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Abstract. Stress-strain response of foliated rocks shows that mechanical behaviour and degree 
of anisotropy are influenced by the spatial arrangement of phyllosilicates. But the anisotropy of 
these rocks is essentially due to the characteristics and distribution of cracks aligned with mica 
beds. At the laboratory scale, the elastic symmetry can be represented by the transverse isotropy, 
with the lowest elastic modulus perpendicular to the plane of aligned microcracks. These issues 
are discussed with reference to experimental data obtained for two gneisses of the same 
geological formation. The gneisses show a quite similar strength behaviour, but very different 
deformabilities. The measures of dynamic and static deformabilities under loading prove the 
influence of the progressive closure of open cracks on the compliance tensors of both gneisses. 
The relationship between the elastic parameters and the characteristics of the crack distributions 
is discussed in the framework of non-interacting crack models. Assuming the presence of two 
different sets of cracks, crack densities have been estimated. The different deformabilities of the 
two gneisses can be ascribed to their different microcrack distributions. The degree of anisotropy 
due to cracks reduces as stresses increase, differently for the two gneisses. 

1.  Introduction 
Many rocks and rock masses exhibit anisotropic behaviour of deformability and strength, which often 
has to be taken into account to realistically predict the performance of engineering works. 

Methods for estimating the state of stress by means of stress release measurements on tunnel walls 
or boreholes are very common. If deformability of the rock mass is anisotropic, measurements can be 
interpreted adopting the suitable anisotropic elastic model [1].  

If deformability in anisotropic rock masses is investigated through plate-loading tests, more 
exhaustive results are provided if the measures are carried out in oriented boreholes, parallel and 
perpendicular to the principal deformability axis. In this case the proper elastic model accounts for 
anisotropy [30]. 

These examples prove that where the rock mass is anisotropic it determines a geotechnical 
complexity. Furthermore, investigations for geotechnical characterization of anisotropic rock masses 
often provide complex outcomes and discrepancies between the results of in situ and laboratory tests. 

In order to reduce complexity, e.g. scale effects or inhomogeneity that can further affect engineering 
problems, studying the mechanical behaviour of anisotropic rocks at the laboratory scale is significant. 
Furthermore, experimental deformabilities of anisotropic rocks are relevant in the field of medium and 
low stresses, which are significant in practical applications.  
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In this paper the experimental data obtained in laboratory on two gneisses from the same geological 
formation are discussed in order to individuate their anisotropic elastic characteristics, described by the 
elasticity tensor. The laboratory tests included P- and S-wave velocity measurements; in the hypothesis 
of the transverse isotropy symmetry, properly oriented measurements allowed the estimate of the 
dynamic elasticity tensor. The closure of cracks was investigated by means of isotropic triaxial tests. 
Furthermore, static deformabilities measured under deviatoric stress on specimens with different angle 
of schistosity allowed the estimate of the static compliance tensor. From static and dynamic 
measurements, crack density distributions of open cracks were estimated for both the gneisses, 
evidencing their differences.  

2.  Anisotropy in foliated rocks 
The observed anisotropic behaviour of intact rocks is caused by a preferred orientation of one or more 
of the following structural elements: 
(i) the crystal lattices of the rock-forming minerals; 
(ii) non-equidimensional grains or crystal (taking only their shape into account); 
(iii) non-equidimensional voids, particularly open or closed microcracks. 

In most cases a close connection is observed between the orientation of the three types of structural 
elements. Accordingly, even if the second type is immediately apparent, it is not essential, as anisotropy 
depends on the other two types. A typical example is the case of the foliated rocks. 

Foliated rocks are characterized by the presence of planar structures, produced by the stresses applied 
during the pre-metamorphic stage (developing a primary stratification) and/or the metamorphic process 
(resulting in cleavage and schistosity). Often, the term foliation is restricted to planar structures formed 
by metamorphic processes, which are considered a secondary foliation.  

The cleavage and schistosity planes are different in the scale, which is, respectively, the small scale 
(from mm to tens of mm) and the intermediate scale (hundreds of mm). The foliation is called schistosity 
in case of coarse-grained rocks (schists), whose fabric is characterized by closely spaced parallel beds 
(schistosity planes) along which the phyllosilicate minerals concentrate. Beds of phyllosilicates are 
separated by bands of other crystals (quartz, feldspar), more or less thick. This alternation is apparent in 
gneissic rocks, where the metamorphic process produced levels with different mineralogical 
composition. Gneiss texture is characterized by large crystals and schistosity planes are often sharply 
undulated, surrounding lenses of porphyroblasts of quartz or feldspar (augen-gneiss).  

In foliated rocks the micas always show a preferred planar orientation, whilst the other minerals are 
often not markedly oriented. It is often reasonable to assume for crystal lattices orientation, which is the 
“intrinsic” anisotropy, the transverse isotropy (TI) or the orthotropic symmetry. 

Nevertheless, the intrinsic anisotropy has been proven to be of little relevance as the schistosity 
planes of schists and gneiss are planes of weakness, where, under applied stresses, microcracks could 
develop. In these rocks, the coincidence between the orientation of the crystal lattices and the associated 
microcracks lead to the prevalence of a planar structure, and the TI or the orthotropic symmetry can be 
assumed. 

3.  Elastic characteristics of anisotropic rocks 
In the generalized Hooke’s law, the elastic properties of an anisotropic medium are represented by a 
fourth-order elasticity tensor which relates the stress tensor to the strain tensor. According to the 
contracted notation, when engineering strains r and stresses q are used, the constitutive equations 
becomes: 

 , 1,6r q r q  M  (3.1) 

where the second-order tensor M (compliance matrix) and its inverse L (stiffness matrix) are two 
indexes matrixes. 

Due to some energy restrictions, the elasticity tensor presents only 21 independent components; 
however, rocks often show elements of symmetry, hence reducing the number of the components. For 
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rocks characterized by orthotropic symmetry the non-null terms are 9, whereas for the transverse 
isotropy (TI) they are only 5. If not differently supposed, the next equations refer to TI symmetry. 

Assuming the principal symmetry directions as the reference system 1, 2, 3 (Figure 1) the compliance 
matrix M of a transversal isotropic rock can be written in terms of the engineering elastic parameters: 
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M  (3.2) 

If TI symmetry is assumed, axis 3 is oriented as the normal to the isotropic plane, axes 1 and 2 are 
equivalent, and the 5 independent elastic parameters could be: 2 Young’s moduli, E1 and E3; 1 shear 
modulus, G13; 2 Poisson's coefficients, 31 and 21. In foliated rocks the polar axis 3 is in practice the 
direction corresponding to the minor principal modulus, as will be shown in the following.  

A generic reference system will be indicated as 1*, 2*, 3* (Figure 1) and M* will be the 
corresponding compliance matrix. The transformation formulas containing the direction cosines of the 
new reference system 1*, 2*, 3* with respect to 1, 2, 3 are given by Lekhnintski [17]. The angle θ is 
defined as the angle between the normal to the isotropic plane 3 and the direction of axis 3* (Figure 1). 

 

 

Figure 1. Orientation of the reference system in 
a rock with TI symmetry (left); generic reference 
system and definition of the θ angle (right). 

3.1.  Static deformability 
Under uniaxial loading the longitudinal a and radial strains t’ and t’’ measured in specimens whose 
loading axis a forms an angle   with respect to the axis of elastic symmetry (Figure 1, right) are related 
to the coefficients of deformability through the followings [1]: 
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If the shear modulus GSV is introduced as a function of the other moduli (Saint Venant hypothesis), 
the elastic constants are reduced at 4 [17][15]: 

 

44 11 33 13

13 31

SV 1 3

2

1 1 1

M M M M
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 
   (3.4) 

This relationship imply that the shear modulus is invariant for a rotation within a plane passing 
through the principal axis, i.e. it is independent on the   angle. The Saint-Venant hypothesis, also called 
isoG hypothesis, is often assumed in practical applications, since it simplifies many problems 
concerning anisotropic bodies. 

The deformabilities measured under uniaxial loading (equation (3.3)) can be also written as a 
function of the engineering elastic moduli: 

 

2 2a

3 1 3 1 13 SV

' '
231 12 31

3 1 3

'' ''
2 231

3 13 SV

d 1 1 1 1 1 1 1 1 1
 cos2 sen cos

d 2 2

d
 sin

d

d 1 1
 sen cos

d

a

t

a

t

a

E E E E E G G

E E E E

E E G G











   


     


    


     
           

     

 
      

 

 
      

 

 (3.5) 

3.2.  Dynamic deformability 
In case dynamic measurements are performed, the equation of motion, excluding any body forces, for a 
plane wave in a continuum body ([2], [12]) have to be introduced. In homogeneous media we define 
locally the phase velocity as the velocity of advance of the wavefront, and the phase angle   as the angle 
between the wavefront normal and the direction of the energy propagation. The phase velocities are 
related to the elastic stiffness tensor (Christoffel tensor) through the vector of the particle oscillation and 
density   of the rock.  

The phase velocities are the P-wave and two shear waves, SR- (vibration direction contained in the 
polar isotropic plane) and SP-wave (vibration direction perpendicular to the SR-wave). Assuming that 
the variations in velocity could be considered as those of a TI symmetry, where the axis 3 is the axis of 
circular symmetry, measurements of VSR and VSP velocities on cylindrical specimens with axis along the 
direction 1 correspond to velocities V12 and V13. 

Assuming the phase angle   with respect to the polar axis, the solution of Christoffel's equations 
leads to the following relations between velocities and the stiffness tensor L = M-1 :  
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where the term D( ) is defined by:  
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 (3.7) 

The components of the stiffness tensor can be determined from the velocities, as the terms L11, L33, 
L55 and L66 derive directly from the P- and S-wave velocities measured along the principal directions 
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(e.g. L11 = V1
2). For determining the term L13 measures of the P- and SP-wave velocities on specimens 

with a   angle different from 0 ° and 90 ° are required, for example using the equation: 

    2 2
P SP( ) ( )D V V      (3.8) 

4.  Modelling elastic deformability of microcracks  
The effect of open and closed cracks in rock deformation and the influence of progressive closing of 
microfissures results in the non-linear stress-strain behaviour. The relevance of microcracks in 
governing the anisotropic deformability is asserted by the strong dependence of the degree of anisotropy 
on the applied stress. Moreover, the variation of elastic constants with the orientation of the specimen is 
quite different from that predicted by the intrinsic compliance tensor of elasticity of the matrix. 

In a homogeneous microfissured medium, having a very low porosity, the anisotropy is the result of 
the preferred orientation of its constituent minerals (par. 2): minerals (‘intrinsic’ or ‘solid matrix’ 
anisotropy) and microcracks. The ultimate symmetry is due to the superimposition of the various 
elements of symmetry, and generally, it results of a lower order. 

The elastic tensor of deformability (compliance tensor) can be considered as the sum of two 
contributions, deriving respectively from the solid matrix Mm and from the voids M:  

 m  M M M  (4.1) 

The matrix of deformability Mm can be determined by averaging the deformabilities of the different 
minerals, referred to a unique reference system, taking into account the distribution of their orientation 
and their relative volume [13].  

For many types of crystalline rocks, including foliated rocks, the deviation from isotropy of the 
intrinsic elastic tensor is relatively modest [5]. In case the isotropic model is assumed, the averaged 
parameters Em and m can be thus evaluated: 

 

m m m 1
m 11 22 33
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   
 (4.2) 

Void contribution to rock compliance M can be evaluated on the basis of different models. The 
simplest theoretical schemes that have been proposed in the literature derive from two different 
approaches: i) ‘equivalent stress’ models, which lead to the so-called non-interacting crack models [22], 
[18]; ii) ‘equivalent material’ models, such as the self-consistent model [23], or the differential self-
consistent model [21], [6]. 

In the non-interacting crack models, each crack is considered as being isolated and its effects on the 
state of stress are not influenced by the presence of other cracks; this leads to higher elastic moduli with 
respect to the other models. Numerical simulations [19] have shown that if cracks are randomly 
distributed, interaction does not occur also for high crack densities. As the contribution of any crack 
distribution can be obtained by a simple superimposition of the effects of each crack, these models lead 
to great simplifications in the analytical expressions. In the following, the hypothesis of non-interacting 
cracks will be adopted. 

4.1.  Model based on the normal and tangential stiffnesses 
In the equivalent continuous medium models, typical of the rock mass scale, the effect of discontinuities 
is often taken into account in a global and homogenized way. The equivalent medium is weaker and less 
stiff than the intact rock. An essential condition for the use of such models is that the mean spacing of 
the various sets of discontinuities is small compared to the characteristic dimensions of the volume of 
interest (REV). 
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Figure 2. Orientation of the local reference 
system of a single set of cracks and definition of 
spacing d and angle of orientation θ. 

 
This model can be extended to the small scale by associating a set of discontinuities to a set of 

microcracks. In the following, a classical procedure is illustrated to obtain the equivalent elasticity 
matrix for a volume containing one or more sets of cracks [10]. The contribution of microcracks to rock 
compliance M can be evaluated on the basis of deformability, orientation and frequency of each set. 

The development of plastic deformations, i.e. fracture of microcracks, is not treated, thus limiting 
the application of the model to the case of microcracks causing normal and shear deformations in elastic 
conditions. 

In the elementary volume represented in Figure 2 there is only one set of continuous microcracks 
with constant spacing d; its orientation is identified by the angle   between the global x, y reference 
system and the local n, t reference system. The set is represented by linear elements in a 2D continuum, 
or by planar elements in a 3D continuum, being continuous (without rock bridges) and of negligible 
volume. 

Under these hypotheses, the analysis is simplified because the intact material and the set of cracks 
are subject to the same state of stress. The problem is treated under plane deformation conditions (z = 0), 
assuming that the third z axis is common to the local and global reference systems. 

If the intact rock is considered isotropic with deformability matrix Mm, it is not necessary to introduce 
a reference system for the rock.  

The behaviour of a single set of cracks in elastic conditions is described by means of the stiffness 
constants Kn, Ks associated respectively to the relative displacement in the normal and tangential 
direction [10]. To determine the contribution of the cracks to the global deformation of the elementary 
volume, the relative displacements are divided by the mean spacing d .  

Thus, the equivalent deformability due to the set of cracks is described by the matrix Mc
n,t, where 

the subscript ‘c’ is related to the set of cracks, in the local reference system: 
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In the case of continuous cracks, the stress on their plane must be in equilibrium with the external 
stress. The equivalent terms of deformation Mc due to the single set in the global reference system are 
provided by the transformation matrix Cc containing the direction cosines of the new reference system: 

 
2 2
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c c c c c 2 2

2 0 cos
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sin0
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sc s c s c s
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M C M C C  (4.4) 

To obtain the overall deformation of the elementary volume, it is sufficient to apply the equation 
(4.1), adding the two deformabilities.  

In case of j-sets of cracks, each of them differently oriented and spaced, through the j  angle and the 
spacing dj, respectively, local Mc j

n,t and then global Mc j deformability matrixes can be introduced. 
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The overall deformation of the equivalent cracked medium is given summing the contribution of the 
intact rock to the equivalent contributions of the various sets of cracks: 

 m c jj M M M  (4.5) 

In case of non-continuous cracks, the analysis has to take into account that the stress conditions acting 
on the sets of cracks are no longer independent on each other. 

4.2.  Model based on the crack density tensor 
In the hypothesis of non-interacting cracks, each set of cracks gives its contribution as being isolated. 

Assuming that the anisotropy of the solid matrix is negligible, the contribution of the voids to the 
compliance matrix M can be considered as the sum of two terms: 

 A B( ) ( )ij ijkl   M M F M F  (4.6) 

where the matrixes MA and MB depend, other than on the matrix deformability Mm, on the second- 
and fourth-order tensors Fij and Fijkl , respectively. For penny-shaped cracks having diameter 2 a and 
orientation of the normal, n, the so-called crack density tensors F ([18] [19] [25]) are defined by the 
followings: 
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where V is the involved volume.  
If intrinsic anisotropy is neglected, the matrix M depends on the tensor Mm through the term Qm , 

i.e. on the Young’s modulus and Poisson’s coefficient Em and m  (equation (4.2)), thus defined: 
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For a single open crack, having its normal directed along axis 3, the non-null components of the 
compliance matrix M, are [15]:  
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By referring the contribution of each cracks to the same reference system, the overall contribution is 
given by 
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where ij is the Kronecker delta function. 
It can be recognized that tensor MA shows an orthotropic symmetry, having its principal planes and 

axes corresponding to those of tensor Fij. By adopting the two-subscripts notation, tensor MA, referred 
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to its principal axes, is given by: 
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Tensor MB introduces non orthotropic additional terms. As their terms are sensibly lower with 
respect to those of MA (due to the multiplier 0.5m in equation (4.10)), their contribution could be 
possibly considered negligible.  

With the aim of estimating the effect of cracks from the velocity measurements applying the 
equations (3.6), several authors ([16] [31]) have studied the direct relationship between the stiffness 
tensor L and the crack density tensor. These approaches give reliable results only for low values of the 
density, while introducing the effect of cracks through the compliance matrix M does not have this 
restriction.  

As the measurement of S-wave velocities on heavily microcracked rocks at low confinement stresses 
are often difficult and affected by uncertainties, the model can be simplified using the P-wave velocities 
in the principal directions only. A reduced matrix M, which represents a portion (3 x 3) of the 
compliance terms of an orthotropic microcracked rock, can be introduced:  

 

m m m
11 11 12 13

m m
22 22 23

m
33 33

M M M M

M M M

sym M M







 
 
  
 

  

M  (4.12) 

From the P-wave velocities in the principal directions (equation (3.6)), the principal stiffness moduli 
L11, L22 and L33 can be directly determined and then the related compliance moduli. Once the moduli of 
the solid rock are assigned, the crack-induced compliance terms M11, M22 and M33 can be estimated 
by means of an iterative procedure applied to equations (4.1) and (4.12). 

From equations (4.11) and (4.12) the crack-induced compliance M11 is related to the corresponding 
principal terms of the crack density tensors by the following relationship: 

 A B
11 11 11 11 11111 0.5 2

( )m m

m

Q
M M M F F

  


   


 (4.13) 

and the terms for the other principal directions are simply obtained by permutation of the subscripts. 
The values of Fii can be easily obtained if the components Fiiii are neglected; alternatively, they can be 
linearly related to the terms Fii, when a given type of crack distribution is assumed. 

Total crack density eT is thus defined by: 

 

 

3
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    


     


 (4.14) 

If the effect of intrinsic anisotropy and of the compliance MB are neglected, the compliance tensor 
M (equation (4.12)) can be simplified. It can be stated without introducing significant errors that in this 
case any distribution of cracks produces an orthotropic symmetry, where the principal axes coincide 
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with those of the Fij tensor. In practice, with regard to the elastic properties of the rock, any distribution 
of cracks is equivalent to three mutually orthogonal sets of cracks. 

In these simplified hypotheses, equations (4.11) and (4.12) show that the shear moduli of the 
microcracked rock are not independent from the other two elastic moduli of the isotropic matrix (i.e. the 
isoG hypothesis is valid and the transversal deformations do not depend on cracks). If anisotropy derives 
only from the density and orientation of microcracks, the independent elastic parameters are 4 (instead 
of the 9 parameters of a general orthotropic medium): i.e., 3 principal Young’s moduli and 1 coefficient 
of transversal deformation, deriving from the intrinsic moduli M12 = M13 = M23 = -m/Em (equation 
(4.2)). 

5.  Experimental observation of anisotropy in foliated rocks 
The elastic characteristics are often investigated through dynamic measurements, i.e., velocity of 
ultrasonic waves, which require the mathematical inversion technique to determine the elastic moduli 
[31]. Experimental tests for the individuation of the elastic symmetry of anisotropic rocks include 
measurements on spherical specimens, specimens having polyhedric faces or sets of cylindrical 
specimens, cored at different orientations from the same block ([14] [27] [7]).  

The experimental results obtained by Birch [4] indicated that the increase in the P-wave velocity 
under loading is due to closure of the microcracks. Measurement of the P-wave velocity is very effective 
for evaluating the possible microcracks oriented according to preferential directions, such as to 
contribute significantly to anisotropic properties [25]. At high stresses, the anisotropy of the P- and S-
waves is caused solely by the alignment of the minerals ([4] [27]). 

The effect of stress on rock anisotropy has been observed by many Authors also through 
measurements of static deformability under deviatoric loads ([9]). Regression statistical analyses applied 
at measurements from oriented specimens to obtain the global stiffness matrix L (equations (3.6) and 
(3.7)) and the global compliance matrix M (equations (3.3)) are commonly used ([14] [3] [11] [20] [7]). 

The main characteristics of the degree of anisotropy can be expressed by the ratios RV  and RE. The 
ratio RG can also give some insights into the observed behaviour. These ratios are defined by the 
following relations: 

 
2

1 1 SV
V E G

3 3 13
; ;

V E G
R R R

V E G

 
   
 

 (5.1) 

The anisotropy ratio RV is based upon P-wave velocities, where axis 3 is perpendicular to the main 
planar structure of the rock, and axis 1 is directed along a possible lineation (in case of orthotropic 
symmetry). 

The isoG hypothesis is satisfied when the ratio RG is equal to 1. 
The compliance matrix Mm of foliated rocks consisting of alternating layers of perfectly oriented 

mica beds and of randomly oriented quartz crystals could be determined by averaging techniques [13]. 
The mica content of typical gneisses is 10 - 20%, while for schists it may be as much as 50 % or more; 
the resulting intrinsic anisotropy ratio RE varies from 1.1 to 2.0, for gneisses and schistose rocks, 
respectively. 

Experimental data of RV  and RE ratios on foliated rocks strongly differ from the values of the matrix, 
indicating that these ratios are influenced by the state of stress. In order to compare the ratios among 
different rocks they should be firstly referred to the same loading path and stress level, but this do not 
ensure a valid comparison as rocks have different crack distributions. For the same rock the trend of the 
ratios under stress levels are related to the evolution of microcracks [11]. 

6.  Mechanical behaviour of the investigated rocks 
An extensive campaign of laboratory tests on a foliated metamorphic rock (Antigorio gneiss) was carried 
out. Rock was sampled in a zone where an underground hydroelectric power station was planned, in 
proximity of the Toce river valley (Central Alps, Italy). 
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From an exploratory tunnel at a depth of about 700 m, boreholes were drilled to retrieve samples for 
rock characterization. With the aim of studying the mechanical effects of stress relief on the 
deformability of the crystalline rock, a very large block (2.7 × 0.76 × 1.06 m) was detached from a 
quarry located on a side of the Toce river.  

Hereinafter, the samples coming from the tunnel and quarry will be referred to, respectively, as ‘deep 
gneiss’ (D-gneiss) and ‘superficial gneiss’ (S-gneiss). 

Cores of various diameters providing specimens for mechanical characterization and for studying 
anisotropy were taken. Samples in the shape of sphere (147 mm in diameter), hexadecagon (straight 
prisms with sixteen flat lateral surfaces, distant at about 140 mm) and cylinder (147 mm in diameter) 
were prepared.  

To describe the mechanical behaviour of the two rocks various tests were carried out on NX 
specimens (54 mm in diameter, height-to-diameter ratio equal to 2). Uniaxial (UN) and isotropic 
compression (ID and IDE) tests were performed. In ID and IDE tests isotropic pressure up to 60 MPa 
was applied. During the tests, the longitudinal and shear velocities in the direction of the loading axis 
(ID tests), the axial and circumferential strains (IDE tests), and finally both the velocities and the strains 
(UN tests) were measured. 

6.1.  Mineralogical properties 
The mineralogical composition of the two gneisses, obtained from modal analyses on thin sections 
observed at the polarized light microscope, was very similar for D- and S-gneiss: quartz 40-39 %, K-
feldspar 23 %, biotite 15-13 %, plagioclase 22-25 %.  

Schistosity is in the form of thin wavy layers of biotite which surround the other crystals, slightly 
elongated along the schistosity, giving the rock a ‘nodular’ fabric. Upon microscopic examination 
(Figure 3) the S-gneiss shows coarser grain and thicker mica beds than D-gneiss, which has finer grains 
and thinner and more frequent mica beds. In the D-gneiss the mica beds have greater continuity.  

The observation of the thin sections (Figure 3) has also revealed that the schistosity planes are not 
perfectly planar but arranged along weakly inclined alignments whose intersection gives rise to a 
rhomboid texture. The cross-planes form acute angles of ± 8° and ± 12° in D- and S-gneiss, respectively. 

Moreover, the biotite, whose cleavage planes are oriented as the lattices, appears affected by very 
long and frequent parallel microcracks in the S-gneiss, while the microcracks are shorter and less 
frequent in the D-gneiss. The other minerals show microcracks without a preferential orientation. In 
both gneisses, cracks of crystal boundaries can generally be considered with matching lips. 

 

 

Figure 3. Thin sections of the two gneisses (green colour is associated to biotite crystals). 
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A quantitative count of the lengths of microcracks on single crystals (biotite and quartz) in thin 
petrographic sections were carried out. In the hypothesis that microcracks were continuous, the length l 
of microcracks over the investigated areas (Table 1) provided crack frequency and related mean 
spacing d. 

 
Table 1. Mean values of crack frequency measured in crystals of biotite and quartz. 

 D-gneiss S-gneiss 

 l/Area biotite (mm-1) 0.471 0.663 

 l/Area quartz (mm-1) 0.332 0.722 

6.2.  Physical properties 
For the mechanical characterization 17 and 50 cylindrical NX specimens of the D-gneiss and S-gneiss 
were prepared, respectively. In order to determine dry density d geometrically regular specimens were 
dried up to a constant weight under vacuum or in an oven at very mild temperatures, in order to avoid 
thermal microfissuring. 

Solid matrix density s has been determined with a helium picnometer on finely grounded materials. 
From densities of the solid matrix and of the dry specimens the mean value of the total porosity  has 
been estimated, resulting slightly higher in S-gneiss. These physical properties are reported in Table 2. 

 
Table 2. Mean values of density, solid matrix density and porosity. 

 D-gneiss S-gneiss 

(Mg/m3) 2.714 2.683 

s (Mg/m3) 2.754 2.744 

(%) 1.46 1.91 

6.3.  Dynamic properties in unstressed conditions 
Ultrasonic velocities of P- and S-waves have been determined by measuring the transit time of a square 
wave, through Panametrics piezoelectric transducers (15 mm in diameter, 1 MHz in frequency). 

Measurements of P-wave velocity on spherical, cylindrical and hexadecagonal samples have 
indicated that the gneisses are characterized by an orthotropic symmetry, with three planes of symmetry, 
one of which coincides with the schistosity plane. 

The range of variation of P-wave velocities measured in the two gneisses is reported in Table 3, 
where the V1-2 velocity refers to the measurements in the schistosity plane without distinction between 
the maximum and intermediate value. In Table 3 also two anisotropy ratios are reported: RV (equation 
(5.1)), relative to the maximum and minimum moduli, and (V1 /V2)2, relative to the maximum and 
intermediate modules (in the plane of schistosity). 

 
Table 3. Range of P-wave velocities and dynamic anisotropy ratios. 

 D-gneiss S-gneiss 

V1-2 (km/s) 4.2-5.0 3.0-3.8 

V3 (km/s) 3.6-4.6 1.8-2.9 

(V1-2 /V3)2 (-) 1.4 2.6 

(V1 /V2)2 (-) 1.2 1.2 
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As expected, the polar axis 3 is the direction corresponding to the minor principal velocity. The 
principal velocities of S-gneiss are on average lower with respect to D-gneiss, providing a higher 
anisotropy ratio. The anisotropy ratio in the polar plane is instead almost the same and quite low for the 
two rocks, thus assessing that assuming a TI symmetry does not result in a severe approximation. 

Velocities of P- and S-waves were also measured on all the specimens (NX geometry) prepared for 
the tests under loading. As the orthotropic symmetry, the velocity measurements of P-waves measured 
in the schistosity plane on these specimens are to be considered between the maximum and the 
intermediate value. Figure 4 shows the P-wave velocity measurements for differently oriented 
specimens, and also the elastic model of equation (3.6), derived from a regression analysis on the 
measurements. 

6.4.  Strength properties  
To investigate the mechanical behaviour of the gneisses, uniaxial (UN) tests on NX cylindrical 
specimens were performed. 5 and 13 specimens, with different orientation of the schistosity planes, were 
tested for D- and S-gneiss, respectively. 

The macroscopic failure surfaces observed in specimens subjected to deviatoric loading cross the 
matrix in specimens whose   angle equals 0 ° and 90 °, while they develop along the schistosity plane 
in the specimens with  = 45 ° and are of mixed type in specimens with the remaining angles. 

The measured strengths (Figure 5, Table 4) show that their maximum values are experienced at 
 = 0 ° for both gneisses. For   angle close to the minimum strength, few specimens were tested. The 
resulted degrees of anisotropy were 2.1 and 1.5 for D- and S-gneiss, respectively, consistently with those 
proposed by Ramamurthy [26] for gneiss.  

 
Table 4. Mean values of the minimum and maximum uniaxial compressive strengths, revealed at 

different schistosity angles. 

 D-gneiss S-gneiss 

UCSmax (MPa) 124.1 119.9 

UCSmin (MPa) 58.9 78.6 

 

  

Figure 4. P-wave velocity measurements 
(symbols) on variously oriented NX specimens of 
D- and S-gneiss. Elastic model applied to the 
experimental data is represented by continuous 
lines. 

Figure 5. Uniaxial strength on specimens of D- 
and S- gneiss. 
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6.5.  Dynamic measurements under loading 
Under compression loading tests (ID and UN) velocities were measured through piezoelectric 
transducers (nominal frequency of 1 MHz) enclosed in the load platens. Three velocities along the 
loading axis were measured: the longitudinal wave and two shear waves: SR- (vibration direction in the 
schistosity plane) and SP-wave (vibration direction perpendicular to the SR-wave) (par. 3.2). 

Isotropic compression tests (ID) were carried out, using the conventional Hoek cell, up to the 
maximum confinement stress of 60 MPa. 7 and 10 specimens, with different orientation of the 
schistosity planes, were tested for D- and S-gneiss, respectively. 

Some of the same specimens were driven to failure under uniaxial conditions (UN tests), after 
removal of the isotropic loading. During the tests, both the longitudinal and shear velocities and the axial 
and circumferential deformations were measured. 5 and 6 specimens, with different orientation of the 
schistosity planes, were tested for D- and S-gneiss, respectively. 

As an example, in Figure 6 the comparison of the velocities measured in D-gneiss for the specimen 
 = 0 ° (only one specimen was loaded under the loading path ID+UN) in ID and UN test is shown. In 
Figure 7 the comparison of the velocities measured in S-gneiss in two specimens ( = 0 °, 90 °) in ID 
and UN test are shown. 

Under ID loading conditions a marked increase in velocities is observed with increasing stress. For 
S-gneiss (Figure 7) the strongest increase in velocities (especially P-wave), with respect to D-gneiss 
(Figure 6), is recognizable. The anisotropy ratio is progressively reduced for both P- and SR-waves. The 
velocity trends for specimens with  = 45 ° (not shown) is quite similar to that observed for the 
specimens with different schistosity angle. Among the differently oriented specimens the larger gradient 
of velocities with stress is observed for specimens with schistosity angle equal to 0 °.  

Under ID loading conditions the increase of velocities can be related to closure of microcracks 
perpendicular or oblique with respect to the load axis [4].  

In brittle rocks is expected that under uniaxial load conditions the formation of new microcracks, 
mostly subparallel to the load axis, has a modest influence on the P-wave velocity in the axial direction, 
and a more significant influence on the S-wave velocity. 

In D-gneiss the comparison in the behaviour under uniaxial and isotropic loads was carried out on a 
single specimen, whose schistosity is perpendicular to the loading axis ( = 0 °) (Figure 6). The velocity 
trends of the two tests do not differ substantially, indicating that in this gneiss the new microcracks occur 
at loads higher than 60 MPa. 

Very different is the trend on specimens of S-gneiss. The specimen with schistosity orthogonal to the 
axis ( = 0 °) shows that VP velocities in the UN test (Figure 7), up to 40 MPa, are greater than those 
detected under isotropic load, probably because during the unloading phase of the ID test not all the 
microcracks reopened. The phase of opening and forming new microcracks under the deviatoric load is 

 

  

Figure 6. Velocities from ID 
and UN tests in a specimen 
with  = 0 ° of D-gneiss. 

Figure 7. Velocities measured in ID and UN tests in two specimens 
with  = 0 ° (left) and  = 90 ° (right) of S-gneiss. At a = 140 MPa 
theoretical intrinsic values for matrix are shown (symbols). 
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revealed more clearly by the reduced increase of the shear velocities at the load of 10 MPa. In the 
specimen with schistosity parallel to the axis ( = 90 °), the velocities already differ from those 
determined during the ID test at very low loads, presumably as the existing microcracks favourably 
oriented are mobilized by the deviatoric load.  

Regression analyses based on equations (3.6) and (3.7) were carried out for discrete values of the 
applied stress, providing the global stiffness constants. The trend of the velocities as a function of the 
schistosity angle θ  showed the correspondence between the theoretical model and the experimental 
values. 

On the basis of the average values of the longitudinal and shear velocities, the technical constants 
(Young’s and shear moduli) were calculated, assuming the TI symmetry (par.3.2). All moduli increase 
with stress. At low pressures, moduli of S-gneiss are lower than D-gneiss, whilst at the maximum 
pressures the moduli have comparable values, except for modulus E1 which is higher for D-gneiss. 

6.6.  Static measurements of deformability 
During the uniaxial compression tests with velocity measurement (UN test) (par. 6.5) the axial and 
circumferential strains were also determined. The measurement was carried out using resistance strain 
gauges, arranged in pairs, according the scheme in Figure 1. 

Uniaxial tests were performed on 11 specimens, with schistosity orientation equal to 0 °, 45 ° and 
90 °: 5 and 6 tests were performed on D- and S-gneiss, respectively. 

The comparison between specimens with the same orientation, within each pair, shows a fair 
homogeneous behaviour. All the specimens showed brittle fracture behaviour, more marked in those 
with schistosity parallel to the loading axis. 

At low loads, the axial stress-deformation curves show concavity upwards (to a greater extent in the 
specimens with  = 0 °), depending on the progressive closure of favourably oriented microcracks. At 
higher loads, the dilation for the opening of new cracks prevails over the closure of pre-existing cracks. 

From experimental axial and radial strains, the coefficients of the compliance matrix M, for discrete 
values of the applied axial stress, have been obtained applying a regression analysis according to 
equations (3.3). The statistical analyses were carried out up to a common value of 60 MPa, 
corresponding to the minimum strength (Table 4). The analyses for the two gneisses were found to be 
overall satisfactory. The resultant E1, E3 and G13 engineering moduli are reported in Figure 8 as a 
function of the axial stress. 

Figure 8 evidences a decrease of the Young’s moduli at initial loading before the successive rise. 
The fall is very marked in specimens of D-gneiss at the angle  = 0 ° (E3) and S-gneiss at the angle 
 = 90 °(E1). It could possibly be caused by the presence of some closed cracks favourably oriented that 
begin to slide. Furthermore, at low values of axial stress some cracks could be only potential (for instance 
crystal boundaries that fail prematurely). Where the increase in moduli is observed, this effect is 
disguised by the most effective closure of open cracks. 

 

 

Figure 8. Elastic moduli E1, E3 and G13 versus axial stress derived by regression analyses for discrete 
values of the applied axial stress (symbols) for D- and S-gneiss. 
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A strong difference in the trend of E1 and G13 moduli between the two gneisses is revealed. In S-
gneiss the continuous increase of E1 modulus indicates that the influence of crack closure prevails over 
the opening of new cracks and that necessarily these cracks are isotropically oriented. In D-gneiss the 
continuous decrease of E1 and G13 moduli suggests that at low applied stresses, propagation of new 
cracks and shearing of cracks prevail. 

For each value of the axial stress the elastic model provides the global elastic constants of the tested 
rocks; e.g., the axial deformation gives the apparent Young's modulus E  (equation (3.3a)). The trend 
of the theoretical Young's modulus as a function of the schistosity angle θ  for two different axial stress 
is presented in Figure 9, together with the corresponding experimental values. The Young's moduli of 
D-gneiss are higher than those of S-gneiss for each value of θ and for all the tested axial stresses (see 
Figure 8). The anisotropy ratio is reduced as the pressure increases, reflecting the closure of the open 
microcracks. 

At lowest loads, the two transversal deformabilities (31/E3 and 12/E1) (equations (3.3b-c)) are 
independent on specimen orientation and equals, as it is expected in rocks characterized by only one set 
of open cracks. At higher loads, however, the two deformabilities change as the angle of schistosity 
varies, as an effect of the shearing of closed cracks. A threshold stress, below which the closure of the 
microcracks prevails, has been identified for both gneisses at about 30 MPa. 

 

 

Figure 9. Apparent modulus E 
versus angle of schistosity 
measured in single specimens 
(symbols) and obtained by 
regression analyses (continuous 
and dashed lines) for two applied 
stress, for D- and S-gneiss. 

7.  Models of deformability 

7.1.  Synthesis of the dynamic and static deformabilities  
In the hypothesis of TI symmetry, the intrinsic parameters of the compliance matrixes Mm of the two 
rocks have been calculated (Hill average [13]) assuming the crystal lattices of the phyllosilicate levels 
(biotite) are iso-oriented, and all the other minerals have not a preferred orientation (Table 5). Such 
averaging techniques provides quite satisfactory values at high isotropic stress [5]. From the 5 
parameters of the TI elastic medium, also the isotropic moduli have been calculated (equation (4.2)) 
(Table 5). 

 
Table 5. Elastic moduli in case of TI symmetry (left) and isotropy (right) for D- and S-gneiss. 

    TI symmetry    Isotropy 
 V1 V3 V13 V12 E1 E3 G12 G13 Em m 
 km/s km/s km/s km/s GPa GPa GPa GPa GPa  

D-gneiss 6.09 5.59 3.05 3.75 91.2 76.8 38.0 25.6 85.84 0.185 
S-gneiss 6.07 5.63 3.10 3.72 89.6 77.2 37.2 26.3 85.05 0.196 
 
The different degrees of anisotropy (equation (5.1)) observed in static and dynamic tests under 

loading account for the closure of open cracks. 
Under ID loading conditions, even at the maximum isotropic stress (60 MPa) (Figure 6 and Figure 

7), velocities still increase at significant gradient, indicating that open microcracks are still present. For 
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the two rocks, even under high compressive stresses, the maximum moduli are lower than those 
theoretically calculated for the solid matrix (Table 5). 

The trend of the anisotropy ratio RV of the P-waves (average values over the specimens) during 
loading is shown in Figure 10. In S-gneiss the degree of anisotropy sharply reduces in the initial phase 
and stabilizes at stresses greater than 10 MPa; conversely in D-gneiss the degree of initial anisotropy is 
much lower and progressively reduces until a constant value is reached at a stress around 40 MPa.  

The behaviour observed in the S-gneiss could derive from closure of very flat (low aperture) 
microcracks lying within the schistosity plane. D-gneiss, on the other hand, would be characterized by 
a wider distribution of crack apertures up to higher values, since the pressure necessary to close the 
microcracks is higher. The final common value around 1.2 is consistent with the anisotropy ratio of the 
matrix, due to the orientation of crystal lattices (1.19 and 1.16 are the theoretical values for the matrix 
as TI symmetry is supposed, Table 5).  

In UN tests the ratio of anisotropy RE from the static elastic moduli (equation (5.1)) is influenced by 
the microcracks forming under loading (Figure 11). As expected, the ratio, initially high, decreases as 
the load increase, with a sharper gradient for S-gneiss, correspondingly with the dynamic measures. 
Despite the measured moduli are quite lower than the theoretical values of the solid matrix, due to 
shearing of closed cracks, at the threshold value of 25-30 MPa the ratio RE equals the theoretical value 
(1.19 and 1.16).  

The influence of open cracks is also testified by the progressive increase of RG parameters (equation 
(5.1)) (Figure 12) with the increase of uniaxial stress for both gneisses. This would comply with the fact 
that the influence of open cracks diminishes as the applied stress increases, while that of closed cracks 
increases. This influence happens with a constant rate in D-gneiss suggesting a progressive passage from 
the closing to the forming of cracks, while in S-gneiss the constant value of RG in the stress range of 
10 - 30 MPa suggests that new cracks possibly appears after 30 MPa.  

From UN tests a regression analysis applied at the measured deformabilities according to equation 
(3.5) provided equivalent moduli of those from equation (3.3), allowing also a direct evaluation of the 
statistical significance of some parameters. According to the F-test, the second coefficient of regression 
(estimated value of 1/G13-1/GSV) is significantly (95% probability) different from zero, i.e. the isoG 
hypothesis cannot be assumed for the tested rock, above the axial stress of 15 MPa and for all the 
stresses, for D- and S-gneiss, respectively. 

 

  

Figure 10. Anisotropy ratio RV of the P-waves 
versus mean stress applied during ID tests. The 
intrinsic values of the matrix are also shown as 
symbols at 60 MPa. 

Figure 11. Anisotropy ratio RE of the Young’s 
elastic moduli versus axial stress applied during 
UN tests. The intrinsic values of the matrix are 
also shown as symbols at 60 MPa. 
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Figure 12. Ratio RG of the Saint Venant’s 
hypothesis (isoG) versus axial stress applied 
during UN tests. 

 
The overall behaviour shown in ID and UN tests suggests that two sets of cracks possibly control the 

rock behaviour. The first set has an orientation corresponding to that of the schistosity plane and consist 
of cracks very flat that can be closed at low compressive stresses. The second set, which is characterized 
by randomly oriented cracks with reduced flatness, progressively close under higher stresses. 

7.2.  Static deformability  
In UN test the observed behaviour derives from both open and closed cracks; total deformation sums up 
that of the uncracked solid plus that of open and closed cracks. Models which account for open and 
closed cracks predict that closed cracks are considerably less effective than open ones in the reduction 
of the elastic modulus and that their effect is evident only when specimens have a schistosity angle 
different from 0 and 90 °. It is thus reasonable to consider the non-linear behaviour observed in UN tests 
as affected only by open cracks, up to a threshold of the axial stress equal to 30 MPa.  

To study the deformability of a cracked medium under loading, an equivalent continuous medium 
crossed by different sets of open and continuous microcracks was adopted, according the hypothesis 
explained in par 4.1. 

Two sets of microcracks are considered: planar (related to biotite beds) and isotropic (all the other 
minerals). From the crack frequency counted in crystals of biotite and quartz (Table 1), the mean 
spacings of cracks were evaluated. 

As the examination of the thin sections detected a rhomboid texture of the biotite beds, the planar set 
is characterized by two cross-planes forming an acute angle of 8 and 12° for D- and S-gneiss, 
respectively. This texture leads to a non-zero contribution to the transversal deformabilities (31/E3 and 
12/E1) in specimens loaded normal to the average plane of schistosity. 

The isotropic set of cracks is characterized by four cross-planes forming an angle of 45 ° to each 
other. 

The compliance matrix Mm of the solid matrix has been estimated from equation (4.4) assuming an 
isotropic intrinsic deformability (Table 5). Thus the compliance matrix of the cracks Mc is composed 
by the contributions of the two sets of cracks: planar Mc,pl and isotropic Mc,iso :  

 m c,pl c,iso   M M M M  (7.1) 

The compliances of the two sets are due to the normal and shear stiffnesses (Kn , Ks )pl and (Kn , Ks )iso , 
respectively, of the cracks (equation (4.2)), being each formed by two and four equivalent planes. 

Comparing the two gneisses, the mean spacing of the planar set of cracks of the D-gneiss is greater 
than that of the S-gneiss. The same inequality was observed for the spacing of the isotropic set of cracks. 

Global deformabilities calculated from UN measures (par. 6.6) allow the estimate of the tangent 
stiffnesses of the different sets, for discrete values of the applied axial stress up to the threshold of 30 
MPa, by applying a regression analysis at equations (7.1). Figure 13 shows the increase of the normal 
displacement due to cracks Δδn  (normalized with respect to its maximum) over the axial stress, for both 
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gneisses. The normalized displacement highlights the relation between the different sets of cracks 
without depending (as stiffnesses and relative displacements do) on the estimated spacing of cracks, 
which could have been influenced by the missing counts in other crystals than biotite and quartz.  

The discrete integral function of the quantity Δδn  over the axial stress, that can be easily derived from 
Figure 13, provides the cumulated closure of the microcracks. For both the gneisses the closure gradient 
of the cracks of the planar set is higher than the related values of the isotropic set, indicating their quite 
complete closure at the value of σa = 30 MPa. The corresponding isotropic sets of cracks are far to be 
closed at the stress of 30 MPa. The overall results evidence that in D-gneiss the applied stresses have a 
reduced capability of closing the microcracks, especially those isotropically distributed, with respect to 
S-gneiss. 

 

 

Figure 13. Normalized increase in normal displacement due to cracks (planar set, left; isotropic set, 
right) versus axial stress in UN tests. 

7.3.  Dynamic deformability  
The effect of cracks on the compliance matrix in the hypothesis of non-interacting cracks were evaluated 
from the velocity measurements, according to method described in par. 4.2. The components of the crack 
density tensor have been obtained from the P-wave velocities measured in ID tests in the hypothesis that 
F11 = F22. 

The intrinsic deformabilities of the gneisses were assumed to have isotropic symmetry, with moduli 
listed in Table 5. 

Assuming that cracks can be modeled as very flat oblate ellipsoids, they will close when the stress 
normal to the plane of the cracks reaches a critical value cl [8] equal to: 

 m
cl 2

m4(1 )

E 





 (7.2) 

where  is the initial aspect ratio (i.e. opening / diameter ratio) of the cracks. 
The variations of the crack density tensors F11 and F33 have been obtained at different stresses during 

the tests; then, by means of equation (7.2), they have been related to their aspect ratio.  
Assuming a plausible a priori distribution for the orientation of the microcracks allows a more 

accurate estimate. As already stated, a possible structure for cracks in the investigated gneisses is given 
by the superimposition of an isotropic set and a planar set of cracks, whose respective densities will be 
indicated as epl and eiso . The densities of the two sets are given by: 

 
pl 33 11

iso 113

e F F

e F

 


 (7.3) 

Figure 14 shows the cumulative distribution of the densities of the two sets, as a function of the 
closure stress or of the aspect ratio, i.e. the global densities of the two sets of cracks which are still open 
at a given pressure or have an aspect ratio lower than a given value. For both gneisses, aspect ratios of 
the planar set are markedly lower (below 310-4) than those of the isotropic set. Furthermore, D-gneiss 
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shows a narrower distribution of aspect ratios of the planar set, consistent with the greater length of 
microcracks measured in biotite with respect to quartz (Table 1). Thus, for both gneisses, crack-induced 
anisotropy almost disappears at confining stresses of about 2030 MPa.  

The higher anisotropy ratio of S-gneiss observed at low stress levels (Figure 10) is coherent with the 
higher intensity of the crack density epl compared to eiso isotropic. 

As regards the distributions of the isotropic set of crack, the difference between the two gneisses is 
less relevant, although in D-gneiss the distribution tends to be shifted towards higher aspect ratio values, 
coherently with the results revealed by the model based on static deformabilities (Figure 13). 

 

 

Figure 14. Crack 
densities of the planar 
and isotropic sets of 
cracks deriving from 
dynamic measures in ID 
tests versus the applied 
mean stress (up to 60 
MPa) and versus the 
aspect ratio. 

8.  Conclusions 
In this paper, after a review of simplified theoretical models, some experimental results of an extensive 
laboratory campaign are presented. Investigations have been conducted over years in the framework of 
a wider research on anisotropic rocks at both the laboratory and in situ scale ([28] [29]). 

The elastic symmetry of rocks derives from the orientation of minerals and microcracks, being the 
latter factor prevailing at low confining stresses. The ultimate symmetry is due to the superimposition 
of the various elements of symmetry, and generally, it results of a lower order. The anisotropy of the 
compliance matrix deriving from minerals (intrinsic matrix) is relevant only at high isotropic stress. In 
foliated rocks, as microcracking is associated to the cleavage planes of the phyllosilicate crystals, the 
ultimate symmetry coincides with the intrinsic symmetry. 

In this paper the observed deformabilities of two gneisses showing similar strengths and anisotropy 
ratios in uniaxial compression tests are discussed. 

The observed behaviour has been interpreted under the hypothesis that both gneisses are interested 
by two sets of cracks. The first set has the orientation of the schistosity, with cracks of very low aspect 
ratios that can be closed at low compressive stresses. Cracks of the second set show a statistically 
isotropic orientation, have a wider distribution of aspect ratios and close progressively under higher 
stresses. 

Two models which relate the elastic compliance tensor of transverse isotropic materials to the 
contribution of oriented sets of cracks are presented. It is assumed that the solid matrix has an isotropic 
behaviour, cracks have equal shape and dimension and crack density is so low that cracks do not interfere 
each other. 

In unstressed conditions measurements of P- and S-wave velocity showed that the gneisses have an 
orthotropic symmetry, with a very low anisotropy ratio relative to the maximum and intermediate 
moduli. In the comparison between the gneisses, S-gneiss is characterized by the lower velocities. 

The stiffness matrixes of the rocks have been determined from measures of P- and S-wave velocity 
during triaxial tests under isotropic loading. The fact that for the two rocks (especially for S-gneiss) the 
maximum measured elastic moduli are lower than those theoretically calculated for the solid matrix by 
the averaging methods, suggests that the microcracks are not all closed at the maximum pressure of 
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60 MPa. For both the gneisses, at this pressure the anisotropy ratio of velocities coincides with that of 
the intrinsic matrix, indicating that no other anisotropy, i.e. iso-oriented cracks, is summed up.  

This result is confirmed by the outcomes of the model applied to dynamic measurements. It indicates 
that in both the gneisses the planar set is characterized by cracks with aspect ratios which close at the 
pressure of 60 MPa. Conversely, the isotropic set of cracks survives at high pressures and the remaining 
open cracks have aspect ratios greater than 1E-03. 

Strains measured under compressive loading conditions on specimens with different angles of 
schistosity have provided the elastic compliance matrix. At low uniaxial loads the dependency of axial 
and transversal deformabilities on the orientation of the specimen is related to the progressive closure 
of microcracks.  

The results from the model applied to static measurements are coherent with those from dynamic 
measurements, confirming that the isotropic set of cracks is far to be closed at the investigated stresses 
(especially in D-gneiss). This simple model is capable to differentiate the relative contribute of the two 
sets of cracks to the deformability and to highlight differences between the tested gneisses. 

In this respect, the lower elastic moduli of the S-gneiss in unstressed conditions are due to higher 
crack densities of both sets, consistently with the values measured on some crystals in thin sections. 

It may be inferred that the anisotropy of these rocks under in situ stress is due solely to the cracks, 
whilst the solid matrix can be considered isotropic. 
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