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Abstract

We propose a model for scheduling jobs in a parallel machine setting that takes
into account the cost of migrations by assuming that the processing time of a job
may depend on the specific set of machines among which the job is migrated. For
the makespan minimization objective, the model generalizes classical scheduling
problems such as unrelated parallel machine scheduling, as well as novel ones
such as semi-partitioned and clustered scheduling. In the case of a hierarchical
family of machines, we derive a compact integer linear programming formulation
of the problem and leverage its fractional relaxation to obtain a polynomial-
time 2-approximation algorithm. Extensions that incorporate memory capacity
constraints are also discussed.

Keywords: processor affinities, makespan minimization, unrelated machines,
laminar family, wrap-around rule, clustered scheduling

1. Introduction

Multicore architectures have become the standard computing platform in
many domains: multicore processors speed up application performance by di-
viding the workload among multiple processing cores instead of using one “super
fast” single processor. A hierarchical organization of chips of clusters of symmet-
ric multiprocessing (SMP) nodes with multicore chip-multiprocessors (CMP),
also known as SMP-CMP clusters, is common today. For example, consider the
architecture of Intel’s Dual-Core Xeon (see Figure 1). In this architecture there
are three levels of communication: the communication between two proces-
sors on the same chip (intra-CMP communication); the communication across
chips but within a node (inter-CMP communication), and the communication
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Figure 1: Example of a multicore cluster.

between two processors on different nodes (inter-node communication). Intra-
CMP communication has higher performance than inter-CMP, which in turn has
higher performance than inter-node communication: communications between
cores within a chip can usually achieve lower latency and higher bandwidth than
communications between cores in different chips.

The objective of how to efficiently exploit the available hardware parallelism
for scheduling jobs is crucial. Experimental work —see for example [26] and
references therein— has shown that a dynamic scheduler that tries to balance
the processes among the available resources to ensure fair distribution of CPU
time and minimize idle cores is not sufficient. The fundamental flaw with this
approach is that a core is not an independent processor, but is part of a larger
on-chip system that shares resources (such as caches and buses) with other cores.
For example, in the multicore system of the dual-core Xeon, cores on the same
chip share the same L2 cache and memory controller, and all the cores access
the main memory through a shared bus.

Since the communication cost is not uniform, the cost of preempting a job
and resuming its execution should take into account the involved cores: the
cost of resuming execution of a job on the same core is lower than the cost of
resuming on a different core; moreover, the cost of migration is not uniform and
depends on the communication cost between the two involved cores. For all
these reasons, scheduling policies are needed that not only limit the number of
migrations, but that are also aware of the costs involved in migrations.

Additionally, we note that there is a trend in the design of multicore archi-
tectures towards heterogenous architectures, providing more flexibility to meet
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specific performance/energy consumption goals. In fact, heterogeneous multi-
core architectures have been shown to require significantly less energy without a
significant degradation of performance. This results in higher overall efficiency
with respect to conventional homogeneous architectures, but implies that the
processing time of a job cannot be regarded as a constant.

In this paper, we propose a theoretical model for scheduling jobs in a multi-
core architecture that can capture the cost of migrations by assuming that the
processing time of a job depends on the specific set of machines on which the job
is scheduled. Namely, we are given a family of admissible sets of machines A,
and, for each job j and for each set α ∈ A, a value Pj(α) denoting the processing
time required by j if its execution is limited to the machines in α. We assume
that jobs that are assigned to a set α can be executed on any machine in the
set; they can be preempted and possibly migrated to another machine in α, but
simultaneous processing of the same job by two machines is not allowed (see
Section 2 for details).

This setting opens up a whole new class of scheduling models with their own
particular challenges and subsumes well-known problems. For example, if there
are m machines and the admissible family A consists of singletons (i.e., A =
{{1}, {2}, . . . , {m}}), then we obtain the unrelated machines scheduling problem
[15]; if A consists of one set containing all machines (i.e., A = {{1, 2, . . . ,m}}
then we have the (preemptive) parallel machine scheduling problem [20].

While the model presented here does not account exactly for the number of
migrations incurred, this number can be bounded (see, for example, Proposi-
tion 3.4), allowing migration costs to be accounted for in the processing times,
if desired. Differently from other approaches, this allows for a flexible input
representation and easily accommodates heterogeneous machines. In fact, we
also show how our basic model can be extended to incorporate memory capacity
constraints.

1.1. Related Work

Much of the prior work on multiprocessor scheduling theory has focused on
either the partitioned or the global approach. Under partitioning, each job is
statically assigned to a machine; if the cost of processing a job depends on the
specific machine on which the job is executed, we have the unrelated machines
scheduling problem [15]. Under global scheduling, on the other hand, task
migration is allowed with no restrictions and with no additional costs [14, 20].

It is well-known that partitioning incurs lower runtime overheads (as there
are no migrations), but produces schedules that may be unnecessarily con-
strained; global scheduling, vice versa, entails higher runtime costs that should
be properly taken into account (see for example [25]). We now review other
approaches that have been proposed and experimentally tested to overcome the
above tradeoff between better scheduling policies and higher costs.

Semi-partitioned scheduling was proposed as a compromise between pure
partitioned and global scheduling [3]. Semi-partitioning relaxes partitioned
scheduling by allowing a small number of jobs to migrate, thereby improving
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schedulability. Such tasks are called migratory, in contrast to statically assigned
tasks. The common goal in this line of work is to circumvent the algorithmic lim-
itations and resulting capacity loss of partitioning, while avoiding the overhead
of global scheduling by limiting migrations.

Clustered scheduling is another proposal that aims to alleviate limitations
of partitioned and global algorithms; it exploits the grouping of cores into clus-
ters of symmetric multiprocessing nodes with multicore chip multiprocessors:
tasks are statically assigned to clusters (like in partitioning), but are globally
scheduled within each cluster [2, 22].

Semi-partitioned and clustered scheduling are not the only two proposals;
we briefly mention other proposals. Federated scheduling was introduced in [16]
to deal with parallel real-time tasks, where each task is a DAG whose nodes
represent jobs and edges represent precedence constraints among jobs. Forcing
the execution of a single task on a single processor restricts all jobs of a task to
execute on the same processor, and forbids to deal with tasks with a (paralleliz-
able) computational demand exceeding the capacity of a single processor. The
federated scheduling approach [1, 16] is advocated as a reasonable extension of
partitioned scheduling to parallel real-time task sets: there are tasks that are
permitted to execute upon more than one processor and are granted exclusive
access to the processors upon which they execute, while the remaining tasks are
partitioned amongst a pool of shared processors.

We observe that contemporary commodity operating systems (such as Linux
and Windows) implement more complex migration strategies by defining pro-
cessor affinity masks, which specify on a per-process basis on which processors
a job may be scheduled. Namely, processor affinities allow binding a process to
an arbitrary subset of processors in the system and a process can only be sched-
uled on the processors that it is bound to. It is known that processor affinity
is useful for increasing the performance of a parallel system in several contexts,
such as application performance, fault-tolerance, security and real-time systems
[5, 19, 23].

Processor affinities yield a general framework that can be used to realize
global, partitioned, or clustered scheduling. For example, in partitioned schedul-
ing, each task’s processor affinity includes exactly one processor, while in global
scheduling, each task’s processor affinity is set to all processors. The new fea-
ture is that arbitrary processor affinities can be assigned on a job-by-job basis,
which permits the specification of migration strategies that are more flexible
than those usually studied in the literature.

To the best of our knowledge, the model we propose has not been considered
theoretically. In the rest of this section we highlight the differences with previous
results on somewhat similar, but distinct, models.

We already observed that the problem of scheduling unrelated machines is a
special case of our model; more recently, in [8, 21] a non-preemptive scheduling
problem is considered that is a special case of scheduling unrelated machines
(and, thus, of our model). Namely, the problem of non-preemptively scheduling
to minimize makespan when each job j a can be scheduled only on a set of
machines M(j) (i.e., the processing time of job j on machine i is pj if i ∈M(j)
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or∞ otherwise); such machine sets have a laminar structure. Glass and Kellerer
[8] give a (2− 1/m)-approximation algorithm; Muratore et al. [21] improve this
to a polynomial-time approximation scheme.

Bougeret et al. [6] (see also references therein) consider the non-preemptive
scheduling of jobs on a clustered architecture. The authors assume that each
cluster is formed by m processors and that the execution of job j requires qj
processors belonging to the same cluster for pj time units; they develop a 7/3
approximation algorithm for minimizing the makespan. In our model we allow
preemption and we consider the more challenging case when for each job there
are many sets of machines that could execute it, with different processing times;
indeed, one of the main difficulties lies in selecting the best processor affinity
mask for each job.

Hwang et al. [10] study a model of parallel non-preemptive scheduling on
identical machines, where interprocessor communication times are explicitly
given as part of the input. While potentially more accurate, we observe that
in order to be applied to a preemptive setting, such a model would require to
break down each job into a possibly exponential number of unit-size jobs; addi-
tionally, the model of Hwang et al. would require a significant extension in the
heterogeneous case.

Our work focuses on the cases of hierarchical affinity masks. In the case of
general, non-hierarchical affinity masks with no memory capacity constraints,
one can obtain an 4-approximation algorithm by invoking known results, as
follows. Given an instance of the general problem, construct an instance of the
unrelated machines problem by setting the processing time of a job j on machine
i to the minimum processing time of j on an admissible set that contains i.
The optimal preemptive makespan of such an instance is a lower bound on the
optimum of the original instance with affinity masks. Moreover, Lin and Vitter
[17] (see also [7]) show how to construct in polynomial time a non-preemptive
schedule whose makespan is at most a factor 4 times the optimal preemptive
makespan. Such a schedule is then a 4-approximate solution for the problem of
scheduling with affinity masks.

Finally, we remark that in this work we focus on the load balancing and
runtime scheduling aspects rather than memory accesses and cache complexity.
The reader is referred to [4] and references therein for models that focus on
hierarchical cache performance.

1.2. Contributions and Organization of the Paper

We focus on preemptively scheduling jobs to minimize the makespan assum-
ing a hierarchical architecture, and we first show how this problem generalizes
several classical and new problems (Section 2).

In Section 3 we consider, as a warm-up, the case of semi-partitioned schedul-
ing, and we identify necessary and sufficient conditions for schedulability. Namely,
we provide an ILP formulation of the assignment problem that, for each job,
will specify whether the job is assigned to a specific machine or executed glob-
ally. We also provide an efficient scheduler that, given a feasible solution to the
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ILP, constructs a schedule with the same makespan, thus setting the times for
executing and possibly migrating jobs.

In Section 4 we consider the more general case of hierarchical scheduling. We
provide an ILP formulation of the assignment problem that, for each job, will
specify the affinity mask that will be used for scheduling the job, and a scheduler
that, given a feasible solution to the ILP, constructs a schedule with the same
makespan, again setting the times for executing and possibly migrating jobs.
We remark that our proposed scheduler is combinatorial and that the schedule
cannot be trivially constructed by using standard network flow formulations for
scheduling on identical machines.

In Section 5 we prove an upper bound on the approximation ratio of the
problem for the hierarchical setting. We show how a fractional relaxation of the
ILP can be leveraged to obtain a polynomial-time 2-approximation algorithm by
building on existing algorithms for the unrelated machines scheduling problem;
the key lemma of the proof shows how to redistribute the variables’ values in a
feasible fractional solution across the levels of the machine hierarchy.

Finally, in Section 6 we consider extensions of the model to handle addi-
tional memory constraints: each job is characterized by a memory requirement
in addition to its processing times, and there is a constraint on the available
memory at each machine, or at each cluster of the hierarchy.

2. Notation and problem formulation

We are given a set of n jobs J := {1, . . . , n} and a set of m machines
M := {1, . . . ,m}. Each job needs to be assigned to a set of machines on which
the job is allowed to be schedule, and the job can be preempted and migrated
among any such machines. However, its processing time depends on the set of
machines on which it is assigned. In detail, we are given a family of admissible
sets A ⊆ 2M , and for each job j ∈ J , a processing time function Pj : A → Z+

with the constraint that the function must be monotone on A, i.e., if α, β ∈ A
and α ⊆ β, then Pj(α) ≤ Pj(β), modeling the fact that processing overheads
(caused, e.g., by migration) increase if the job is executed using a larger set
of machines. We often use the shorthand pαj := Pj(α). Moreover, to avoid
cumbersome notation, when α is a singleton, such as α = {i}, we write pij
instead of p{i}j .

We therefore stipulate that, when a job j ∈ J is run on a set of machines
α ∈ A, the total processing time it receives must be Pj(α). In general, if a job
is run on machine set M ′ (which may or may not be in A), its processing time
must be pαj , where α is an inclusion-wise minimal set in A that contains M ′

and that minimizaes the processing time (if there is no such α, then j cannot
be run on M ′).

Given J and A, an assignment of jobs in J to sets in A is a function that
assigns each job in J to a set in A. If a job j is assigned to a set α, then its
processing time is Pj(α). The set α to which a job j is assigned is also called
the affinity mask of j. Given an assignment of jobs in J to sets in A, a schedule
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is valid with respect to the assignment if each job is scheduled on time slots of
machines in its affinity mask, no job is processed in parallel on more than one
machine in the same time interval (though it may be preempted or migrated),
each job receives the required amount of processing time (i.e. pαj , if job j is
assigned to set α), and no machine processes more than one job in a time slot.
We assume that schedules start at time 0 and allow preemptions and migrations
to occur only at integer time points. If, in a given schedule, a job j completes
at time Cj , then T := maxj∈J Cj is called the makespan of the schedule.

In this paper, we consider the problem of finding an assignment of jobs in J
to sets in A and a corresponding valid schedule that minimizes the makespan.
We divide the problem into two subproblems: given J and A, find an assignment
of jobs in J to sets in A that admits a valid schedule in the interval [0, T ] and
minimizes T ; and given an assignment of jobs in J to sets in A that admits
some valid schedule in the interval [0, T ], construct a valid schedule in the same
interval.

In this paper, we restrict the discussion to laminar (or hierarchical) instances
of the problem, where, for each α, α′ ∈ A, either α ⊆ α′ or α′ ⊆ α or α∩α′ = ∅.
Without loss of generality, we assume that all sets in the family A are distinct.
In a laminar instance, the level of a set β is the number of sets α ∈ A such
that β ⊆ α and the level of the instance is the maximum level among the sets
in A. We call the problem with laminar instances the hierarchical scheduling
problem. The hierarchical scheduling problem generalizes some well-known and
new scheduling problems.

• Identical parallel machines scheduling with preemption (P |pmtn|Cmax)
[20]: take A = {M}. Then each job j can be migrated freely among the
machines in M , as long as it receives the processing time pMj .

• Unrelated parallel machines scheduling (R||Cmax) [15]: take A to be a
family of m singletons, i.e., A = {{1}, {2}, . . . , {m}}. Then each job must
be assigned to a single machine (no migration) and its processing time is
a function of the machine.

• Semi-partitioned scheduling [3]: take A = {M, {1}, {2}, . . . , {m}}. Then
each job can either be run globally (i.e., freely migrated) on M with pro-
cessing time pMj , or assigned locally to a specific machine i ∈ M , with
processing time pij ≤ pMj .

• Clustered scheduling [2]: let m = kq. Take A = {M, {1}, . . . , {m},
{1, . . . , q}, {q + 1, . . . , 2q}, . . . , {(k − 1)q, . . . , kq}}. Then each job can
be run globally, or locally to a single machine, or locally to a cluster of q
machines.

Semi-partitioned scheduling generalizes scheduling on unrelated parallel ma-
chines (by taking sufficiently large values of pMj); hence, the following proposi-
tion is implied by existing results for the R||Cmax problem [15].

Proposition 2.1. Hierarchical and semi-partitioned scheduling are NP-hard to
approximate within any constant factor less than 3/2.
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The following example shows that, not surprisingly, hierarchical scheduling
instances may admit shorter schedules than the corresponding unrelated parallel
machine instances.

Example 2.1. (See also Figure 2.) Consider a semi-partitioned instance with
three jobs and two machines: job 1 has pM1 =∞, p11 = 1, p21 =∞; job 2 has
pM2 = ∞, p12 = ∞, p22 = 1; job 3 has pM3 = p13 = p23 = 2 (∞ represents a
sufficiently large constant). It is easy to see that the semi-partitioned instance
has a schedule with makespan 2, while the corresponding unrelated machine
instance has an optimal makespan of 3.

Job 2 Job 3

Job 3 Job 1

Machine 2

Machine 1

0 1 2
Time

Machines

Figure 2: Optimal schedule for the instance of Example 2.1.

In the sequel, to more easily illustrate the ideas behind our approach, we
first discuss the two-level case in Section 3. Section 4 is devoted to the more
general hierarchical setting. We describe the details of the rounding procedure
in Section 5, which leads to our main result (Theorem 5.2). Finally, in Section
6, we discuss how the model can be extended to incorporate memory capacity
constraints.

3. Semi-partitioned scheduling

Let j = 1, . . . , n be a job and i = 1, . . . ,m be a machine; in this section,
the special “machine” index 0 will represent the set M , i.e., global processing.
We use the following integer linear program (ILP) to determine the minimum
makespan. Binary variable xij encodes the assignment of job j to machine i (or
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to the set M , if i = 0).

min T (IP-1)
m∑
i=0

xij = 1 for j ∈ J (1a)

n∑
j=1

m∑
i=0

pijxij ≤ mT (1b)

n∑
j=1

pijxij ≤ T for i ∈M (1c)

pijxij ≤ T for j ∈ J and i ∈ {0} ∪M (1d)

xij ∈ {0, 1} for j ∈ J and i ∈ {0} ∪M. (1e)

It should be clear from the description of the model that the above constraints
are necessary for the existence of a valid schedule with makespan T ; the fact
that they are sufficient is the nontrivial claim that we prove in this section.
We show algorithmically that a feasible solution to (IP-1) ensures that a valid
schedule with makespan T exists.

Example 3.1. Consider the instance of Example 2.1. For any finite value of
T , the ILP constraints imply x11 = 1, x22 = 1; thus, for job 3, we obtain the
processing time constraints 2x03 ≤ T , 2x13 ≤ T − 1, 2x23 ≤ T − 1, 2x13 +
2x23 + 2x03 ≤ 2T − 2. The optimal integral solution has T = 2 and assigns job
1 to machine 1, job 2 to machine 2, and job 3 globally to both machines. The
following schedule has a makespan value of 2: job 1 is scheduled on machine
1 during [1, 2); job 2 is scheduled on machine 2 during [0, 1); finally, job 3 is
scheduled on machine 1 during [0, 1), then migrated to machine 2 where it is
scheduled during [1, 2).

The pseudo-code of our scheduler is reported in Algorithm 1. The scheduler
takes as input a feasible solution to (IP-1) and assigns the jobs to time slots of
the machines according to the affinity masks defined in the solution.

Algorithm 1 first schedules the global jobs (i.e. jobs j such that x0j = 1) so
that no job is scheduled simultaneously on two machines. Namely, it computes
the total volume V of global jobs and initializes a variable t to 0 (lines 1–2).
Then, it iterates on all the machines and assigns to each of them a suitable
amount δ of global volume. While V > 0, the algorithm looks for an empty
machine i > 0 (line 4) and schedules δ global volume in the interval [t, t + δ
(mod T )] on i (line 6). Then it increases the value of t by δ (mod T ) and
decreases the volume V of global jobs still to be scheduled by δ (lines 7–8).

The value of δ in each iteration is computed as follows. The total volume
of local jobs assigned to machine i is

∑n
j=1 pijxij , so we can schedule at most

T −
∑n
j=1 pijxij volume of global jobs on i in the interval [0, T ]. Therefore,

if the volume V of global jobs that still needs to be scheduled is smaller than
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ALGORITHM 1: Job scheduling (for a given assignment x)

1 t← 0;
2 V ←

∑n
j=1 p0jx0j ;

3 while V > 0 do
4 i← an empty machine (in 1, . . . ,m);
5 δ ← min(V, T −

∑n
j=1 pijxij);

6 Assign δ units of global work to i, in the interval [t, t+ δ (mod T )];
/* (The remaining T − δ units on i will be used by local jobs) */

7 t← t+ δ (mod T );
8 V ← V − δ;
9 end

10 foreach machine i ∈M and job j ∈ J such that xij = 1 do
11 Schedule j on machine i in the free time of interval [0, T ];
12 end

T −
∑n
j=1 pijxij , then δ = V , otherwise, we exploit all the possible empty space

on i and then δ = T −
∑n
j=1 pijxij (line 5).

Having scheduled the global jobs, the algorithm then schedules the local
jobs (i.e. jobs j such that xij = 1, for i > 0) in the free time of each machine
(line 11).

In order to show that Algorithm 1 produces a valid schedule, we need to
prove the two next lemmas.

Lemma 3.1. In the schedule produced by Algorithm 1, all jobs receive the re-
quired amount of processing time.

Proof. We first show the statement for global jobs, in particular we show that
V = 0 at the end of the while loop. By contradiction, assume that at the end of
some iteration of the while loop V > 0 and there is no empty machine left to be
selected at line 4 of the next iteration. This implies that for each machine i, the
amount δ of global volume scheduled on i is T −

∑n
j=1 pijxij (see lines 5 and 8).

Therefore, the overall amount of scheduled global jobs is
∑m
i=1(T−

∑n
j=1 pijxij)

and the amount of global jobs still to be scheduled is

n∑
j=1

p0jx0j −
m∑
i=1

(T −
n∑
j=1

pijxij) =

m∑
i=0

n∑
j=1

pijxij −mT.

Since V > 0 at the end of the considered iteration, then the above quantity
is strictly positive, and then

∑m
i=0

∑n
j=1 pijxij > mT , a contradiction to con-

straint (1b).
Note also that, for each machine i, the global jobs leave a free time of at

least T −
∑n
j=1 pijxij in the interval [0, T ] (see line 5). Therefore, the local jobs

that are assigned to machine i receive at least an overall amount
∑n
j=1 pijxij of

processing time at line 11.
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Lemma 3.2. In the schedule produced by Algorithm 1, no job is scheduled in
parallel with itself.

Proof. Clearly, no local job will be scheduled in parallel with itself, since each
such job is scheduled on a unique machine (and pijxij ≤ T ). Assume by con-
tradiction that a global job j is scheduled on two different machines i and i′

during the same time interval [t1, t2], t2 > t1, and assume w.l.o.g. that the
iteration related to machine i occurred before that of i′. This implies that in all
the iterations from that of i to that of i′, only job j is scheduled and that, since
t2 > t1, p0j > T . Since x0j = 1 this is a contradiction to constraint (1d) .

Theorem 3.3. Given a feasible solution (x, T ) to (IP-1), Algorithm 1 produces
a valid schedule in the interval [0, T ].

Proof. The statement follows from lemmas 3.1 and 3.2 and by observing that all
the jobs are scheduled in the interval [0, T ] (see lines 6–7 and 11 of Algorithm 1).

The following proposition bounds the number of migrations and preemptions
that occur in the worst case; this value can be used for a priori bounding the
worst-case processing time of a job that is migrated among multiple machines.

Proposition 3.4. The number of job migrations in the schedule produced by
Algorithm 1 is at most m − 1. The number of job preemptions and migrations
is at most 2m− 2.

4. Hierarchical scheduling

The following ILP expresses necessary conditions on the minimum makespan
T and an optimal assignment x in the hierarchical scheduling problem.

min T (IP-2)∑
α∈A

xαj = 1 for j ∈ J (2a)

n∑
j=1

∑
β⊆α

pβjxβj ≤ |α|T for α ∈ A (2b)

pαjxαj ≤ T for α ∈ A, j ∈ J (2c)

xαj ∈ {0, 1} for α ∈ A, j ∈ J. (2d)

Similarly to the previous section, we give an algorithm that takes as input a
feasible solution (x, T ) to (IP-2) and constructs a valid schedule with makespan
T . The algorithm works in two phases. The first phase (Algorithm 2) proceeds
bottom-up (i.e., from the smallest sets up to the largest set) and, for each
set of machines α ∈ A and for each machine i ∈ α, it determines the load
load[i, α] of machine i due to jobs assigned to set α by the ILP (i.e., jobs j
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s.t. xαj = 1). The load is assigned in such a way that for each affinity mask
the overall load is equal to the sum of the required processing time, that is∑
i∈α load[i, α] =

∑n
j=1 pαjxαj .

1 The second phase (Algorithm 3) proceeds
top-down (i.e., from the largest set down to the smallest ones) and, for each set
α ∈ A, determines the schedule of each job j such that xαj = 1 on each machine
i ∈ α, that is, the time slots of each machine i ∈ α that are assigned to job j.

The crucial observation is that the first phase computes load in such a way
that the second phase is able to identify only one machine, for each affinity mask,
that must be checked in order to avoid to schedule more than one job in the same
time interval of the same machine. In fact, the first phase ensures that for each
affinity mask β ∈ A there exists at most one machine i ∈ β that is loaded with
some jobs assigned to a superset of β, that is load[i, β] > 0 and load[i, α] > 0,
for some α ∈ A such that β ⊂ α. Since the second phase proceeds top-down,
when affinity mask β is analyzed, the schedule of jobs assigned to α in such a
machine i is already determined.

Assume that the jobs assigned to α are scheduled in interval [t, tiα], where
tiα = t+ load[i, α] (mod T ); the algorithm first schedules the jobs assigned to
β in machine i, in the interval [tiα, tiβ ], where tiβ = tiα + load[i, β] (mod T ).
Then, it schedules the remaining load by filling up machines ` ∈ β \ {i} starting
from time tiβ . Indeed, if we assume that the machines in β \ {i} are sorted
in an arbitrary way, β \ {i} = (`1, `2, . . . , `|β|−1), then jobs assigned to β are
scheduled in interval [t`k−1β , t`kβ ] of machine `k, where t`0β = tiβ and t`kβ =
t`k−1β + load[`k, β] (mod T ). This guarantees that no jobs is scheduled in
parallel with itself and that no machine has more than one job scheduled in the
same time interval.

The pseudo-code of the first phase is given in Algorithm 2. First, the al-
gorithm initializes variable load (line 1). Then, for each α ∈ A and i ∈ α, it
initializes variable tot-load[i, α], which stores the cumulative load of machine
i due to all sets β ⊆ α (line 2). Variable mark[α] is used to determine whether
set α ∈ A has been visited or not by the algorithm and it is initialized at line 3.
The while loop at lines 4–14 visits all the sets in A in a bottom-up order: at each
iteration it selects a set α such that all its subsets have been already visited, i.e
such that mark[α] = false and, for each β ⊂ α, mark[β] = true (line 5). At
each iteration, variable V stores the volume of jobs assigned to α (i.e. jobs j such
that xαj = 1) that still needs to be scheduled. Variable V is initialized to the
total volume of jobs assigned to α at line 6. The loop at lines 7–13 iterates for
each machine i ∈ α in ascending order and, in order to compute load[i, α], first
selects the maximal subset β of α that contains machine i (if it exists, see line 8–

1An alternative approach could be to modify (IP-2) by adding additional fractional vari-
ables of the form yαij and constraints of the form

∑
i yαij = xαj ; yαij represents the fractional

share of job j on machine i if job j is scheduled using affinity mask α. However, this may
not suffice to guarantee that a valid schedule exists, since a job can only be scheduled on one
machine at a time. Conversely, our approach guarantees that a valid schedule exists (Theorem
4.6); moreover, the method is combinatorial and avoids the complication of a larger number
of variables.
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ALGORITHM 2: First phase (bottom-up volume allocation)

1 load[i, α] = 0, for each α ∈ A and i ∈ α;
2 tot-load[i, α] = 0, α ∈ A and i ∈ α;
3 mark[α] = false for each α ∈ A;
4 while ∃α ∈ A such that ¬mark[α] do
5 Let α such that ¬mark[α] and (mark[β], for each β ⊂ α);
6 V ←

∑n
j=1 pαjxαj ;

7 foreach i ∈ α in ascending order do
8 Let β be the maximal set β ⊂ α such that i ∈ β;
9 (if no such β exists, set β = ∅ and tot-load[i, ∅] = 0);

10 load[i, α]← min{V, T − tot-load[i, β]};
11 tot-load[i, α]← tot-load[i, β] + load[i, α];
12 V ← V − load[i, α];

13 end
14 mark[α]← true;

15 end

9). The value of load[i, α] is computed at line 10 as follows. The total volume
of jobs already assigned to machine i is equal to the cumulative load of machine
i due to all sets β ⊂ α, that is tot-load[i, β]. Then, we can schedule at most
T−tot-load[i, β] volume of jobs assigned to α on i. Therefore, if the volume V
of global jobs that still needs to be scheduled is smaller than T−tot-load[i, β],
then we assign the entire volume to i and set load[i, α] = V , otherwise, we ex-
ploit all the possible empty space and set load[i, α] = T − tot-load[i, β].
Next, the algorithm computes the value of tot-load[i, α] by adding load[i, α]
to tot-load[i, β] (line 11). Note that, tot-load[i, α] =

∑
β⊆α:i∈β load[i, β]

and, eventually,
∑
i∈α tot-load[i, α] =

∑
β⊆α

∑
i∈β load[i, β]. Finally, vari-

ables V and mark[α] are updated at lines 12 and 14. The next lemma shows
that the cumulative load on each machine i is at most T and that the volume
of the jobs assigned to set α is assigned entirely to variables load[i, α], for all
i ∈ α.

Lemma 4.1. i) For every α ∈ A and i ∈ α, tot-load[i, α] ≤ T at the end of
Algorithm 2.
ii) Whenever line 14 of Algorithm 2 is executed, V = 0.

Proof. i) From lines 10 and 11 of the algorithm we get tot-load[i, α] ≤
tot-load[i, β]+T −tot-load[i, β] = T. ii) Let α be the first set for which the
statement does not hold. That is, V > 0 at the end of line 13 of Algorithm 2 of
the iteration related to set α, while V = 0 at the end of the iteration related to
each β ⊂ α.

For each β ⊂ α, we have that

∑
i∈β

load[i, β] =

n∑
j=1

pβjxβj ,
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since V =
∑n
j=1 pβjxβj −

∑
i∈β load[i, β] = 0. By definition of tot-load, for

each β ⊂ α,
∑
i∈β tot-load[i, β] =

∑
γ⊆β

∑
i∈γ load[i, γ] and then,

∑
i∈β

tot-load[i, β] =
∑
γ⊆β

n∑
j=1

pγjxγj . (3)

For each i ∈ α, let βi be the maximal set βi ⊂ α such that i ∈ βi (see line 8).
Since for α the statement does not hold, then, for each i ∈ α, load[i, α] =
min{V, T −tot-load[i, βi]} = T −tot-load[i, βi] (see line 10). It follows that
at line 14 of the iteration related to set α:

V =

n∑
j=1

pαjxαj −
∑
i∈α

load[i, α]

=

n∑
j=1

pαjxαj −
∑
i∈α

T +
∑
i∈α

tot-load[i, βi].

The term
∑
i∈α T is equal to |α|T . Since A is laminar, for each i, i′ ∈ α either

βi = βi′ or βi ∩ βi′ = ∅, and then∑
i∈α

tot-load[i, βi] =
∑
β⊂α

β is maximal

∑
i∈β

tot-load[i, β]

=
∑
β⊂α

β is maximal

∑
γ⊆β

n∑
j=1

pγjxγj

=
∑
γ⊂α

n∑
j=1

pγjxγj ,

where the last two equalities follow from (3) and from the fact that A is laminar,
respectively. Therefore,

V =

n∑
j=1

pαjxαj − |α|T +
∑
γ⊂α

n∑
j=1

pγjxγj

=
∑
γ⊆α

n∑
j=1

pγjxγj − |α|T.

Since V > 0, then
∑
γ⊆α

∑n
j=1 pγjxγj > |α|T , a contradiction to constraint (2b).

Algorithm 2 guarantees that for any set β there exists at most one machine
i ∈ β whose load is due to jobs assigned to α and to β, where α is some set
such that β ⊂ α. This is proven in the next lemma and will be exploited by the
second phase of the algorithm.
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ALGORITHM 3: Second phase (top-down job scheduling)

1 mark[α]← false for each α ∈ A;
2 while ∃β ∈ A such that ¬mark[β] do
3 Let β such that ¬mark[β] and (mark[α], for each α such that β ⊂ α);
4 if ∃i ∈ β such that load[i, β] > 0 and load[i, α] > 0, for some set α ∈ A

such that β ⊂ α then
5 Let α be the minimal set such that β ⊂ α and load[i, α] > 0;
6 tβ ← tiα;
7 `← i;

8 else
9 tβ ← 0;

10 `← minβ;

11 end
12 foreach k ∈ β in any order starting from ` do
13 Assign load[k, β] units of time of jobs j such that xβj = 1 to machine k,

in the interval [tβ , tβ + load[k, β] (mod T )];
14 tβ ← tβ + load[k, β] (mod T );
15 tkβ ← tβ ;

16 end
17 mark[β]← true;

18 end

Lemma 4.2. For each set β ∈ A there exists at most one machine i ∈ β such
that, for some set α ∈ A such that β ⊂ α, it holds that load[i, β] > 0 and
load[i, α] > 0.

Proof. By contradiction, let us assume that there exist two machines i and i′, i <
i′, such that load[i, β] > 0, load[i, α] > 0, load[i′, β] > 0, and load[i′, α′] >
0, for some α, α′ ∈ A such that β ⊂ α, α′. Let us consider line 10 of Algorithm 2
at the iteration related to set β and machine i and let γ be the maximal set
γ ⊂ β such that i ∈ γ, that is load[i, β] = min{V, T − tot-load[i, γ]}.

• If min{V, T − tot-load[i, γ]} = V , then load[i, β] = V and at the end
of the iteration the algorithm sets V = 0 (line 12). Therefore, for each
machine i′′ ∈ β, i′′ > i, the instruction at line 10 sets load[i′′, β] = V = 0.
Since i′ > i, then load[i′, β] = 0, a contradiction to load[i′, β] > 0.

• If min{V, T−tot-load[i, γ]} = T−tot-load[i, γ], then load[i, β] = T−
tot-load[i, γ] and the algorithm sets tot-load[i, β] = tot-load[i, γ]+
load[i, β] = T at line 11. Therefore, for each α such that β ⊂ α,
tot-load[i, α] = tot-load[i, β] = T and load[i, α] = min{V, 0} = 0, a
contradiction to load[i, α] > 0.

The pseudo-code of the second phase is given in Algorithm 3. As in Algo-
rithm 2, variable mark[α] is used to determine whether a set α has been visited
or not. In this case, the algorithm visits all the sets in A in top-down order
(see the while loop at lines 2–18). Variable tiα stores the latest time instant in
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which a job assigned to set α is scheduled on machine i ∈ α. Let β be a maximal
set that has not been visited yet (line 3). By Lemma 4.2, there exists at most
one machine i ∈ β such that load[i, β] > 0 and load[i, α] > 0, for some set
α ∈ A such that β ⊂ α. If such a machine exists, then let α be the minimal
set satisfying the previous condition (line 5) and let ` be the unique machine
where both sets have some load (line 7). We first schedule jobs assigned to β
from time tiα on machine ` and then we proceed by scheduling the remaining
volume on the empty machines in β as done for global jobs in Algorithm 1. In
detail, we initialize tβ to tiα (line 6); for each machine k ∈ β, starting from `,
we assign load[k, β] units of time of jobs assigned to β to machine k, in the
interval [tβ , tβ + load[k, β] (mod T )] (line 13); and we update tβ and tkβ by
adding load[k, β] (mod T ) (lines 14–15). In the case that there is no machine
in β with some loads due to two different sets, the only difference is that ` is
chosen as the smallest machine in β and tβ is initialized to 0 (lines 9–10).

Lemma 4.3. In the schedule produced by Algorithm 3, all jobs receive the re-
quired amount of processing time.

Proof. We show that for each α all the jobs j such that xαj = 1 receive the
required amount of processing time, i.e.,

∑n
j=1 pαjxαj . For each i ∈ α, Al-

gorithm 3 assigns load[i, α] units of time to machine i and therefore assigns∑
i∈α load[i, α] overall time to jobs j such that xαj = 1. By Lemma 4.1.ii,∑
i∈α load[i, α] =

∑n
j=1 pαjxαj .

Lemma 4.4. In the schedule produced by Algorithm 3, no job is scheduled in
parallel with itself.

Proof. The proof is similar to that of Lemma 3.2. Assume by contradiction that
a job j such that xβj = 1 is scheduled on two different machines i, i′ ∈ β during
the same time interval [t1, t2], t2 > t1, and assume w.l.o.g. that j is scheduled
first on machine i and then on machine i′. Then, in all the iterations of the loop
at lines 12–16 of Algorithm 3, from that of i to that of i′, only job j is scheduled
and thus, since t2 > t1, pβj > T , a contradiction.

Lemma 4.5. In the schedule produced by Algorithm 3, no machine processes
more than one job in the same time interval.

Proof. By contradiction, let us consider the first iteration of the loop at lines 12–
16 in which a machine i that is already scheduling a job j in some time interval
is assigned another job j′ in the same interval.

Let us assume that xβj′ = 1. Moreover, all the jobs j′′ such that xγj′′ = 1 for
any γ ⊂ β are not yet scheduled in the considered iteration, therefore xαj = 1,
for some α such that β ⊂ α.

By Lemma 4.2, i is the only machine such that load[i, β] > 0 and load[i, α] >
0, then, i is the machine ` selected at line 7 of Algorithm 3. Let α = α0 ⊃ α1 ⊃
α2 . . . ⊃ αL = β be all the sets in A such that β ⊆ αp ⊆ α. We recall that
tiαp is the last time instant in which the algorithm schedules a job assigned to
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αp on machine i and that the value of tβ after line 6 of the algorithm is exe-

cuted, but before line 14 is executed, is t̄β = tαL−1
= tiα +

∑L−1
l=1 load[i, αl]

(mod T ). Let tx be the first time instant in which the algorithm schedules a job
assigned to α on machine i, that is, jobs assigned to α are scheduled either in
the interval [tx, tiα], if tx < tiα, or in the intervals [tx, T ] and [0, tiα], otherwise.
In the former case, to have that machine i processes a job in α and a job in β
in the same time interval, we must have that t̄β + load[i, β] > tx + T , that is

tiα +
∑L
l=1 load[i, αl] > tx + T . Since tiα − tx = load[i, α], this implies that∑L

l=0 load[i, αl] > T , a contradiction to Lemma 4.1.i. In the latter case, we

must have that t̄β + load[i, β] > tx, where t̄β = tiα +
∑L−1
l=1 load[i, αl], that is

tiα +
∑L
l=1 load[i, αl] > tx. Since load[i, α] = T − tx + tiα, we obtain again

the contradiction
∑L
l=0 load[i, αl] > T .

Theorem 4.6. Given a feasible solution (x, T ) to (IP-2), Algorithms 2 and 3
produce a valid schedule in the interval [0, T ].

Proof. The statement follows from Lemmas 4.3–4.5.

5. Rounding strategy for the ILP

To round the fractional relaxation of (IP-2), we first transform it into a
decision form by applying a standard pruning technique [9]. It suffices to decide,
for an arbitrary but fixed value of T , the feasibility of the following system:∑

α∈A
xαj = 1 for j ∈ J (IP-3)∑

j∈J

∑
β⊆α

pβjxβj ≤ |α|T for α ∈ A (4a)

xαj ∈ {0, 1} for α ∈ A, j ∈ J, (4b)

xαj = 0 for (α, j) /∈ R, (4c)

where R = {(α, j) ∈ A × J : pαj ≤ T}. We have eliminated constraints (2c)
by observing that they are satisfied by a 0-1 solution if and only if pαj ≤ T
whenever xαj = 1. Therefore, one can simply set to zero all variables xαj such
that pαj > T , i.e., the variables with indices not in R. The binary search process
for the minimal T for which (IP-3) is feasible requires a number of iterations
logarithmic in the range of T , and therefore multiplies the overall running time
by only a polynomial factor.

Without loss of generality, we can assume that the family A always contains
the singleton machine sets {1}, {2}, . . . , {m}; if not, these sets can be added
to A by setting the processing time of a job j ∈ J on machine i ∈ M as the
processing time of j on the (inclusion-wise) minimal set in A that contains i.
Before discussing how to round the fractional relaxation of (IP-3), we show that
a feasible fractional solution can always be modified so that, for every α ∈ A,
xαj = 0 unless α is a singleton set. This follows easily by repeated application
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of the next lemma, which allows to “push down” the fractional weights towards
the singleton sets of the laminar family.

Lemma 5.1. Let η ∈ A be a non-singleton set. If x is a feasible solution to
the LP relaxation of (IP-3), then there exists another feasible solution x′ to the
same LP relaxation such that x′ηj = 0 and x′αj = xαj whenever α 6⊆ η.

Proof. For any α ∈ A, we define the slack of α in x to be

slack(α,x) := |α|T −
∑
j∈J

∑
β⊆α

pβjxβj .

Note that the LP relaxation of (IP-3) can be written as∑
α∈A

xαj = 1 for j ∈ J (5a)

slack(α,x) ≥ 0 for α ∈ A (5b)

xαj ≥ 0 for α ∈ A, j ∈ J (5c)

xαj = 0 for (α, j) /∈ R. (5d)

Without loss of generality, assume that η = β1∪ . . .∪βq with β1, . . . , βq ∈ A,
β1, . . . , βq ⊂ η, the sets β1, . . . , βq being maximal and pairwise disjoint. Because
η has nonnegative slack in x, we have∑

j∈J

∑
γ⊆β1

pγjxγj + . . .+
∑
j∈J

∑
γ⊆βq

pγjxγj +
∑
j∈J

pηjxηj

≤ |β1|T + . . .+ |βq|T,

which is equivalent to∑
j∈J

pηjxηj ≤ slack(β1,x) + . . .+ slack(βq,x). (6)

We now define a new solution x′ by setting x′ηj = 0, x′αj = xαj for α 6=
β1, . . . , βq, η, and

x′βj = xβj +
slack(β,x)

slack(β1,x) + . . .+ slack(βq,x)
· xηj (7)

for β = β1, . . . , βq. We claim that x′ is valid for the LP. To see that (5a) is
satisfied by the new solution, note that

∑
α∈A

x′αj =
∑
α∈A
α 6=η

xαj +

q∑
i=1

slack(βi,x)

slack(β1,x) + . . .+ slack(βq,x)
· xηj

=
∑
α∈A

xαj = 1.
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To see that (5b) is satisfied, it suffices to show that the new slack of β1, . . . , βq
is nonnegative, since the slack of any other set does not decrease. Consider, say,
βi. By summing (7) across jobs,∑
j∈J

∑
γ⊆βi

pγjx
′
γj =

∑
j∈J

∑
γ⊆βi

pγjxγj +
slack(βi,x)

slack(β1,x) + . . .+ slack(βq,x)

∑
j∈J

pβijxηj

≤
∑
j∈J

∑
γ⊆βi

pγjxγj +
slack(βi,x)

slack(β1,x) + . . .+ slack(βq,x)

∑
j∈J

pηjxηj

≤
∑
j∈J

∑
γ⊆βi

pγjxγj + slack(βi,x),

where for the first inequality we used the monotonicity of the processing times,
and for the second inequality we used (6). Therefore,

slack(βi,x
′) = slack(βi,x)−

∑
j∈J

∑
γ⊆βi

pγjx
′
γj +

∑
j∈J

∑
γ⊆βi

pγjxγj

≥ slack(βi,x)− slack(βi,x) ≥ 0.

Equipped with the above lemma, we can proceed to prove an upper bound
on the approximability of the hierarchical scheduling problem.

Theorem 5.2. The hierarchical scheduling problem admits a polynomial-time
2-approximation algorithm.

Proof. Consider an instance I = (J,M,A, p) of the hierarchical scheduling prob-
lem.

Let T ∗ be the minimum value of T for which the LP relaxation of (IP-3)
is feasible. Clearly, T ∗ ≤ opt(I) where opt(I) is the optimal makespan of the
hierarchical scheduling instance I. By applying repeatedly Lemma 5.1, we can
ensure that there exists a feasible fractional solution x with makespan T ∗ and
such that xαj > 0 only for α such that |α| = 1. Because of this, observe that
x can also be seen as a fractional solution to an unrelated machines scheduling
instance with makespan T ∗: the instance Iu = (J,M, p′) obtained by defining
p′ij := p{i}j .

The idea is now to invoke an existing LP-based algorithm for the unrelated
machine scheduling problem and run it on Iu. The classic rounding algorithm
by Lenstra, Shmoys and Tardos [15] constructs an integral assignment x̄ for Iu
with makespan Tu ≤ 2T ∗. The assignment x̄, extended with 0 values on all
sets with |α| > 1, is also valid for (IP-3) if we take T = Tu ≤ 2T ∗ ≤ 2 · opt(I).
Therefore, such an extended assignment yields a 2-approximate solution for the
hierarchical scheduling problem.

We note that the reduction used in the above proof, from fractional hierar-
chical scheduling to fractional unrelated machines, is not valid for the original
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(integral) formulations of the two problems: indeed, in Example 2.1, the original
instance I of the semi-partitioned problem has an optimal makespan of 2, while
the unrelated machine instance Iu has an optimal makespan of 3. In general,
the gap between the makespan of Iu and the makespan of I can be arbitrarily
close to a factor 2, as the next example shows.

Example 5.1. (See also Figure 3.) Consider a semi-partitioned instance I with
n jobs and m := n− 1 machines. Recall that we use machine index 0 to denote
global processing. Job j, j = 1, . . . , n− 1, has pij = n− 2 if i = j, and pij =∞
otherwise. Job n has pij = n−1 for each i = 0, 1, . . . , n−1. An optimal solution
has makespan opt(I) = n − 1: assign job j, j = 1, . . . , n − 1 to machine j and
assign job n globally; schedule each job j, j = 1, . . . , n−1, on machine j in time
intervals [0, j − 1) and [j, n − 1); schedule job n on machine i, i = 1, . . . , n − 1
during [i − 1, i). On the other hand, in the corresponding unrelated machine
instance Iu, jobs cannot be migrated and therefore the minimum value of the
makespan is 2n− 3.

Job 2 Job n-1

Job n-1 Job 1

Machine 2

Machine 1

0 1 …
Time

Machines

…

Job n-2

Job n-1

Job n-1Job n-2 Job n-2

… …

Job 2 Job 2

Job 1 Job 1

Machine n-1

n-2 n-1

…

Figure 3: Optimal schedule for the instance of Example 5.1.

6. Memory constraints

The basic model as described in the previous sections focuses on makespan
minimization, without additional constraints. However, machines often also
have limited memory capacity. In this section we show how, in the hierarchical
case, our model can be extended to incorporate memory capacities and discuss
how to obtain efficient algorithms with a guaranteed bicriteria approximation
ratio. We consider two distinct extensions, which we call Model 1 and Model
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2. In the first model, each machine has a separate memory capacity. In the
second model, each cluster of the hierarchical architecture has a certain memory
capacity, which is shared among all machines of the cluster.

Model 1. We assume that each machine i ∈ M has some memory budget Bi ∈
Z+ and that each job j ∈ J requires memory space sij ∈ Z+ when run on
machine i. We require the jobs assigned to sets that include machine i to fit the
memory bound Bi; i.e., if j is assigned to a set of machines α, then its space
requirement is counted towards each machine in α. Thus, we revise ILP (IP-3)
by adding the capacity constraints

∑
j∈J

(
sij ·

∑
α∈A : i∈α

xαj

)
≤ Bi for each i ∈M. (8)

To round the fractional relaxation of the revised ILP, we apply the iterative
rounding approach [11, 13, 18], allowing us to prove the following theorem.

Theorem 6.1. Whenever ILP (IP-3) has a solution satisfying constraints (8),
it is possible to construct, in polynomial time, a valid schedule with makespan
at most 3T such that

∑
j∈J

(
sij ·

∑
α∈A : i∈α

xαj

)
≤ 3 ·Bi for each i ∈M. (9)

where x represents the schedule’s assignment.

Proof. Consider a feasible solution y to the fractional relaxation of the revised
ILP (IP-3), including the capacity constraints (8). By applying a similar reason-
ing as in the proof of Theorem 5.2, we can obtain a feasible fractional vector z
that satisfies the constraints of ILP (IP-3) and such that zαj > 0 only if |α| = 1.
Moreover, note that

zij ≤
∑

α∈A : i∈α
yαj for i ∈M, j ∈ J (10)

because the fractional weight in z associated to a pair (i, j) can only be due to
the fractional weight in y of pairs (α, j) such that i ∈ α. Therefore,

∑
j∈J

sijzij ≤
∑
j∈J

sij

( ∑
α∈A : i∈α

yαj

)
≤ Bi, (11)

where the second inequality follows by the feasibility of y. This means that the
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fractional solution z is feasible for the following LP:∑
i∈M

zij = 1 for j ∈ J (12a)∑
j∈J

pijzij ≤ T for i ∈M (12b)

∑
j∈J

sijzij ≤ Bi for i ∈M (12c)

zij ≥ 0 for i ∈M, j ∈ J, (12d)

zij = 0 for (i, j) /∈ R, (12e)

where R = {(i, j) ∈ M × J : pij ≤ T ∧ sij ≤ bi}. This linear program can be
rounded using an existing iterated rounding technique, described in [18]. The
algorithm of [18] constructs an integral assignment x satisfying∑

j∈J
pijxij ≤ T + 2 max

j∈J: (i,j)∈R
pij for i ∈M (13a)

∑
j∈J

sijxij ≤ Bi + 2 max
j∈J: (i,j)∈R

sij for i ∈M, (13b)

where the factor of 2 is due to the fact that each variable zij appears with at
most two nonzero coefficients in the packing constraints (12b)-(12c) (one is pij ,
the other sij). Since maxj:(i,j)∈R pij ≤ T and maxj:(i,j)∈R sij ≤ Bi, this proves
the claim.

Model 2. Consider the forest associated to the laminar family A, that is, the
forest having as nodes the sets in A, and such that α is a parent of β if and
only if β ⊂ α and there is no γ ∈ A such that β ⊂ γ ⊂ α. We can assume that
this forest is, in fact, a tree: if it is not, we can add to A the set M containing
all machines, and set a very high value of pMj for each job j (i.e. pMj =∞) to
ensure that the set of feasible solutions is not affected.

Let µ : A → Q+. In this model, we assume that job j requires space
sj ≤ 1 (with sj ∈ Q+), that each node α except the root has memory capacity
µ(α) ≥ 1, and that the root has unbounded capacity. Thus, µ is a function
capturing how the memory hierarchy scales. We require the jobs assigned to a
set (node of the tree) to fit the memory capacity of that set. Thus, we revise
ILP (IP-3) by adding the capacity constraints∑

j∈J
sjxαj ≤ µ(α) for each α ∈ A \ {M}. (14)

Call (IP-4) the revised ILP obtained in this way.
The additional constraints affect the applicability of Theorem 5.2, since one

cannot use Lemma 5.1 to “push down” the values of the fractional variables
towards the leaves of the laminar family. Moreover, the approximability bounds
ensured by known rounding techniques (for example, [12, 18]) are not suitable in
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this case. Indeed, one cannot apply the result of Karp et al. [12] because it does
not ensure that the resulting integral vector satisfies the assignment constraints
exactly; while the guarantee of Marchetti-Spaccamela et al. [18] yields a large
approximation factor, equal to 1 + k, where k is the number of levels of the
hierarchy.

We improve the analysis of the iterative rounding scheme from Marchetti-
Spaccamela et al. [18]. We show, in Lemma 6.2 below, that the scheme satisfies
the assignment constraints exactly and yields a bound in terms of the sum of
the column’s entries of the (normalized) coefficient matrix; when applied to
(IP-4), this guarantees O(log k) approximation of the packing constraints. Such
a rounding scheme applies to general assignment and packing constraints, and
thus may find applications beyond the hierarchical scheduling problem.

Lemma 6.2. Let I, J be nonempty finite sets, and R ⊆ I × J . Consider a
linear program of the form:

min
∑

(i,j)∈R

cijzij (LP)

∑
i:(i,j)∈R

zij = 1 ∀j ∈ J (15a)

∑
q=(i,j)∈R

alqzij ≤ bl l = 1, . . . , θ (15b)

0 ≤ zij ≤ 1 ∀(i, j) ∈ R, (15c)

where zij are variables, θ ∈ N, and alq ≥ 0, bl > 0, cij ≥ 0 for all l = 1, . . . , θ,
q = (i, j) ∈ R. Assume that the LP has a feasible solution z0 and that the bound∑θ
l=1 alq/bl ≤ ρ holds for each q ∈ R. Then there are values z̄ij such that∑

(i,j)∈R

cij z̄ij ≤
∑

(i,j)∈R

cijz
0
ij (16a)

∑
i:(i,j)∈R

z̄ij = 1 ∀j ∈ J (16b)

∑
q=(i,j)∈R

alq z̄ij ≤ (1 + ρ)bl l = 1, . . . , θ (16c)

z̄ij ∈ {0, 1} ∀(i, j) ∈ R. (16d)

Proof. Before formally proving the Lemma we present the iterative rounding
procedure detailed in Algorithm 4. As in Marchetti-Spaccamela et al. [18], the
idea of the algorithm is to compute, at iteration h = 0, 1, 2, . . ., an optimal
extreme-point solution zh of a linear program LPh, with LP0 being the initial
program (LP) assumed in the Lemma. Each subsequent LP is obtained by
either freezing some variables at their integer value in the current LP solution
(and updating the corresponding right-hand side coefficients – Lines 4–5), or, if
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ALGORITHM 4: Iterative ILP rounding

1 while LP has s ≥ 1 variables do

2 Solve LP to find extreme-point solution zh;

3 if zh has at least one integral entry then

4 fix all integral variables at their value in zh, remove them from LP and
update right-hand side coefficients;

5 remove from LP all constraints that no longer involve any variable;

6 else
7 find a constraint index l ∈ {1, . . . , θ} such that∑

q=(i,j)∈R alq(1− z
h
ij) ≤ ρ · bl, where S = {0, 1}s;

8 remove from LP the constraint corresponding to l;

9 end

10 end

no variable is integral, by discarding a packing constraint l ∈ {1, . . . , θ} among
those in (15b) that satisfy ∑

q=(i,j)∈R

alq(1− zhij) ≤ ρ · bl,

with S = {0, 1}s. Such a packing constraint can be “safely dropped”, in the
sense that even if the partial integer solution is completed by setting all re-
maining variables to their “worst” possible value, which is 1, the constraint will
eventually be violated by at most ρ times its original right-hand side bl (Lines
7–8). Note that the assignment constraints (15a) are never dropped, and that if
zhij is fixed at value 1, all remaining variables zhi′j with i′ 6= i are fixed at value
0, due to the structure of the assignment constraints.

A crucial point, of course, is to guarantee that whenever the solution of
LPh has only fractional entries (and thus the else branch is taken in Line 6
of the algorithm), then there always exists some constraint of LPh that can be
safely dropped, i.e., the appropriate index l can always be found in Line 7 of
the algorithm, ensuring progress of the iterative procedure. This fact is proven
in the following auxiliary lemma.

Lemma 6.3. Let LPh be the linear program that is solved in iteration h of the
rounding procedure, having s variables and r constraints. Let zh be an extreme-
point solution to this LP. If s > r, then zh has at least one integral entry. If
s ≤ r, then there is some l ∈ {1, . . . , θ} such that

∑
q=(i,j)∈R alq(1 − zhij) ≤

ρ · bl, where S is the integer solution space for all remaining variables, i.e.,
S = {0, 1}s.

Proof. Assume that the subproblem in iteration h (described by LPh) is defined
as Az ≤ b, where A ∈ Rr×s. Note that r = ra + rb, where ra is the number
of constraints of type (15a) and rb is the number of constraints of type (15b).
We can ignore the constraints 0 ≤ zij ≤ 1 because if any of them is active,
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the iteration immediately completes with one variable being fixed to 0 or 1 and
removed from the problem.

First assume that s > r. Then the null space of A is nontrivial, so let z0 be
a nonzero vector in the null space of A. Since zh is an extreme-point solution
to LPh, it cannot be expressed as the convex combination of two (or more)
solutions to LPh. If zh does not have any integral entry, then we can find a
value δ > 0 such that zh + δz0 and zh − δz0 are both solutions to LPh and,
in particular, zh is a convex combination of these two solutions. Therefore zh

must have at least one integral entry.
Now assume that s ≤ r. For this case, we show that there always exists

a constraint l of type (15b) such that {(A1)l − (Az)l} ≤ ρ · bl. We show the
statement by contradiction. Assume that the statement is not true; that is, for
each constraint l of type (15b) it holds that

(A1)l − (Az)l > ρ · bl. (17)

In each previous round, if variables were removed from the program, also con-
straints that had become redundant, were removed. Therefore, for all variables
present in the linear program in this round, the corresponding constraint of
type (15a) is also still present in the linear program (and this constraint is not
present if all of its variables have been removed from the program). It follows
that ∑

(i,j)∈Rh
zij = ra, (18)

where Rh is the index set of the variables in LPh. Define Θh as the set of
constraints of type (15b) present in the current linear program LPh. Then,

ρ (r − ra) = ρ rb

<
∑
l∈Θh

1

bl
((A1)l − (Az)l)

=
∑
l∈Θh

1

bl

∑
q∈Rh

alq(1− zq)

=
∑
q∈Rh

(1− zq)
∑
l∈Θh

alq
bl

≤
∑
q∈Rh

ρ (1− zq)

= ρ s−
∑
q∈Rh

ρ zq

= ρ(s− ra).

The second inequality follows by the assumption on the normalized column sums
of A

The chain of inequalities implies that ρ (r − ra) < ρ (s− ra), that is, r < s,
which is a contradiction to being in the case that s ≤ r. Hence, we conclude that
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if s ≤ r, there must be a constraint l of type (15b), for which {(A1)l−(Az)l} ≤
ρ · bl.

We now complete the proof of Lemma 6.2 showing that the obtained solution
verifies the claim. Lemma 6.3 guarantees that when the extreme-point solution
zh has no integral entries, one of the constraints (15b) can be dropped with-
out violating the corresponding guarantee in (16c) in subsequent steps: even if
all remaining variables are set to 1, (16c) will be satisfied for that value of l.
Therefore, Algorithm 4 always finds either an integral variable – which is fixed
and removed – or an appropriate constraint that is discarded (i.e., Line 7 always
finds an appropriate l).

By induction, each LPh is feasible: LP0 has feasible solution z0 by assump-
tion, and each subsequent LP is obtained by discarding constraints or by fixing
some variables at their current LP value; both operations preserve feasibility,
and do not increase the cost of the optimal solution; indeed, zh induces a so-
lution to LPh+1 with the same objective value as zh in LPh. Thus, the final
vector z̄ fixed by the iterative rounding process has 0/1 components, satisfies
the assignment constraints (i.e., (16b) holds), and has a cost bounded by the
cost of the initial feasible solution z0 (i.e., (16a) holds). In general, z̄ may
violate some of the packing constraints, but by the choice of the dropped con-
straints in Algorithm 4, no packing constraint l on z̄ will be violated by more
than an additional factor ρ · bl, i.e., (16c) holds. This concludes the proof of
Lemma 6.2.

Equipped with the rounding lemma, we can proceed to prove our result for
Model 2.

Theorem 6.4. Let k be the number of levels of the laminar family A and let Hk

be the kth harmonic number. Whenever ILP (IP-4) has a solution, it is possible
to construct, in polynomial time, a valid schedule with makespan at most σ · T
such that ∑

j∈J
sjxαj ≤ σ · µ(α) for each α ∈ A \ {M}, (19)

where x represents the schedule’s assignment and σ = 2 +Hk. When k = 2, the
same holds with σ = 3 + 1/m.

Proof. We observe that (IP-4) is in a form suitable for applying Lemma 6.2. In
particular, we take I in Lemma 6.2 to be the admissible sets family A, and we
use the generic packing constraints (16c) to encode constraints (4a) and (14).
Indeed, constraints (4a) can be encoded as |A| constraints with coefficients of
the form

aα,(β,j) :=

{
pβj if β ⊆ α,
0 otherwise,

, bα := |α|T, (α ∈ A),
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while constraints (14) can be encoded as |A| − 1 constraints with coefficients of
the form

aα,(β,j) :=

{
sj if β = α,

0 otherwise,
, bα := µ(α), (α ∈ A \ {M}).

The cost coefficients cij in (LP) can be set to zero and (LP) becomes the linear
relaxation of (IP-4). By our hypothesis, such LP relaxation must be feasible,
and the hypothesis of Lemma 6.2 is satisfied. In particular, we can take z0 to
be an optimal solution of the LP relaxation. Note that the LP relaxation can
be solved in polynomial time; in particular, since A is laminar, |A| ≤ 2m (see,
e.g., [24, Theorem 3.5]) and the number of constraints in (IP-4) is polynomial
in n and m.

To choose an appropriate value of ρ in Lemma 6.2, note that (β, j) ∈ R only
when pβj ≤ T by construction, so if q = (β, j),

θ∑
l=1

alq
bl

=
∑

α∈A:β⊆α

pβj
|α|T

+
sj
µ(β)

≤
∑

α∈A:β⊆α

1

|α|
+ 1

≤ 1 +
∑

1≤i≤k

1

i
= 1 +Hk,

where for the first inequality we also used sj ≤ 1 ≤ µ(β), and for the second
the fact that the laminar family A has k levels and the fact that all sets in A
are distinct and nonempty. Thus, we can apply Lemma 6.2 with ρ = 1 +Hk.

In the semi-partitioned case (i.e., when A has k = 2 levels), the summation∑θ
l=1 alq/bl involves at most three nonzero terms. The first term is due to the

local scheduling constraints and has the form pij/T , which is at most 1. The
second term is due to the global scheduling constraint and has the form pij/mT ,
which is at most 1/m. The third term is due to the memory constraints and
has the form sj/µ(β), which is at most 1. Therefore, ρ = 2 + 1/m is sufficient.

Finally, the integer solution x to (16), which can be found by applying
Lemma 6.2, can be used to construct a schedule with makespan at most (1+ρ)T
and satisfying (19) by feeding x to the algorithms presented in Sections 3 and
4.
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