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1. Introduction

In this paper we provide a variational approximation by means of non-local
integral energies of functionals of the form

α

ˆ
Ω\K

W (Eu(x)) dx + 2βHd−1(K), (1.1)

where Ω is a bounded open subset of Rd, K ⊆ Ω is closed, W is a non-negative
and convex function with p-growth for some p > 1, u ∈ C1(Ω\K;Rd), Eu
denotes the symmetric part of the gradient of u and Hd−1 is the (d − 1)-
dimensional Hausdorff measure.

Functionals as in (1.1) are the core of many variational models of frac-
ture mechanics, in the framework of Griffith’s theory of brittle fracture under
the small strain assumption (see, e.g., [30,32] and the references in [18, In-
troduction]). If, as usual, the set Ω denotes the reference configuration and
u represents the displacement field of the body, then the total energy (1.1)
is the sum of a bulk energy in Ω\K, where the material is supposed to have
an elastic/elasto-plastic behavior (see, e.g., [30, Sect. 2], [33, Sections 10 and
11]), and a surface term accounting for the energy necessary to produce the
fracture, proportional to the area of the crack surface K. It is only very re-
cently that a rigorous weak formulation of the problem (1.1) has been provided
[20,27]. Within this setting, u is a (vector-valued) generalized special function
of bounded deformation, for which the symmetrized gradient Eu is defined al-
most everywhere in an approximate sense (see [27]), and the set K is replaced
by the (d − 1)-rectifiable set Ju, the jump set of u. This space is denoted by
GSBDp(Ω), where the exponent p refers to the integrability of Eu. After that
the existence of weak minimizers has been achieved, one can actually show
that the jump set thereof is closed (up to a Hd−1-negligible set), and prove
well-posedness of the minimization problem for (1.1) (see [17,19,22]).

However, the minimization of functionals of the type (1.1) may be a hard
task in practice, mainly due to the presence of the surface term Hd−1(Ju).
Such difficulties already appear for W (M) = |M |2 and in the case of antiplane
shear (see, e.g., [10]), where the energy (1.1) reduces to the Mumford-Shah-
type functional

ˆ
Ω

|∇u|2 dx + Hd−1(Ju), (1.2)

for a scalar-valued displacement u ∈ SBV (Ω), the space of special functions of
bounded variation. It is indeed well-known that a variational approximation
of (1.2) by means of local integral functionals of the form

ˆ
Ω

fε(∇u) dx,
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defined on Sobolev spaces, is doomed to failure (see [13, Introduction]). Over
the last years, this has motivated a great effort to provide suitable approxima-
tions of (1.2) by means of more manageable functionals, leading to the con-
vergence of minimum points. A number of different approaches has been pro-
posed, which in some cases have also been generalised to the (more challenging)
setting of (1.1), both in a discrete and in a continuous, infinite-dimensional,
setting.

A very popular approach, originally proposed by Ambrosio and Tortorelli
[4,5] and generalised to the linearly elastic setting in [18,29], provides an ap-
proximation of (1.1) and (1.2) by elliptic functionals (with parameter ε > 0)
at the price of adding an auxiliary phase-field variable v ∈ H1(Rd; [0, 1]). The
heuristics behind these functionals, taking the form

ˆ
Ω

vε(x)W (Euε(x)) dx +
1
ε

ˆ
Ω

(vε(x) − 1)2 dx + ε

ˆ
Ω

|∇vε(x)|2 dx

is to approximate the discontinuity set K with the ε-layer {vε ∼ 0}. Also
discretizations of the above functionals by means of either finite-difference
or finite-elements with mesh-size δ, independent of ε, have been considered.
For a suitable fine mesh, with size δ = δ(ε) small enough, these numerical
approximations Γ-converge, as ε → 0, to the Mumford-Shah functional (see
[6,8], and [7] for the case of a stochastic lattice). A similar result for the energy
(1.1) has been recently provided in [25]. For other discrete approaches based on
finite differences or finite elements we may mention [16,21,39], in the context
of the Mumford-Shah functional, and [1,36] for the Griffith model.

Closer to the purpose of our paper are, however, variational approxima-
tions by means of nonlocal integral energies. Following a conjecture by De
Giorgi, Gobbino proved for instance in [31] that the functionals

1
εd+1

ˆ
Rd×Rd

arctan
( |u(x) − u(y)|2

|y − x|
)

e− |y−x|2
ε2 dxdy

Γ-converge to (1.2) when ε → 0. A discretization of this model on graphs has
been recently analysed in [15], and adaptions to the stochastic setting have
also been provided [38]. Another method, introduced in [13], is based on non-
local integral functionals whose density depends on the average of the gradient
on small balls, in order to prevent large gradients being concentrated in small
regions. There, functionals of the form

Fε(u) :=
ˆ

Ω

f

(
ε−
ˆ

Bε(x)∩Ω

|∇u(y)|2 dy

)
dx (1.3)

are considered, where f : [0,+∞) → [0,+∞) is an increasing function such
that

lim
t→0+

f(t)
t

= α, lim
t→+∞ f(t) = β, (1.4)
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Bε(x) denotes the open ball of radius ε centred at x ∈ Ω and −́
B

v dx is the
average of v on B. The functionals (1.3) Γ-converge, as ε → 0, to the functional

F (u) := α

ˆ
Ω

|∇u(x)|2 dx + 2βHd−1(Ju).

Afterwards, in [14], it has been shown that more general energies of the formˆ
Ω

|∇u(x)|2 dx +
ˆ

Ju

θ(|u+ − u−|) dHd−1,

where |u+ − u−| is the jump of u across Ju, can be obtained by considering
non-local approximating functionals as in (1.3) with varying densities f = fε,
and the function θ is computable from fε. This analysis has been continued in
[34,35] for functionals with bulk terms having linear growth in the gradient.

The very first non-local approximation of Griffith-type energies on the
footsteps of [13], inspired by the subsequent generalization [24] of such model,
has been provided in [37]. There, non-local convolution-type energies of the
form ˆ

Ω

fε

(ˆ
ε suppρ

|Eu(y)|p ρε(x − y) dy

)
dx (1.5)

are considered, where fε is a suitable sequence of densities, ρ is a convolu-
tion kernel with support suppρ and ρε(z) is the usual sequence of convolution
kernels ρ(z/ε)/εd. The Γ-limit of (1.5) with respect to the L1 convergence is
shown to be the Griffith-type functionalˆ

Ω

|Eu(x)|p dx +
ˆ

Ju

φρ(ν) dHd−1,

where the anisotropy φρ depends on the geometry and on the size of suppρ,
and the function u belongs to the space SBDp of special functions of bounded
deformation with Eu ∈ Lp, which is a (proper) subspace of GSBDp. The ar-
gument in [37] introduces some novelties with respect to [13,24], in particular
for the proof of the lower bound, which is obtained by means of a delicate con-
struction based on a slicing technique. However, as it happens when dealing
with the space SBDp, in order to obtain compactness of sequences of com-
petitors with equibounded energy, an L∞ bound has to be imposed, which is
quite unnatural in Fracture Mechanics.

Our results: The purpose of our paper is to provide a variational approx-
imation of the functional (1.1) in the spirit of [13]. We will namely show that
for f complying with (1.4), the functionals

Fε(u) :=
ˆ

Ω

f

(
ε−
ˆ

Bε(x)∩Ω

W (Eu(y)) dy

)
dx (1.6)

Γ-converge to the functional (1.1) in the L1(Ω)-topology (Theorem 3.1). The
proof strategy is based on the localization method for Γ-convergence (see, e.g.,
[26, Chapters 14–20]). One first considers, for any open subset A ⊂ Ω, the
localized functionals Fε(·, A) defined as in (1.6) with A in place of Ω and
their asymptotic behavior. The core of the argument (essentially contained
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in Propositions 5.1–5.3) consists in showing that the lower Γ-limit F ′(u,A)
satisfies the estimates

F ′(u,A) ≥ α

ˆ
A

W (Eu) dx, F ′(u,A) ≥ 2β

ˆ
A∩Ju

|〈νu, ξ〉|dHd−1 (1.7)

for each u ∈ GSBDp(A), A ⊂ Ω, and ξ unit vector in R
d. Above, the symbol

〈·, ·〉 denotes the scalar product in R
d. As the two terms on the right-hand side

are mutually singular, the Γ-liminf estimate can be obtained from these two
separate estimates by a standard technique (Lemma 2.9).

While this general scheme has also been pursued in [13], getting to (1.7)
is rather different in our paper than it was to obtain analogous estimates in
theirs. Indeed, in the SBV -context of Mumford-Shah-type functionals, one
has the possibility of lowering the energy by truncating competitors. Hence,
the main estimates can be proved for functions in SBV ∩ L∞, as it is done
for instance in [13, Propositions 4.1 and 5.1], where L∞-bounds are explicitly
exploited. A similar tool is not available in the bounded deformation setting.
Hence, we have to renounce the semi-discrete approach of [13] and follow a
different strategy, which is closely related to the the heuristics of the model
(1.6).

The main idea for obtaining the first estimate in (1.7) is contained in the
proof of Proposition 4.1. Using an energy estimate and the coarea formula,
there we show that, for a given error parameter δ, the set where the averages
ε−́

B(1−δ)ε(x)
W (Eu(x)) dx exceed a given threshold can be included in a set K ′

ε

with vanishing area and bounded perimeter. This allows one to show that the
Γ-limit of the energies (1.6) is controlled from below by a functional of the
type (1.1). The optimal constant in the bulk term can be recovered, as done
in Proposition 5.1, by replacing a sequence of competitors (uε) with their
averages on balls of radius ε at points x ∈ Ω\K ′

ε. Indeed, K ′
ε is the set where,

intuitively, the energy does concentrate on lower dimensional manifolds and
the bulk contribution can be neglected. It is worth mentioning that such an
optimal estimate for the bulk term is not derived by means of any slicing
procedure, which would not comply well with the general form of the bulk
energy we are considering.

The second estimate in (1.7) is instead obtained by means of a slicing
argument in the fixed direction ξ (see Proposition 5.2), first reconducting the
problem to the analysis of the one-dimensional version of the functional (1.3)
(which can be performed with elementary arguments, see [11, Theorem 3.30])
and then exploiting the slicing properties of GSBD functions recalled in Sect.
2.2. Finally, the Γ-limsup inequality (Proposition 6.1) can be obtained by a
direct construction for a regular class of competitors having a “nice” jump set,
and which are dense in energy according to recent approximation results by
Chambolle and Crismale [18], summarized in Theorem 2.3, and by Cortesani
and Toader [24]. Let us remark that our proof strategy can also be applied,
with obvious modifications, for an alternative and, in our opinion, slightly
simpler proof of the results in [13].
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To end up this review of our results, we want to motivate our choice
of the L1-topology and warn the reader of a related issue. Actually, while L1-
convergence is a natural choice in the context of the Mumford-Shah functional,
both for the possibility of using truncations and for the presence of Lp-fidelity
terms, when dealing with fracture models it would be preferable to deal with
the convergence in measure. Indeed, Proposition 4.1 in principle only allows one
for applying Theorem 2.4, which provides subsequences that are (essentially)
converging in measure.1 However, dealing with sequences converging in L1

allows us to deduce the convergence of the averaged functions in Lemma 2.7
which are a useful tool in our proofs. Notice that compactness in L1 can be
easily enforced by adding a lower-order fidelity term, for which a completely
satisfactory compactness and Γ-convergence result can be stated and proved
(Theorem 3.2). It then seems to us that adding such a term, although not
completely justified from the point of view of fracture mechanics, does not
really affect our methods and results.

Outline of the paper: The paper is organized as follows. In Sect. 2 we
fix the basic notation and collect some definitions and results on the function
spaces we will deal with (Sect. 2.2), together with some technical lemmas
(Sect. 2.3) which will be useful throughout the paper. In Sect. 3 we list the
main assumptions, introduce our model (Eq. (3.3)), and state the main results
of the paper, given in Theorems 3.1 and 3.2. Section 4 contains the compactness
result of Proposition 4.1. Section 5 is devoted to the Γ-liminf inequality: the
separate estimates from below of the bulk term and the surface term of the
energy are contained in Sects. 5.1 and 5.2, respectively; the proof of the Γ-liminf
inequality is the content of Sect. 5.3. The upper bound is provided in Sect. 6.

2. Notation and preliminary results

2.1. Notation

The symbol 〈·, ·〉 denotes the scalar product in R
d, while | · | stands for the

Euclidean norm in any dimension. The symbol Ω will always denote an open,
bounded subset of Rd with Lipschitz boundary. The Lebesgue measure in R

d

and the s-dimensional Hausdorff measure are written as Ld and Hs, respec-
tively.

The symbol Sd−1 will denote the (d − 1)-dimensional unit sphere. The
family of the open subsets of Ω will be denoted by A(Ω).

2.2. GBD and GSBD functions

We recall here some basic definitions and results on generalized functions with
bounded deformation, as introduced in [27]. Throughout the paper we will use
standard notations for the spaces (G)SBV and (G)SBD, referring the reader
to [3] and [2,9,40], respectively, for a detailed treatment on the topics.

1 The presence of the exceptional set A∞ in the statement of Theorem 2.4 is no real issue in
the context of the Griffith model, as setting u = 0 there is optimal for the energy, see [20].
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Let ξ ∈ R
d\{0} and Πξ = {y ∈ R

d : 〈ξ, y〉 = 0}. If y ∈ Πξ and Ω ⊂ R
d

we set Ωξ,y := {t ∈ R : y + tξ ∈ Ω} and Ωξ := {y ∈ Πξ : Ωξ,y = ∅}. Given
u : Ω → R

d, d ≥ 2, we define uξ,y : Ωξ,y → R by

uξ,y(t) := 〈u(y + tξ), ξ〉, (2.1)

while if h : Ω → R, the symbol hξ,y will denote the restriction of h to the set
Ωξ,y; namely,

hξ,y(t) := h(y + tξ). (2.2)

Let ξ ∈ Sd−1. For any y ∈ R
d we denote by yξ and yξ⊥ the projections

onto the subspaces Ξ := {tξ : t ∈ R} and Πξ, respectively. For σ ∈ (0, 1) and
x ∈ R

d we define the cylinders

Cξ
σ(0) := {y ∈ R

d : |yξ| < σ, |yξ⊥ | <
√

1 − σ2}, Cξ
σ(x) := x + Cξ

σ(0).

Note that it holds Cξ
σ(x) ⊆ B1(x), and that Cξ

σ(x) = (xξ − σ, xξ + σ) ×
Bd−1√

1−σ2(xξ⊥), where Bd−1 denotes a ball in the (d − 1)-dimensional space Πξ.

Definition 2.1. An Ld-measurable function u : Ω → R
d belongs to GBD(Ω) if

there exists a positive bounded Radon measure λu such that, for all τ ∈ C1(Rd)
with − 1

2 ≤ τ ≤ 1
2 and 0 ≤ τ ′ ≤ 1, and all ξ ∈ Sd−1, the distributional deriv-

ative Dξ(τ(〈u, ξ〉)) is a bounded Radon measure on Ω whose total variation
satisfies

|Dξ(τ(〈u, ξ〉))| (B) ≤ λu(B)

for every Borel subset B of Ω.

If u ∈ GBD(Ω) and ξ ∈ R
d\{0} then, in view of [27, Theorem 9.1,

Theorem 8.1], the following properties hold:
(a) u̇ξ,y(t) = 〈Eu(y + tξ)ξ, ξ〉 for a.e. t ∈ Ωξ,y;
(b) Juξ,y = (Jξ

u)ξ,y for Hn−1-a.e. y ∈ Πξ, where

Jξ
u := {x ∈ Ju : 〈u+(x) − u−(x), ξ〉 = 0}. (2.3)

Definition 2.2. A function u ∈ GBD(Ω) belongs to the subset GSBD(Ω) of
special functions of bounded deformation if in addition for every ξ ∈ Sd−1 and
Hd−1-a.e. y ∈ Πξ, the function uξ,y belongs to SBVloc(Ωξ,y).

By [27, Remark 4.5] one has the inclusions BD(Ω) ⊂ GBD(Ω) and
SBD(Ω) ⊂ GSBD(Ω), which are in general strict. Some relevant properties of
functions with bounded deformation can be generalized to this weak setting:
in particular, in [27, Theorem 6.2 and Theorem 9.1] it is shown that the jump
set Ju of a GBD-function is Hd−1-rectifiable and that GBD-functions have an
approximate symmetric differential Eu(x) at Ld-a.e. x ∈ Ω, respectively. Let
p > 1. The space GSBDp(Ω) is defined through:

GSBDp(Ω) := {u ∈ GSBD(Ω) : Eu ∈ Lp(Ω;Rd×d
sym), Hd−1(Ju) < +∞}.

Every function in GSBDp(Ω) is approximated by bounded SBV func-
tions with more regular jump set, as stated by the following result [18, Theo-
rem 1.1].
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Theorem 2.3. Let Ω ⊂ R
d be a bounded open Lipschitz set, and let u ∈

GSBDp(Ω;Rd). Then there exists a sequence (un) such that

(i) un ∈ SBV p(Ω;Rd) ∩ L∞(Ω;Rd);
(ii) each Jun

is closed and included in a finite union of closed connected pieces
of C1-hypersurfaces;

(iii) un ∈ W 1,∞(Ω\Jun
;Rd), and

un → u in measure on Ω, (2.4)

Eun → Eu in Lp(Ω;Rd×d
sym), (2.5)

Hd−1(Jun
�Ju) → 0. (2.6)

Moreover, if
´
Ω

ψ(|u|) dx is finite for ψ : [0,+∞) → [0,+∞) continuous, in-
creasing, with

ψ(0) = 0, ψ(s + t) ≤ C(ψ(s) + ψ(t)), ψ(s) ≤ C(1 + sp), lim
s→+∞ ψ(s) = +∞

then

lim
n→+∞

ˆ
Ω

ψ(|un − u|) dx = 0. (2.7)

A further approximation result, by Cortesani and Toader [23, Theo-
rem 3.9], allows us to approximate GSBDp(Ω) functions with the so-called
“piecewise smooth” SBV -functions, denoted W(Ω;Rd), characterized by the
three properties

⎧⎪⎪⎨
⎪⎪⎩

u ∈ SBV (Ω;Rd) ∩ W m,∞(Ω\Ju;Rd) for every m ∈ N,

Hd−1(Ju\Ju) = 0,

Ju is the intersection of Ω with a finite union of (d−1)-dimensional simplexes .

(2.8)

Notice that for the results above only the coercivity of ψ is needed, while we will
require ψ to be superlinear at infinity in order to infer strong L1-convergence
(see Remark 2.5 below).

We recall the following general GSBDp compactness result from [20],
which generalizes [27, Theorem 11.3]. In the statement the symbol ∂∗ denotes
the essential boundary of a set with finite perimeter. We keep this general
form of the statement. However, since we have to enforce L1-convergence of
sequences with bounded energy, the situation which is relevant for our purposes
is described in Remark 2.5 below.

Theorem 2.4. (GSBDp compactness) Let Ω ⊂ R be an open, bounded set, and
let (un)n ⊂ GSBDp(Ω) be a sequence satisfying

supn∈N

(‖Eun‖Lp(Ω) + Hd−1(Jun
)
)

< +∞.

Then there exists a subsequence, still denoted by (un), such that the set A∞ :=
{x ∈ Ω : |un(x)| → +∞} has finite perimeter, and there exists u ∈ GSBDp(Ω)
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such that

(i) un → u in measure on Ω\A∞,

(ii) Eun ⇀ Eu in Lp(Ω\A∞;Rd×d
sym),

(iii) lim inf
n→∞ Hd−1(Jun

) ≥ Hd−1(Ju ∪ (∂∗A∞ ∩ Ω)). (2.9)

Remark 2.5. If one additionally has

supn∈N

ˆ
Ω

ψ(|un|) dx < +∞

for a continuous, positive, increasing function ψ satisfying

lim
s→+∞

ψ(s)
s

= +∞,

then u ∈ L1(Ω), so that A∞ = ∅. Furthermore, (i) holds with respect to the
L1-convergence in Ω, by the Vitali dominated convergence theorem.

2.3. Some lemmas

We recall here the following property of commutability of the integral averages
with the gradient operator for a Sobolev vector-valued function. The proof is
based on standard arguments by test functions, so we omit the details.

Proposition 2.6. Let u ∈ W 1,p(Ω;Rd). Let Ω′ ⊂⊂ Ω and 0 ≤ η ≤ dist(Ω′, ∂Ω).
Then the average

ϕ(x) := −
ˆ

Bη(x)

u(y) dy

belongs to W 1,p(Ω′;Rd). Moreover, it holds that

∇ϕ(x) = −
ˆ

Bη(x)

∇u(y) dy a.e. onΩ′. (2.10)

We will make use of the following convergence properties of averaged
functions. These are probably well-known, a short proof is however added for
the reader’s convenience.

Lemma 2.7. Assume that wε → w in L1(Ω;Rd) and let ηε be any sequence
with ηε → 0 when ε → 0. Then the following holds:

(i) the sequence

ŵε(x) := −
ˆ

Bηε (x)

wε(y) dy

satisfies ŵε → w in L1(Ω;Rd);
(ii) for all ξ ∈ Sd−1 and a.e. y ∈ Πξ, the sequence

ŵξ,y
ε (t) := −

ˆ
Bd−1

ηε (y)

wε(z + tξ) dz

satisfies ŵξ,y
ε → wξ,y in L1(Ωξ,y;Rd), where wξ,y(t) := w(y + tξ).
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Proof. We extend the functions wε to the value 0 in R
d\Ω. For (i), we observe

that with the change of variable y = x + ηεz and Fubini’s theorem one hasˆ
Ω

|ŵε(x) − wε(x)|dx ≤ −
ˆ

B1(0)

(ˆ
Ω

|wε(x + ηεz) − wε(x)| dx

)
dz

For any fixed θ > 0 one has now, for small εˆ
Ω

|wε(x + ηεz) − wε(x)|dx ≤ θ

uniformly with respect to z ∈ B1(0) by the Fréchet-Kolmogorov criterion. It
follows that

lim
ε→0

ˆ
Ω

|ŵε(x) − wε(x)|dx = 0,

which gives (i).
Concerning (ii), write x = y + tξ and set wξ,y

ε (t) := wε(y + tξ). It holds
that wξ,y

ε → wξ,y in L1(Ωξ,y;Rd) for a.e. y ∈ Πξ. For ŵξ
ε(x) := ŵξ,y

ε (t) we have
now with the change of variable z = y + ηεz

′ and Fubini’s theorem thatˆ
Ω

|ŵξ
ε(x) − wε(x)|dx ≤ −

ˆ
Bd−1

1 (0)

(ˆ
Ω

|wε(x + ηεz
′) − wε(x)| dx

)
dz′

so that, arguing as before,

ŵξ
ε − wε → 0 in L1(Ω;Rd).

Hence, (ii) follows from the analogous convergence properties of the slices
wξ,y

ε (t). �

We will make also use of the following property of finite coverings of a
bounded set.

Remark 2.8. Let R > 0 and E ⊂ R
d be such that E ⊂ BR. Then, for every

r > 0, there exists a finite subset E′ ⊂ E such that

E ⊂
⋃

x∈E′
Br(x)

and #(E′) depends only on r,R and d. If, in addition, R
r ≤ λ, then there exists

a constant C = C(λ, d) such that #(E′) ≤ C.
For this, we note that the family of balls

B :=

{
B r

2
(z) : z ∈

(
r

2
√

d
Z

)d

∩ BR

}

is a covering of BR. Now, for every ball B r
2
(z) in B such that B r

2
(z) ∩ E = ∅,

we choose a point x = x(z) ∈ B r
2
(z) ∩ E and so doing we construct the set

E′ :=

{
x = x(z) : z ∈

(
r

2
√

d
Z

)d

∩ BR, B r
2
(z) ∩ E = ∅

}
.
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Then, the desired covering of E is given by {Br(x) : x ∈ E′}. Note also that

#(E′) ≤ #

((
r

2
√

d
Z

)d

∩ BR

)
:= C(r,R, d) < +∞. (2.11)

From (2.11) and a simple scaling argument, we infer that C(r,R, d) is uniformly
bounded when the ratio R

r is bounded.

The following result, dealing with the supremum of a family of measures,
will be useful for the derivation of the Γ-liminf inequality (see, e.g., [11, Propo-
sition 1.16]).

Lemma 2.9. Let μ : A(Ω) −→ [0,+∞) be a superadditive function on disjoint
open sets, let λ be a positive measure on Ω and let ϕh : Ω −→ [0,+∞] be
a countable family of Borel functions such that μ(A) ≥ ´

A
ϕh dλ for every

A ∈ A(Ω). Then, setting ϕ := suph∈N
ϕh, it holds that

μ(A) ≥
ˆ

C

ϕ dλ

for every A ∈ A(Ω).

We also remark the following approximation property from below for
lower semicontinuous increasing functions with truncated affine functions. A
proof is given for the reader’s convenience.

Lemma 2.10. Consider a lower semicontinuous increasing function f : [0,+∞)
→ [0,+∞) such that there exist α, β > 0 with

lim
t→0+

f(t)
t

= α, lim
t→+∞ f(t) = β.

Then there exist two positive sequences (ai)i∈N, (bi)i∈N with

sup
i

ai = α, sup
i

bi = β

and min{ait, bi} ≤ f(t) for all i ∈ N and t ∈ R.

Proof. For all (h, k) ∈ N
2 set

ahk := min
{

f(t)
t

: t ∈
[
0,

k

h

]}
, bhk := f

(
k

h

)
.

Above the function f(t)
t is extended by continuity with the value α for t =

0. We clearly have that ahk ≤ α for all (h, k) ∈ N
2; furthermore α is an

accumulation point for the family ahk, hence α = sup{ahk : (h, k) ∈ N
2}.

With the monotonicity of f we have bhk ≤ β for all (h, k) ∈ N
2; furthermore β

is an accumulation point for the family bhk, hence β = sup{bhk : (h, k) ∈ N
2}.

By construction we have

ahkt ≤ f(t) for all t ∈
[
0,

k

h

]
, bhk ≤ f(t) for all t ∈

[
k

h
,+∞

)
,

so that min{ahkt, bhk} ≤ f(t) for all (h, k) ∈ N
2 and t ∈ R. It then simply

suffices to consider an enumeration of N2 to conclude the proof. �
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2.4. Γ-convergence

We recall here the definition of Γ-convergence for families of functionals de-
pending on a real parameter. According to [12], we treat Γ-limits of functionals
Fε : X → [−∞,+∞] as ε → 0+. The definition is an extension of that given
for sequences of functionals labelled by a discrete parameter (see, e.g., [26]), as
we require all the properties to hold for every positive sequence (εj) converging
to 0.

For all u ∈ X, we define the lower Γ-limit of (Fε) as ε → 0+ by

F ′(u) := inf
{

lim inf
j→+∞

Fεj
(uj) : εj → 0+, uj → u

}
, (2.12)

and the upper Γ-limit of (Fε) as ε → 0+ by

F ′′(u) := inf
{

lim sup
j→+∞

Fεj
(uj) : εj → 0+, uj → u

}
. (2.13)

We then say that (Fε) Γ-converges to F : X → [−∞,+∞] as ε → 0+ iff

F (u) = F ′(u) = F ′′(u), for all u ∈ X.

2.5. A one-dimensional Γ-convergence result

We recall here a one-dimensional Γ-convergence result which will be useful in
the sequel. In the statement below, functions in L1(I) with I ⊂ R are extended
by 0 outside I, so that the functionals Hε are well-defined (actually, the result
is not affected by the considered extension).

Theorem 2.11. Let p > 1, let I be a bounded interval in R and consider a
lower semicontinuous increasing function f : [0,+∞) → [0,+∞) such that
there exist α, β > 0 with

lim
t→0+

f(t)
t

= α, lim
t→+∞ f(t) = β.

Let Hε : L1(I) → [0,+∞] be defined by

Hε(u) :=
1
ε

ˆ
I

f

(
1
2

ˆ x+ε

x−ε

|u′(y)|p dy

)
dx,

where it is understood that

f

(
1
2

ˆ x+ε

x−ε

|u′(y)|p dy

)
= β

if u ∈ W 1,p(x − ε, x + ε). Then the functionals (Hε) Γ-converge as ε → 0+ to
the functional

H(u) :=

⎧⎨
⎩

α

ˆ
I

|u′|p dt + 2β#(Ju), if u ∈ SBV (I),

+∞, otherwise

in L1(I).

Proof. See [11, Theorem 3.30]. �
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3. The non-local model and main results

In this section we list our assumptions and introduce the main results of the
paper. Let Ω ⊂ R

d be an open set with Lipschitz boundary, let 1 < p <
+∞ and f : [0,+∞) → [0,+∞) a lower semicontinuous, increasing function
satisfying

lim
t→0+

f(t)
t

= α > 0, lim
t→+∞ f(t) = β > 0. (3.1)

Let W : Rd×d → R be a convex positive function on the subspace M
d×d
sym of

symmetric matrices, such that

W (0) = 0, c|M |p ≤ W (M) ≤ C(1 + |M |p). (3.2)

For every ε > 0 we consider the functional Fε : L1(Ω;Rd) → [0,+∞]
defined as

Fε(u) =

⎧⎪⎨
⎪⎩

1
ε

ˆ
Ω

f

(
ε−
ˆ

Bε(x)∩Ω

W (Eu(y)) dy

)
dx, if u ∈ W 1,p(Ω;Rd),

+∞, otherwise on L1(Ω;Rd),

(3.3)

where

−
ˆ

B

w(y) dy :=
1

Ld(B)

ˆ
B

w(y) dy

for every Borel set B ⊆ Ω and for every w ∈ L1(B).
We will deal with a localized version of the energies (3.3). Namely, for

every A ⊆ Ω open set, we will denote by Fε(u,A) the same functional as in
(3.3) with the set A in place of Ω.

The following theorem is the first main result of this paper.

Theorem 3.1. Under assumptions (3.1) and (3.2), it holds that
(i) there exists a constant c0 independent of ε such that, for all (uε) ⊂

Lp(Ω;Rd) satisfying Fε(uε) ≤ C for every ε > 0, one can find a sequence
uε ∈ GSBV p(Ω;Rd) with

uε − uε → 0 in measure on Ω

Fε(uε) ≥ c0

(ˆ
Ω

W (Euε) dx + 2Hd−1(Juε
∩ Ω)

)
.

(ii) The functionals (Fε) Γ-converge, as ε → 0, to the functional

F (u) =

⎧⎨
⎩

α

ˆ
Ω

W (Eu) dx + 2β Hd−1(Ju), if u ∈ GSBDp(Ω) ∩ L1(Ω;Rd),

+∞, otherwise on L1(Ω;Rd),
(3.4)

with respect to the L1 convergence in Ω.

Notice that there is a mismatch between part (i) and (ii) of the previous
statement. Indeed, the compactness property in (i) does not entail the L1-
convergence of a subsequence of (uε). It only allows one to apply Theorem 2.4,
which has a weaker statement. However, the L1-convergence on the whole Ω
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can be easily enforced with the addition of a lower order fidelity term, as we
have discussed in Remark 2.5. This motivates the statement below.

There, we consider a continuous increasing function ψ : [0,+∞) →
[0,+∞) such that

ψ(0) = 0, ψ(s + t) ≤ C(ψ(s) + ψ(t)),

ψ(s) ≤ C(1 + sp), lim
s→+∞

ψ(s)
s

= +∞ (3.5)

and set for every open set A ⊂ Ω

Gε(u,A) =

⎧⎨
⎩

Fε(u,A) +
ˆ

A

ψ(|u|) dx, if u ∈ W 1,p(A;Rd),

+∞, otherwise on L1(A;Rd).
(3.6)

When A = Ω, we simply write Gε(u) in place of Gε(u,Ω). Then we have the
following result.

Theorem 3.2. Under assumptions (3.1), (3.2), and (3.5) it holds that
(i) If (uε) ⊂ Lp(Ω;Rd) is such that Gε(uε) ≤ C for every ε > 0, then (uε)

is compact in L1(Ω;Rd).
(ii) The functionals (Gε) Γ-converge, as ε → 0, to the functional

G(u) =

⎧⎨
⎩

F (u) +
ˆ

Ω

ψ(|u|) dx, if u ∈ GSBDp(Ω) ∩ L1(Ω;Rd),

+∞, otherwise on L1(Ω;Rd),

with respect to the L1 convergence in Ω.

Remark 3.3. Existence of minimizers for the functional G, and also for F if
coupled with a Dirichlet datum, directly follows from Theorem 2.4 (see [20]
for details). For fixed ε, the functionals Fε and Gε are lower semicontinuous in
W 1,p(Ω;Rd), but clearly not coercive. However, as done in [13, Corollary 3.2],
one can perturb f with a sequence (fε) of functions having linear growth at
infinity, and satisfying f(t) ≤ fε(t) ≤ f(t) + aεt for a sequence aε = o(ε) as
ε → 0 and still recover a Γ-convergence result.

Their argument would also apply to the present situation: notice that
only the Γ-limsup inequality has to be adapted, and this is straightforward
in the space of regular approximating functions provided by Theorem 2.3. We
omit the details of this generalization. If we now replace f with fε, existence
of minimizers for Gε in W 1,p can be obtained via the direct method. Then,
Theorem 3.2 (ii) also gives convergence of the minimizers to a minimizer of G
in GSBDp(Ω).

4. Compactness

With the following proposition, we prove the compactness statements in The-
orem 3.1(i), and Theorem 3.2 (i), respectively.

Proposition 4.1. Let A ⊂ Ω be any open subset of Ω, and let Fε, Gε be defined
as in (3.3), and (3.6), respectively. Then:
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(i) Assume (3.1), (3.2). If (uε) ⊂ Lp(Ω;Rd) is such that Fε(uε, A) ≤ C for
every ε > 0, one can find a sequence uε ∈ GSBV p(A;Rd) with

uε − uε → 0 in measure on A

Fε(uε, A) ≥ c0

(ˆ
A

W (Euε) dx + 2Hd−1(Juε
∩ A)

)

for some c0 > 0.
(ii) Assume (3.1), (3.2), and (3.5). If (uε) ⊂ Lp(Ω;Rd) is such that Gε(uε, A)

≤ C for every ε > 0, then (uε) is compact in L1(A;Rd).

Proof. Let ε > 0 and δ ∈ (0, 1) be fixed.2 It suffices to consider here only the
case f(t) = min{at, b} with a, b > 0. In the general case one can indeed find
a, b > 0 with f(t) ≥ min{at, b} for all t, using Lemma 2.10, and deduce the
result a fortiori. Hence, let us assume f(t) = min{at, b}. We define

Cδ :=
Ld(Bε(0))

Ld(B(1−δ)ε(0))
=

1
(1 − δ)d

(4.1)

and the function

ψε(x) := ε−
ˆ

B(1−δ)ε(x)∩Ω

W (Euε(y)) dy.

Correspondingly, we introduce the compact set

Kε :=
{

x ∈ A : ψε(x) ≥ Cδ
b

a

}
. (4.2)

The set Kε is actually also depending on the fixed δ (as well as the sets K ′′
ε

and K ′
ε used below) but we omit this dependence to ease notation. We first

note that, setting

K ′′
ε := {x ∈ A : dist(x,Kε) ≤ δε},

then it holds that

K ′′
ε ⊆

{
x ∈ A : ε−

ˆ
Bε(x)

W (Euε(y)) dy ≥ b

a

}
. (4.3)

Indeed, if x ∈ K ′′
ε then Bε(x) ⊇ B(1−δ)ε(z) for some z ∈ Kε, so

ε−
ˆ

Bε(x)

W (Euε(y)) dy ≥ ε
Ld(B(1−δ)ε(z))

Ld(Bε(x))
−
ˆ

B(1−δ)ε(z)

W (Euε(y)) dy

=
ψε(z)
Cδ

≥ b

a
.

Now, from the inclusion (4.3) and the fact that f(t) = b for t ≥ b
a , we deduce

that

Ld(K ′′
ε ) ≤ ε

b
Fε(uε, A). (4.4)

2For the purpose of this proof, one could fix δ = 1
2

from the beginning: however, we prefer

to work with an arbitrary δ as the first part of the construction will be used later on.
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Then, applying the coarea formula to the 1-Lipschitz function g(x) :=
dist(x,Kε) (see for instance [28, Theorem 3.14]) in the open set {0 < g(x) <
δε} ⊂ K ′′

ε we get

ε

b
Fε(uε, A) ≥ Ld(K ′′

ε ) ≥
ˆ δε

0

Hd−1({g = t}) dt.

It follows that we can choose 0 < δ′
ε < δε such that, for

K ′
ε := {x ∈ A : dist(x,Kε) ≤ δ′

ε}, (4.5)

it holds

Hd−1(∂K ′
ε) = Hd−1({x ∈ A : dist(x,Kε) = δ′

ε}) ≤ 1
δb

Fε(uε, A). (4.6)

For every ε > 0, we set

uε(x) =

{
uε(x), if x ∈ A\K ′

ε,

0, otherwise.
(4.7)

Note that from (4.4) and the bound Fε(uε, A) ≤ C it follows that

Ld({x ∈ A : uε(x) = uε(x)}) → 0, (4.8)

whence uε − uε → 0 in measure on A. We prove the following
Claim: there exists a constant N > 0 depending only on d such that

ε(1 − δ)d−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy ≤ N
b

a

for every x ∈ A.
For this, we first note that by definition of uε, and since W (0) = 0 is the

minimum value of W , one has W (Euε(x)) ≤ W (Euε(x)) for a.e. x. Now, when
x ∈ A\K ′

ε, it holds x ∈ Kε so that by definition of Kε we have

ε(1 − δ)d−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy ≤ ε(1 − δ)d−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy ≤ b

a
.

On the other hand, if x ∈ K ′
ε, then Remark 2.8 shows the existence of a finite

subset of A\K ′
ε, say {x1, x2, . . . , xN}, where N only depends on the dimension

d, such that

(A\K ′
ε) ∩ B(1−δ)ε(x) ⊆

N⋃
i=1

B(1−δ)ε(xi). (4.9)

We then have, with (4.7) and (4.9),ˆ
B(1−δ)ε(x)

W (Euε(y)) dy =
ˆ

B(1−δ)ε(x)∩(A\K′
ε)

W (Euε(y)) dy

≤
N∑

i=1

ˆ
B(1−δ)ε(xi)

W (Euε(y)) dy

≤ NLd(B(1−δ)ε)
ε(1 − δ)d

b

a
,
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where in the latter inequality we used the fact that the points xi ∈ K ′
ε. This

concludes the proof of the claim.
Since W ≥ 0 and f is nondecreasing, we have the estimate

Fε(uε, A) ≥ 1
ε

ˆ
A

f

(
ε(1 − δ)d−

ˆ
B(1−δ)ε(x)

W (Euε(y)) dy

)
dx. (4.10)

Moreover, if t ≤ N b
a , one has the elementary inequality min{at, b} ≥ a

N t. With
this, recalling that W (Euε(x)) ≤ W (Euε(x)) for a.e. x, using the Claim, (4.10)
and the monotonicity of f we obtain the estimate

Fε(uε, A) ≥ 1
ε

ˆ
A

f

(
ε(1 − δ)d−

ˆ
B(1−δ)ε(x)

W (Euε(y)) dy

)
dx

≥ 1
ε

ˆ
A

f

(
ε(1 − δ)d−

ˆ
B(1−δ)ε(x)

W (Euε(y)) dy

)
dx

≥ a

N

ˆ
A

(
−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy

)
dx

=
a

Nωd

ˆ
A×B1(0)

W (Euε(x + (1 − δ)εz)) dxdz

where we changed variables y = x + (1 − δ)εz and used Fubini’s Theorem.
Since W ≥ 0 with a further change of variables and using (3.2) we conclude

Fε(uε, A) ≥ a

N

ˆ
A

W (Euε(x)) dx ≥ ca

N

ˆ
A

|Euε(x)|p dx. (4.11)

Since by definition (4.7) we have that Juε
= ∂K ′

ε, with (4.6), (4.11)
and from the assumption Fε(uε, A) ≤ C we deduce that uε ∈ GSBV p(A;Rd).
Moreover, setting c0 := 1

2 min{ a
N , bδ

2 }, we infer the lower bound

Fε(uε, A) ≥ c0

(ˆ
A

W (Euε) dx + 2Hd−1(Juε ∩ A)
)

. (4.12)

Combining with (4.8), this proves (i).
For what concerns (ii), notice that by (3.5) and (4.7) it holds ψ(|uε(x)|) ≤

ψ(|uε(x)|) for a.e. x ∈ Ω. Since Fε ≤ Gε, from Gε(uε, A) ≤ C and (4.12) we
infer thatˆ

A

ψ(|uε(x)|) dx +
ˆ

A

|Euε(x)|p dx + Hd−1(Juε
∩ A) ≤ C < +∞

for all ε. Thus, in view of the growth assumption (3.5) on ψ, by Theorem 2.4
and Remark 2.5, the sequence (uε) is compact in L1(A;Rd). By (4.8) and the
Vitali dominated convergence Theorem, we conclude that (uε) is compact in
L1(A;Rd) as well. �
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5. Estimate from below of the Γ-limit

5.1. Estimate from below of the bulk term

We begin by giving a first estimate of the Γ-liminf of the functionals Fε. This
estimate is optimal (up to a small error) for the bulk part of the energy, while
it is not, for what concerns the surface part. An optimal estimate for this term
will be provided separately by means of a slicing argument (see Proposition 5.2
below). As the two parts of the energy are mutually singular, the localization
method of Lemma 2.9 will eventually allow us to get the Γ-liminf inequality.

Proposition 5.1. Let A be an open set with A ⊂⊂ Ω, and consider a sequence
uε ∈ W 1,p(Ω;Rd) converging to u in L1(Ω;Rd). Assume (3.1) and (3.2). Then,
for every fixed 0 < δ < 1, there exist a constant Mδ only depending on f and
δ and a sequence of functions (vδ

ε) ⊂ GSBV p(A;Rd) such that

(i) α(1 − δ)2d+1

ˆ
A

W (Evδ
ε(x)) dx ≤ Fε(uε, A);

(ii) Hd−1(Jvδ
ε
) ≤ Mδ Fε(uε, A);

(iii) vδ
ε → u in L1(A;Rd) as ε → 0.

Proof. We divide the proof into two steps.
Step 1: we first consider the case f(t) = min{at, b}, with a, b > 0. Observe

that in this case the value α given by (3.1) coincides exactly with a. We can
clearly assume that

sup
ε>0

Fε(uε, A) ≤ C, (5.1)

otherwise the assertion is immediate. Corresponding to the fixed δ > 0 and
for every ε > 0, we define the constant Cδ, and the sets Kε and K ′

ε as in
(4.1), (4.2) and (4.5), respectively. We define a sequence (vδ

ε) of functions in
GSBV p(A;Rd) as

vδ
ε(x) :=

⎧⎨
⎩

−
ˆ

B(1−δ)ε(x)

uε(y) dy if x ∈ A\K ′
ε,

0 otherwise.
(5.2)

Then (iii) immediately follows from Lemma 2.7(i) and the fact that, by con-
struction and (4.4), it holds Ld(K ′

ε) → 0 when ε → 0. We also have Hd−1(Jvδ
ε
) ≤

Hd−1(∂K ′
ε), so that with (4.6) we deduce (ii) for Mδ = 1

δb .
To prove (i), we observe that, since Kε ⊂ K ′

ε and A ⊂⊂ Ω, it holds

ε−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy < Cδ
b

a

for all x ∈ A\K ′
ε. As Cδ > 1 and f(t) = min{at, b}, we deduce the elementary

inequality

f

(
ε−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy

)
≥ a

Cδ
ε−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy (5.3)
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for all x ∈ A\K ′
ε. Now, since the function f is concave and f(0) = 0,

f(λt) ≥ λf(t), ∀λ ∈ [0, 1]. (5.4)

With (5.3), (5.4), the monotonicity of f , the convexity of W , (2.10) and (5.2)
we get

Fε(uε, A) ≥ 1
ε

ˆ
A\K′

ε

f

(
ε−
ˆ

Bε(x)

W (Euε(y)) dy

)
dx

≥ 1
εCδ

ˆ
A\K′

ε

f

(
ε−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy

)
dx

≥ a

εC2
δ

ˆ
A\K′

ε

(
ε−
ˆ

B(1−δ)ε(x)

W (Euε(y)) dy

)
dx

≥ a

C2
δ

ˆ
A\K′

ε

W

(
−
ˆ

B(1−δ)ε(x)

Euε(y) dy

)
dx

= a(1 − δ)2d

ˆ
A\K′

ε

W (Evδ
ε(x)) dx = a(1 − δ)2d

ˆ
A

W (Evδ
ε(x)) dx,

which implies assertion (i). This concludes the proof of Step 1.
Step 2: for a general f complying with (3.1), use Lemma 2.10 to find

aδ, bδ > 0 with aδ ≥ α(1 − δ) and f(t) ≥ min{aδt, bδ} for all t ∈ R, and
perform the same construction as in the previous step. This gives (iii), (ii)
(with Mδ := 1

δbδ
) and

Fε(uε, A) ≥ aδ(1 − δ)2d

ˆ
A

W (Evδ
ε(x)) dx ≥ α(1 − δ)2d+1

ˆ
A

W (Evδ
ε(x)) dx,

that is (i). �

5.2. Estimate from below of the surface term

For any A ⊂ Ω open set, we denote by F ′(u,A) the lower Γ-limit of Fε(u,A), as
defined in (2.12). We note that, since Fε(u, ·) is superadditive as a set function,
the lower Γ-limit F ′(u, ·) inherits an analogous property; namely,

F ′(u,A1 ∪ A2) ≥ F ′(u,A1) + F ′(u,A2) whenever A1 ∩ A2 = ∅. (5.5)

Proposition 5.2. Assume (3.1) and (3.2). Let δ ∈ (0, 1) be fixed, and consider
a sequence εj → 0. Let A ⊂ Ω be an open set, uj ∈ W 1,p(A;Rd) converging to
u in L1(A;Rd). Assume that

lim inf
j→+∞

Fεj
(uj , A) < +∞.

Then u ∈ GSBDp(A) and

lim inf
j→+∞

Fεj
(uj , A) ≥ 2β(1 − δ)

ˆ
Jξ

u∩A

|〈ν, ξ〉|dHd−1 (5.6)

for every ξ ∈ Sd−1.
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Proof. It follows from Proposition 4.1 and Theorem 2.4 that u ∈ GSBDp(A).
To prove (5.6), we first note that, by virtue of the growth assumption (3.2),
we have

W (Eu) ≥ c|Eu|p ≥ c|〈(Eu)ξ, ξ〉|p,

for every ξ ∈ Sd−1. Thus, for every fixed ξ, since f is non-decreasing, it will
be sufficient to provide a lower estimate for the energies

F ξ
εj

(uj , A) :=
1
εj

ˆ
A

f

(
c

ωdε
d−1
j

ˆ
Bεj

(x)

|〈(Euj(z))ξ, ξ〉|p dz

)
dx. (5.7)

We proceed by a slicing argument. If for each x ∈ A we denote by xξ and xξ⊥

the projections of x onto Ξ and Πξ, respectively, we have

F ξ
εj

(uj , A)

=

ˆ
Πξ

dHd−1(xξ⊥ )

⎛
⎝ 1

εj

ˆ
Aξ,x

ξ⊥
f

(
c

ωdεd−1
j

ˆ
Bεj

(x)
|〈(Euj(z))ξ, ξ〉|p dz

)
dxξ

⎞
⎠

≥
ˆ
Πξ

dHd−1(xξ⊥ )

⎛
⎝ 1

εj

ˆ
Aξ,x

ξ⊥
f

⎛
⎝ c

ωdεd−1
j

ˆ
C

ξ
(1−δ)εj

(x)
|〈(Euj(z))ξ, ξ〉|p dz

⎞
⎠ dxξ

⎞
⎠ ,

(5.8)

since by definition Cξ
(1−δ)εj

(x) ⊆ Bεj
(x).

We now set

F
ξ,x

ξ⊥
εj (uj , Aξ,x

ξ⊥ ) :=
1

εj

ˆ
Aξ,x

ξ⊥

f

⎛
⎝ c

ωdεd−1
j

ˆ
C

ξ
(1−δ)εj

(x)

|〈(Euj(z))ξ, ξ〉|p dz

⎞
⎠ dxξ.

For rδ :=
√

δ(2 − δ), recall that Cξ
(1−δ)εj

(x) = (xξ − (1 − δ)εj , xξ + (1 −
δ)εj) × Bd−1

rδεj
(xξ⊥), and denote (with a slight abuse of notation) still with z

the (d − 1)-dimensional variable in Bd−1
rδεj

(xξ⊥). Set

w
ξ,x

ξ⊥
j (t) := −

ˆ
Bd−1

rδεj (x
ξ⊥ )

〈uj(z + tξ)), ξ〉dz.

By virtue of Lemma 2.7(ii), applied with ηεj
= rδεj , we have that w

ξ,x
ξ⊥

j

converges to uξ,x
ξ⊥ in L1(Aξ,x

ξ⊥ ) for a.e. xξ⊥ . Furthermore, for c(d, δ) :=
cωd−1rd−1

δ

ωd
, Fubini’s Theorem, Jensen’s inequality and the monotonicity of f
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entail that

F
ξ,x

ξ⊥
εj (uj , Aξ,x

ξ⊥ )

=
1

εj

ˆ
Aξ,x

ξ⊥
f

(
c

ωdεd−1
j

ˆ
Bd−1

rδεj
(x

ξ⊥ )
dz

ˆ xξ+(1−δ)εj

xξ−(1−δ)εj

|〈(Euj(z + tξ))ξ, ξ〉|p dt

)
dxξ

=
1

εj

ˆ
Aξ,x

ξ⊥
f

(
c

ωdεd−1
j

ˆ xξ+(1−δ)εj

xξ−(1−δ)εj

(ˆ
Bd−1

rδεj
(x

ξ⊥ )
|〈(Euj(z + tξ))ξ, ξ〉|p dz

)
dt

)
dxξ

≥ 1

εj

ˆ
Aξ,x

ξ⊥
f

(
cωd−1rd−1

δ

ωd

ˆ xξ+(1−δ)εj

xξ−(1−δ)εj

(
−
ˆ

Bd−1
rδεj

(x
ξ⊥ )

〈(Euj(z + tξ))ξ, ξ〉 dz

)p

dt

)
dxξ

=
1

εj

ˆ
Aξ,x

ξ⊥
f

(
c(d, δ)

ˆ xξ+(1−δ)εj

xξ−(1−δ)εj

|ẇξ,x
ξ⊥

j (t)|p dt

)
dxξ

= (1 − δ)
1

(1 − δ)εj

ˆ
Aξ,x

ξ⊥
f

(
c(d, δ)

ˆ xξ+(1−δ)εj

xξ−(1−δ)εj

|ẇξ,x
ξ⊥

j (t)|p dt

)
dxξ.

(5.9)

Since the function t �→ f(c(d, δ)t) still tends to β when t → +∞, applying
Theorem 2.11 to the one-dimensional energies

F̃
ξ,x

ξ⊥
εj (w

ξ,x
ξ⊥

j , Aξ,x
ξ⊥ )

:=
1

(1 − δ)εj

ˆ
Aξ,x

ξ⊥

f

(
c(d, δ)

ˆ xξ+(1−δ)εj

xξ−(1−δ)εj

|ẇξ,x
ξ⊥

j (t)|p dt

)
dxξ

we deduce the lower bound

lim inf
j→+∞

F̃
ξ,x

ξ⊥
εj (w

ξ,x
ξ⊥

j , Aξ,x
ξ⊥ ) ≥ 2β#(J

u
ξ,x

ξ⊥ ∩ Aξ,x
ξ⊥ ). (5.10)

Consequently, from (5.9) and (5.10) we obtain that

lim inf
j→+∞

F
ξ,x

ξ⊥
εj (uj , Aξ,x

ξ⊥ ) ≥ (1 − δ) lim inf
j→+∞

F̃
ξ,x

ξ⊥
εj (w

ξ,x
ξ⊥

j , Aξ,x
ξ⊥ )

≥ 2β(1 − δ)#(J
u

ξ,x
ξ⊥ ∩ Aξ,x

ξ⊥ ).

Taking into account (5.8), with Fatou’s Lemma we then have

lim inf
j→+∞

Fεj
(uj , A) ≥ lim inf

j→+∞

ˆ
Πξ

F
ξ,x

ξ⊥
εj (uj , Aξ,x

ξ⊥ ) dHd−1(xξ⊥)

≥
ˆ

Πξ

(
lim inf
j→+∞

F
ξ,x

ξ⊥
εj (uj , Aξ,x

ξ⊥ )
)

dHd−1(xξ⊥)

≥ 2β(1 − δ)
ˆ

Πξ

#(J
u

ξ,x
ξ⊥ ∩ Aξ,x

ξ⊥ ) dHd−1(xξ⊥)

= 2β(1 − δ)
ˆ

Jξ
u∩A

|〈νu, ξ〉|dHd−1,

and the proof of (5.6) concludes. �
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5.3. Proof of the Γ-liminf inequality

We summarize the results of the previous sections in the following Proposition.
The Γ-liminf G′ of the sequence (Gε) is defined as in (2.12), with Gε in place
of Fε. It holds that G′(u,A) ≥ F ′(u,A) for each open subset A ⊂ Ω and
u ∈ L1(A;Rd) (see, e.g., [26, Proposition 6.7]).

Proposition 5.3. Assume (3.1), (3.2), and (3.5). Consider Fε, and Gε given by
(3.3), and (3.6), respectively. Let u ∈ L1(Ω;Rd) and let A be an open subset
of Ω, and define F ′(u,A) and G′(u,A) by (2.12). If F ′(u,A) < +∞, then
u ∈ GSBDp(A) and

(i) F ′(u,A) ≥ α

ˆ
A

W (Eu) dx,

(ii) G′(u,A) ≥ F ′(u,A) ≥ 2β

ˆ
Jξ

u∩A

|〈νu, ξ〉|dHd−1

for every ξ ∈ Sd−1. If it additionally holds G′(u,A) < +∞, then one also has

(iii) G′(u,A) ≥ α

ˆ
A

W (Eu) dx +
ˆ

A

ψ(|u|) dx.

Proof. First we note that, by the definition of Γ-liminf (2.12) and a diagonal
argument, there exist subsequences (not relabeled) (uj) and (ûj) converging
to u in L1(A;Rd) such that

F ′(u,A) = lim inf
j→+∞

Fεj
(uj , A), G′(u,A) = lim inf

j→+∞
Gεj

(ûj , A).

The first equality and Proposition 5.2 give that, if F ′(u,A) < +∞, then u ∈
GSBDp(A). By the second one, the superadditivity of the liminf, Fatou’s
lemma and (2.12), we have

G′(u,A) = lim inf
j→+∞

Gεj
(ûj , A) ≥ lim inf

j→+∞
Fεj

(ûj , A) + lim inf
j→+∞

ˆ
A

ψ(|ûj |) dx

≥ F ′(u,A) +
ˆ

A

ψ(|u|) dx.

Hence, if (i) is proved, (iii) follows immediately.
We only have to confirm (i) and (ii). To this aim, let δ ∈ (0, 1) be fixed.

Then, by applying Proposition 5.1 to the sequence (uj), there exists a sequence
of functions (vδ

j ) ⊂ GSBV p(A;Rd), converging to u in L1(A) as εj → 0, such
that

(a) (1 − δ)2d+1

ˆ
A

W (Evδ
j (x)) dx ≤ Fεj

(uj , A);

(b) Hd−1(Jvδ
j

∩ A) ≤ MδFεj
(uj , A).

Combining (a) and (b) with the equiboundedness of Fεj
(uj , A), one can apply

the lower semicontinuity part of Theorem 2.4 to the sequence (vδ
j ). Taking into

account that A∞ = ∅ because u ∈ L1(A;Rd), by the convexity of W and (2.9),
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(ii), we have

α(1 − δ)2d+1

ˆ
A

W (Eu(x)) dx ≤ lim inf
j→+∞

ˆ
A

W (Evδ
j (x)) dx

≤ lim inf
j→+∞

Fεj
(uj , A) = F ′(u,A).

By letting δ → 0 above we then obtain (i)
As for (ii), by Proposition 5.2, in particular from (5.6), we get

2β(1 − δ)
ˆ

Jξ
u∩A

|〈νu, ξ〉|dHd−1 ≤ lim inf
j→+∞

Fεj
(uj , A) = F ′(u,A)

for every ξ ∈ Sd−1, so that (ii) follows by taking the limit as δ → 0 again. �

We are now in a position to prove the Γ-liminf inequality.

Proposition 5.4. Assume (3.1), (3.2), and (3.5). Consider Fε, and Gε given by
(3.3), and (3.6), respectively. Let u ∈ L1(Ω;Rd) and let A be an open subset
of Ω, and define F ′(u,A) and G′(u,A) by (2.12). If F ′(u,A) < +∞, then
u ∈ GSBDp(A) and

F ′(u,A) ≥ α

ˆ
A

W (Eu) dx + 2βHd−1(Ju ∩ A).

If it additionally holds G′(u,A) < +∞, then

G′(u,A) ≥ α

ˆ
A

W (Eu) dx + 2βHd−1(Ju ∩ A) +
ˆ

A

ψ(|u|) dx.

Proof. We only prove the second inequality, which contains an additional term.
Let (ξh)h≥1 be a dense sequence in Sd−1 and let (μh)h≥0 be the sequence of
bounded positive measures defined by

μ0(A) =
ˆ

A

(αW (Eu(x)) + ψ(|u(x)|)) dx, μh(A) = 2β
ˆ

Ju∩A

φξh(x) dHd−1(x),

where

φξh(x) =

{
|〈νu(x), ξh〉|, if x ∈ Jξh

u ∩ A,

0, otherwise in Ju ∩ A.

Let λ be the bounded positive measure defined by

λ(A) := Ld(A) + Hd−1(Ju ∩ A),

and let (ϕh)h≥0 be the sequence of λ-measurable functions on A defined as

ϕ0(x) :=

{
αW (Eu(x)) + ψ(|u(x)|), if x ∈ A\Ju,

0, if x ∈ A ∩ Ju,

ϕh(x) :=

{
0, if x ∈ A\Ju,

2βφξh(x), if x ∈ A ∩ Ju.

Then μh(A) =
´

A
ϕhdλ for every h = 0, 1, . . . .
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Setting

ϕ(x) :=

{
αW (Eu(x)) + ψ(|u(x)|), if x ∈ A\Ju,

2β, if x ∈ A ∩ Ju,

we have that suph≥0 ϕh(x) = ϕ(x) for λ-a.e. x ∈ A.
We now define μ(A) := G′(u,A). By virtue of Proposition 5.3 we have

that

μ(A) ≥ μh(A) =
ˆ

A

ϕhdλ

for every h = 0, 1, . . . . Since μ complies with (5.5), as a consequence of
Lemma 2.9, we get

G′(u,A) = μ(A) ≥
ˆ

A

ϕdλ

= α

ˆ
A

W (Eu) dx + 2βHd−1(Ju ∩ A) +
ˆ

A

ψ(|u|) dx.

�

6. Estimate from above of the Γ-limit

We denote by F ′′ and G′′ the upper Γ-limits of (Fε) and (Gε), respectively, as
defined in (2.13).

Proposition 6.1. Let u ∈ GSBDp(Ω) ∩ L1(Ω;Rd). Then

F ′′(u) ≤ α

ˆ
Ω

W (Eu) dx + 2βHd−1(Ju). (6.1)

If, in addition, it holds that
´
Ω

ψ(|u|) dx < +∞, then

G′′(u) ≤ α

ˆ
Ω

W (Eu) dx + 2βHd−1(Ju) +
ˆ

Ω

ψ(|u|) dx. (6.2)

Proof. We only prove (6.1) by using the density result of Theorem 2.3, as (6.2)
follows by an analogous construction with the additional property (2.7).

In view of Theorem 2.3 and remarks below, by a diagonal argument it is
not restrictive to assume that u ∈ W(Ω;Rd) and that Ju is a closed subset of
any of the coordinate hyperplanes, that we denote by K.

Let Kh := {x ∈ R
d : dist(x,K) < h} for every h > 0, and let γε > 0 be

a sequence such that γε/ε → 0 as ε → 0. Notice that, for ε small,

K ⊂ Kγε
⊂⊂ Kγε+ε ⊂⊂ Ω,

recalling that K ⊂ Ω. Let φε be a smooth cut-off function between Kγε
and

Kγε+ε, and set

uε(x) := u(x)(1 − φε(x)).
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Since u ∈ W 1,∞(Ω\Ju;Rd) we have uε ∈ W 1,∞(Ω;Rd). Note also that, by the
Lebesgue Dominated Convergence Theorem, uε → u in L1(Ω;Rd). Moreover,
since uε = u on Bε(x) ∩ Ω if x ∈ Kγε+ε, we have

Fε(uε) ≤ 1
ε

ˆ
Ω

f

(
ε−
ˆ

Bε(x)∩Ω

W (Eu(y)) dy

)
dx + β

Ld(Kγε+ε)
ε

. (6.3)

Setting

wε(x) := −
ˆ

Bε(x)∩Ω

W (Eu(y)) dy,

we have that wε(x) converges to w(x) := W (Eu(x)) in L1
loc(Ω) as ε → 0.

Since f complies with (3.1) and it is increasing, there exists α̃ > α such that
f(t) ≤ α̃t for every t ≥ 0. This gives

1
ε
f(εwε(x)) ≤ α̃wε(x) for every x ∈ Ω and every ε > 0,

and, taking into account that lim
t→0+

f(t)
t

= α, we also infer that

1
ε
f(εwε(x)) → αw(x) for a.e. x ∈ Ω.

Thus, by Lebesgue’s Dominated Convergence Theorem,

lim
ε→0

1
ε

ˆ
Ω

f

(
ε−
ˆ

Bε(x)∩Ω

W (Eu(y)) dy

)
dx = α

ˆ
Ω

W (Eu) dx.

Noting that

lim
ε→0

β
Ld(Kγε+ε)

ε
= lim

ε→0
β

Ld(Kγε+ε)
2(γε + ε)

2(γε + ε)
ε

= 2β Hd−1(Ju),

from (6.3), the subadditivity of the limsup and (2.13) we get (6.1). �

Proof of Proof of Theorems 3.1 and 3.2. The two results follow by combining
Propositions 4.1, 5.4, and 6.1 �
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