. Despite this freedom, the results included in
Zhuang and Mateu (2019) and a preliminary application to the car accidents in Rome
returned an estimated spatial excitation with an approximately isotropic behavior.
Apparently, as the intuition would suggest, the decay in the excitation from one point
to the other depends on the relative positions between the two points only through
the euclidean distance between those d(u,v) = ||u− v||. Motivated by this, we may
consider performing the smoothing on the observed pairwise euclidean distances,
rather than on independent distances along the two dimensions as in Equation
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(5.1.22). One may think this could be easily achieved by computing all the pairwise
Euclidean distances {dij = ||si − sj ||, i, j = 1, . . . , n, j 6= i} but, before proceeding
with the smoothing, some geometric considerations must be carefully made. Indeed,
given one point s on a two-dimensional surface, points at different distances from
it lie on different sub-spaces with different sizes. The smaller the distance and the
smaller is the circle on which such distance could have been observed. Hence, given
a distance d, the histogram estimator shall be suitably re-scaled by (2πd)−1, i.e. the
size of the space on which such distance lies:

ĝs(d) ∝
n∑

i,j=1

ρij
2πdij

I∆d(dij), (5.2.1)

where d ∈ R+. Therefore, the corresponding kernel smoothed estimate of Equation
(5.1.22) becomes:

ĝs(d) ∝
n∑

i,j=1
ρi,j

k̃hs (d− (dij))
2πdij

,

where hs > 0 is the bandwidth. This approach enforces exact isotropy (i.e. radial
decay), yielding a more parsimonious specification of the spatial excitation function,
less prone to over-fitting and likely to be a better fit for the data excitation mechanism.

Furthermore, it also provides the additional advantage of shrinking the computa-
tional burden of the estimation process both from a memory and a flop counts point
of view. Indeed, the number of point-wise pairs distances goes from 2 · n2 (each pair
along the two dimensions) to n2, requiring less memory and fewer kernel evaluations.

Edge correction It is well known that kernel density estimates are biased near
the boundary on truncated domains, with discussion of this in Chiu (2000) and
references within. "On average" corrections such as kernel normalization alleviate
this problem, which by the way remains important when the density does not vanish
to 0 at the boundaries. Various solutions have been proposed in the literature, each
having its own implications. Hence, different corrections have been considered for
different components of the model.

Let us consider the two triggering functions, truncated at their lower boundary 0.
When the function is expected to keep the same behavior as long as it approaches the
domain bound, the reflection correction method ‘mirrors’ (or reflects) the estimate
over such boundary (Hominal and Deheuvels, 1979; Schuster, 1985; Silverman, 1986;
Jones, 1993). Let x1, x2, . . . xN be the set of observed points in [0,∞). A compelling
and practical way to attain reflection about 0 consists of introducing extra points
−x1,−x2, · · · − xN . The smoothed estimate ν̂r(·), using a bandwidth b > 0, is then:

ν̂r(x) = 1
N

N∑
i=1

[
K̃b (x− xi) + K̃b (x+ xi)

]
. (5.2.2)

Provided the kernel is symmetric and differentiable, some easy manipulation shows
that the estimate will always have zero derivative at the boundary. It is clear that it
is not usually necessary to reflect the whole data set: if xi is sufficiently large, the
reflected point −xi will not be felt in the calculation of ν̂r(x) for x ≥ 0, and only
points close to 0 shall be reflected. This correction may be reasonably applied to
the excitation functions lower boundaries.

Other components in the proposed model are not truncated at a specific point,
but rather periodic over some domain. For instance, this is true for the daily
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and weekly background components. These two components do not strictly need
boundary correction, because they do not actually have any bound, but rather repeat
the same pattern over and over with some periodicity. Let us consider the daily
background as an example. Events times ti are observed on the whole domain [0, T ]
and can be mapped onto some periodic domain [0,Md], where Md represents (for
instance) the number of minutes in a day. The mapped times are then given by
mi = ti −Md

⌊
ti
Md

⌋
∈ [0,Md]. All the mapped points end up in [0,Md], which we

refer to as the reference section. Nevertheless, the exact same pattern supposedly
repeats itself at any other previous or following section [l ·md, (l+1) ·md], l ∈ Z\{0}.
These repeated patterns contain points that shall contribute to our kernel estimate
ν̂p(·) defined over [0,Md], and their contribution can be especially relevant near the
boundaries. As a result, a thorough periodic estimate would require to evaluate an
infinite sum, accounting for the contribution of all the repeated data-points in all the
sections [l ·md, (l+1) ·md], l ∈ Z. However, as for the reflection correction, the decay
with distance of most kernels (e.g. the Gaussian kernel) implies that the contribution
to ν̂p(·) : [0,Md] → R+ of points too far from the bounds is negligible. Generally,
restricting the evaluation to only the previous period [−Md, 0] and following period
[Md, 2Md], yields indistinguishable results from the complete sum (for a small
enough bandwidth). Hence, the smoothed contribution of each point in {mi}Ni=1
to the function ν̂p(·) in any point m ∈ [0,Md] shall account for mi, but also for
m−i = −Md +mi and m+

i = Md +mi, weighted through an appropriate kernel K̃b

with bandwidth b and normalized over [−Md, 2Md]. These contributions can be
incorporated into the estimate as:

ν̂(m) = 1
3N

N∑
i=1

k̃b
(
m−m−i

)
+ k̃b (m−mi) + k̃b

(
m−m+

i

)
, (5.2.3)

with m ∈ [0,md]. Note that the kernel must be normalized over the entire domain,
including the extended points, but only values of the function evaluated in the
reference period section [0,Md] are retained. Hence, there is no need for further
boundary corrections since there is no interest in the behavior at the extended
boundary. Trivial examples of edge corrections results are available in the Appendix
B.1.

Two different corrections for the triggering components (reflection) and the daily
and weekly periodic components (periodic) have been proposed here. Let us recall
that the contribution of each point must be further scaled by the corresponding
weights introduced in Equations (5.1.17) and (5.1.13) (as in Equations (5.1.21) and
(5.1.16)).

5.2.3 Results
Bandwidth Selection and Model Choice In order to verify the ability of the
triggering component to explain part of the clustering behavior in the analyzed
dataset, models with and without triggering have been fit to the data and perfor-
mances are compared in terms of the resulting likelihood. The validity of the best
model is then further verified at the end of Section 5.2.3.

Let us denote the excitation component at (s, t) ∈ D×T as J(s, t) =
∫ t

0
∫
D(s) gt(t−

τ)gs(||s− σ||)dτdσ. The four following models have been considered:

Trend. Non-periodic but non-stationary Poisson model: λ(s, t) = µ0 ·
µtr(t)µs(s);



5.2 Preliminary application to road-accidents in Rome 141

Model µ̂ Â log-likelihood
Trend 0.1670 −18883.85
Trend + Triggering 0.1534 0.0915 −18674.64
Trend + Periodic 0.1670 −17303.34
Trend + Periodic + Triggering 0.1582 0.0592 −17216.65
Table 5.1. Log-likelihood values for models with various components.

Trend + Triggering. Non-periodic Hawkes model: λ(s, t) = µ0·µtr(t)µs(x, y)+
A · J(s, t)

Trend + Periodic. Periodic Poisson model: λ(s, t) = µ0·µtr(t)µd(t)µw(t)µs(s)

Trend + Periodic + Triggering. Periodic Hawkes model: λ(s, t) = µ0 ·
µtr(t)µd(t)µw(t)µs(x, y) +A · J(s, t).

All the models are fitted non-parametrically through Algorithm 4 and the resulting
estimates and performances depend upon the kernels and bandwidths chosen for the
smoothing. Let us point out how all the model variations introduced in Section 5.2.2
(i.e. edge corrections and isotropic excitation) are considered in this application.
Appendix B.2 compares the results obtained using the isotropic excitation with those
that would have been obtained using the anisotropic one.

The Gaussian kernel form is used for all components, but the corresponding
bandwidths must be chosen according to the smoothness degree required by each
of those. Generally speaking, automatic selection of the bandwidths in kernel
density estimation is still an open-problem. Most approaches are mainly based on
heuristics, model-based plug-in estimators, cross-validation methods or Bayesian
fitting procedures (Silverman, 1986; Heidenreich et al., 2013).

Given the absence of a valid cross-validation procedure for our model, we here
rely mainly on heuristics and graphical inspection of the results for the choice of the
bandwidths. These define the impact range of each observation on the estimated
intensity at each point of its domain. It shall roughly represent the resolution
at which the estimated components can vary. In principles, considering different
bandwidths in different models may jeopardize the comparison process (just as much
as comparing models exploiting different sets of covariates). Nevertheless, as long
as all common components of the four different models share the same bandwidths,
this comparison can be considered fair. Hence, the bandwidth of each component
are fixed throughout all models

For the spatial background, we decided for a varying bandwidth approach (as in
Zhuang et al. (2004)). A standard bandwidth of bs = 0.3 has been chosen (given
that coordinates are recorded in UTM, this amounts to ≈ 300 meters), with the
additional constraint that if less than 10 other points are included in its range (≈ 600
meters) then the bandwidth is increased until that condition is met. This is done in
order to alleviate the edge effects on points close to the border and also to stabilize
the intensity estimation in areas with sparsely observed points. For the temporal
components, the application offers natural choices with time-scales inherent to the
system and the corresponding resolution requirements. Fixed bandwidths of 7 for the
trend, 1 for the weekly component and 0.05 for the daily component, with days as the
temporal unit, have been adopted. The trend shall capture variations across different
weeks, the weekly component across different days, while the daily component
across different hours of the day. It is very important that the chosen bandwidths
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Figure 5.4. Estimated Temporal Background components

allow each temporal component to adapt only to variations on its inherent scale,
without generating confounding among them. The chosen bandwidths seems to
have reasonable ratios to this end. Finally, the temporal and spatial bandwidths
for the triggering functions have been chosen to be 0.15 minutes and 0.2 meters
respectively. Variations on all of these values have been considered in an initial
tuning process, and visual inspection of the resulting estimates found those listed
to provide a reasonable compromise of model interpretability and identify known
components of traffic flow.

The models are compared in terms of the log-likelihood values, computed as in
Equation (5.1.23), with a larger value suggesting a better model. Results for this
are given in table 5.1. Note that using the log-likelihood to judge the goodness of fit
ignores model complexity: more and more components could be iteratively added
to any model and see increasingly marginal improvements as a more complex (free)
model is attained. Therefore, as a metric, it is not completely reliable and prone
to favor over-fitting. At the current state of the art, cross-validation metrics or
penalized methods have not been yet developed in this context. We trust we averted
over-fitting issues by selecting bandwidths that produced estimates with a smooth
shape. In particular, all these present reasonable and interpretable behaviour that
seems to catch marginal but still present features of the phenomenon of interest.

Table 5.2 shows how the model including only spatial background and trend
provides the worst fit. The periodic component is the one that brings the greater
improvement in terms of model fitting, while the inclusions of triggering effect is able
to further improve on the log-likelihood value. It is interesting to notice that if the
periodic component is missing, then the triggering effect increases in magnitude. It
is probably trying to account for some of the previously unexplained heterogeneity.

The periodic Hawkes model is then picked as the best one, and all comments
and analyses are referred to it only.

Background Analysis The relaxation coefficient of the background is estimated
at µ̂ = 0.1582. Integrating it over the whole spatio-temporal area, an overall
background magnitude of ≈ µ̂ · |D| · |T | = 8055 is obtained. This, rescaled by the
integrated overall intensity

∫ T
0
∫
D λ̂c(σ, τ)dσdτ , yields a value of 0.94 and therefore

explains the 94% of all the accidents occurring in the urban road network of Rome.
As expected, it is the major drive of car accidents. In particular, the inclusion of
the periodic component improved the log-likelihood of a great amount, highlighting
its utmost importance. The estimated temporal background components are shown
in Figure 5.4.

Figure 5.4a provided results very close to the expected ones. There is indeed a
reducing effect (i.e. rate < 1) during the night-time. The estimated background
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Figure 5.5. Estimated Spatial Background Components

increases in the morning and presents a first peak between 8 : 00 and 12 : 00, morning
hours during the ones people get out of home in order to get to work. A second
peak is instead really evident between 17 : 00 and 18 : 00, which is well-known by
the citizens of Rome as the real rush hour during the one most of the workers head
home from their job-place. Figure 5.4b shows the weekly behavior. It presents low
values during the weekend, which gradually increase during the week. The peak
is observed during Thursday and Friday. This may be explained by a number of
reasons, e.g.: work-traffic combined with more people going out for leisure increasing
the overall traffic; large number of people going out late during night-time, which is
a well-known risk factor for road accidents. This could be a talking point for further
analysis intended to identify these properly. Finally, Figure 5.4c shows the overall
trend in the considered 5 months period. Except for some slight changes from one
month to the other, a first drop in the rate is observed in July and a very evident
one during August. Also this behavior is completely reasonable. Rome is famous to
get empty during the summer holidays, with off-site students and workers reaching
their home-towns and Roman citizens leaving the city. The amount of traffic is very
low during these months and, therefore, we also expect a substantially diminished
road accident risk.

Figure 5.5 shows the spatial background, with Figure 5.5b representing it on
the log-scale in order to highlight spatial variations. The most of the car accidents
happen in the inner area, and this may also be due to the increased probability of
a police patrol intervention. Nevertheless, there are also some spots in the outer
area that present a sensibly higher risk2. Experts with deeper knowledge on urban
traffic dynamics and the Rome road conditions may be addressed toward inspection
of these areas for recognizing possible structural flaws.

Triggering Analysis Each single car accident contributes to the overall integrated
intensity of ≈ Â = 0.0592. Therefore, with good approximation, the triggering
effects explains ≈ 6% of the car accidents occurring in the urban road network of
Rome. The resulting functions are visualized in Fig. 5.6.

Figure 5.6b shows clearly how the spatial triggering is limited to a 500 meters
radius. Over that range, the triggering effect is estimated to be practically null. The
temporal triggering behavior is shown in Figure 5.6a. In its initial section it steeply
decreases with time as expected. However, after half a day (≈ 0.5 on the plot scale)
the decrease slows down. The function actually gets unnaturally bumpy and decays

2We recall that road accidents occurring on the GRA are excluded from the analysis
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Figure 5.6. Estimated excitation functions

to 0 only after two days. The excitation magnitude in this last section is really low
as compared to the background components, so this is not worrisome in terms of the
model fitting. Nevertheless, some care must be taken in order to interpret properly
this result. Indeed, the temporal triggering effect is likely to be finished after (less
than) half a day, with the long-tail being just a residual and negligible effect.

Model Validation To validate if the model is actually describing properly the
underlying intensity of the point process, one often follows the work of Ogata (1988),
Brown et al. (2002) and Zhuang (2006).

Specifically, the transformed time sequence of the observed pattern:

ti → υi =
∫ ti

0

∫
D
λc(σ, τ)dσdτ, i = 1, . . . , n, (5.2.4)

is such that the resulting times {υi}ni=1 shall follow a unit rate Poisson process if the
model is correctly specified. Once the transformed sequence has been obtained, as in
Zhuang and Mateu (2019), one can test its adherence to the unit rate Poisson process
in different ways. Times shall be uniformly distributed on the time interval, and this
can be tested through the Kolmogorov-Smirnov test (KS-test) or visually checked
through for quantile-quantile (QQ) plots. For the latter, it is possible to obtain
confidence bands exploiting the fact that the order statistics of a uniform distribution
follow a beta distribution3. Obviously, this holds exactly when the original times are
rescaled for the true intensity. When the intensity is estimated, convergence is slower
but still proved to hold (Schoenberg, 2002). The KS-test performed comparing the
original times empirical CDF with the uniform distribution, rejects the hypothesis
with a very low p-value p < 0.001. If the same test is performed on the rescaled times,
the p-value p = 0.044 is still significant but much larger. Validation of the alternative
models considered for this application are not discussed in details here, but all yield
p-values < 0.01 4. Therefore, while not entirely satisfactory, the validation of the
picked model is mostly defensible among all the considered alternatives. In particular,
looking at Figure 5.7, we can see how the QQ-plot resulting from the original times

3The distribution of the k-th order statistic has parameters k and n+ 1− k, with n being the
number of sample points

4Let us point out that this test is not taking into account the additional variability due to the
estimation of the intensity (it is not the true intensity), and then it is probably returning too severe
conclusions
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Figure 5.7. Validation results on the original times and rescaled times. Model results are
shown with ; confidence bands at 99% with: .

is (almost) completely outside the confidence bands at the 99% level. On the other
hand, all the quantiles of the rescaled times in Figure 5.7b never deviate significantly
from the target.

Hence, the chosen model looks really promising and especially improves substan-
tially on standard alternatives. Some additional modeling effort may be needed in
order to further improve on the current results (e.g. include unobserved heterogeneity,
Network structure, etc.).

5.3 Application to Car-accidents on the M25 London
Orbital

The application in the previous section, in principles, deals with car accidents
occurred on an urban road network. However, the road network structure is neglected
and methods to include it are currently under development. The application in this
chapter instead restricts the observed region to a single road: a smart motorway.
It can be represented as a continuous ring-road, not an urban network, and makes
completely reasonable considering a standard distance measure rather than say a
graph distance such as the one that should be considered for the Rome car accidents
application.

We here want to stress the point that the choice of this dataset is not to simplify
the fitting procedure onto continuous space rather than a network, but instead it is
to offer some insight into a much discussed topic of smart motorway safety. The
United Kingdom has one of the lowest per-capita death rates from traffic accidents
in the world, estimated by the World Health Organization (2018) at 3.1 per 100,000
of population in 2016. Nevertheless, 1782 deaths and 25,484 serious injuries resulted
from accidents on UK roads in 2018 Department for Transport (2019). Aside from
the direct human cost of serious accidents, indirect economic costs result even from
relatively minor crashes. This is because crashes, collisions and breakdowns can
cause severe congestion leading to significant drops in the efficiency of the road
transport network. For these reasons, there is an imperative to further reduce the
accident rate on UK roads. However, traffic accidents are rare in absolute terms
and are not distributed uniformly across the network. Further rate reductions are
therefore likely to require targeted interventions.
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Targeted interventions might try to improve safety at specific locations where the
accident risk is known to be high compared to the baseline or might try to mitigate
against particular mechanisms that are known to account for a significant proportion
of accidents. Infrastructure modifications to improve the safety of accident-prone
junctions is an example of the first type of intervention. The deployment of the
Motorway Incident Detection and Automatic Signalling (MIDAS) system to reduce
the number of secondary accidents on motorways is an example of the second.
Secondary accidents occur when a driver fails to react appropriately to the disruption
caused by an existing accident leading to a subsequent accident upstream of the
first one. MIDAS uses a network of induction sensors, known as loops, embedded
in the road surface to automatically detect queues and then warn upstream drivers
of the danger ahead via roadside signage, and is one component of the UK ‘smart
motorways’ infrastructure, see Highways England (2020) for further details. Most of
the data, including data on accidents and congestion, is publicly available via the
National Traffic Information Service (NTIS).

In this application, main topic of Kalair et al. (2020), data from NTIS repository
are considered and used to model the distribution of motorway car accidents as a
spatio-temporal process comprised of a background component and a self-excitation
component. The focus is on the M25 London Orbital, one of the busiest motorways
in the UK. The objectives of the study are two-fold. The first is to quantify how
accident risk on the M25 varies in space and time relative to the baseline. The
second is to use the self-excitation component of the process to quantify the likely
contribution of secondary accidents to the observed totals. We would like this model
to be helpful in addressing the question of how best to target interventions when
the baseline accident rate is low in absolute terms. We therefore perform extensive
in-sample and out-of-sample validation to verify the models performance on seen
and unseen data.

5.3.1 Data Collection and Pre-Processing
The data for this study is taken from the National Traffic Information Service

(NTIS)5. NTIS provides both historic and real-time traffic data for all roads in the
UK that lie on the ‘Strategic Road Network.’ This network includes all motorways
and major A-roads in the UK but we choose to focus our analysis on one of the
British busiest motorways, the M25 London Orbital, pictured in Fig. 5.8. Inside
NTIS, roads are represented by a directed graph, with edges (referred to as links
from now on) being segments of road that have a constant number of lanes and no
slip roads joining or leaving. All links that lie on the M25 have been extracted in
the clockwise direction, yielding a subset of the road network to collect data for.
Placed along links are physical sensors called ‘loops’, which record passing vehicles
and report averaged quantities each minute.

The most relevant components of NTIS to this work are event flags that are
manually entered by traffic operators. These flags specify an event type, for example
accident or obstruction, the start and end time and the link the event occurred on.
All accidents and obstructions that occurred on the chosen links between September
1st 2017 and September 30th 2018 are selected. However, the considered model
requires more fine-grained locations for events than just the link it occurred on.
Hence, further localization becomes necessary. This pre-processing step is highly
specific to this dataset, and hence only a general overview of it is offered here. More

5Technical details of the NTIS data feeds are available at http://www.trafficengland.com/
services-info

http://www.trafficengland.com/services-info
http://www.trafficengland.com/services-info
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Figure 5.8. The M25 London Orbital, roughly 180 kilometres in length. The Dartford
crossing, located in the east, is a short segment of road that we do not have data for.

details are instead given in the supplementary material. To understand why this is
needed, one should note that links vary in size from around 500 to 10000 meters.
However, the average distance between successive loop sensors is roughly 500 meters.
As a result, the data is not initially appropriate to model with point-processes, but
one can use the time-series provided by individual loop sensors to determine higher
resolution location data for events. Given an event flag and link, the event is exactly
localized in-between the two loop sensors on that link that show the largest drop in
speed and rise in occupancy when going from the sensor downstream to upstream.
This is motivated by existing work in traffic accidents’ detection, with an example
being Payne et al. (1976).

5.3.2 Model variations
There are three main changes. Firstly, the spatial triggering mechanism is one-

dimensional and unidirectional: secondary accidents cannot occur downstream of
the primary crash. Secondly, monotonicity of the triggering functions, gt(·) and
gs(·) in Equation (5.1.6), is enforced as a constraint to help with identifiability and
discourage over-fitting. Thirdly, boundary correction is applied to the kernel density
estimates to reduce bias as for the previous application. This is not detailed here
since it has already been illustrated in Section 5.2.2. Let us only add that also
the spatial background is here assumed to be periodic, as the M25 is an almost
continuous ring around London. Therefore, the same sense of a periodic function
having no boundary can be accounted for in the spatial background in the same
way, altering Equation (5.1.12). From Fig. 5.8, a small section of the M25 is not
a motorway and reports no data, but it is negligible in comparison to the wider
motorway, so assuming a spatial background on a ring is reasonable. In the remainder
of this section, further detail is provided on these changes. For computational speed,
the triggering after 12 hours is set to 0, which is informed by considering time-scales
similar to the worst recorded traffic jams in the U.K, detailed in INRIX (2019).

One-Dimensional and Unidirectional Spatial Triggering In this application,
the space is not bi-dimensional but a uni-dimensional circle and the traffic only
flows in one direction. Thus, the spatial coordinates {si}ni=1 are no more pairs, but
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single values {xi}ni=1 ∈ [0, X] which also respect an order (according to the flow
direction). Therefore, the work in Zhuang and Mateu (2019) must be slightly adapted
to reconstruct a uni-dimensional and uni-directional spatial triggering function. The
derivations of Section 5.1.2 are modified as follows.

Let us re-define the triggering probabilities of Equation (5.1.17) as:

ρ
(
x, t, x′, t′

)
=
{
Ags(x′−x)gt(t′−t)

λc(x′,t′) x < x′and t < t′

0, otherwise,

with ρ(xi, ti, xj , tj) = ρij ∀ i, j.
Then, the histogram estimate of the spatial excitation can be obtained as:

ĝs(x) ∝
n∑

i,j=1
ρijI∆x(xj − xi),

where x ∈ R+. The histogram estimate can then be converted into a smooth version
via a suitable kernel function, that in this case shall be uni-dimensional. As for
the temporal triggering, the uni-variate Gaussian kernel of Equation (4.1.10) is
considered:

ĝs(x) ∝
n∑

i,j=1
ρi,j · k̃hs (x− (xi − xj)) ,

where k̃hs (·) denotes the normalized kernel.

Enforcing Triggering Functions monotonicity We note that this model aims
to explain any residuals from the background process using the triggering component.
As such, the model has significant freedom to adapt to the data. We seek to limit this
freedom by ensuring that the triggering component truly reflects increased rates of
events on a short-time scale (compared to the periodic components) in the wake of a
particular event. A natural way to do this and extension of the original methodology
is to enforce the triggering functions to be monotonic. This is a reasonable constraint
that shall favor interpretability of the triggering functions, whilst still allowing them
to be constructed by the data. Triggering decaying in space and time suggests we
expect reduced influence of an event as we move further from its location and as
time passes. The work in Hall and Huang (2001) details a practical and sound
method to achieve such monotonic estimate. Let us recall again that in standard
kernel smoothing one can write the smoothed estimate as:

ν̂(x) = 1
N

N∑
i=1

K̃b (x− xi) yi, (5.3.1)

with some normalized kernel K̃, some bandwidth b and observed values {yi}ni=1
at locations {xi}ni=1. In the context of the triggering functions, the locations are
differences in event locations or event times, and all y-values equal 1 (however
the technique works for more general cases). Equation (5.3.1) does not place any
constraint on the estimate ν̂(x), however in practice there are many situations where
some minimal structure must be enforced.

Hall and Huang (2001) generalized Equation (5.3.1) to incorporate a weight pi
to each data-point used in the smoothing to ‘adjust’ the initial smoothed fit to be
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monotonic. One writes this adjusted fit as:

ν̂mono(x | p1, . . . , pN ) = 1
N

N∑
i=1

pi · K̃b (x− xi) yi. (5.3.2)

The goal is now to choose a weight pi for each data-point i used in the construction
of the function, whilst altering the original estimate as little as possible. There are
an infinite number of sets of {p1, p2, . . . , pN} one could choose to enforce a monotonic
function, and to identify a unique solution, the set that is the closest to the uniform
distribution

{
1
N , . . . ,

1
N

}
is chosen. One possible distance measure, which is then

used in the real application, to compare the pi’s to a uniform distribution is:

D0(p1, . . . , pN ) = −
N∑
i=1

log(Npi). (5.3.3)

Adding this step in our model fitting encompasses solving an additional optimization
problem, determining each pi value to produce a monotonic triggering function. The
optimization problem is specified as:

min
p1,...,pN

D0(p1, . . . , pN )

s.t. dν̂mono(x | p1, . . . , pN )
dx

≤ ε

pi ≥ 0 for all i ∈ [1, 2, . . . , N ]
pi ≤ 1 for all i ∈ [1, 2, . . . , N ]
N∑
i=1

pi = 1.

(5.3.4)

Since the triggering is enforced to decay with increasing time and distance, ε
constraints the gradient of the triggering functions to be below some value.

It should be noted that in practice, constraining the triggering function only
alters the resulting functions on the seasonal results and it is probably related to the
reduced size of the subsets of data. When fitting to the entire year, the resulting
functions are monotonic even without enforcing monotonicity.

5.3.3 Results
The main analysis is reported in this Section. Additional results, obtained on

subsets of data and aimed at further verifying the validity of the application, are
reported in Section C.3.

Bandwidth Selection, Model Selection & Prevalence of Triggering Same
arguments of Section 5.2.3 hold here. The daily, weekly and trend bandwidths
are chosen to be 60, 10× 60 and 60× 24× 14 minutes respectively. The choice of
daily bandwidth is selected due to the ‘rush-hour’ behaviour in the UK typically
varying on a time-scale of around an hour, whilst the weekly and trend components
capture variation across larger time-scales. The spatial bandwidth is chosen as
5500 meters, which appears small enough to capture differing features across the
M25, whilst not introducing superfluous oscillations. This is also larger than the
uncertainty we would expect in event localization, therefore accounting for potential
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Model Â Log-Likelihood
Fixed Rate Poisson Process - -28861.55
Daily + Weekly Background - -28028.05
Daily + Weekly + Trend Background - -27929.60
Daily + Weekly + Triggering 0.068495 -27864.48
Daily + Weekly + Trend + Triggering 0.065462 -27781.38
Table 5.2. Log-likelihood values for models with various components.

uncertainty in the data. Finally, the temporal and spatial bandwidths for the
triggering functions are chosen to be 30 minutes and 500 meters respectively. Also
here we considered variations on all of these values, finding those listed provided a
reasonable compromise of model interpretability and identify known components of
traffic flow.

Models containing variations of the discussed components are compared through
the corresponding log-likelihood scores given by:

log(L) =
n∑
i=1

log (λc(ti, xi))−
∫ T

0

∫ X

0
λc(x, t)dxdt, (5.3.5)

with a larger value suggesting a better model. The first is a homogeneous Poisson
process, used as the simplest reference model one could construct. The other
compared models include: daily and weekly background components, daily, weekly
and trend background components, daily, weekly background components and
triggering, and daily, weekly, trend background components and triggering. Final
results are given in table 5.2. The residuals are inspected in order to further check
the specification of the models. The results are then validated in sample for the
whole dataset, while we also provide a successful attempt of out-of-sample validation
on seasonal subsets.

Table 5.2 shows how the constant rate Poisson process is by far the worst
model, and adding periodic daily and weekly components to this implies the largest
improvement in log-likelihood. Including a trend and triggering component further
improves on this score. The parameter A can be interpreted as the proportion of
the impact of the triggering function on the total intensity. For the optimal model
incorporating all components, this means about 6.55% of events appear to be the
result of triggering, in practical terms about 100 events. One may want to consider
this as an upper bound along with an appropriate time-scale.

Background Analysis The background component of the model is strong, as
seen when inspecting the changes in log-likelihood from table 5.2. In this model
this constitutes a daily, weekly, spatial and trend component. All the temporal
background components are visualized in Fig. 5.9.

Fig. 5.9a shows that the daily background increases to an initial peak during
the morning rush hour, then remains roughly constant, before rising again to a
peak at around 4pm, and decaying after this. From Fig. 5.9b, there appears to be
much less variation in the intensity across the week compared to all other identified
components, but a slightly higher intensity on Thursdays and Fridays, and the lowest
on Tuesdays and Saturdays. Finally, we see a small increase in the trend during
the first 7 weeks of the data, then it remains reasonably flat until week 28, where it
begins to rise again. Around week 40, it stabilizes again. This could be due to an



5.3 Application to Car-accidents on the M25 London Orbital 151

01
:3

0
04

:3
0

07
:3

0
10

:3
0

13
:3

0
16

:3
0

19
:3

0
22

:3
0

Time of Day

0.0

0.5

1.0

1.5

2.0

2.5

D
ai

ly
B

ac
kg

ro
un

d

(a) Daily Background

M
on Tue

W
ed Thu Fri

Sat Sun

Time of Week

0.0

0.5

1.0

1.5

2.0

2.5

W
ee

kl
y

B
ac

kg
ro

un
d

(b) Weekly Background
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(c) Trend Background

Figure 5.9. Temporal Background Components fit to 1 year of data.
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(a) Spatial Background
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(b) Spatial Background over-
laid on a map of the
M25.

Figure 5.10. Spatial Background Components fit to 1 year of data.

increase in actual event intensity, or perhaps to a more comprehensive reporting after
a certain point, a larger number of operators and so forth. That said, no changes in
reporting are known to us.

As-well as the temporal background, also where events are most common around
the M25 is of utter interest. The spatial background visualized in Fig. 5.10 indicates
a clear spatial structure. There are are indeed two distinct peaks in Fig. 5.10a,
and a smaller spread out peak in-between these two. The largest peak, around 140
kilometres along the motorway, is located near the ‘Potters Bar’ junction, infamous
location where multiple secondary roads converge onto the M25 and cause much
traffic distress. The second largest, around 25 kilometres into the motorway, is
located between where the M25 meets the M26, and where the M25 meets the M23.
This background intensity, imposed onto a map schematic of the real M25 is plotted
in Fig. 5.10b. In particular, we investigated if the temporal background in the
vicinity of these spatial peaks differed to that across the entire M25, but found
only minor changes. Interested readers can find this analysis in the supplementary
material.

Triggering Analysis Triggering does appear to improve the log-likelihood of the
model and, as clear from Table 5.2, it explains around 6.55% of the events in the
data. The resulting functions are visualized in Fig. 5.11. From Fig. 5.11b, it is clear
that spatial triggering is limited to around 2-kilometres, after which non-zero values
are absent. However, the temporal triggering pictured in Fig. 5.11a appears to have
quite a ‘long tail’ in the sense that it decays over a very long range. However, there
is a clear time-scale in this result of around 100 minutes. As a result of this, one
should take 6.55% as an upper bound of sorts. Combining this information with the
identified time and length scales is a very informative conclusion to draw.
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(a) Temporal Triggering
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(b) Spatial Triggering

Figure 5.11. Triggering functions, fit to 1 year of data.
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(a) CDF Validation
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(b) Quantile-Quantile Validation

Figure 5.12. Validation results for 1 year of data. Model results are shown with , 95%
limits: , 99% limits: and a reference line: .

Model Validation The validation of the estimated model is again based on the
inter-time intervals {υ̃i = υi+1 − υi, i = 1, . . . , n− 1}. As for the previous appli-
cation, these are supposed to follow an exponential distribution with parameter
1 and the validation will be based in this hypothesis as in Brown et al. (2002).
Given that the expected distribution of the υ̃i is known, compare empirical and
theoretical cumulative distribution functions (CDF) can be compared and tested
for significant differences, as-well as the observed and expected quantiles. One can
generate confidence bounds for the comparison of two CDFs by inversion of the
Kolmogorov-Smirnov statistic. Furthermore, these can be back-transformed to the
Uniform distribution using the inverse-transform theorem:

zi = 1− e−(Λi−Λi−1), (5.3.6)

, so that the Beta bands for the qqplot can be used. Figures 5.12a and 5.12b show the
transformed inter-times sequence as compared with the target CDF and quantiles.
It is clear from Fig. 5.12 that the model is statistically defensible when inspecting
both the CDF and QQ plots of the results. Some of the quantiles in Fig. 5.12b are
just on the edge of acceptable, but do not deviate outside of the confidence bands.
These results show that the model seems well specified, and correctly recognizes the
underling spatio-temporal intensity behavior of car crashes.
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(c) Spatial Background
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(d) Temporal Triggering
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(e) Spatial Triggering

Figure 5.13. Background and triggering components compared across different 3-months
datasets. Datasets are: 09/2017-11/2017: , 12/2017-02/2018: , 03/2018-05/2018:

and 06/2018-08/2018: .

Do Components Change with Season? Given the results for the year of data,
one can question how resilient the background and triggering components are by
inspecting subsets of the data. To test this, data are partitioned into 3-months
seasonal periods, and the model is separately fit to each subset. The estimated
components are then overlayed in Fig. 5.13. It is clear from our results in Fig. 5.13
that there are varying amounts of consistency in components of the model. Generally,
Fig. 5.13a shows that the daily background component is constant throughout the
year, the only variation being in the 3-months of data starting on 03/2018, where
the morning peak is a little more pronounced than any of the other datasets, and the
evening is a little less. It is difficult to make conclusions about the weekly component,
when only 12 instances of each day of the week for a given 3-month subset are
available. Of particular interest is the spatial background through time, shown in
Fig. 5.13c, where the peak around 140 kilometres along the M25 actually becomes
more pronounced as time progresses. Both the peak at 25 and 140 kilometres are
present throughout all subsets of data, but later periods appear to show that the
peak around Potters Bar is more significant later in the dataset compared to earlier.
It is unclear if a physical change occurred leading to this, but would be of interest
to investigate with more data. Finally, the temporal and spatial triggering functions
are generally quite consistent across all datasets. A somehow long decay is still
present in the temporal triggering, but reasonable time-scales of around 100 minutes
remain evident. Considering the triggering in each of these subsets, A values of
0.034, 0.063, 0.068 and 0.075 are attained for the periods starting 2017/09, 2017/12,
2018/03 and 2018/06, respectively. More data would be necessary in order to verify
if these values vary periodically throughout the year, or if they are increasing over
time.

We note that, for small temporal subsets of data, the trend component becomes
less important in the model. Indeed, Fig. 5.9c shows how the trend is almost flat
for long periods, suggesting we can omit it for some temporal subsets. As a result,
a sort of out-of-sample model validation can be performed, something we are not



5.4 Conclusions and further developments 154

0.0 0.2 0.4 0.6 0.8 1.0

Uniform CDF

0.0

0.2

0.4

0.6

0.8

1.0
D

at
a

C
D

F

(a) Out of sample CDF Validation, fitted
to data 12/2017-02/2018, validated on
data for 03/2018.
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(b) Out of sample CDF Validation, fitted
to data 06/2018-08/2018, validated on
data for 09/2018.

Figure 5.14. Out of sample model validation for two datasets. Model results are shown
with , 95% limits: , 99% limits: and a reference line: .

aware of being done previously in the literature for this type of model. Once the
trend is omitted, all the other components are assumed to be constant through
times. Then, if such consistency actually exists, the model trained on some 3-months
subset of data shall be transferable to any other 3-months subset (excluded from
the training process). Rescaling the times of the out-of-sample data shall provide us
with a validation metric on unseen data. Fig. 5.14a and 5.14b shows two examples
of this procedure. It is clear from both images in Fig. 5.14 that on short time-scales,
the model does provide satisfactory performance out-of-sample, and hence is able to
catch inherent features of the road accidents cascading dynamics. It is not possible
however to apply this exact method on longer time-scales due to the clear trend
and varying spatial background, unless robust parametric could be derived for this
components so that extrapolation would be feasible.

5.4 Conclusions and further developments
We have argued how the Spatio-Temporal Hawkes process with periodic back-

ground can be profitably fitted to road accidents data in order to detect and inspect
the magnitude of primary and secondary (i.e. triggered) road accidents. The
methodological framework is based on the work by Zhuang and Mateu (2019), which
originally introduced the semi-parametric stochastic reconstruction method as a
fitting procedure for a version of the aforementioned model, applying it to crimes
and retaliation crimes. In this chapter, we analyzed two different data-sets about
road accidents and introduced some innovations in the model specification and in
the fitting procedure of both.

We first performed a preliminary analysis of the spatio-temporal intensity of road
accidents on the urban network of the city of Rome, between May and September
2017. We wanted to test if some of the inhomogeneous and clustering behavior
exhibited by the point pattern could be explained by periodic components and/or a
Hawkes excitation mechanism. The comparison of models with increasing complexity
highlights the presence of both a strong periodic component and a non-negligible
triggering effect. The obtained periodic estimates seem to well-represent the typical
routine of the average Rome inhabitant: generalized lower levels during night-time
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and higher level during day-time, with the latter showing two peaks at the typical
Roman rush hours; weekly effect that sharply distinguishes week-days from week-
ends. Finally, the general trend indicates how road accidents are way less frequent
during the month of July and, even less, of August. This is not surprising at all, given
the greatly reduced presence of people (and traffic) during such times of summer
holidays. The spatial background shows that most of the road accidents occur in the
central area, but some others non-negligible peripheral seem to appear. We found
that approximately the 5− 6% of the road accidents have been triggered by others.
This does not take into account the gravity of the triggering event, while it is likely
that the mildest urban road accidents have a little, if any, triggering ability. With
careful interpretation, reasonable time and length scales can be derived from the
estimated temporal and spatial range of the excitation: half a day for the temporal
triggering, and 500 meters for the spatial triggering.

The second application analyzed the spatio-temporal variation in the accident
rate on London’s M25 motorway over a period of one year, with the final aim of
distinguishing between primary and secondary events. This variation is found to be
strongly inhomogeneous. The temporal variation shows a strong daily double peak
structure reflecting commuting patterns superimposed in a weaker weekly variation
with a peak on Fridays and a trough on Saturdays. This pattern of temporal variation
remains stable over the data period. The spatial variation shows two primary peaks
in intensity. The first and largest is in the vicinity of the Potters Bar Interchange.
The other is in the vicinity of Junctions 5 and 6 where the M26 and M23 join the
M25. The peak at Potters Bar appears to increase in intensity during the data
period and is more pronounced when we condition on the most significant events
in terms of impact on traffic speed. We found that 6 − 7% of the observed road
accidents are most probably secondary events under the assumptions of our model.
Plausible time and length scales emerge for the range of the triggering effects: 100
minutes in the temporal triggering, and 1 kilometer for spatial triggering. From these
figures, we conclude that the effects of secondary events is a small but detectable
feature of the M25 traffic accidents data set. Hence, we suggest that, on the M25,
the main attention for the reduction of traffic accident rates shall be addressed
toward accurate policies for the specific times or ‘hot-spot’ locations showing large
intensity peaks. In this application, the existing work has been extended to limit
the freedom of the self-excitation components, along with considering unidirectional
spatial triggering. We further proposed an out-of-sample validation method which is
viable when the trend component is roughly constant over time. Applying this to
our dataset showed we have avoided over-fitting the model, despite its significant
freedom.

All the introduced advances are not specific to the application discussed here
and can be used when models of this form are applied to different domains with
similar practical considerations. Generally speaking, the modeling framework is
novel in the context of traffic crash analysis, and the methodological refinements
were addressed toward ensuring that the model captured all the relevant properties
of the application.

In terms of future work, it would be very useful to adapt the methodology to fit
properly point patterns evolving on road networks. We trust that the planar surface
misspecification may be the main reason why validation on the Rome accident data
was not completely successful. However, directly extending our methodology to
account for this structure appears difficult. Whilst smoothing of point-processes
on a network has been explored recently, for example in Moradi and Mateu (2019),
further complication remains regarding smoothing of the triggering functions on a
network. When we take data-points in RN and compute distances between them, we
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attain a value in R+, and differences between these distances lie in R. However, the
same is not necessarily true for differences between distances computed on a network,
which still attain real values, but belong to the sub-space stemming from their
network-constrained spatial structure. Taking this into account makes smoothing
the triggering functions complex and deserves further attention in future work. The
adoption of semi-parametric forms (polynomial, splines, etc.) is currently under
consideration. Additionally, it would also be very informative to repeat the analysis
for a major UK road without the MIDAS system or smart motorway features,
since we expect this infrastructure to reduce the risk of secondary events (all other
things equal). One could also extend the out-of-sample validation to include a trend
component. To do so, a parametric form of the trend is required, as the the current
non-parametric estimate cannot be extrapolated out of the fitting window. Finally,
one could think about the potential incorporation of additional covariates that may
influence traffic accident occurrence (e.g. road and weather conditions) or their
triggering ability (e.g. crash severity).
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Chapter 6

Final discussion

This thesis covered different topics in the spatial and spatio-temporal modeling
context. It initially provided a historical introduction to the motivations that raised
the need for the development of probabilistic and statistical tools able to account for
the temporal and spatial distribution of phenomena. In particular, we highlighted
how these tools and methods have been undergoing great changes during the last
decades, dictated by the evolution of data collection tools that modified temporal and
geo referenced datasets both in terms of accuracy, frequency, and size. We focused
on two of the many branches of spatial statistics: continuous spatial variations and
point patterns.

Chapter 2 zoomed in on the modeling of outcomes varying continuously over
some space but sampled only at a finite number of locations. We introduced
and motivated spatial interpolation and the geo-statistical approach, both in the
spatial and spatio-temporal context, providing estimation methods and tools from
the context of Spline Regression and Bayesian Hierarchical Modeling of Gaussian
processes. These two approaches are usually seen as antithetic, but they can actually
be profitably combined if due care is taken. Chapter 3 indeed presents an example
in which splines are used to model geographical variations and Gaussian processes
to drive temporal dependence, in a context where the two components are actually
separated at a physical level and could be independently identified. The same
work is currently published (pre-print) in Alaimo Di Loro et al. (2021), while
undergoing the review process. The disentanglement of the two effects appears
to be completed successfully, providing satisfying predictive performances and
interpretable (reasonable) conclusions on the behavior of both. Moreover, the
same application dealt with a Big-Data problem. Hence, the strategies introduced
in Section 2.5 have been profitably adapted and developed to overcome all the
corresponding computational issues (Datta et al., 2016a). Improvements both in
predictive performance and computational saving have been validated and verified,
both on simulated and real data. The proposed model is novel in the context of
physical activity analysis, and can potentially be a game-changer for the new track
and monitoring technologies. Indeed, it provides a decently efficient and precise tool
to impute gaps and predict activity levels at unobserved times and locations. No-cost
tracking devices such as smartphones currently present the problem of sampling at
non-constant frequencies and with (sometimes) low accuracy. Integrating these data
with a reliable model can really ease future data collection for large studies in a
free-living environment.

Chapter 4 concentrated on the modeling of point patterns recorded on continuous
domains. We introduced some of the most common and useful summary statistics
(both theoretical and empirical) to describe and highlight the relevant properties of
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the underlying point process. We further introduced some of the most basic and
common probabilistic models for point patterns, along with some of their properties.
After that, Section 4.3 focused on the Hawkes process and its extension to the spatio-
temporal context. We described its defining properties and gave an ex-cursus of the
current state of the art for its fitting and estimation in a spatio-temporal setting.
Chapter 5 presents a particular spatio-temporal Hawkes model, characterized by
a multiple periodic component over time. It revealed itself very useful to model
phenomena that are likely to present a cyclic pattern. We first introduced its original
structure and estimation procedure as it is in the seminal paper Zhuang and Mateu
(2019) and then motivated its utilization in the context of road accidents. Section 5.2
presented a preliminary application on the Rome urban road network, while Section
5.3 a conclusive application to road accidents that occurred on the M25 London
Orbital (Kalair et al., 2020). In both cases, we presented some original adaptation of
the methodology to the problem at hand, that proved to be useful in order to make
the model results more stable, robust, and reliable. The first application included
some useful edge correction (also adopted in the other application) and an alternative
specification of the spatial excitation function enforcing isotropic-ness. Surprisingly,
the latter resulted in an improved model fit even if it is a less-parametrized model (see
Appendix B.2). This has been justified by considering that the simpler structure of
the resulting log-likelihood favors the individuation of the actual maxima. However,
in the current state, the model neglects the network geometry of the underlying space
and issues in the final validation are likely to be caused by this. Current and future
work is aimed at solving this. In the second application, the adaptation concerns
the uni-dimensionality and directionality of the spatial dimension, being it a single
stream continuous ring road. Furthermore, we also proposed a variation on the
estimation procedure that forces the excitation component to decrease monotonically.
In the considered non-parametric estimation framework of the excitation function,
this alleviated over-fitting issues while favoring interpretability. The model is indeed
validated successfully, both in-sample and out-of-sample (with a novel method),
proving its ability to actually catch the relevant features of the data.

To conclude, all the presented applications showed how proper consideration of
temporal and spatial components can sensibly boost modeling efforts at different
levels. It indeed improves not only the predictive performances but most importantly
on the reliable and accurate explanation of the data generation mechanism. This
allows validating our results with common sense and scientific knowledge and
understanding of the analyzed phenomenon. This last point is yet what makes
statistical analysis superior with respect to some of the ever more (and often
carelessly) used machine learning algorithms, that are lately trying to colonize also
the domain of spatial statistics. These have proved indeed effective in extracting
information from geo-referenced data, but their rules and conclusions are mostly
based on inductive reasoning. The statistical methods instead rely on deductive
reasoning, where theory and hypotheses are verified by collecting and testing data.
In this way, actual knowledge can be distilled from the information contained in the
data, allowing to anticipate the un-observed (or rarely observed) by incorporating
it in a common theoretical framework. The dimension and complexity of the
contemporaneous spatio-temporal datasets cannot be an excuse to neglect some of
the most relevant and important information we have about an outcome or resort to
less insightful techniques. The current tools and methods of spatial statistics must
evolve (and are evolving) to deal with these new data-sources, and this evolution
has to be pushed and favored, trying as much to keep the pace of the relentless
technological development of our era.
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Appendix A

Temporal NNGP and the
Collapsed algorithm

A.1 Additional simulation experiments
We carried out two additional experiments to test the reliability of our algorithm

and verify comparative performances with the Sequential NNGP as it is implemented
in the spNNGP package (Finley et al., 2017a). We did not consider the Response
NNGP because it does not recover the latent component. The first one is described
in Section A.1.1 and includes simulated observations for one single individual;
the second one includes simulated observations for multiple individuals and is
described in Section A.1.2. Codes to reproduce the following results and additional
comparative analyses of NNGP versus the full GP model are available at https:
//github.com/minmar94/EfficientTNNGPforActigraph.

A.1.1 Experiment 1

We generated observations {y(tj)}>j=1 for K = 1 individual, using T = 105

time-points, where each ti =
∑i−1
h=1 δh, and δh ∼ Exp(5), ∀h. The model included an

intercept β0 and 3 covariates, x1, x2 and x3 all drawn from N (0, 1), with associated
slopes β1, β2 and β3. We modeled the covariance structure between any two
simulations at time-points t and t′ using the exponential covariance function:

Covθ
[
Y (t), Y (t′)

]
= cθ(t, t′) = σ2e(φ|t−t′|), σ2, φ ∈ R+, (A.1.1)

where σ2 represents the variance of the process (sill), φ is the decay in temporal
correlation (range) and τ2 the residual variance (nugget). In this data generation
step the parameters have been set to the following values: β0 = −1.878, β1 = 0.326,
β2 = −0.302, β3 = 1.182, σ2 = φ = τ2 = 1. A chunk of the simulated trajectory and
its density can be observed as an example in Figures A.1a and A.1b, respectively.

We fitted the model on the simulated data using our Collapsed NNGP implemen-
tation, specifically optimized for the temporal setting, while fitting the Sequential
NNGP using the spNNGP package. The latter, while generally used for fitting spatial
(i.e. two-dimensionals) models, can be adapted to the temporal (uni-dimensional)
case by providing a set of locations where t is one of the coordinates and the other is
fixed to a constant value (e.g. {s̃j}>j=1 = {(tj , 0)}>j=1). In our implementation, the
intercept and slope regression parameters were given a vague normal prior distribu-
tion N (0, 106). The variance components, σ2 and τ2, were both assigned an inverse

https://github.com/minmar94/EfficientTNNGPforActigraph
https://github.com/minmar94/EfficientTNNGPforActigraph
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Figure A.1. Simulated uni-dimensional Gaussian process (a) and its density (b).

Param. (True) Collapsed NNGP Sequential NNGP
Point Interval ESS Point Interval ESS

β0 (−1.88) -1.87 (-1.89, -1.85) 4999 -1.87 (-1.89, -1.85) 57
β1 (0.33) 0.33 (0.32, 0.34) 4999 0.33 (0.32, 0.34) 1285
β2 (−0.30) -0.30 (-0.31, -0.29) 4999 -0.30 (-0.31, -0.3) 1365
β3 (1.18) 1.18 (1.17, 1.19) 4999 1.18 (1.17, 1.19) 1342
σ2 (1) 1.00 (0.97, 1.03) 472 1.00 (0.97, 1.03) 294
φ (1) 0.99 (0.95, 1.04) 496 0.99 (0.95, 1.04) 65
τ2 (1) 1.01 (0.99, 1.03) 457 1.01 (0.99, 1.03) 165
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.96 0.99 0.95 0.99
RMSPE (r) 0.39 (1.19) 0.20 (0.85) 0.39 (1.19) 0.20 (0.85)
PIW 4.68 4.46 4.68 4.46
Run time (h) 1.77 1.86

Table A.1. Parameter estimates, predictive validation and fitting times (hours) on the
simulated dataset for all the considered models.

Gamma prior IG(2, 2), and the decay parameter φ was ascribed a Γ(1, 1). On the
other hand, the spNNGP assumes a flat prior on the intercept and slope coefficients
and a uniforma U(a, b) prior on the decay parameter φ. In this experiment we
fixed a = 0.5 and b = 30. All the models were trained on the same random sample
composed of the 70% of the total observations, while the the remaining 30% have
been excluded to assess the out-of-sample predictive performances in terms Relative
Mean Squared Prediction Error (RMSPE), Root Mean Squared Prediction Error
(rMSPE), Coverage, Predictive Interval Width (PIW). We ran the 10000 MCMC
iterations, fixing the number of neighbours m = 10. The first 5000 simulations have
been dropped as burn-in, while the last 5000 have been retained for estimation and
prediction purposes. No thinning has been considered. Results are summarized in
Table A.1. The two approaches provide identical outputs, both in terms of estimation
and prediction. However, our implementation is faster than its competitor (at least
in the context of the temporal setting) and provides way better performances in
terms of Effective Sample Size (ESS).
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T × 103 Algorithm Min q025 Median Mean q975 Max

1 Collapsed 0.01 0.01 0.02 0.02 0.03 0.03
Sequential 0.12 0.12 0.13 0.14 0.18 0.18

2 Collapsed 0.03 0.03 0.03 0.04 0.06 0.07
Sequential 0.25 0.25 0.26 0.27 0.31 0.34

4 Collapsed 0.06 0.06 0.07 0.09 0.16 0.16
Sequential 0.50 0.50 0.52 0.64 1.21 1.21

8 Collapsed 0.13 0.14 0.30 0.26 0.32 0.41
Sequential 1.01 1.01 2.34 1.99 2.41 2.56

16 Collapsed 0.27 0.28 0.60 0.46 0.63 0.64
Sequential 2.02 2.02 4.65 3.46 4.75 4.77

32 Collapsed 0.55 0.56 1.23 1.17 1.28 1.37
Sequential 4.08 4.09 9.40 8.87 9.59 10.16

64 Collapsed 1.01 1.03 2.46 1.90 2.79 2.85
Sequential 2.51 7.49 18.71 14.43 20.13 20.69

100 Collapsed 1.60 1.61 1.67 1.68 1.87 1.99
Sequential 11.68 11.74 11.93 12.01 12.80 13.87

Table A.2. Time (in seconds) of one MCMC iteration for the two considered algorithms
with increasing sample size (T) and fixed m = 30.

Computation time evaluation

In order to delve more into the computational aspect, we quantified the linearity
of all the algorithms: by construction, the fitting time should increase linearly with
the sample size. We split observations in l = 1, . . . , 5 different fitting windows
{t1, . . . , tTl} with increasing sizes Tl = {{2l}6l=0 ∪ {100}} × 103 and the computation
time of one sampler iteration, fixing m = 30 for all the considered algorithms has
been recorded for M̃ = 100 times. Figure A.2 shows that all algorithms scale linearly
with the sample size. However, our implementation of the collapsed NNGP, whilst
pointed out as generally less efficient than its competitors in Finley et al. (2019),
scales with a rate of ≈ 0.376 · 10−4 per data-point, while the Sequential NNGP scale
with a rate equal to ≈ 4.5736 · 10−4, which is sensibly higher.

For an exact numerical analysis, results are reported in Table A.2.
Additionally, we also wanted to quantify the computational advantage of our

NNGP-based collapsed algorithm over the standard MCMC update of the full GP
model (Cressie and Wikle, 2015), where the latter is already implemented in R
through spLM() function of the spBayes package (Finley et al., 2013). Since Datta
et al. (2016a) proved that the NNGP approximation with 30 neighbours provides
almost exactly the same inference of the full GP, we fixed m = 30 and built again
different sets of data with increasing number of data-points, but this times with
Tl = 100, 1000, 5000, 10000 (sizes have been reduced to comply with the slow update
of the Full GP). Results, which are summarized in Figure A.3, showed that for
Tl = 100 the computational time difference between the full GP and the collapsed
NNGP is negligible. However, as the size increases, the saving of time increases
exponentially: 15 seconds (per iteration) when n = 5000, 122 seconds per iteration
when n = 10000. For the last scenario, which is the more realistic in a MCMC
inference context, this means that the collapsed NNGP will provide us with the
same results 14 days in advance with respect to the Full GP model.
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Figure A.2. Time elapsed (in seconds) for 1 MCMC iteration for the two considered
algorithms with increasing sample size T and fixed m = 30.
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Figure A.3. Time elapsed (in seconds) for 1 MCMC iteration for the Collapsed NNGP
and the Full GP with increasing sample size T.
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A.1.2 Experiment 2
The aim of this experiment is to verify the ability of our algorithm in recovering

the true parameters and to determine if pooling information from multiple individuals
can help in improving the accuracy of the estimates. Comparison with the Sequential
NNGP is not feasible, since it does not allow the contemporary fitting of multiple
Gaussian processes with common parameters. Thus, we compare performances of
the Pooled NNGP (that’s how we will refer to the proposed collapsed in what follows)
with the single models estimated separately for each individual.

We generated 2 · 104 observations for K = 5 individuals, using the same scheme
of Experiment 1 (total of 105 data-points). Results are presented in Table A.3. The
model also included 3 covariates and an intercept for each individual drawn from
independent N(0, 1). Observations were then generated as described in Section A.1.1.
The simulated data was split into two sets: 70% composed the train set for estimation
purposes, while the remaining 30% was used to asses model predictive performances.
RMSPE, coverage of the predictive 95% credible intervals and their mean width
were used as measures of the goodness of fit. For all the models, the intercept and
slope regression parameters were given a flat normal prior distribution N (0, 106).
The variance components, σ2 and τ2, were both assigned an inverse Gamma IG(2, 2)
priors, and the decay parameter φ received a Gamma prior Γ(1, 1). Visual diagnostic
check (running mean, traceplots, autocorrelation) is performed and results are
available in the supplementary materials (not added yet). The advantage of pooling
information from multiple individuals for the estimation of common parameters,
while the independence assumption among them still holds, is evident according to all
criteria. First of all, there is a sensible gain in the estimation accuracy of the common
parameters. Indeed, while the true value of the parameters are included in the
intervals also considering one single individual at a time, the widths of 95% credible
intervals are sensibly smaller when we pool information together. Furthermore, some
slight advantage is also visible for prediction purposes, where the Pooled NNGP
provides larger coverage and smaller RMSPE. Additionally, thanks to parallelization
of the code, there is almost no loss in terms of the computational time required for
the fitting: ≈ 40 minutes to fit one individual VS ≈ 55 minutes to fit the pooled
model.

A.2 DAG-based approximation of additive Gaussian pro-
cess for spatio-temporal modeling

The proposed methodology has been devised under the pressing request of being
efficient despite the the huge amount of data and the potentially very complex
dependence structure among them. This precluded us from considering since the
beginning an ad-hoc spatio-temporal dependence structure that would be coherent
with the nature and generative process of the data (for the reasons exposed in
Section 3.2.1. For this reason, the spatial effect has been unloaded on the mean
term in Section 3.2.4, keeping a simple and easily manageable form of the covariance
structure.

In this Section, we propose an alternative model that replaces the spatial spline
terms with a more flexible additive Gaussian process. It is only an attempt to
propose a viable model and devise an efficient estimation procedure that, if proved
reliable, can be a direct future development of the currently adopted methodology.
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Appendix B

The Spatio-Temporal Hawkes
process on Rome car accidents

B.1 Examples of Boundary Correction
In the main text and in the previous section to this, we discussed methods of

boundary correction. Specifically, we use mirrored correction when the domain
is truncated, and for periodic domains we include influence from points lying one
period either side of the domain in question. It can be useful to visualize what
impact such methods are actually having on an estimate, so we generate simulated
data to show exactly how they impact the estimates. In Fig. B.1, we show examples
of two datasets. In Fig. B.1a, we show a data-set truncated at 0, and fit two density
estimates to it: one with and one without mirrored boundary correction. Data are
generated from a half normal distribution with mean µ = 0 and standard deviation
σ = 2. Each density estimate is fit with a bandwidth of b = 0.75. In Fig. B.1b, we
show a dataset generated on the domain [0, 10], and imagine that we are trying to
construct a periodic function from it, with [0, 10] being the reference period. Data
are generated from a gamma distribution with shape α = 5 and scale β = 1. Each
density estimate is fit with a bandwidth of b = 0.5. Again, we show an example of a
density fit without any boundary correction, and one with the additional periodic
components included.
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(a) Mirrored correction example.
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(b) Periodic correction example

Figure B.1. Examples of boundary corrections. We show the data as a histogram, the
non-corrected fits with ( ) and the boundary corrected fits with ( ).
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Figure B.2. Comparison of Anisotropic and Isotropic Triggering functions estimates

Inspecting Fig. B.1a, we see a clear drop in the estimate at the truncation point
of 0 without correction. Additionally, from Fig. B.1b, we see again a drop at the
two ends of the periodic domain without any correction. These are removed when
we apply our correction methods.

B.2 Isotropic and anisotropic excitation
Here, we want to check how much the results would have varied if the more

general anisotropic form was considered for the spatial excitation function. First
of all, we compare the two alternatives in terms of overall fit on the data. Again,
this is quantified in terms of the log-likelihood, whose values are reported in Table
B.1 Surprisingly, the anisotropic excitation yields a lower value of the log-likelihood,
exhibiting a worse fit on the data. Nevertheless, comparing it to the other models in
Table 5.1, we can see how it still provides better fits than the non-triggering models.

The excitation component magnitude, represented by the parameter A, is slightly
reduced. Apparently, the euclidean distance based excitation (i.e. isotropic) fits
better the triggering caused by road accidents and provides a better explanation
of this dynamic. Comparing the two estimate spatial excitation in Figure B.2, we
notice how the isotropic presents a more peaked behavior at low distances (near
0). The anisotropic instead is flatter. Aside from that, the two functions in Figures
B.2a and B.2b, look really alike. Deviations of the anisotropic version from the
isotropic mainly arise because the first is defined on the unit square instead of the
unit circle. Moreover, the isotropic obviously represents a perfectly radial decay.
The anisotropic seems to approximate such behavior and, by construction, cannot
possibly achieve it (unless a very refined grid is chosen).

Therefore, the improvement in fit may be explained by the actual presence of a
radial decay in the road accidents dynamic, which would sound completely natural.
In addition, the isotropic model specification is way more parsimonious than the

Model µ̂ Â log-likelihood
Anisotropic 0.1591 0.038 −17264.33
Isotropic 0.1582 0.0592 −17216.65

Table B.1. Log-likelihood values for the isotropic and anisotropic models.
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anisotropic one (the spatial excitation function has less freedom to adapt) and shall
reassure us against over-fitting issues.
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Appendix C

The Spatio-Temporal Hawkes
process on NTIS car accidents

C.1 Problems With Link Specification of Events
To understand why we can localize events, we detail the two scales of data being

provided by NTIS. The first is at the loop-level, with time-series of speed, flow and
occupancy being reported each minute for each sensor in the network. The second is
at the link-level, where aggregated data from all sensors that lie on a link is provided
each minute, specifically speed, flow, occupancy and travel time. We extract both of
these sets of data across our studied domain, and apply a 5-minute rolling average
to smooth out the time-series.

When an event is recorded on our network, we are told which link it has occurred
on, however NTIS links vary vastly in size, with the distribution of link lengths given
in Fig. C.1a, along with the distribution of gaps between successive loop sensors
across the entire network in Fig. C.1b.
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(a) Distribution of link lengths through the
M25.
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(b) Distribution of gaps between loop sen-
sors on the M25.

Figure C.1. Comparison of link lengths and distance between successive loop sensors.
We see that there is wide range of link lengths, with a small number being close to 10
kilometers in length. On the other hand, distances between successive loop sensors are
highly concentrated between 0 and 800 meters.

The wide range of link lengths shown in Fig. C.1a clearly indicate that further
localization needs to be performed to narrow down a specific point on the link before
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we can apply point-process methodology. However, there is hope that the loop
sensors are fine-grained enough in space to provide an estimate of this, with Fig.
C.1b showing that any point in the network should have a loop sensor less than 400
meters away. This is a far higher level of detail than initially provided by NTIS
events, so we decide to refine our data further by using the time-series provided
by the loop sensors. This is not a trivial task however as we do not have labeled
data on which we can train a model, and instead must define sensible criteria that
indicate the location of a traffic accident. This is an extensive task, and detailed in
section C.2

C.2 Event Localization Methodology
We note from the outset that detection of traffic events in both space and time

is an active research field, and various approaches are being considered using an
increasing variety of data sources. We are in an atypical situation in that we know a
temporal and spatial window in which an event occurred, and are only searching for
a more fine-grained spatial location within this window. As such, we do not aim to
completely solve the event detection problem using inductive loop data, rather we
try and develop an effective methodology to take a given window with a known event
in and argue what single set of sensors the event may lie between. From discussions
with industry experts, we consider the following properties to be clear signatures of
a significant traffic event:

a) upstream of an event location, speed will be decreased and occupancy will be
increased compared to the seasonal values

b) downstream of an event location, speed may still be decreased, but less so
than upstream of the accident

c) downstream of an event location, occupancy will be decreased compared to
the seasonal values

Given the industry expert criteria, we first develop simple seasonal models for each
loop sensor in our network. There is clear seasonality on the weekly scale in traffic
data, with commuting days in the U.K. being Monday to Friday, and Saturday
and Sunday having less vehicles on the road. Taking this as the leading seasonal
component, we construct a simple seasonal model by taking all data on a given
weekday at a given time of day, and then finding the median value, using this as
a reasonable seasonal estimate. Doing so, we have a model for each weekday, at
the minute level, fit to each loops data separately. We produce one such seasonal
model for each traffic variable on a loop. We then consider what is reasonable
to develop with our available data. Ideally, we would design and validate some
localization methodology incorporating spatial-temporal information from the loop
data, inferring a location from the behaviour of all loops. However, we have no data
with the ground truth locations, so we cannot reasonably develop such a model.
Instead, we can use a simple ‘rule of thumb’ approach based on existing methodology.
Numerous historic methodologies in traffic theory Payne et al. (1976), Gall and
Hall (1989) compare adjacent sensors to determine two points, one where the data
appears to show an accident, and another where the data does not. We can do the
same, and given we know there must be an event in the given window, we can simply
ask at what point do we see the largest discrepancy for two adjacent sensors. First,
we consider any two sensors in our network, i− 1 and i for all i ∈ {2, · · · , N}. We
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(b) Loop 1 - speed
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(c) Loop 2 - speed
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(d) Loop 3 - speed
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(e) Loop 1 - occupancy
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(f) Loop 2 - occupancy
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(g) Loop 3 - occupancy

Figure C.2. An example result of our localization procedure. We plot the data ( ),
seasonal median ( ) and the 20th and 80th percentiles for the particular traffic variable
( ).

denote the residual series for speed and occupancy on a sensor i as RSi and ROi
respectively. We then compute the spatially differenced values:

∆RSi = RSi −RSi−1, ∆ROi = ROi −ROi−1. (C.2.1)

We then define an ‘event impact score’ between the two loops as:

EISi = ∆RSi −∆ROi. (C.2.2)

Since ∆RSi will likely be positive and ∆ROi will likely be negative if an event occurs
between i− 1 and i, then we look for the pair of loops at which the value of EISi is
largest, and place our localized event halfway between these two loops. There is of
course huge scope to improve upon such a model, but without data to validate more
advanced approaches it is sufficient to provide a method that agrees with existing
literature and common sense rules. Figure C.2 shows an example of localizing an
event based on our simple methodology applied to loop sensor data. The contained
plots give a sense of how much variation there is in the data. This is the first link
in our network, so we show the next loop sensor along for a sense of scale. We see
that sensors 1 and 2 have large drops in speed and increases in occupancy, however
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(c) Spatial Background

Figure C.3. Background components compared across significant events, varying what
speed decrease is required to define an event as significant. Thresholds are: 0%: ,
10%: , 20%: , 30%: , 40%: and 50%: .

sensor 3 appears reasonably seasonal. Our methodology has then placed the event
between sensors 2 and 3.

C.3 Additional analyses
C.3.1 Do Components Change for Significant Events?

Whilst all events flagged in NTIS should correspond to actual traffic accidents,
many of them may not have had a significant impact on the traffic state. Consider
the case where two vehicles have a minor collision, create no debris, and the drivers
pull into the closed hard-shoulder to exchange insurance information. In such a
case, there should be little impact on flow, travel time and speed. Additionally, if
a vehicle breaks down and pulls into the hard-shoulder, and the road is far from
capacity, we should again see little drop in average speed. To consider only the
behaviour of events that have some significant impact, we inspect the link-level
data, which contains significantly less noise than the loop-level. For a given event
window, we consider the largest percentage drop in speed between a simple historical
median segmentation profile and measured values across the entire window. If this
percentage drop is above some threshold, then we say the event caused a significant
impact on the traffic state. Further discussion of this seasonal model is given in
the supplementary material. As we raise this threshold, we isolate more extreme
events but discard so much data that it is no longer reasonable to fit a model. To
retain enough data for fitting, we consider only thresholds between 0 and 50%. We
split our dataset into subsets containing only events that lead to a speed decrease
of at-least 0%, 10%, . . . , 50%, then re-run our model fitting on these subsets. The
resulting background components are visualized in Fig. C.3.

Fig. C.3a shows the daily background is reasonably stable across different
thresholds of significance. As we raise the threshold, the morning and evening peak
structure becomes clearer, and the periods very early and late in the day are lowered.
Fig. C.3b shows that weekends have lower intensity than weekdays as we raise the
threshold for significance. This is likely due to demand being significantly lower
on weekends compared to weekdays, and hence when an event does occur, there
is less chance of an queue forming as the road is further from capacity than on a
weekday. Finally, the spatial background in Fig. C.3c clearly shows that the second
peak, identified around 140 kilometres along the M25, appears to experience more
significantly impactful events than the first peak, observed around 25 kilometres
along the M25. This suggests that not only is Potters Bar a ‘hot-spot’ for events,
but also that the events here are some of the more extreme on the network. Analysis
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(a) Visualization of hotspot
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(b) Comparison of daily back-
grounds.
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(c) Comparison of weekly
backgrounds.

Figure C.4. Identification of hotspot locations, and comparison of temporal background
components around them. In C.4a, we show the spatial locations of hotspot 1 ( ) and
hotspot 2 ( ). In C.4b and C.4c, we show the results for the entire dataset ( ),
hotspot 1 ( ) and hotspot 2 ( ).

of triggering during different significance thresholds shows that the time-scales and
A values remain consistent throughout. The only visible difference in the triggering
functions is that for larger thresholds, the functions decay more quickly.

C.3.2 Temporal Background Analysis Around Peaks in Spatial In-
tensity

Whilst we have seen that the background component of our model has two clear
peaks in it, we can also question if the daily and weekly background components
differ significantly in the vicinity of these peaks, compared to their behaviour across
the entire motorway. To investigate this, we consider each peak separately. Firstly,
we define two ‘hotspots’ surrounding the two peaks in spatial intensity. These
locations start where the spatial background component has a value above 1, and
end where it then falls back below 1. We then isolate a set of events that occur
in each spatial hotspot. For the form of our model, this suggests we are isolating
the spatial location where there is a increase in the rate of events compared to the
average spatial location. We then re-fit our model using only this subset of events,
and question what resulting daily and weekly background components arise. We
visualize our results in Fig. C.4. Specifically, we visualize the subsets by location in
Fig. C.4a, the daily background in Fig. C.4b and the weekly background in C.4c.

From Fig. C.4, it is clear that the temporal background around each hotspot
is reasonably similar to that across the entire M25. The daily background around
the first hotspot has a slightly more pronounced peak in the morning and lower
peak in the evening compared to the entire network. The second hotspot has a
slightly higher peak in the evening. Both hotspots have a similar weekly component.
Overall, it seems reasonable to conclude that behaviour at these two hotspots is not
fundamentally different to that across the entire motorway.
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