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Validation of the mean systemic 
filling pressure assessment 
with preserved arterial blood 
flow by comparing two methods 
of calculation
Roberto Alberto De Blasi1* & Stefano Finazzi2

We developed a method for measuring in vivo venular volumes and the mean systemic filling pressure 
in the limbs using near-infrared spectroscopy (NIRS). We aimed to validate the NIRS methodology 
by comparing two independent methods of calculation based on different physiological approaches. 
Pressure–volumes (P–V) curves were recorded following graded venous occlusion on the forearm. 
Values from a P–V curves analysis model (method 1) were compared with data derived from a 
resistor-capacitance calculation model (method 2) based on arterial pressure and venous compliance. 
We tested these methods on 10 healthy participants at rest and during exercise and on 6 severely 
ill patients. Results from method 1 were comparable with those calculated by method 2. Venular 
volumes calculated using method 1 correlated linearly with those calculated using method 2 both in 
participants  (R2 = 0.98) and in patients  (R2 = 0.94). A good agreement between methods was shown 
with few values out of the range of ± 1.96 standard deviation. Our findings added mathematical 
consistency for the NIRS methodology validation in the venular P–V assessment with no flow 
interruption. Further research will be required to confirm the relevance of the methodology in the 
clinical setting.

Blood volume and pressure in the postcapillary compartment (i.e., venules and small veins) are factors that deter-
mine venous return and systemic  perfusion1. Pressure in this vascular compartment acts both as an upstream 
force moving blood back to the heart and as a force shifting fluids outside the microvascular bed. Consequently, 
post-capillary monitoring and management could be a useful tool to guarantee venous return and limit extravas-
cular fluid leakage, particularly during diffuse inflammation.

Since the late 80 s, some authors have made efforts to obtain in vivo measurements of the mean circulatory 
filling pressure (mcfp), for use as indicator of the average integrated pressure throughout the circulatory system. 
These methods require an absence of blood flow for calculating the vascular pressure variables and this was 
obtained by hindering venous return to the heart and extrapolating to zero the resulting blood flow reduction, 
or by creating a stop-flow in the upper  arm2,3.

Unfortunately, these methods have several relevant limitations. First, inducing mechanical changes in the 
cardiac output (CO) is cumbersome and requires patients who are mechanically ventilated. Second, the extrapola-
tion of CO to zero flow assumes a forced linearity in the pressure–volume (P–V) relationship that underestimates 
the intravascular  pressure3,4.

Additionally, despite these methods allow to estimate the vascular system filling, stopping the flow, they do 
not provide knowledge on the upstream pressure for venous return (VR), thus omitting a crucial determinant 
of the cardiovascular system function.

Previously, we had developed a method for measuring in vivo pressures and volumes in venules and small 
veins in the limbs based on the variation in light absorption using near-infrared spectroscopy (NIRS) after down-
stream venous occlusion, thus obtaining a measurement of the upstream pressure for venous return, without 
interrupting the arterial blood  flow5. This pressure, called mean systemic filling pressure (MSFP) according to a 
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definition by  Magder1, is often erroneously considered as a synonym of the mcfp, but, although quite similar, it 
differs from the mcfp because it is only related to the volume in the systemic vein.

The method we developed complies with the principles of strain gauge plethysmography and NIRS, and it 
has the advantage of measuring microvascular bed volume and its subdivisions: stressed and unstressed volumes 
(Vs, Vu). Given that a direct measurement of post-capillary pressures and volumes cannot be obtained in clinical 
conditions, we derived these measurements using a model based on the analysis of the P–V  curves5. We applied 
it in two clinical conditions by obtaining data that conform to  pathophysiology6,7. Unfortunately, this method 
has not yet been fully validated because no gold standard exists and limitations of previous methods do not allow 
us to consider them as a reference.

In this study, we aimed to supply mathematical derivations from well-established physiological basics equa-
tions to validate the NIRS methodology, thus adding inferential elements to our previous construct. To do so, 
we calculated the MSFP and venular volume with a resistor-capacitance calculation model based on arterial 
pressures and venous compliance and compared results with those obtained by the previous P–V curves analysis, 
reflecting different P–V arrangements of the microvascular bed. As these models were based on two independ-
ent calculations reflecting two different physiological approaches to VR, finding correlations between models’ 
results could provide mathematical consistency to the NIRS methodology we used.

Methods
The study was conducted at Sant’Andrea University Hospital, Rome, Italy. We performed multiple measure-
ments on 10 healthy volunteers within the hospital personal (3 men and 7 women), with an average age of 
26.5 ± 2.2 years and a body mass index of 21 ± 2.2 kg/m2 (range: 19–26), and on 6 critically ill patients consecu-
tively admitted to the Intensive Care Unit in 2018. The patients’ average age was 58.7 ± 19.0 years and the body 
mass index was 26.4 ± 2.4 kg/m2 (range: 22.86–29.39). For this study, we considered 24 measurements from 
healthy participants and 18 measurements from patients as representing the healthy adult population and patients 
with an impaired microvascular function. The investigative procedures have been performed in accordance with 
the Declaration of Helsinki of 1975, as revised in 1983, and the research has been approved by the ethics com-
mittee of the Sapienza University of Rome at the Sant’Andrea University Hospital the hospital (Prot. 7715/13, 
7173/13). All participants or their next of kin provided written informed consent before the start of the study.

NIRS settings and data analysis. We derived the forearm microvascular bed volumes from the sum of 
oxygenated hemoglobin/myoglobin (oxyHb/Mb) and deoxygenated Hb/Mb (deoxy Hb/Mb) μM concentrations 
([Hb]tot/[Mb]tot) measured using a NIMO-4 continuous-wave photometer (Nirox srl, Brescia, Italy)8. Then, 
we calculated the blood volume per 100 mL of tissue after accounting for the mean corpuscular hemoglobin 
concentration, mean corpuscular volume, and hematocrit levels in each participant. Since the Hb in arterioles 
accounts for only 3% of the NIRS signal, and because these vessels as well as capillaries are poorly  distensible9, 
the changes in [Hb]tot during venous compression represented almost exclusively the changes that occurred in 
the venules and small veins. Data were acquired at a sampling time of 0.1 s, thus facilitating analysis of rapid 
changes in the [Hb] levels with a dedicated NIMO software program.

Protocol. The red blood cell count, cell volumes and the mean corpuscular hemoglobin content were 
obtained for each participant. To avoid unnecessary insertion of arterial catheters, in healthy participants the 
arterial blood pressures was recorded non-invasively by a pneumatic cuff, whereas in patients we used data from 
the invasive devices they had for cardiovascular monitoring. The choice of allowing two different technologies 
for measuring the arterial pressure was made as, in the range of pressure we studied, the mean arterial pressure 
was shown to differ little between the invasive and non-invasive  approach10. In addition, arterial pressure does 
not interfere with blood volume changes due to venous  occlusions11.

We performed measurements in the dominant forearm and positioned a NIRS probe at the top of the flexor 
digitorum superficialis (FDS) muscle and verified the correct placement of the probe visually. A pneumatic cuff 
was placed around the arm 5 cm proximal to the antecubital crease, with its tube connected to an automatic 
inflation system (model E-20, Hokanson Rapid Cuff Inflator and AG101 Air Source; PMS Instruments Ltd, 
Maidenhead, UK) capable of reaching a manually predefined pressure in less than 0.5 s. To ensure that there 
were no differences in hydrostatic pressure due to the position of the forearm during measurement and that 
no correction factor was needed, we restrained the forearm in a plastic frame at an angle of 135° in relation 
to the upper arm and placed the NIRS probe at the same level as the right  atrium12. The study took place in 
temperature-controlled rooms, and participants were made to lie down in a comfortable position. To extend the 
range of values, we experimentally increased the extravascular pressure by graded muscle isometric contractions 
in healthy participants.

In this study, unlike in previous  ones5–7, we first inflated the cuff to 50 mmHg for 120 s, according to Halliwill’s 
 technique13, to ensure equilibrium between the cuff pressure (Pcuff) values and intravascular pressure (Pi) and 
achieve their  equivalence14. Then we decreased Pcuff by 5 mmHg down to 0 mmHg, with each step lasting 20 s (10 
data points). The five [Hb]tot values preceding each Pcuff drop of 5 mmHg were manually averaged into 1 value 
from 50 to 0 mmHg, obtaining 10 steady volume values to generate P–V curves. In both methods, it is believed 
that applying a pressure P with a cuff to the arm generates an extra downstream pressure and blood volume 
increase that overcomes the baseline venule pressure (P0) (i.e. the mean systemic filling pressure).

Healthy participants were asked to perform maximal voluntary contraction (MVC) with a digital hand grip 
(Kern & Sohn GmbH, Balingen, Germany) recording the force in kilograms.

After a first set of measurement at rest, two additional sets of measurements were performed during isometric 
exercises by clenching the handgrip at 10% and at 20% MVC, and maintaining the force for 3 min. The isometric 
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muscle contractions were separated by a resting period of 3 min. During contractions, the cuff was inflated to 
a pressure of 50 mmHg and then deflated following the same framework used for the first set of measurements 
performed at rest.

Measurements were performed on patients at rest. All patients received treatments established by the doctor 
on charge and NIRS measurements were performed before and after changes in vasoactive agents infusion rate 
or fluid administration.

Calculation of MSFP and venular volumes. Both methods are based on the cuff pressure and venular 
volume measurements. Assuming that these variables are correctly measured, we compared two independent 
methods of calculation to derive the MSFP, venular volume partitioning  (Vu,  Vs) and venular compliance.

Method 1. Preliminary measurements performed by us showed three slopes of the P–V curve, in the range of 
the Pcuff used in this study, that we considered for the MSFP and compliance calculations (Fig. 1).

Based on the evidence that venous compliance is not  linear5,15, we examined pressure-compliance changes 
with a multi-linear model. We interpreted the upper part of the P–V curve as venular stretching (venular compli-
ance), the intermediate and steeper part as vascular bed recruitment induced by the increase in Pi, and the lower 
portion of the curve as blood volume changes that occur at a Pi lower than that needed to recruit the venular bed.

To avoid any assumption about the shape of the P–V curve, the relationship was calculated as the numerical 
derivative (2-point difference derivative) of each data point using the following equation:

where 0 < Pi < 50 mmHg, C is compliance, P is intravascular pressure, V is blood volume, and i is an index value 
from 1 (corresponding to 0 mmHg) to 10 (corresponding to 45 mmHg). In this model, the breakpoint pressure 
(bP), which separates the intermediate phase from the low-pressure phase, was determined by the Pi correspond-
ing to the highest value of compliance. To calculate MSFP, we extrapolated the measurements of the steeper P–V 
segment using linear regression from the bP to the blood volume measured before occlusion (baseline volume, 
V0) on the pressure axis. This corresponds to the Pi within venules and small veins in the presence of blood flow 
and was thus deemed to represent the MSFP.

In order to partition the  V0 in Vs and Vu, we calculated Vs as the volume included in the MSFP taking into 
account the steeper P–V segment from the  bP7.

Method 2. As NIRS makes no distinction between [Hb] and [Mb], we assumed that at rest, Mb is totally 
 oxygenated16 and that the oxygen saturation of [Hb] at baseline corresponds to that measured following venous 
occlusion at a low  Pcuff. Since light absorption at baseline is the result of deoxy-[Hb] plus the percentage of 
 [HbO2] in tissue blood, we could calculate the  [MbO2] contribution to  V0. Then, we obtained Vu by subtracting 
 [MbO2] contribution from  Vs7.

For this method, we developed an analog resistor–capacitance model of the vascular  system17, by adapting 
the model proposed by Van Vo et al.18. As an analogy with the electric scheme, the current, difference in elec-
tric potential, resistances, and capacitance represented blood flow, pressure difference, vascular resistance, and 
vascular compliance, respectively (Fig. 2a).

We modeled the vascular compartment between the arteries and veins upstream of the pneumatic cuff. The 
initial and final pressures on our circuit were represented by the arterial pressure Pa and Pcuff. We defined Ra 
as total resistance in the upstream venules, C as venular compliance, R as venular resistance and Pv as venular 

C(Pi) =
V i+ 1− V i

Pi+ 1− Pi

Figure 1.  A representative pressure–volume curve. Mean systemic filling pressure: mspf, breakpoint pressure: 
bP.
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pressure. In our model, both R and C depended on the  Pcuff because of venular pressure transmission. In particu-
lar, R equals the baseline value when the  Pcuff is lower than the MSFP value and grows linearly when  Pcuff rises 
above it. In our model, up to a certain Pv value, C reflects the recruitment of the microvascular bed (C1). Above 
this Pv value, the vascular bed is fully recruited and venular compliance (C2) reflects the vessel wall elasticity.

Based on this premise and by assuming the blood flow upstream and downstream venular compartment in 
the steady state as a constant, we derived a relationship between the V0 and Pcuff, which is reported in Fig. 2b. All 
measurements were taken when the blood flow in the venule section had reached the stationary state after each 
change in the cuff pressure. Accordingly, we solved the circuit equations in the late-time stationary limit, when 
the transient phase had ended. When the Pcuff is lower than the MSFP (P0) venular volume equals the sum of Vu 
and Vs, which is the baseline volume (V0), namely, the volume attained when the Pcuff is not applied. Above P0, 
venular volume increases as a result of the Pcuff values increase, showing two different slopes corresponding to 
the vascular bed recruitment and vessel wall elasticity. Calculations and relationships between the variables and 
details on the model are reported in supplementary methods S1.

Variable values calculated with the model fitted with NIRS were analyzed using generalized nonlinear regres-
sion with R software (version 1.1.414, 2009–2018 RStudio, Inc.).

Statistical analysis. From preliminary results comparing P–V values calculated by the two methods, a 
slope of the linear regression line of 0.95 and 0.97 respectively with a standard deviation (SD) of the regression 
errors of 0.88 and 0.17 were showed for patients, whereas for healthy participants a slope of 0.70 and 0.98 with 
a standard deviation of 0.91 and 0.18. These data entail that a sample size of 4 measurements for patients and 10 
measurements for healthy participants would be adequate to detect a difference between methods in the order 
of magnitude previously assessed, with a statistical power of 80% and an alpha error of 0.05 (PSSize Calculations 
software, version 3.0; Informer Technologies).

All data were expressed as mean ± SD. The Kolmogorov–Smirnov test was used to assess normal data dis-
tribution. We used the analysis of variance (ANOVA) for repeated measurements for testing values differences 
within the same group. The Bland and Altman test was used to compare the two methods of calculation plotting 
the differences between data measured by method 1 and 2 and against the averages for the two methods. We 
calculated the mean difference between two methods of measurement (the “bias”), and 95% limits of agreement 
as the mean difference (± 1.96 SD). Pearson’s correlation coefficient (r) and regression analysis were used to test 
data linearity of the two methods. A p-value less than 0.05 was considered to indicate statistical significance. 
Data were analyzed with the software program MedCalc (version 11.5; MedCalc Software, Ostend, Belgium).

Results
Characteristics of participants. Of the 10 healthy participants, 7 had measurements at baseline, at 10% 
and 20% MVC. Two participants were excluded from measurements at 20% MVC because of an unreliable NIRS 
signal, and for 1 participant we only included the measurement at baseline. We performed 18 measurements 
on the six patients (2 with trauma, 4 with sepsis), before and after all changes in fluid balance, norepinephrine 
infusions, or airway pressures.

Figure 2.  (a) An electric scheme of the resistor-capacitance model. Pa and Pv are the arterial and venular 
pressure. Pcuff: cuff pressure, C: venular compliance, Ra: total resistance upstream of venules, R(Pcuff): the variable 
resistance generated by the cuff pressure. (b) Venular volume as a function of the cuff pressure. The volume is 
constant for P < P0. For P > P0 it grows according to the equations derived from the model picture in Fig. 2a (see 
SM for the derivation). C1: compliance associated with recruitment of the microvascular bed, C2: compliance 
associated with vessel elasticity, V: venular volume (ml), V0: venular volume at baseline (ml). Vu and Vs: 
unstressed and stressed volume (ml).
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All participants at rest and the patients showed a distinct shape illustrating the P–V relationship, with three 
different slopes and two possible inflection points. Gradual isometric exercises led to a flattening in the shape 
of the P–V relationship (Fig. 3).

Measurements in healthy participants. At rest, the MSFP calculated in healthy participants by method 
1 yielded values higher than those reported in our previous studies (6.9 ± 2.3 mmHg vs 4.2 ± 0.5 mmHg, p < 0.001 
or 4.9 ± 2.4, p = 0.040). In contrast, the volume values matched those previously  reported7. ANOVA showed sig-
nificant changes in MSFP (p < 0.001) when comparing sets of measurements at rest and during exercise, showing 
a progressive increase in MSFP from rest to 10% and 20% MVC. The changes in the shape of the P–V curve due 
to exercise resulted in no change in volume (p = 0.440). Thus, calculations revealed a decrease in the Vs compli-
ance (p = 0.010).

Fit of methods 2. Both methods gave rise to similar P–V curves when  Pcuff decreased. Our mathematical 
model (model 2) qualitatively and quantitatively reproduced the values obtained by NIRS (Fig. 4).

Agreement between methods 1 and 2. The mfsp values calculated using methods 1 and 2 showed a 
linear correlation both in healthy participants, for data at rest and during contractions (R2 = 0.72, p < 0.001), and 
in patients (R2 = 0.91, p < 0.001) (Fig. 5a,b).

The two regression lines showed different values for intercepts and slopes, with values concentrated mainly 
within a small range in both groups of participants. The Bland–Altman test selected one value out of those in 
the range of ± 1.96 SD for healthy participants and one for patients (Fig. 5c,d).

Measurements of the volumes in venules (Vu + Vs) showed a linear correlation between values calculated 
using methods 1 and 2, both in healthy participants (R2 = 0.98, p < 0.001; y = 0.04 + 1.0x) and in patients (R2 = 0.94, 
p < 0.001; y = 0.05 + 0.97 x).
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Figure 3.  Representative pressure–volume curves measured at rest (filled circles), at 10% (open circles) and 
20% (x signs) of maximal voluntary contraction.

Figure 4.  A representative pressure–volume curve on one participant in which the resistor-capacitance model 
(line) fits the pressure–volume data points (open circles) measured by the near infrared spectroscopy. Below the 
MSFP, the venular volume remained constant, whereas above it, the P–V curve showed initially small volume 
changes, a second response with a higher compliance, corresponding to vascular bed recruitment, and third 
response with a lower compliance, corresponding to the stretch of the venular wall, as expected.
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Intercepts and slopes of the two regression lines were similar, and values were homogenously distributed 
across a wide range in both groups of participants. The Bland–Altman test displayed two values out of ± 1.96 SD 
for healthy participants and two for patients (Fig. 6a,b).

Figure 5.  (a) Regression line of MSFP values measured with method 1 and 2 in healthy participants. The 
linear regression is described by the equation: y = 2.73 + 0.70 x. (b) Regression line of MSFP values measured 
in patients. The linear regression is described by the equation: y = 0.98 + 0.95 x. (c) The Bland–Altman test 
comparing the MSFP values measured with method 1 and 2 in healthy participants. (d) The Bland–Altman test 
comparing the MSFP values measured in patients.

Figure 6.  (a) The Bland–Altman test comparing volume values measured with method 1 and 2 in healthy 
participants. (b) The Bland–Altman test comparing volume values measured in patients.
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Discussion
From our study findings, venular pressures and volumes derived from two independent calculation models 
showed similar values, adding rigorous mathematical and physiological elements for the NIRS method validation.

This investigation originates from the need to validate a measurement technique in the absence of a well-
founded in vivo benchmark. In a previous study, we compared NIRS measurements of MSFP in the forearm, 
based essentially on method 1, with those obtained by evaluating blood volume changes using strain-gauge 
 plethysmography5. Although we have added an innovative method for calculating postcapillary the blood volume 
partitioning, this paper is not a proof that the NIRS method provides the correct value of the venular volume, 
whose validity is discussed  elsewhere8.

Validation is a complex concept that requires defining a priori and explicitly the concept of what we want to 
 demonstrate19. In this case, the construct consists of the hypothesis that requirements on which the NIRS meth-
odology calculation is based cannot be accidental, and consequently can be considered valid if they conform to 
well-known physiological principles with regard to microcirculation.

The values of MSFP and venular volumes obtained by our NIRS methodology, in contrast to those of the 
mcfp obtained with the arterial flow limitation maneuvers, conform to the physiologic knowledge on venous 
return and the hydrostatic  pressure1. A validation framework also needs to determine which empirical avail-
able evidence links data to the meaning we give to it. In order to provide evidence supporting the variables that 
reflect the physiological meaning we attribute to them, we tested NIRS measures at rest and in an experimental 
condition in which rapid pressure changes within the muscular tissue were induced. Evidence showed a good cor-
relation between muscle force under both active and passive conditions, and intramuscular pressure (IMP)20,21. 
Since IMP is typically identified as a measurement of fluid pressure, including the contribution of the interstitial 
 fluid22, it is reasonable to suppose that a force-related IMP increase affects pressure inside venules. This simulates 
an interstitial fluid pressure higher than normal, as observed during inflammation. Our results confirmed the 
incremental MSFP values by varying muscle efforts, providing evidence of the sensitivity of NIRS technology 
to changes in interstitial pressure.

Higher MSFP values measured at rest in healthy participants by method 1 when compared to those previ-
ously reported can be explained by a small change we introduced in the calculation of method 1. It included the 
estimation of the lower part of the P–V curve, the low-pressure phase. In this revised method, we extrapolated 
the steeper P–V segment in the intermediate phase to the pressure axis. The rationale behind this change relies 
on the reasoning that P–V data, resulting from the change in vascular compliance at the beginning of vascular 
bed recruitment, should reasonably reflect the force that the vascular bed exerts to oppose its recruitment. We 
were able to verify in monitored patients that this new MSFP calculation gave rise to MSFP—central venous 
pressure gradients in accordance to the patient’s patho-physiologic  condition1.

The lower  R2 observed in the MSFP overall values of healthy participants and patients could be justified by 
the flattering of the curve shapes during muscle contractions, which could have a significant impact on the cal-
culation by the two methods. On the contrary, patients at rest despite having a wider range of MSFP and volume 
values, showed a more homogeneous curve shape.

It is important to clarify the available evidence that justifies the utility and relevance of the data. The answer 
is derived from the results of two studies in which the NIRS methodology was applied in critically ill patients 
and in those who had undergone cardiac  surgery6,7. In these studies, the evaluation of changes in the venular 
compartment was crucial for understanding the effects of volume loading and extracorporeal pump on tissue 
perfusion. In addition, we collected unpublished data on patients with trauma or sepsis that highlighted the 
importance of in vivo monitoring of the venular compartment for comprehending the effects of treatments.

Another critical issue comprised determining the consequences of data errors in terms of clinical implications. 
Although no measurement can be completely free from uncertainties and errors, the possibility of incorrectly 
recording venular pressures and volumes may theoretically lead to consideration of giving fluids or vasoac-
tive agents to a patient when it is not necessary or, on the contrary, refraining from giving them when needed. 
However, as venular values vary according to variables measured in macrocirculation, the validity of NIRS vari-
ables results from their consistency with data from the macrocirculation as well as from changes in therapy. An 
effective way to account for possible errors in measurements is to look at the shape of the P–V curve. The final 
consequential element of construct validation is determined by judging the social acceptability of consequences 
that occur as a result of using a study’s findings, measures, or inferences. To fulfill this last point, we need to 
conduct further research and perform studies that possibly demonstrate the validity of NIRS variables in differ-
ent contexts of clinical practice.

Our study has several limitations. The first possible limitation is that we compared the total venular volume 
with the two methods without categorizing it into Vs and Vu. This relates to the inability to extrapolate the Vu 
using method 2. Another limitation is the possible inaccuracy in the absolute Vu value calculated using method 
1, due to the overlapping light absorption spectra of Hb and Mb. This makes identification of Mb non-feasible. 
Notwithstanding, the percentage of the NIRS signal due to Mb in the skeletal muscle is lower and contributes 
modestly to the calculation of Vu using method 1. Additionally, since the Mb concentration and its saturation 
remained unchanged over several days, we considered the Vu changes in the same participant to be reliable. 
In order to collect more data for the P–V curve, we performed measurements with a 2-mmHg drop. However, 
because of the difficulty in manually setting such a small variation in the Pcuff and obtaining stable [Hb] values, 
we excluded these measurements from the results in view of potential inaccuracies.
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Conclusion
In this study, we added mathematical consistency to our previous construct, based on P–V curves analysis, to 
validate with two independent methods of calculation the NIRS methodology for the assessment of venular bed 
without flow interruption. The methodology was tested in healthy volunteers at rest and during exercise and in 
patients and variables results were in conformance with the physiological principles with regard to microcircu-
lation, as hypothesized. Further research will be required to confirm the utility and relevance of this method in 
cardiovascular diagnosis and treatment.

Data availability
The whole dataset generated during and/or analyzed during the current study are available from the correspond-
ing author on reasonable request.
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