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Background: Individuals with cystic fibrosis (CF) have an increased susceptibility to fungal infection/allergy,
with triazoles often used as first-line therapy. Therapeutic drug monitoring (TDM) is essential due to significant
pharmacokinetic variability and the recent emergence of triazole resistance worldwide.

Objectives: In this retrospective study we analysed the ‘real-world’ TDM of azole therapy in a large CF cohort,
risk factors for subtherapeutic dosing, and the emergence of azole resistance.

Methods: All adults with CF on azole therapy in a large single UK centre were included. Clinical demographics,
TDM and microbiology were analysed over a 2 year study period (2015–17) with multivariate logistic regression
used to identify risk factors for subtherapeutic dosing.

Results: 91 adults were treated with azole medication during the study period. A high prevalence of chronic sub-
therapeutic azole dosing was seen with voriconazole (60.8%) and itraconazole capsule (59.6%) use, representing
significant risk factors for subtherapeutic levels. Rapid emergence of azole resistance was additionally seen over
the follow-up period with a 21.4% probability of CF patients developing a resistant fungal isolate after 2 years.
No significant relationship was found however between subtherapeutic azole dosing and azole resistance
emergence.

Conclusions: Our study demonstrates a high prevalence of subtherapeutic azole levels in CF adults with
increased risk using itraconazole capsules and voriconazole therapy. We show rapid emergence of azole resist-
ance highlighting the need for effective antifungal stewardship. Further large longitudinal studies are needed to
understand the effects of antifungal resistance on outcome in CF and the implications of subtherapeutic dosing
on resistance evolution.

Introduction

Cystic fibrosis (CF) is the most common, life-limiting autosomal re-
cessive genetic disorder in the world.1 It is most prevalent in the
Caucasian populations of Europe and North America wherein it
affects 1 in 2400 live births.2 CF is caused by deleterious mutations
in the gene that encodes the CF transmembrane conductance
regulator (CFTR) protein. To date, over 1500 such mutations have
been identified. Dysfunction of the CFTR protein leads to abnormal
anion transport and mucociliary clearance, resulting in a multisys-
tem disorder characterized by chronic sinopulmonary infection,
and pancreatic insufficiency.3 Ineffective clearance of inhaled
pathogens from the airways leads to a cycle of infection and

progressive inflammation, ultimately culminating in bronchiec-
tasis and respiratory failure.4 Over 90% of mortality in CF relates to
pulmonary infection,5 highlighting the clinical need for efficacious
therapy.

There has been extensive research into the contributing role
of bacterial pathogens, such as Staphylococcus aureus and
Pseudomonas aeruginosa, in CF-associated lung dysfunction.6,7

However, in concordance with recent findings, the contemporary
paradigm is shifting to appreciate the role of fungal organisms,
such as Aspergillus fumigatus and other filamentous fungi, as an
aetiological factor in the progressive respiratory decline associated
with CF.8 A recent national CF registry data surveillance study sug-
gests Aspergillus spp. respiratory tract colonization occurs in�30%
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of individuals with CF.9 Although variability exists (likely related to
sampling, culture and environmental differences) similar findings
have been described in German (37.7%), Argentinian (90%), and
Iranian studies, highlighting the global prevalence of Aspergillus
spp. colonization in CF.10–12 A. fumigatus can cause a wide degree
of pathologies, ranging from allergy and sensitization through to
invasive aspergillosis, depending on the host immune response.13

Within CF, there is likewise a spectrum of Aspergillus spp. pulmon-
ary disease manifestations. A previous latent class analysis of a
large UK cohort of CF patients presenting with Aspergillus spp. in-
fection allowed for their demarcation into three distinct clinical
groups, allergic bronchopulmonary aspergillosis (ABPA),
Aspergillus sensitization, and Aspergillus bronchitis.14 A number of
studies have been performed to understand the clinical implica-
tions of A. fumigatus colonization in patients with CF. Studies in
paediatric CF patient cohorts have shown that those infected
or colonized with A. fumigatus experienced more pulmonary
exacerbations requiring hospital admission as well as greater lung
function decline.15,16 A recent study including adults with CF
additionally demonstrated a significant relationship between
A. fumigatus sputum culture positivity and respiratory dysfunc-
tion.17 Aspergillus colonization has also been well-described as a
risk factor in post-lung transplant mortality.18

Currently, triazoles are routinely utilized as a first-line antifungal
therapy for the treatment of CF patients with fungal infection and
allergy.18 Owing to high pharmacokinetic variability, however,
regular therapeutic drug monitoring (TDM) is required to optimize
dosage to maximize therapeutic potential while minimizing ad-
verse reactions.19 Within invasive disease, TDM has been shown to
be critical to achieve optimal clinical outcome,20 but there is little
data within CF-related fungal disease.21 TDM can be challenging to
perform regularly, as it requires specialist timed blood testing often
performed at tertiary care centres with access to specialist equip-
ment. Within a relatively young, independent, working population
this represents significant challenges, with added complexity cur-
rently within a vulnerable population shielded due to COVID-19
pandemic.

Within CF, limited pharmacokinetic studies have demonstrated
high inter-subject variability.22 There is to date, however, to our
knowledge no ‘real-world’ data on CF azole TDM and few studies
analysing associated risk factors for subtherapeutic dosing. This in-
formation is highly pertinent given the high (�30%) prevalence of
fungal colonization within the CF patient population,9 in conjunc-
tion with a lack of consensus between practitioners regarding the
most efficacious therapeutic regimens. A recent survey in the UK
showed itraconazole was the most frequently prescribed first-line
azole medication.18 In contrast, however, international consensus
statements regarding invasive fungal infection recommend vori-
conazole as first-line azole therapy, and this is often extrapolated
to CF fungal infection.23

The importance of TDM is also highlighted by the global emer-
gence of antifungal resistance. We have recently reported an
�16% prevalence of azole resistance in A. fumigatus isolates from
a cohort of CF adults.24 Specifically, �40% of azole-resistant
A. fumigatus isolates contained the environmentally occurring
TR34/L98H allele within the cyp51A gene, which has been charac-
terized as a predominant mechanism for triazole resistance.25 The
implications in CF fungal disease are unclear, but pan-azole resist-
ance has been clearly linked to treatment failure within invasive

and non-CF chronic pulmonary aspergillosis.26 Fungal exposure
to subtherapeutic azole levels over prolonged periods within the
context of CF, as a potential risk factor in the development of azole
resistance, has not been investigated.

In this study, we present a retrospective adult CF cohort study
to analyse real-world azole TDM and risk factors associated with
subtherapeutic levels. We further review the development of azole
resistance over a 2 year follow-up period, and analyse potential
risk factors including type of CF fungal disease and association
with subtherapeutic azole levels.

Patients and methods

Ethics

Retrospective electronic health record data collection and protocols were
approved by the UK Research Ethics Committee (REC reference: 18/HRA/
1074).

Study design
We performed a retrospective longitudinal analysis of all adults in the adult
CF centre at the Royal Brompton and Harefield National Health Service
(NHS) Foundation Trust on azole therapy between 2015–17. Electronic data
records were reviewed for patient demographics, indication, start date of
use, prescribed doses and changes, TDM frequency, and use of proton
pump inhibitors/antibiotics. CF fungal disease was classified as per modified
criteria from Baxter et al.14: Allergic bronchopulmonary aspergillosis (ABPA):
[elevated Total IgE (.1000 kIU/L) and A. fumigatus-specific IgE +
A. fumigatus culture]; Aspergillus spp. sensitization: [elevated Total IgE (but
,1000 kIU/L) and A. fumigatus-specific IgE but negative A. fumigatus
culture and negative A. fumigatus-specific IgG]; Aspergillus bronchitis: (ele-
vated A. fumigatus-specific IgG and positive A. fumigatus culture with nor-
mal Total and Aspergillus-specific IgE). Treatment for chronic Aspergillus
colonization was defined if the patient had �2 positive cultures within a
6 month duration over the follow-up period with normal serological tests
(IgE and IgG). Non-Aspergillus mould colonization was again defined as�2
positive cultures within a 6 month duration over the follow-up period.
Treatment for mycetoma was based on clinical records and radiographic
confirmation. During each clinical visit, the patient’s lung function, BMI and
microbiology results were recorded. Azole dosing and TDM interpretation
was used and defined as per British Society for Medical Mycology recom-
mendations.20 itraconazole target therapeutic trough concentration was
.0.5 mg/L, voriconazole/posaconazole were .1 mg/L. Chronic subtherapeu-
tic azole levels in patients were characterized as those who experienced sub-
therapeutic levels on at least two TDM visits, at least 2 months apart over the
duration of the follow-up period. During the follow-up period, new growths
of fungal isolates routinely had antifungal susceptibility testing analysis per-
formed, with repeat isolates having annual surveillance unless specifically
asked for earlier by the clinical team. Azole-resistant isolates were confirmed
with a standard microbroth dilution method according to 2015 EUCAST refer-
ence guidelines.27 In brief, within the context of A. fumigatus, antifungal sus-
ceptible (S) was defined as a MIC breakpoint of S�1 mg/L for itraconazole
and posaconazole, and S�0.12 mg/L for voriconazole. Antifungal resistant
(R) was defined as R . 2 mg/L for itraconazole and posaconazole, and
R . 0.25 mg/L for voriconazole. Intermediate (I) resistance was defined as
any value between S and R. For isolates where EUCAST guideline-based
MIC breakpoints were not available (e.g. non-Aspergillus species), MIC break-
points were based on epidemiological cut-off values.

Statistical analysis
A generalized linear mixed model was fitted to study risk factors associated
with subtherapeutic levels. The risk factors studied were age, sex, proton
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pump inhibitor use, antifungal azole, intravenous antifungals, forced ex-
piratory volume in 1 second (FEV1) percentage, forced vital capacity (FVC),
and pancreatic insufficiency. Initially, univariate generalized linear mixed
models were fitted to select variables (P values ,0.2 within univariate ana-
lysis) for a multivariate model.

Probability of developing a fungal infection was analysed using a
Kaplan–Meier plot with a univariate Cox model with type of CF fungal dis-
ease as covariate and time to resistance as outcome. To analyse the time
to azole resistance between patients with subtherapeutic azole dosing
compared with therapeutic dosing, a multi-state model with 4 stages was
developed to reflect the culture results during the follow-up period across
the cohort and to study the progression across time: Stage 1: no microbio-
logical growth; Stage 2: fungal isolate grown but no susceptibility testing
performed; Stage 3: azole-susceptible fungal isolate; Stage 4: azole-
resistant fungal isolate. The patient can progress from stages 1 to 3 and go
back to other stages, with stage 4 (azole-resistant fungal isolate) a terminal
stage. A logistic model, using only the observations where a fungal micro-
biology was positive, was fitted including the azole medication and the
dose to investigate whether the azole level was relevant for the develop-
ment of resistance to the medication.

Results

Patient demographics

A total of 91 adults with CF were treated with azole medication in
the study period (from a total adult CF centre cohort size of 540)
and were included in analysis (48 male; 43 female). Between 2015
and 2017, 1275 clinical encounters were recorded; the median
number for each individual patient was 22.5 (IQR 18–27) with an
average of 7.05 encounters per year per person. Baseline patient
demographics are summarized in Table 1.

Risk factors associated with subtherapeutic levels

Forty-nine patients studied (53.8%) were identified as having
chronic subtherapeutic azole levels during the follow-up period
based on pre-existing definitions (two or more subtherapeutic TDM
results greater than 2 months apart during the follow up period). A
general linear mixed model was fitted to determine the risk factors
associated with chronic subtherapeutic trough azole levels
(Table 2). Two factors were identified as significant risk factors in
TDM subtherapeutic outcomes; age (P value: 0.031), with younger

age being associated with a greater risk, and the type of antifungal
azole prescribed (P value: 0.024).

On multivariate analysis employing risk factor variables with a
univariate analysis P value ,0.2, the type of azole medication was
identified as the only significant risk factor. We proceeded to per-
form a more-detailed analysis of the relationship between azole
medication type and subtherapeutic azole levels.

The total time on azole medication, including azole taken
prior to study commencement, ranged from 88 to 3287 days
(mean value: 1013); 22 patients continued treatment for the
full 2 year study period. Over half of patients were prescribed
itraconazole; further details on azole administration are shown
in Table 3.

Figure 1 shows the trough azole levels of individual medications
across the TDM follow-up period. The median trough azole levels
for itraconazole capsules and voriconazole (Figure 1) were below
the target trough concentration (0.5 mg/L and 1 mg/L, respective-
ly), with more than 50% of itraconazole capsule (59.6%) and vori-
conazole (60.8%) exhibiting subtherapeutic levels. Voriconazole
and itraconazole capsules were 1.378 times more likely to have
subtherapeutic levels compared with posaconazole [delayed-
release (M/R) formulation] and liquid formulation itraconazole.
However, although better, itraconazole liquid trough levels were
still subtherapeutic in 48.3% of tests with posaconazole M/R levels
subtherapeutic in 48% (Table 2).

Azole resistance evolution

We next investigated the emergence of new azole resistance
across all isolated pathogenic moulds (including A. fumigatus
and non-Aspergillus spp.), over a 2 year period. At study
commencement, 88 participants had positive fungal cultures
for a pathogenic mould and were therefore included in this ana-
lysis. At time of inclusion, only two patients had pre-existing
azole resistance (one patient with A. fumigatus and another pa-
tient with Rasamsonia argillacea colonization). The probability
of a patient developing azole antifungal resistance over the
study duration was initially investigated with a Kaplan–Meier
plot (Figure 2). 10.7% (3.8%–17.1%) of patients had azole-
resistant fungal infection after 1 year and 21.4% (11.5%–41%)
after 2 years (Figure 2).

We performed further analysis to see whether the underlying
CF fungal disease subtype affected the development of antifungal
resistance. A univariate Cox model with the reason for antifungal
azole use as covariate and the time to resistance as outcome was
fitted. Although subgroup analysis was limited by the total number
of patients, this revealed a significant relationship, with a P value of
0.0034 (Figure 3). Significance was driven by increased azole resist-
ance seen in patients treated for non-Aspergillus moulds [only
75% (50.3%–100%)] of patients free from resistance at year 1,
with Aspergillus bronchitis showing a non-significant trend
towards greater acquisition of azole resistance (Figure 3 and
Table 4).

We next looked at the prevalence of azole resistance in individ-
ual fungal species over the duration of the follow-up period. 1618
sputum samples were collected and 628 were positive for fungal
colonization; 296 for Candida spp. (excluded from further analysis)
and 332 for other fungi, see Table 5. Of these, a total of 276
samples were measured for azole resistance based on the

Table 1. Study cohort demographics

Characteristic Value

Age, years, mean+SD 28.0+8.87

Female, n (%) 43 (47.3)

FEV1% predicted, mean+SD 51.1+20.3

PPI use, n (%) 56 (61.5)

Pancreatic insufficiency, n (%) 83 (91.2)

Reason for antifungal, n (%)

Allergic bronchopulmonary aspergillosis (ABPA) 46 (50.5)

Aspergillus bronchitis 21 (23.1)

Aspergillus sensitization 6 (6.60)

Chronic Aspergillus colonization 4 (4.40)

Mycetoma 5 (5.50)

Non-Aspergillus mould growth 9 (9.90)
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MIC recorded. 124 were azole resistant (44.9%). Of the resistant
isolates, 41.9% were A. fumigatus. We further looked at the
emergence of azole resistance of different fungal species, within
our CF cohort, on a year-by-year basis (Table 5). This showed the
evolution of azole resistance in A. fumigatus, with 24.1% of ana-
lysed isolates azole resistant in the first year of the follow-up
period and a subsequent increase in the second year to 45.8%
(Table 5).

We further analysed evolution of A. fumigatus specific azole re-
sistance over the duration of the follow-up period (Table 6). 77% of
tested A. fumigatus isolates exhibited susceptibility to itraconazole
during the first year of the follow up period. However, by the
second year, the prevalence of itraconazole resistance in tested
isolates rose to over 50%. There was an additional trend
towards increased voriconazole and posaconazole resistance, with
increased intermediate resistance in year 2.

Table 2. Univariate analysis of risk factors associated with TDM subtherapeutic outcomes

Characteristic Subtherapeutic levelsa Therapeutic levels P value

Total n (%) 49 (53.8) 42 (46.2) -

Age, years, mean+SD 24.8+6.38 31.6+9.96 0.031

Female, n/N (%) 26/49 (53.0) 17/42 (40.0) 0.354

BMI 20.4+3.23 21.9+3.80 0.471

FEV1% predicted, mean+SD 50.7+20.3 47.4+3.12 0.135

Proton pump inhibitor use, n/N (%) 34/49 (69.3) 22/42 (44.9) 0.832

Pancreatic insufficiency, n/N (%) 45/49 (91.8) 38/42 (90.5) 0.878

Type of antifungal azole prescribedb – – 0.024

P values considered significant are shown in bold.
aDefined as at least two subtherapeutic azole levels at least 2 months apart.
bBreakdown for each azole detailed in Table 3.

Table 3. Subtherapeutic levels by triazole medication

Drug Total TDM visits in follow-up Subtherapeutic levels, n (%) Odds ratioa 95% CI

Itraconazole liquid 62 30 (48.3) – –

Itraconazole capsule 57 34 (59.6) 1.58 0.76–3.26

Voriconazole 51 31 (60.8) 1.65 0.78–3.5

Posaconazole 150 72 (48.0) 0.98 0.54–1.78

Isavuconazole 3 0 (0) NA NA

NA, not applicable.
aOdds ratio for subtherapeutic azole TDM for individual triazole drug compared with itraconazole liquid.

Figure 1. Therapeutic drug levels of individual triazole therapy over
study duration. Red dashed line represents target therapeutic trough
level for each azole medication.

Figure 2. Kaplan–Meier probability of freedom from azole resistance of
pathogenic mould isolates over study duration.
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Lastly, we aimed to analyse any effect of subtherapeutic azole
levels on development of antimicrobial resistance using a multi-
state model. None of the previously described covariates including
subtherapeutic TDM outcome were significantly independently
associated with increased azole resistance. The transition probabil-
ity matrix indicates that there is a 16% (95% CI: 8.4%–40.1%)
probability of a fungal isolate developing azole resistance from a
previous state of azole susceptibility (Table 7). The sojourn time
represents the average time spent in each stage. Once a patient
had grown a susceptible fungal isolate they remained in that state
for an average of 49 days (95% CI: 20–102).

Discussion

In this study, we present a retrospective ‘real-world’ longitudinal
cohort study of adults with CF to investigate the pharmacokinetics
of first-line antifungal medication and the evolution of triazole re-
sistance. We highlight the wide variability and subtherapeutic dos-
ing of azole medications for prolonged periods in a CF cohort,
analyse potential risk factors and effects on antifungal resistance.

Univariate analysis showed younger patients and specific azole
medications were at greater risk of subtherapeutic dosing.
Although not significant in multivariate analysis, the finding of
increased subtherapeutic dosing in younger patients requires fur-
ther study. In this retrospective study, we were unable to analyse
whether adherence is a factor, however, numerous studies have
shown that adherence in CF is often sub-optimal and adult transi-
tion from paediatrics can be a contributing factor.28,29 Within
multivariate analysis, a significant association with subtherapeutic
dosing was only seen with the type of azole medication used.
Itraconazole capsules and voriconazole had a significantly
increased likelihood of subtherapeutic TDM outcome as compared
with itraconazole liquid and posaconazole, with median TDM val-
ues below target therapeutic trough concentrations. These find-
ings are consistent with the known poor bioavailability of
itraconazole capsules and variable pharmacokinetics of itracon-
azole and voriconazole.30,31 This raises significant concerns
regarding extrapolating international invasive fungal infection
guideline-based recommendations where voriconazole is consid-
ered first-line therapy for CF fungal disease, alongside the signifi-
cant proportion of responders in a recent UK survey concerning
treatment of CF fungal disease who advocate itraconazole capsu-
les as first line therapy.18 Itraconazole liquid is known to have bet-
ter bioavailability compared with capsules, but its taste and lack of
ease of administration can potentially affect compliance.32

Delayed-release posaconazole which was used in this study has
been shown to have enhanced bioavailability and more consistent
pharmacokinetics, with recent papers suggesting therapeutic lev-
els are achievable in the majority of non-CF chronic aspergillosis
cases at standard doses.33 Although better when compared with
itraconazole capsules and voriconazole, our study still showed a
significant number of subtherapeutic posaconazole levels.

Within our cohort, a small number of patients were prescribed
isavuconazole, a novel azole antifungal with very good bioavail-
ability, predicable pharmacokinetics and fewer drug–drug interac-
tions.34 In this small number, all trough levels were within a likely
therapeutic range (deemed 1–5 mg/L) but further studies are
required to determine the need for regular TDM of isavuconazole
in CF.

Several previous studies have reported the emergence of
multi-azole-resistant A. fumigatus isolates derived from CF
patients.27,35,36 Our study findings provide a timeline for the devel-
opment of azole resistance. Multiple studies have shown the most
common species responsible for fungal infections in CF patients in-
clude A. fumigatus, Scedosporium apiospermum, and Exophiala
dermatitidis.37 Our data support these previous findings, with
these species comprising 91.8% of all isolated fungi, and 84.6% of
the azole-resistant isolates. Consistent with the literature, we
found the most prevalent fungus among our isolates was A. fumi-
gatus, making up 51.2% of the sample. We showed significant
evolution of azole resistance over a 2 year period, with 41.9%

Figure 3. Kaplan–Meier probability of freedom from azole resistance or
pathogenic mould isolates over study duration with underlying CF fungal
disease categories.

Table 4. Freedom from resistance after 2 years in CF fungal disease
subtypes requiring azole therapy

Year Number at risk Number of events Survivala

Allergic bronchopulmonary aspergillosis

0 46 0 1 (1–1)

1 39 3 0.932 (0.861–1)

2 21 1 0.905 (0.82–0.999)

Aspergillus bronchitis

0 19 0 1 (1–1)

1 15 2 0.888 (0.753–1)

2 5 2 0.678 (0.442–1)

Aspergillus sensitization

0 6 0 1 (1–1)

1 5 0 1 (1–1)

2 1 0 1 (1–1)

Mycetoma/cavitary aspergillosis

0 4 0 1 (1–1)

1 4 0 1 (1–1)

2 3 0 1 (1–1)

Non-Aspergillus spp. growth

0 9 0 1 (1–1)

1 6 2 0.75 (0.503–1)

aFreedom from resistance (95% CI).
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overall of A. fumigatus isolates having azole resistance. Over the
2 year follow-up duration, significant emergence of itraconazole
resistance was seen, with increased intermediate resistance to
voriconazole and posaconazole. The rapid emergence of azole re-
sistance seen over a relatively short duration (2 years) potentially
highlights the need for more frequent antimicrobial susceptibility
testing in high-risk cohorts such as CF.

Within our study period, we demonstrate a considerable risk of
the emergence of antifungal resistance in adults with CF, with
�20% of study subjects having azole-resistant fungal isolates.
Although limited by the small numbers in our cohort study, the
underlying CF fungal disease sub-type appears to influence azole
resistance in our cohort. Intriguingly, azole resistance develop-
ment was highest during treatment for non-Aspergillus mould
infections. There is currently no genetic understanding of azole re-
sistance in non-Aspergillus filamentous fungi, with the clinical
implications of non-Aspergillus azole resistance again uncertain.
A number of studies have indicated, however, that colonization

with Scedosporium spp. and Exophiala spp. can be detrimental
in certain patients and are a risk factor in post-lung transplantation
mortality, although their pathogenic role in driving CF disease
progression is less-well-described in comparison with
A. fumigatus.38–40 Our findings demonstrate the need for further
surveillance to monitor the emergence, molecular mechanism
and clinical implications of antifungal drug resistance in non-
Aspergillus pathogenic moulds in CF. Our results suggest a trend
towards increased azole resistance development in Aspergillus
bronchitis compared with ABPA, however, this requires confirm-
ation in larger studies. The increased tracheobronchial burden
seen in Aspergillus bronchitis presents a plausible mechanistic
basis given the tendency to form biofilms, reducing mould expos-
ure to antifungal drugs and creating a hypoxic microenvironment
putatively encouraging the emergence and propagation of azole
resistance.41,42

Our study has a number of limitations. Although we demon-
strate the significant variability and high prevalence of subthera-
peutic azole dosing in CF, we were unable to analyse the potential
impact of cytochrome P450 genetic polymorphisms on azole
metabolism.43 Larger studies are also necessarily to fully evaluate
the impact of drug–drug interactions on therapeutic dosing. A fur-
ther limitation of our study is the uncertainty regarding the clinical
implications of antifungal resistance in our cohort. In our cohort,
there was a small number of cases infected with pan-azole-
resistant A. fumigatus. These cases and outcomes are briefly sum-
marized in Table S1 (available as Supplementary data at JAC-AMR
Online) and highlight the variability in outcome in CF fungal disease
with two out of three cases clearly showing disease progression,
but one showing stability following regular intravenous antifungal
salvage therapy. Further larger multicentre longitudinal observa-
tional studies are required to fully determine the significance of
azole resistance evolution for pathogen virulence, persistence,
host–pathogen interaction and clinical outcome. A number of
studies, however, have demonstrated the association of pan-
azole-resistant A. fumigatus with poor clinical outcome and
increased risk of mortality post lung transplantation, providing
some evidence for the clinical significance of our findings.15–17,44

Further studies are ongoing to determine the molecular basis of
azole resistance acquisition and evolution in this cohort. Overall,

Table 5. Azole resistance in analysed fungal isolates

Fungal species
Positive isolates from culture

N (% of total isolates)

Azole-resistant isolatesa N (%)b

Total Year 1 Year 2

Aspergillus fumigatus 170 (51.2) 52 (38.0) 17 (23.0) 35 (55.6)

Aspergillus spp. (non-fumigatus) 2 (0.60) 1 (50.0) 1 (50.0) –

Scedosporium apiospermum 88 (26.5) 6 (9.0) 3 (14.3) 3 (7.0)

Scedosporium prolificansc 4 (1.20) 4 (100) 4 (100) –

Exophiala dermatitidis 45 (13.6) 12 (26.1) 12 (44.0) 0 (0)

Rasamsonia spp. 22 (6.33) 12 (75.0) 2 (33.3) 10 (100)

Other 1 (0.30) 1 (100) 1 (100) –

aIncluded only fungal isolates in which susceptibility assays were performed.
bPercentage of azole-resistant isolates of the total isolates within the year analysed.
cIntrinsically azole resistant.

Table 6. Breakdown of resistance by drug for A. fumigatus (i.e. all iso-
lates where susceptibility testing was done)

Azole-resistant isolatesa n (%)

Drug/classification Year 1 Year 2

Itraconazole

Susceptible 57 (77.0) 24 (39.3)

Intermediate 2 (2.7) 6 (9.8)

Resistant 15 (20.3) 33 (54.1)

Voriconazole

Susceptible 59 (78.7) 36 (59.0)

Intermediate 16 (21.3) 23 (37.7)

Resistant 0 (0) 2 (3.3)

Posaconazole

Susceptible 1 (33.3) 4 (18.18)

Intermediate 2 (66.6) 16 (72.7)

Resistant 0 (0) 2 (9.09)

aIncluded only fungal isolates in which susceptibility assays were
performed.
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however, our findings illustrate the escalating emergence and
propagation of widespread azole resistance within the fungal
species most associated with human diseases such as CF, which
may, in time, and without intervention, come to pose a major
global health hazard.

There is little data pertaining to the relationship between sub-
therapeutic azole levels and the emergence of antifungal resist-
ance. Contrary to non-CF cohorts, we show significant prevalence
of subtherapeutic TDM despite use of newer azole drugs such as
posaconazole, with supposedly better pharmacokinetic properties,
in cohorts with high prevalence of azole-resistant A. fumigatus,
such as CF. In our study, we were unable to show an association
between subtherapeutic azole levels and the development of
azole resistance. In addition, the study size did not allow for an
in-depth analysis of the impact of time of azole exposure on resist-
ance development. Further large prospective longitudinal studies
alongside molecular characterization of resistance are likely
necessary to fully understand the impact of long-term subthera-
peutic azole exposure in driving resistance in CF.

Our study highlights the need for regular TDM and the import-
ance of antifungal stewardship in CF across all widely used azole
drugs. Although antimicrobial stewardship (including antifungal
stewardship) has been increasingly taken up within an invasive
fungal disease (IFD) setting, there is limited data and reports of its
integration and impact within a chronic pulmonary fungal disease
setting such as seen in CF, with recent international consensus
documents focusing on IFD.45,46 Antifungal stewardship imple-
mentation in CF fungal disease poses further challenges with often
long duration of treatment, a young, busy, working population
making regular timed blood tests at tertiary centres (often long
distances away) difficult, plus marked pharmacokinetic variabil-
ity.47 The advent of novel CFTR modulators with resultant drug–
drug interactions alongside the need for shielding in a COVID-19
pandemic has only heightened these issues and make integration
of robust antifungal stewardship programmes in CF fungal disease
a priority.48

In summary, our retrospective study of real-world azole TDM in
a large adult CF cohort highlights significant subtherapeutic dosing
alongside rapid emergence of azole resistance, highlighting the
need for integrated antifungal stewardship in CF fungal disease. In
contrast to widely adopted practices in CF fungal management
and international recommendations, we identify individual azole
therapy with itraconazole capsule and voriconazole with an
increased risk of subtherapeutic dosing. Further, we show rapid de-
velopment of A. fumigatus azole resistance over a short follow-up
duration in adults with CF and significant emergence of azole

resistance in non-Aspergillus mould infection. Further large multi-
centre prospective studies are required to elucidate the impact of
subtherapeutic azole dosing on the molecular mechanism of azole
resistance evolution.
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