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Introduction

UANTUM RESOURCES have given rise to new perspectives in the fields of Infor-

mation and Communication. This is the case of entanglement, which is at the
heart of most protocols of Quantum Information. It allows to outperform classical
approaches, as in Quantum Metrology [1, 2] and Quantum Communication [3, 4].
The generation, manipulation, and distribution, up to the secure revelation of such
quantum properties represent the fundamental tasks of experimental research in
Quantum Information. They provide the basic tools that will be the basis of future
quantum technologies.
In this context, the photonic implementation of Quantum Information protocols
represents a convenient choice [5]. Indeed, using single photons as quantum carriers
has several advantages, such as easy mobility and manipulation. Here, different ex-
isting approaches can be exploited to manipulate light. On the one hand, bulk-based
quantum technologies — despite being the first method developed — still represent a
reliable and versatile approach to perform different Quantum Information tasks and
study foundational problems. On the other hand, integrated photonics represents
one of the best technological platforms for the realization of Quantum Information
protocols, allowing for better stability and scalability of quantum systems involving
light.
Unlike static systems such as cold atoms or superconductive materials, the other
major advantage of photons is the inherent suitability for the transmission among
dislocated parties. Flying qubits have paved the way to quantum communications
between distant parties: from different setups in the same laboratory to intracity
scenarios, and long-distance communication via satellite. To this end, fiber networks
allow an easy way to develop quantum communication networks covering distances
within 100 km. While free-space optical communication adopting satellites is the
only short-term possibility for a worldwide scale. Furthermore, adopting the existing
fiber structure for classical communication to also support its quantum counterpart
may be a convenient short-term solution for a real-life implementation, that does not
necessarily require the construction of new complex infrastructures. Going in this
direction implies the investigation of quantum protocols in telecom wavelengths, i.e.,
the region around 1550 nm, for which current classical fiber networks are built. In-
deed, in this wavelength range, optical fibers show minimal signal losses. Conversely,
free-space communication is typically developed around 800 nm, where air propa-
gation provides a good compromise as a wavelength window for light propagation.
Therefore, developing suitable interfaces to match these different scenarios represents
fundamental research. It allows the implementation of variegated solutions and to
exploit all the advantages of Photonics.

Distribution of quantum resources is also at the heart of quantum key distribution
(QKD) [4], where the no-cloning theorem paves the way to an unconditional degree
of security. Quantum Cryptography is the part that arouses the most interest in
Quantum Communication, and probably the most important. Also in this case,



sending single photons is the only feasible way to enable unconditionally secure
communication between distant parties. Improving the rate and the security of
the quantum key is the goal of many research groups. The prepare-and-measure
scheme, such as BB&84, is currently the best approach to provide the highest rate.
However, adding entanglement distribution into the protocol allows for an additional
degree of security but implies a reduction of the achievable key rate. The evidence
that experimental limitations are the main ruin of QKD, together with the growing
demand on a world scale, inspires the QKD investigation in the urban environment
and testing of different photonic solutions. Moreover, some QKD hacking strate-
gies find their strength in the non-deterministic emission of multiple photons in
the standard single-photon sources (SPSs), such as those based on spontaneous
parametric down-conversion (SPDC). Hence, the development of deterministic SPSs
has fundamental importance, and one promising technology is quantum dots [5].
Security can also be improved by using high-dimensional quantum spaces. One of
the most promising photonic degrees of freedom to handle such states is orbital
angular momentum (OAM) [6]. Indeed, OAM naturally encodes quantum states of
arbitrary dimension, due to its unbounded nature, and even using a single carrier.
Nevertheless, the manipulation and fiber-transmission of such states is not an easy
task and requires further investigations.

Different light states can be prepared to probe systems involving one or more
unknown parameters. The ultimate limits in estimating such parameters achievable
with classical resources can be surpassed by using quantum correlations. These are
the results of Photonic Quantum Metrology, where entanglement is the key resource
for accessing quantum-enhanced performances [1, 2]. Hence, investigating the
theoretical and experimental related open questions, as well as developing quantum
sensors able to demonstrate enhancement in estimation, is of paramount importance.
The first step is to identify a suitable scenario that works as a testbed for many
others. One promising possibility is to study phase estimation problems, that can
be mapped to a series of physical systems. In the specific case of photonic systems,
the best platform for handling optical phases is multiarm interferometers. Although
it is widely studied in the single-phase case, the multi-parameter counterpart still
requires investigations, especially on the experimental side.

In addition to improving specific applications, entangled states are highly inter-
esting in fundamental physics. Indeed they reveal non-local behavior of Quantum
Mechanics, which became experimentally demonstrable with Bell’s theorem [7].
Bell’s test paved the way for a new way for certifying the presence of entanglement,
that does not require the exact knowledge of the employed devices. Several photonic
experiments have demonstrated in a loophole-free manner the violation of Bell’s
inequality in the standard scheme. Quantum science is now mature to investigate
more complex causal structures, such as those involving multipartite entanglement in
quantum networks [8, 9]. This is the case for example of star-shaped networks, where
different independent nodes are linked to the same central node through independent
intermediate parties. Testing and developing generalized Bell-like inequalities in
similar scenarios represents the next step in this research direction.

During my thesis work, I investigated scenarios involving several photonic tech-
nologies, by achieving experimental results in the field of Quantum Information. In
particular, in my contributions advanced photonic platforms have been used to study
the fields of Quantum Metrology, Quantum Communication, and Cryptography. I
participated in the realization of entangled photon sources, entanglement distribu-
tion within complex systems, and the development of quantum photonic sensors
and machine learning techniques to improve precision in optical phase estimation
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Figure 0.1. Representation of the scientific results achieved during this thesis project.
Advanced photonic technologies have been exploited to experimentally investigate the
fields of Quantum Communication and Metrology.

problems. Nowadays, photonics technology is highly developed and used for classical
communication protocols. Adopting such solutions in the quantum regime is crucial
and was the goal of my thesis. In particular, I was concerned with introducing in
the quantum regime photonic platforms developed in recent years. This is the case
for instance of entangled photons generated by an integrated chip and/or quantum
dot, and the adoption of a new fiber, able to support OAM, for applications of
Quantum Communication. Then, the exploitation of integrated photonics to realize
a multi-arm interferometer capable of efficiently manipulating multiple phases with
high stability. A simplified visualization of my thesis work is reported in Fig. 0.1,
where the connections between the existing photonic platform and all my scientific
results are shown. Then, the description of each contribution is detailed below.

o Entanglement manipulation. In the quantum communication framework,

entanglement generation and distribution have been studied in different plat-
forms.
A first work involved the realization of an integrated tunable source of two-
photon entangled states in telecom wavelength [10]. The integrated device
was realized by the Physics Department of Milan Polytechnic, using the Fem-
tosecond Laser Writing (FLW) technique. This advanced technology allows
the realization of photonic chips, by focusing a femtosecond laser in a glass
sublayer. Nonlinear effects occur in the beam focus, allowing the realization of
waveguides for light.



Further, I participated in the realization of bulk sources of entangled photons
in polarization, which have been exploited for different projects. They are
based on spontaneous parametric down-conversion (SPDC) process inside bulk
crystals: a Sagnac source in polarization and a type-1I SPDC source.

Then, during a European collaboration with the Technical University of Den-
mark (DTU), we demonstrated the possibility to distribute entanglement of
high-dimensional hybrid quantum photonic states through an air-core fiber
[11].

Finally, I collaborated on entanglement distribution in a more complex scenario,
that is a star-shaped quantum network [12]. Here, entanglement was properly
distributed and verified within a quantum network between up to four different
laboratories, in which five different nodes exploit four independent sources of
entangled photon pairs.

¢ Quantum Cryptography. During the last part of my Ph.D. I was involved
in the first experimental Ekert-based quantum key distribution protocol using
a quantum dot source to generate entangled pairs of single photons [13]. The
experiment has been the result of a collaboration with another research group
in the Department of Physics. Notably, two photonic quantum channels were
employed: a 250m-long fiber link and a 270m-long free-space channel in an
urban environment. The latter is a connection between two buildings inside
Sapienza University of Rome. Here, I mainly dealt with the free-space optical
link, especially planning and implementing the receiver part.

¢ Quantum Metrology. The most important part of my Ph.D. concerns stud-
ies in Quantum Metrology.
In this field, we investigated the photonic state-of-the-art of Quantum Metrol-
ogy, especially from the experimental point of view, producing the review
paper titled "Photonic Quantum Metrology" [1].
At the same time, we faced the experimental problem of optical phase es-
timation. On the one hand, we implemented and characterized a quantum
sensor capable of handling multiple optical phases. This device is an integrated
three-arm interferometer with a high degree of tuning, realized with FLW.
Using this device with two-photon input states in a non-adaptive scheme, we
demonstrated simultaneous multiparameter estimation of two optical phases
with quantum-enhanced performances [14].
Then, the estimation performances have been experimentally improved in
the case of single-photon input, using online adaptive protocols and machine
learning techniques [15].
Further, we investigated the performances that can be achieved by calibrating
the quantum sensor using a Neural Network [16].
As a final contribution to the Metrology studies, I collaborated on the ex-
perimental demonstration of a single-phase estimation improved by a genetic
algorithm in an offline adaptive scheme [17].

Outline. The thesis is structured as follows: first, the photonic Quantum
Information is introduced (Sec. 1), showing its fundamentals, the technologies
available to generate and manipulate photonic quantum resources, and the tools
capable of certifying them. Then, the broad field of Quantum Communication is
discussed (Sec. 2), focusing in particular on Quantum Cryptography and reporting
experimental contributions to the field. Finally, the context of Quantum Metrology
is introduced using the contents of our review work [1], and then the various
experimental demonstrations on phase estimation are presented (Sec. 3).



Chapter 1

Photonic Quantum Information

During the second quantum revolution [18] different platforms have been realized
in order to develop quantum technologies. Photons, electrons, trapped atoms,
and superconductive materials represent carriers able to encode a quantum state
manipulable and measurable [19, 5]. During my Ph.D., the photons are employed as
the preferential tool for implementing experimental Quantum Information studies.

In this chapter we introduce the photonic approach to the Quantum Information,
by showing its characteristics and abilities to encode qubits and interesting quantum
states (Sec. 1.1). Here, particular attention is devoted to the femtosecond laser
writing technique for fabricating integrated photonic devices. Then, in Sec. 1.2
the concept of entanglement is introduced, as a fundamental resource of Quantum
Information, by showing its foundational interest for Quantum Mechanics studies
and how to generate and measure such peculiar property using photonic technologies.
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1.1 Photonic quantum technologies

Photons represent one of the most promising physical systems for developing
quantum technologies, thanks to different advantageous properties. The versatility
in generating single photons (see Sec. 1.2.3), the ability to easily prepare and
manipulate quantum states of light with standard optical components, together with
the possibility to reveal single photons by suitable single-photon detectors at different
working wavelengths, motivate the use of photonics as the basic platform for Quantum
Information tasks. Photonic quantum technologies can be realized at different levels,
such as bulk optics and integrated photonics. In particular, huge advantages are
obtained by integrated photonics, able to realize several optical components on the
same device. Such miniaturization allows improving the stability of the optical
apparatuses and their complexity. Notably, this has permitted the realization of
unprecedented experiments, such as boson sampling [20, 21, 22, 23] and quantum
random walks [24, 25, 26], unattainable by standard bulk optics. Moreover, the
photons are the more suitable flying qubits, enabling the implementation of distant
quantum communication. Then, unlike other quantum carriers, their low interaction
with the external environment makes the light states less affected by decoherence
problems, as well as the easier implementation of multiparticle quantum states
encoding non-interactive qubits. These features pave the way to the investigation
of more complex frameworks as free-space optical communication or fiber network
structures, both in laboratories or into real-world environments, even allowing
quantum communication over intra- and inter-cities scales. All these aspects are
fundamentals in order to develop a complete and robust quantum technology.

In this section the photonic approach to Quantum Information is introduced.
Specifically, in Sec. 1.1.1 and 1.1.2 the definition of quantum bit and the different
properties of light to encode quantum states are shown. Then, Sec. 1.1.3 reports
some of the current solutions to generate and manipulate photonic quantum states.
In particular, the integrated photonics is discussed as a powerful framework to
miniaturize quantum schemes, and the advanced femtosecond laser writing technique
for fabricating photonic chips is presented.

1.1.1 Quantum bit

The quantum bit (or qubit) is the building block of the Quantum Information,
defined as the state |¥) of a 2-dimensional Hilbert space H. It represents the
counterpart of the classical bit, but its quantum properties enable non-classical
performances. Any qubit can be expressed by an arbitrary basis of the Hilbert space,
but the most common are the computational {|0),[1)}, the diagonal {|+),|—)} =
{(10) +11))/v2, (|0) — [1))/v2} and rotational {|L), |R)} = {(0) +i[1))/v2, (|0) —

i[1))/v/2}. In computational basis any possible qubit reads:
W) = cos(6/2)]0) + esin(/2) 1), (1.1)

that corresponds to a point of a sphere, the so-called Bloch-sphere, having polar co-
ordinates 6, ¢ € R and unit radius (Fig. 1.1). These basis are also the eigenvectors of



1.1 Photonic quantum technologies 7

1)

Figure 1.1. Representation of the qubit |¥) of Eq. (1.1) in the Bloch sphere. Computa-
tional {|0),[1)}, diagonal {|+),|—)} = {(|0) +|1))/v2, (]0) — |1))/+/2} and rotational
{IL),|R)} = {(|0) +i|1))/v/2,(]0) — i |1))/+/2} bases are the antipodal points of the
sphere of unit radius.

the Pauli operators, which expressed in computational basis {|0),[1)} = {(é) , (?)}

ox = (? é) oy = (? _OZ> oy = ((1) _01) ) (1.2)

Notably, the expectation values of the Pauli observables define exhaustively the point
on the Bloch sphere, i.e. the quantum state. Indeed the Cartesian coordinates of a
point ¥ = (x,y, z) over the Bloch sphere are x = (V| ox |V), y = (V]|oy |V), z =
(U|oz|¥). This values describe the system even in presence of mixed states,
those defined by |r] < 1, as each density matrix p = |¥) (V| can be written as
p = (147-5)/2, where 1 is the identity operator and & = (0x, 0y, 0z). Therefore, it
is fundamental to be able to measure Pauli observables in order to fully manipulate
and characterize a quantum bit.

read:

1.1.2 Encoding qubits in light properties

The electromagnetic field in quantum regime allows to encode qubits with single
photons in various ways, that is using different degrees of freedom of the light [1].
The quantized electromagnetic field has an associated Hamiltonian of a quantum
harmonic oscillator, with total energy:

1
Hy, = Zhwg(a,tak + 5), (1.3)
k
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where k is the wave vector, while k represents the electromagnetic mode, that includes
wave vector, polarization, frequency, time bin, and in general any degree of freedom
of the field. The operators a; and a;, represent, respectively, the annihilation and
creation operators of photons with energy 7wz. Such operators obey the following
bosonic commutation rules:

[ak;, ak;] = [aki,akj] =0 [aki,aLj] = 0ij, (1.4)

where k; and k; are two modes of the field. The number operator ny, along mode k is

represented by: ng = a};ak, and the energy can be written as: Hem = 3_p fiwg(ng + 3 )

The eigenstates of the Hamiltonian along mode k are the Fock states \Nk)
having fixed photon-number N, and corresponding energy Ey, = hwE(Nk + 3).
The action of annihilation (creation) operators on Fock states is to destroy (create)
a photon along mode k, according to the relations:

ar | Ni) = /N [N, — 1) al INg) = /N + 1| Ng, + 1) (1.5)

The number of photons excited in a particular mode is given by the photon-number
operator ng:

nk |Nk) = abag |Ni) = Ni|Ni). (1.6)

Since the photon-number operators corresponding to different modes are com-
muting observables [see relations (1.4)], and each acts only on the corresponding
mode, it is possible to completely describe the whole radiation field, at fixed number
of photons along d modes, by taking the tensor product of the individual states:

{Ni}) = H\Nk [N ) [ Niy) - - - [ Niey) = [Niey Ny - - - Niy)- (1.7)

Note that, since in this notation a mode comprises all degrees of freedom, the photons
along each single mode k; (i =1,...,d) in Eq. (1.7), are indistinguishable.

The state in which the occupation numbers of all modes are 0 is called vacuum
state [{0}) = |0), defined as the state such that a [0) = 0 Vk. We can then generate
any Fock state from vacuum by iteratively applying creation operators on the modes:

T Nk
O

Vil

In conclusion, different degrees of freedom of light can be practically adopted to
encode a qubit in a single photon. Path and time of arrival of photons, their frequency,
polarization, and orbital angular momentum, represent all favorable choices able
two realize a two-level quantum system. Such quantities can be manipulated and
measured by means of optical apparatuses, from simple optical elements up to
complex interferometers. In order to encode more information, the photonic degrees
of freedom can even realize larger Hilbert spaces. A first possibility is considering d
photons to create a multipartite system composed of more qubits, thus manipulating
d-independent qubit spaces ’Hﬁffﬂ =H1 @Hy ® - ® Hg having a total dimension 2.
This approach can be realized also through a hybrid encoding, that is exploiting
d different degrees of freedom of the same photon, thus obtaining more qubits on
the single carrier. The second possibility is realizing the so-called qudit, which
is a quantum state living in a d-dimensional Hilbert space. The latter can be
conveniently encoded within path and time bin, but one of the most favorable

[Nik) = 0)- (1.8)
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Figure 1.2. Examples of qubit encoding in properties of photons. Elements of the compu-
tational basis can be assigned to (a) different paths and/or (b) orthogonal polarizations
of light.

choices is represented by the orbital angular momentum (OAM). Indeed, aiming to
an infinite-dimensional Hilbert space naturally matches with the unbounded nature
of OAM.

Path, polarization, and OAM represent the quantum properties that have been
exploited during my Ph.D. and will be discussed in detail in the next sections.

1.1.2.1 Path

The path encoding consists in associating two separated spatial directions a;
and ay of a single photon with a qubit: {|a1),|a2)} = {|0),|1)} (Fig. 1.2a). Most
relevant operators to manipulate the path encoding are beam splitter (BS) and
phase shifter (PS), which are unitary operators defined in computational basis as:

BS:<£ ?) , PS:<(1) e?¢>. (1.9)

The BS is characterized by a reflectivity (R) and a transmittivity (T), with R,T" € C,
while the PS by the phase ¢ € R. Thus, the BS is able to create a superposition
of the entering photon over the two output modes, e.g. |V)gs = T'|a1) + R|ag).
The PS manipulates coherently the relative phase shift ¢ between the two basis
modes which encode the path qubit. Notably, using compositions of BS and PS any
unitary linear operation in arbitrary dimension is possible [27]. Such decompositions
represent the basis for the realization of universal linear optics circuits [28].

1.1.2.2 Angular momentum

Angular momentum of the light can be divided in two contributions, the spin
angular momentum (SAM), associated to the polarization, and orbital angular mo-
mentum (OAM), associated to the spatial distribution of the beam [29, 30, 31].

Polarization

Exploiting the light polarization, qubits can be encoded by naturally mapping
the computational basis into horizontal (H) and vertical (V) polarization of the
single photon: {|H),|V)} = {|0),|1)} (Fig. 1.2b). Simple optical components as
polarizing-BS (PBS) and waveplates allow the preparation of the Pauli observables,



1.1 Photonic quantum technologies 10

m= -2 m= -1 m=0 m= +1 m=+2

G @@ R T

Figure 1.3. Wavefront of light carrying different OAM values. The azimuthal phase of the
wavefront depends on the OAM quantum m (bottom). As a result, m # 0 deforms the
wavefront into a helicoidal shape during the light propagation (top).

thus enabling universal quantum computing in polarization. PBS is able to correlate
polarization and path, by transmitting H and reflecting V of the entering photon.
Half waveplates (HWPs) and quarter waveplates (QWPs) with the optical axis
rotated by 8 = 0° respect to V direction, are unitary operators acting as:

WP(0°) = ((1) e%) , (1.10)

where ¢, = 7 for HWP and ¢, = 7/2 for QWP. A sequence QWP (6;)-HWP (6,)-
QWP(03) can be used to create any possible transformation of polarization state
over the Bloch sphere, through a suitable combination of angles 61,6, 05.

Orbital angular momentum

Unlike SAM, OAM of the single photon can assume multiple values of #, i.e.
discrete quantities mh with the unbounded integer m = 1,2,... [32]. Therefore,
the OAM quanta can be used to encode qubit (d = 2) as well as high dimensional
qudit (d > 1) states: |¥) = ¢ _,a; |mh) with a; € C. In paraxial approximation,
this property can be convemently described by expressing the solution of Helmholtz
equation with the Laguerre-Gauss (LG) modes [33]. Indeed, LG modes depend on
two integer indexes, k and p, where kK = m. Explicitly, the LG modes for describing
the propagation of a beam with wavelength A, in cylindrical coordinates — z along
direction of propagation, while radial position r and azimuthal phase ¢ on the
traversal plane — read [34]:

Apy— r \" ‘J?z) (2 iy i+ kI+1C(:) ik
LGk,p(T, ¢, 2) = k,pm @ e Lp w2(z) e e e ?,
(1.11)

where Ay, and L1|Dk| are respectively normalization constants and the generalized
Laguerre polynomials, with k,p € N. While the other parameters are standard
quantities associated to Gaussian beam [36]: the beam waist w(z), the Gouy phase
((z) and the wavefront radius of curvature R(z). Being k = m, from Eq. (1.11) it is
clear that the OAM quantum is related to the spatial distribution. In particular,
LGr=pp X e"™?: when p is constant, m # 0 create vortexes in the azimuthal phase
¢ of the wavefront, as depicted in Fig. 1.3. The sign determines the rotational
direction, while the value imposes a periodicity of 27/m to the wavefront phase.
Conversely, different values of p do not change the phase periodicity, but simply add
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Figure 1.4. Intensity profiles of Laguerre-Gauss modes LGy—,,  as a function of the
indexes p and m, defined in Eq. (1.11). This image is taken from [35].

radial nodes to the typical doughnuts shape of p = 0 (Fig. 1.4).

In the majority of the experiments, the photonic setups work with photons having
zero-OAM, corresponding to the fundamental Gaussian mode TEMyg (= LGoy).
This choice enables for example the transmission in standard single-mode fibers
(SMFs), which allow the propagation of the fundamental eigenmode TEMgy. Con-
versely, light carrying non null-OAM has a more complex profile and SMF are no
more suitable for the fiber transmission. Such an example suggests the intuition
that OAM property is hard to manipulate due to the difficulty to be coupled and
transmitted with standard optical components. It is not a case that a suitable way
to measure bidimensional subspaces of OAM is to map the OAM states directly
into a polarization measurement, thus facilitating the approach. Components able
to manipulate OAM are inhomogeneous anisotropic materials or phase pattern
holograms [37, 38, 39, 40, 41, 42, 43], such as Q-Plates and Spatial Light Modulators.
In particular, the Q-Plate (QP) [38] is a device composed of a nematic liquid crystal
interposed between two glass layers, characterized by an integer topological charge q.
The QP has a non-uniform optical axis which rotates around a singularity, with an
angular orientation a(¢) on the transverse plane which depends on the azimuthal
phase ¢. It is described by a(¢) = q¢ + ap, where «yq is a constant value computed
with respect to the reference axis, i.e. obtained for ¢ = 0. QP is able to correlate
OAM and SAM by shifting of a quantity |2¢|h the OAM of a rotating polarization
(|R) or |L)), based on the polarization value, with the following transformation:

L, m) 5 cos(8/2)|L,m) + ie2@+00)sin(§/2)| R, m + 2q)

IR, m) 5 cos(6/2)|R, m) + ie~2(@+e0)sin(5/2)| L, m — 2q),

(1.12)
where m is the OAM quantum of the entering photon. The parameter ¢ is a birefrin-
gent retardation due to the liquid crystal and can be tuned electrically through the
application of a voltage. Therefore, a QP can partially or completely (§ = 7) correlate
SAM and OAM degrees of freedom, thus providing an useful tool for managing OAM.

During my Ph.D. we exploited a vortex plate, that is a non-tunable Q-Plate,
in order to realize a hybrid entangled state encoded in OAM and SAM degrees of
freedom, and transmit such state along a special fiber, known as air-core fiber [11]
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Figure 1.5. State-of-the-art of photonic technologies available for Quantum Information
studies developed both in bulk and integrated platforms. Variegate optical platforms are
able to generate (left) and manipulate (center) different properties of light in a quantum
regime. Detectors have been developed for the revelation of single photons (right). This
image is taken from the review [5].

(Sec. 2.3).

1.1.3 Photonic platforms

Despite bulk optics is able to provide full and easy control of the photonic
setup, the integration of the components represents the most advantageous as
well necessary step, towards the future Quantum Photonics [5, 44, 45, 28, 46,
47]. The miniaturization provides more stability, that is fundamental especially
in interferometric setups, reduced costs and compactness, thus realizing a great
number of optical elements on the same chip. Notably, thanks to integrated chips
unprecedented Quantum Information experiment has been realized, such as boson
sampling [20, 21, 22, 23] and quantum random walks [24, 25, 26]. Different techniques
can be employed to create integrated chips able to transport and manipulate light
[5, 44, 46, 48], such as ITI-V semiconductors [49, 50, 51, 52, 53], UV writing [54, 55],
femtosecond laser writing (FLW) [56, 57, 58, 59, 60], Silica-on-Silicon [61, 62, 63,
64, 65, 66] and Silicon-on-Insulator [61, 67, 68] platforms (Fig. 1.5). Using these
techniques it is possible to move many elements of bulk optics to an integrated level.
Relevant examples are provided by the directional coupler (the equivalent of the
BS), the integrated PSs, and waveplates. The Si-based technologies are probably
the most suitable in integrating a large number of elements in path encoding.
Indeed, the strong difference in the refraction index between the core waveguide and
surrounding cladding allows ultra-small bending radius and very compact structures
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Figure 1.6. Optical fiber losses as a function of the wavelength of the transmitted light.
Minimal losses are achieved in the so-called telecom region, that is around 1.3 pm and
1.55 pm.. This image is taken from the review [94].

[69]. However, the same characteristic prevents the integration in such devices of
the polarization degree of freedom. Conversely, the FLW is a technology able not
only to manage polarization but also to work in 3-dimensional geometry. Otherwise,
most other technologies are developed on planar structures, so they can not exploit
the third dimension. The goal of the integrated approach for Quantum Photonic is
to miniaturize each part of the quantum protocols: generation, manipulation, and
detection of quantum resources. Hence, the described technologies have realized
efforts for integrate sources of single and entangled photons [70, 71, 72, 73, 74, 75,
76, 10, 77, 78], manipulate them in the described degree of freedom — even OAM
[79, 80, 81] and time [82] encoding — up to integrate the single-photon detection
[83, 84, 85, 86, 87].

Finally, another fundamental research direction is the study and the developments
of quantum fiber networks and free-space channels [88, 89, 90, 91, 3, 92], as they
represent the more suitable infrastructure for a worldwide quantum communication
[93]. Here, it is important to investigate cases where more distant parties are involved
by using different photonic solutions to the Quantum Information protocols, thus
testing real-world scenarios. Fiber network represents the most comfortable and
versatile approach for relatively short-scale communication, as the metropolitan
distribution of quantum resources. The wavelength regime in which fiber distribution
is more appropriate for a long-distance task is the telecom band, which is around
1.3 pm and 1.55 pm. Indeed in this regime, the optical fibers show minimal losses
(Fig. 1.6), and most of the existing infrastructures for classical fiber communication
are realized with such wavelengths.

When dealing with intercity scale, up to international communication, the dis-
tance becomes too limiting for fiber communication. The losses allow a reasonable
communication with fiber within 100 km. Conversely, free-space channels allow a
better scaling with increased distances but still suffer similar limits due to Earth
curvature, atmospheric turbulence, and attenuation. For overcoming such distances,
the best short-term solution seems to be quantum repeaters [95, 96, 97, 98] and
satellite-based quantum communication [99, 100, 101, 102, 103]. The former allows in-
termediate steps of the quantum signal by using entanglement purification [104, 105],
entanglement swapping [106, 107] and quantum memories [108, 109, 110] (Sec. 2.1.1).
The latter shows losses which scale only quadratically, compared to the exponentially
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Figure 1.7. Example of femtosecond laser written circuit. The laser beam is focused into
the glass substrate and relatively displaced in order to create any three-dimensional
structure. This image is taken from [111].

scaling of the fibers, and thus providing possible secure communication over 1000 km.

During my Ph.D. thesis bulk setups and integrated devices based on the FLW
technique have been used. The first was exploited for realizing sources of entangle-
ment (Sec. 1.2.3), a Mach-Zehnder interferometer for the phase estimation problem
(Sec. 3.3.1) and quantum key distribution in a free-space channel (Sec. 2.5). The
second was employed for realizing an integrated source of entangled photons (Sec.
2.2) and an integrated 3-mode Mach-Zehnder interferometer for the estimation of
multiple phases (Sec. 3.2). While the bulk solution is made using common optical
elements, the integrated technique requires a more detailed explanation.

1.1.3.1 Femtosecond laser writing

Femtosecond laser writing (FLW) is a powerful micromachining technique for
the realization of circuits, whose fabrication procedure is based on focusing a strong
pulsed laser in femtosecond regime on a substrate of glass [56, 57, 58, 59, 60, 112] (Fig.
1.7). If the pulse energy is lower than the energy gap of the substrate material, in
the focus of the radiation the local refractive index is permanently changed through
the activation of a series of nonlinear processes. In particular, when the index is
increased, translating the sublayer with respect to the focused beam, waveguides for
the light are realized, with the same operating principle of the optical fiber. This
technology allows the miniaturization of a series of optical devices, both passives
and actives, together with the realization of more complex circuits. As previously
discussed, the basic elements are directional couplers and phase shifters.

A directional coupler is obtained by approaching two waveguides at a distance
of a few micrometers (Fig. 1.8): when propagating light along one waveguide,
the evanescent field overlaps the second waveguide, due to the short distance d,
thus enabling the tunneling effect towards it. Changing such distance d and the
interaction length L the parameters of the integrated-BS [Eq. (1.9)] can be tuned,
by controlling the partial overlap between the modes.

The PS can be fabricated for inducing a static relative phase shift between two
waveguides or with a reconfigurable structure. The former is realized by means of
a mechanical bending of a single waveguide (Fig. 1.9a): the deformation changes
the local path of the light and thus the acquired phase during its propagation. The
second method is the realization of a reconfigurable PS, controlled by the application
of a voltage on a thermo-optics element. More specifically, this element is a resistance
which is placed near the circuit and dissipates power, inducing a local variation
of the index refraction proportional to the propagation of heat. The optical path
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Figure 1.8. Directional coupler is an integrated operator equivalent to the BS. Two
waveguides are brought together by a few microns for an interaction length L, having the
non-zero probabilities to overlap their modes. This is allowed by the very-low distance d
between them, which can be tuned in order to set the BS parameters.

along the surrounding waveguides is changed differently for each waveguide, thus
their relative optical phase can be controlled (Fig. 1.9b). Even PBS and waveplates
can be integrated by using FLW [113, 114, 115, 116, 117]. In particular, waveplates
have been realized by tuning the writing angle of the beam focus to rotate the
birefringence axis of the written waveguide [113].

° b

Figure 1.9. Phase shifter operators realized in FLW technique. (a) Static optical phase
shift A¢ can be obtained by simply bending the integrated waveguide. (b) An active
and reconfigurable phase shifter can be realized by placing an ohmic resistor nearby the
waveguide.

Using the FLW technique two different devices have been realized, studied, and
employed during my Ph.D.. A first device, composed of three different chips, realizes
an integrated source of entangled photons (Sec. 2.2). Then, a second device with a
three-arm interferometer structure, suitable for Quantum Metrology studies, was
characterized and exploited to manipulate and measure multiple optical phases (Sec.
3.2).
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1.2 Photonic Entanglement

Entanglement is the fundamental resource for Quantum Computing, Simula-
tion, and Sensing, at the heart of most Quantum Information and Communication
protocols, such as teleportation [118], quantum swapping [119] and repeaters [95].
Indeed, entanglement allows to overcome classical performances in Metrology [2],
Cryptography [120] and Computation [121] fields. The capacity to generate, manip-
ulate, and revealing entangled states represents a crucial aspect that any quantum
technology has to address. In this context, photonic-based technology represents
an optimal solution [5]. As discussed in the previous sections, this is due to the
easy manipulation in quantum regime through standard optical elements acting on
many degrees of freedom of light. The development of photonic platforms capable of
handling entanglement addresses two fundamental experimental aspects. First, the
realization of single-photon sources which generate entanglement between photons.
Second, the implementation of photonic setups capable of realizing tools for detecting
and certifying the presence of entanglement in quantum states of light.

In the following sections we will discuss these topics, by defining entanglement
(Sec. 1.2.1) and its peculiarity (Sec. 1.2.2), then providing an overview about how
to generate (Sec. 1.2.3) and measure (Sec. 1.2.4) photonic entanglement.

1.2.1 Definition

Entanglement occurs as quantum correlations between the different parties,
embedded in the global quantum state of the system, completely described by its
density matrix p. For example in a 2-qubit system, namely A and B, if the pure
quantum state p4p can not be separated in the tensorial product of states living
on single qubit spaces, respectively p4 and pp, then is known as entangled state:
pAB 7 pa ® pp. This is the case of the four Bell basis elements, composed by the
triplet states

|¢i>AB = 1/\/§(|00>AB + |11>AB)7 |¢+>AB = 1/\/5(‘01>AB + ‘10>AB) (1-13)

and the singlet (or EPR-state)

V7)) ap = 1/V2(101) o5 — [10) 45), (1.14)

where we consider |ij) 45 = |7) 4 |7) g- The generalized definition of bipartite entan-
glement takes into account possible mixture of states. Here, the general separable
state, for any set of {p} and {pl3}, is:

pAB = Sipip'y ® pg, (1.15)

where each element of the mixture occurs with probability p;. Hence, general
entangled states are defined as the complement of Eq. (1.15): p%G% # ipipYy @ pls.
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Analogously, the generalization of an entangled state p?;f} in presence of n-subsystems

{Ag}(with k =1,...,n) is immediate:
PNy # ipiph, @ pla, @ - @ ply (1.16)

where the right term represents the generalization of a separable state.

1.2.2 Bell theorem and non-local causality

Entangled states and their correlations represent one of the most striking quan-
tum effects, that forces a radical departure from a classical vision of the world. These
states led Einstein, Podolsky, and Rosen to start a discussion on some critical issues
of Quantum Mechanics (EPR paradox [122]). They showed that using entangled
states and observing non-commuting observables some contradiction in the assump-
tion simultaneous of reality, locality and completeness in the quantum theory arise.
Their conclusion is that Quantum Mechanics must be incomplete, while adding some
classical hidden variable to the classical deterministic theory could solve its current
incomplete description of physical reality. J. S. Bell introduced its famous theorem [7]
for moving the famous EPR debate [122] from a philosophical level to an experimen-
tal one. Since 1964, the Bell test have provided an experimental solution to the EPR
paradox. Furthermore, to date it is the most used way to detect genuine non-local
entanglement inside quantum systems, having the ability to guarantee a device-
independent certification. Even in Quantum Cryptography, the violation of Bell
inequalities has become the milestone to guarantee an advanced level of security [123].

The Bell scenario is shown in Fig. 1.10. Let us consider a 2-party system, shared
between two measurement stations, Alice (A) and Bob (B). Each part can realize two

‘ photon 1 photon2 » | |

Figure 1.10. Scheme of the Bell test. Two parties, Alice (A) and Bob (B), perform
dichotomic measurements (a,b) choosing randomly (z4,2p) between two different
observables (A, ,, Bz ). During such measurements they can not communicate and/or
influence each other, up to some previously locally prepared correlations (A).
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different dichotomic measurements on its own system. A(B) observes the quantity
Az, (Bgy), choosing it between two different possibilities z4 € {0,1} (zp € {0,1})
and obtaining a result a € {0,1} (b € {0,1}). The overall process can be described
by the joint probability p(a, b|z4,xp), which contains information about correlations
between the measurement results of the two observers. In classical physics only local
variables can influence the result of the single experiment, that is nonlocal correlations
are forbidden. If A and B are space-like separated, the no-signaling principle imposes
that they can not communicate, so that no one can directly affect the other, both
in terms of measurement choice and measurement result. No nonlocal correlation
exists between their experiments unless they are previously locally prepared. Thus,
any physical quantity which can correlate the two subsystems is meant as hidden
variable and is indicated as A. Such considerations are summarized by the so-called
local causality assumption of the conditional probability, concerning the possible
measurement results, which factorizes as follows:

pla,blza, xp, A) = plalza, Ap(blzp, A), (1.17)

where A is the value assigned to A. The variable A is also indicated as shared ran-
domness: indeed, for any locally-prepared hidden variables (LHV) theory, it contains
any possible information, also unknown, able to predict the correlation between
the experiment results of the two parties. Conversely, quantum physics contradicts
the local causality assumption, as entangled states allow also non-local correlations:
when entanglement is present no factorization of conditional probabilities and no hid-
den variable can describe exhaustively the overall outcome distribution of the overall
system. The first experimental solution to this contradiction between Classical and
Quantum Mechanics was provided by the Bell inequalities, which have agreed so far
with the Quantum Mechanics in a variety of works [124, 125, 126, 127, 128]. Local
causality assumption has a fundamental importance, since not only defines the LHV
theories, but it is also sufficient for demonstrating the Bell theorem. Indeed, let us
consider the quantity:

S = |(AoBo) + (AoB1) + (A1 By) — (A1B1) |, (1.18)

where (A, , By ) indicates the expectation value of any possible correlation between
A and B. In presence of classical correlations, from Eq. (1.17), it is possible to verify
that any set of measures made by A and B must obey to the Bell inequality, which
in Clauser-Horne-Shimony-Holt formulation (CHSH, [129]) reads:

Sclassical < 2’ (119)

Conversely, if quantum correlations are present in the 2-qubit state, the bound
changes as follows:

Squantum S 2\/§ (120)

that is known as Tsirelson bound [130]. Comparing Eqs. (1.19) and (1.20), each
time measurement results give Sex, > 2, a region which only a non-local quantum
correlation can achieve is revealed, certifying the presence of entanglement in the
quantum state. Each LHV theory must satisfy Eq. (1.19), which is violated by
quantum states. In particular, the bound 2/2 is saturated only by maximally
entangled states. This is the case of Bell states in Egs. (1.13) and (1.14): measuring
the subsystem A along the two observables Ay = ox and Ay = oz, and subsystem
B along By = (0x + 07)/V/2 and By = —(0x — 07))/V/2, such states provide a
maximum degree of entanglement (Spen = 2v/2).
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The violation of Eq. (1.19) has been experimentally verified in many works, even
including loophole-free scenarios [124, 125, 126, 127, 128], thus demonstrating the
incompatibility of Quantum Mechanics with respect to any LHV theory and paved
the way to a new approach to certified entanglement. LHV theories that predict
completely the quantum results can not exist. Quantum Mechanics is non-local
and states having S > 2 shows non-local correlations. Entanglement is a necessary
condition, but not sufficient, for having non-locality. For instance, in the bipartite
scenario, pure entangled states are non-local, but entanglement and non-locality do
not coincide in presence of mixed entangled states. Such states can be entangled,
but not violating any Bell inequality.

Notably, Bell test is said to be device-independent (DI). This is because the
violation of inequality (1.19) represents the direct certification of entanglement,
hypothesizing only the causal structure while having no information about the inner
working of the devices employed in the test. Conversely, all other witnesses functions
require stricter assumptions (Sec. 1.2.4.3), as the knowledge of the dimension of
the relevant Hilbert space [131]. The non-locality of quantum theory is a fundamen-
tal aspect concerning a more general property, which makes it deeply different by
any LHV model, known as contextuality. LHV is a subset of a larger class, called
non-contextual hidden variable (NCHV). Non-contextuality is an intuitive classical
property for which in each NCHV the expectation values of mutually compatible
observables must be independent for both simultaneous and non-simultaneous mea-
surements. However, Quantum Mechanics contradicts this feature, since it shows
that results of joint measurement between compatible operators are dependent.
This was demonstrated by Kochen, Specker and Bell [132, 133, 134], proving that
quantum theory is contextual and non-contextual hidden variables can not explain
Quantum Mechanics results. It is possible to demonstrate that non-locality is a
special case of contextuality, but the latter, unlike Bell, is state-independent and does
not assume space-like separated parties. Moreover, most of the experiments where
Bell inequality is violated are made with the lack of space-like separation between
the observers, thus demonstrating more precisely the contextuality rather than the
non-locality. The entanglement is commonly recognized as the quantum correlation
between two dislocated parties, thus allowing the evidence of an unprecedented
non-local feature. Despite non-locality is a more interesting quantum feature and it
is well-demonstrated considering spatially separable qubits, the contextuality can
deal with more general quantum states, for instance, concerning also single-particle
entanglement [135, 136, 137, 138]. The latter encodes hybrid entanglement using
different degrees of freedom of the same quantum carrier. Thus, in principle such
qubits can not be space-like separated, and strictly speaking non-locality is not
demonstrable. In this case, only the contextuality test is a possible certification of a
non-classical behavior.

Finally, the generalization to space with a larger number of qubits is possible
but still requires additional efforts. Following the same spirit of Bell inequalities, a
possibility is computing generalized Bell-like inequalities for more complex scenarios,
as the star-shaped network (see Sec. 2.1.2). The generalization to a multi-qubit
system is given by considering a set of non-communicating observers {A4;}, which
perform experiments {x4,} with results {a;}. In this case the overall process is
described by the conditional probabilities P(a1,az,...|z4,,%4,,...), which contain
the correlations present in the experiment results. Also here, in presence of quantum
entanglement within the multiparties system, no LHV model is exhaustive and a
global description can be achieved only considering quantum theory. Studying the
generalized non-locality and/or contextuality is fundamental in order to exploit
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quantum resources in more complex scenarios, composed of any number n of parties,
and in particular for building future quantum networks. The certification of n-partite
entanglement still requires further investigations and the definition of generalized
Bell-like inequalities (see Sec. 2.1.2).

In conclusion, entangled systems can be completely described only assuming the
presence of non-classical correlations. Such non-classicality allows entangled states
to outperform classical performances in different fields of Quantum Information
science, such as Cryptography and Metrology. For instance, in terms of security,
when Alice and Bob share an entangled state, since there is no A to get information
about their data, it is not surprising that they can naturally share some secrets.
This intuition is the essence of the quantum key distribution, which will be discussed
in Sec. 2.1.3.

1.2.3 Generation of photonics entangled state

The realization of single-photon sources (SPSs) and the generation of entangled
states of light can be achieved in a variety of schemes, using different materials,
processes, and geometries. For example, Spontaneous Parametric Down-Conversion
(SPDC) and Four-Wave Mizing (FWM), both in bulk and integrated photonics,
microresonators and also deterministic sources, such as Quantum Dot-based (QD)
scheme, are only some of possible solutions to create single photons [5] to be entangled
(Fig. 1.5).

1.2.3.1 Spontaneous parametric down-conversion sources

Among the others, the most common way to generate entangled photons is to
exploit the SPDC process inside non-linear material, such as Potassium Titanyl Phos-
phate KTiOPO4 (KTP), Beta-Barium Borate 5-BaB204 (BBO), Bismuth triborate
BiBO2 (BiBO), and Lithium Niobate LiNbO3 (LN). SPDC occurs when a pump

beam impinges a non-linear crystal having x(?) # 0 (non-centrosymmetric) [139, 140].
The unitary transformation of the process is described in second quantization formal-

ism by Usppc = 1+ malignalajdler — vz(a;rignala;rdler)Q +..., thus with a probability v

a pump photon is converted into a pair of new photons, signal and idler, respectively

i i T T
with creation operators Ugigna idlers

matching) (Fig. 1.11). The global state after the interaction is a squeezed state, with
squeezing parameter A, which reads |¥)gppe = V1 — A2EF_ AV [N ) signat [V )idier-
Being A < 1, the probability of generating multi-pairs decades exponentially and
is commonly negligible. Due to phase-matching condition, only some materials in
specific configuration allows SPDC process. Here, different solutions have been
found, such as type-0 [141], type-I [142] and type-1I [143] layouts in birefringent
material. The need of using such materials to satisfy the phase-matching condi-
tion represents a first drawback in SPDC. Indeed, the possible materials have not
the best nonlinear coefficients. A solution to this problem is represented by the
periodically poled approach, that is building a non-linear crystal with alternate
ferromagnetic polarization with period A (Fig. 1.12a). This technique permits the

pand a by preserving energy and momentum (phase
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Figure 1.11. Schematic view of SPDC process inside a x(?) nonlinear crystal. A photon
of the pump beam is converted into new two photons, signal and idler, preserving (a)
momentum and (b) energy.

SPDC generation also in non-birefringent crystals, where it would be canceled out
by destructive interference. However, the periodic poling allows the compensation of
such phenomena and a non-null signal-idler generation. This is known as quasi-phase
matching as it is artificial and not maximally efficient, but it is advantageous because
the employed non-linear coefficient can be definitely high (Fig. 1.12b). Further, this
approach enables the generation of SPDC photons collinearly with respect to the
pump, which is advantageous in most used schemes.

Exploiting all these opportunities, the signal and idler photons can be differently
correlated. Thus, the ability to create such correlations allows to devise entangled
states of light, by inserting SPDC process in particular geometries. Most common
examples concern setups introduced by Kwiat and coworkers, using a non-collinear
type-1 [142] and type-II SPDC [143]. The former exploits a pump diagonal-polarized
state [¥) p = (I1H) + |V))/v/2, which focus on a sequence of two identical BBO
crystals having the optical axes perpendicularly oriented (Fig. 1.13a). In this way the
generation happens indistinguishably in the first and in the second crystal, providing
an enta‘ngled state in polarization ’\I,>type—I = (’H>signa1 ‘H>idler+|v>signal |V>id1er)/\/§7
along two opposite direction of the phase matching cone [142]. In the latter case, a
pump beam with polarization state |¥) = |H) focus on a type-II crystal and
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Figure 1.12. The periodically poled crystal can be used as alternative to x(?) nonlinear
crystal in SPDC process. (a) The structure consist in alternate with periodicity A
inverted ferromagnetic polarization layers. (b) The efficiency of such approach is lower
than using pure nonlinear crystals, but allow to exploit the highest nonlinear coefficients.
This image is taken from [36].
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Figure 1.13. Source of entangled photons based on SPDC (a) type-I and (b) type-II.

entangled states in polarization are generated along the intersections of the two phase
matching cones (Fig. 1.13b): [W), o 11 = ([H)gignal |V )idier T |V )signal |H) i q1er)/ V2
[143]. This kind of source has been used in some of our experiments [12, 14, 15, 16].
Then, another possibility is exploiting more complex structures, which not only allow
to optimize and improve the generation efficiency and the stability, but also permits
encoding entanglement over different degrees of freedom.

This is the case of placing one or two identical non-linear crystals into a Mach-
Zehnder interferometer (MZI) [10, 144], into a Sagnac interferometer [145, 146, 147],
into a folded sandwich geometry [148] and also setups of post-selection entanglement
[149]. All the discussed solutions can be realized both in bulk optics and integrated
photonics. Although the bulk sources have achieved the highest generation record,
the integrated approach offers a more attractive future perspective: both in terms
of greater stability and scalability, but also its natural compatibility with a possi-
ble mass-production. During our experiments we realized and exploited different
polarization Sagnac interferometers in bulk, in order to generate polarization entan-
glement [12, 17] and hybrid entangled state encoded in OAM and polarization [11].
Furthermore, we realized an integrated source of entangled photons in a MZI-based
geometry, able to provide entanglement in path or polarization degrees of freedom
[10].

1.2.3.2 Quantum dot sources

The non-null generation of multipair events occurs in the SPDC process even if
negligible in most applications. It is due to the Poissonian distribution of SPDC
generation and can sometimes be a drawback. For instance, this feature becomes
relevant in quantum key distribution (see Sec. 2.1.3), allowing unsafe attacks such
as beam splitting [150] and number splitting [151]. This limitation can be overcome
by employing deterministic single-photon sources, such as colour centers, trapped
ions and quantum dots using GaAs, InGaAs, InAsP NW or InAs/GaAs materials.
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Quantum-dot based source, currently still working in a quasi-deterministic regime,
represents one of the most promising solutions in this direction [152, 153]. QD is
realized by electronically or optically exciting a cluster of atoms, from a few hundred
to thousands, that is surrounded by a larger semiconductor matrix. The energy gap
of the embedded material is typically fewer than the ones of the external matrix,
thus confining the potential for electrons (conductive band) and holes (valence band).
Further, the confinement has dimensions on the order of the de Broglie wavelength of
such charge carriers, thus creating a system of discrete levels (quantized energy). The
excitation of the QD can be achieved in various ways, resulting in the fundamental
excitonic state X (single electron-hole pair excitation) and other multiparticle states,
which decades subsequently emitting single photons in a variety of emission lines.
Each generation is distinguishable from the others due to different energy, so that
by spectral filtering the single-photon emission is truly deterministic. Among the
others, the biexciton state XX (two electron-hole pairs excitation) can be exploited
in a biexciton-exciton (XX-X) radiative cascade, in order to create an entangled
pair of photons. Therefore, the X emission can be used to realize a single-photon
source, while the XX-X cascade is suitable to create on-demand entangled photon
pairs [154, 155, 156, 157]. The high quality of single-photon emission is confirmed
by autocorrelation measurements g(? (7 = 0) via Hanbury Brown and Twiss (HBT)
setup [158], which shows the antibunching behavior of the photon statistics (sub-
Poissonian light). Indeed, such quantity measures the probability to emit a second
photon at the same time of the first one, and an ideal SPS has ¢(® (0) = 0. The state-
of-the-art of QDs are SPSs having an excellent single-photon purity with ¢ < 0.001
and the achieved record to date is ¢(?(0) = (7.5 £ 1.6) x 107> [159]. Further, the
photon generation rate of QD is high thanks to its relatively short radiative lifetime
of ~ 1 ns. Then, the experimental advances demonstrated very low decoherence,
evaluated in terms of near-perfect indistinguishability [160, 161] between the two
consecutive emitted photons, that is measured through the HOM effect (Sec. 1.2.3.3).
Finally, the other important factor of a QD source concerns its overall coupling
efficiency, which defines its effective brightness depending on various aspects. On
the one hand the probability of a single exciting pulse to activate the QD, and
the probability of a single QD emission to contain a single photon. Here, excellent
results have been achieved for instance in using resonant m-pulse, which provides
deterministic excitation [162]. On the other hand the capacity to extract emitted
photons from the cavity (S-factor) and to couple it with an external waveguide or
a nanophotonic cavity (transfer coupling). Currently the best results are provided
by adopting nanostructures, which enable near-unity S-factor [163, 164, 160] and
transfer coupling into an optical fiber greater than 80% [165]. Therefore QDs are
near-on-demand single-photon sources, which are gradually outperforming the other
traditional SPSs, thus representing the future of secure Quantum Communication.

1.2.3.3 Hong-Ou-Mandel effect

A way to generate two-photon entangled states in path is exploiting the quantum
interference called the Hong-Ou-Mandel effect (HOM), which is attainable in presence
of indistinguishable photons. This effect was demonstrated for the first time by
Hong, Ou, and Mandel in 1987 [166]. It can occur when two wavepackets interfere
in a balanced beam splitter (BS) while entering from different inputs. In the general
case, the output state will be a balance superposition of any possible combination of
two photons along two output modes, i.e. the terms |2,0),10,2),|1,1), where |3, j)
indicate the number i(j) of photons along the output mode 1(2). If their spatio-
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Figure 1.14. Scheme of HOM effect with a symmetric beam splitter. Two indistinguishable
photons are injected along the two inputs of a symmetric beam splitter. The final state
is a balanced superposition of states in which the two photons are along the same output
mode. This image is taken from [1].

temporal superposition is perfect, that is there is no source of distinguishability
between them, the output state is reduced to the cases in which they exit from the
same output |Weoyu) o< |2,0)+|0,2) (Fig. 1.15). This is due to a quantum interference
that cancels out the |1,1) terms. Experimentally it is simple to detect this behavior
by recording the two-fold coincidence (CC) between the two output arms. Indeed,
changing the spatial shift Az between two identical photons the curve in Fig. 1.15
is typically observed. In presence of perfect HOM, the minimum of CC is zero,
realizing the ideal quantum interference. However, this value is impossible to achieve
in practical applications for the presence of imperfections in the BS (not ideally
balanced) and for the residual degree of distinguishability between the two photons.
Therefore, such degree of indistinguishability can be evaluated by considering the
HOM visibility:

maxa;(CC) — mina,(CC)

maxa;(CC) + minp,(CC)’

which is Viiom = 1 in the ideal case of indistinguishable photons impinging an
ideal 50:50 beam splitter. The peculiar dip of the HOM effect is frequently used
for preparing multiphoton quantum states of light and measuring their quality, by
providing an upper bound on their indistinguishability. For example, when preparing
an entangled state between two degrees of freedom of different photons, unless
the properties used for labeling, making the photons identical over all the other
properties is the necessary prerequisite.

Vitom = (1.21)
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Figure 1.15. When the two photons achieve perfect spatio-temporal overlap, the HOM
effect creates a peculiar dip in the number of measured coincidences between the two
output modes of the BS. This picture is taken from [166], representing the first observed
HOM effect.
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1.2.4 Detection of entanglement

The other fundamental aspect, dealing with entanglement in quantum states,
is its detection. Here, the Bell test in Sec. 1.2.2 is the most commonly recognized
methodology to fully certify the presence of quantum correlations. However, a variety
of further tests can be done to estimate the quality of photonic entanglement and
more generally for any quantum state of light. Common experimental strategies are
represented by entanglement visibility, non-locality and/or contextuality tests, and
quantum state tomography. In the following section, we will describe such solutions,
in order to provide an exhaustive overview of the tools necessary to experimentally
characterize a photonic quantum state and reveal its quantum properties.

1.2.4.1 Density matrix analysis

A first approach to certify a quantum state is provided by testing the population
and coherence terms of its density matrix pg. Despite some certification can be
realized according to the specific scenario, such as measuring the visibility of the
state respect some parameters [10], this approach finds its more general treatment
in quantum state tomography (QST) [167] and fidelity computation [168]. When we
focus on a specific Hilbert space, the experimental procedure which measures the
contribution associated with each basis term, i.e. reconstructing the density matrix,
is known as tomography. This technique requires a large set of measurements to fully
characterize both diagonal and off-diagonal terms of the density matrix. For example
in a 2-qubit space, such set corresponds to perform measurements along the three
canonical bases, corresponding to Pauli observables: computational (o), diagonal
(ox), and circular (oy). Thus, in a N-qubit space this number scales exponentially
as 3™V. In the case of large N, approximated versions and machine learning techniques
can be used in order to face this problem [169]. In photonic apparatuses, according
to the degrees of freedom used to encode the quantum states, different solutions
can be employed to measure the matrix terms. For instance the standard setup to
characterize the polarization state is made by means of the sequence QWP, HWP
and PBS, which is able to realize each Pauli operator. In OAM encoding more
general transformation can be realized using computer generated hologram-based
devices [37], such as the Spatial Light Modulator [170], while a simple solution is
represented by mapping the OAM state in a polarization measure through a suitable
Q-Plate [11]. Once measured py, given a target state pg, the fidelity F(pg, py) is a
quantity able to catch how much the state py is near to the target. In its general
definition, this distance is estimated by [168]

Flos. pu) = Trl(\papuy/oo) /2P (1.22)

Such quantity is bounded between 0 and 1, maximum when pg = pg. In the case
of pure states, pp = |P) (®| and py = |¥) (¥], Eq. (1.22) simply provides the
probability to measure |®) given |¥): F(pg, py) = | (¥|®)|?> = P(|¥), |®)). Further
quantifiers of distance between states are given by the Trace distance [168]

D(pa, pu) = 5[/ (pa — pu) (oo — pu))] (1.23)

and the Bures distance [171]

Dg(po, pu) =\/1 = F(po, pw). (1.24)
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Unlike fidelity, these quantities satisfy also the triangular inequalities and represent
metrics on the quantum state. Finally, another relevant parameter directly derived
from the tomography is the trace Tr[p3,] € [0, 1], called purity, which must be unitary
for pure states, while lower in presence of decoherence.

1.2.4.2 Hardy test and Mermim inequality

As well the Bell inequalities (Sec. 1.2.2), other tests are able to experimentally
demonstrate in a DI manner the inconsistency between any LHV theory and the
Quantum Mechanics, such as Hardy test and Mermin inequality. Unlike Bell, such
contradiction is demonstrated with logical implications about the allowed conditional
probabilities and not considering constraints on correlations.

Let us consider, as in the Bell scenario, two parties, A and B, which can
freely perform dichotomic measurements, {Ag, 41} and { By, B1}, having dichotomic
results {0,1}. For Hardy paradox any LHV theory can not satisfy simultaneously
the following statements:

p(Ag=0,B1=1)=p(A1 =1,Bp=0)=0 (1.25)
p(AQ =0,By = O) >0 (126)
p(A1 =0,B, =0) =0 (1.27)

In particular, the correlations allowed in a LHV model from the conditions
(1.25) and (1.27) impose that each event A; = 0, By = 0 can not occur, while
violating the (1.26). This logical implication can be simply contradicted by Quantum
Mechanics. Indeed, let us consider for instance the state |¥) 5 = (sinf |1) 1) +
cosf(|1) o |0)g + 10) 5 [1)g))/v/1 + cos?() with 6 € (0,7/2). Then, if Ay and By
correspond to measure on computational basis, while A; and B; measure on basis
{sinf |0) —cosf |1) , cosB |0) +sinf |1)}, it is immediate to verified that p(Ag = 0, By =
0) # 0. A connection between Hardy and Bell paradoxes can be found [172]. In
order to bring Hardy argument to an experimental test, is it possible to derive the
following inequality from the Hardy conditions [173]:

P(Ay=0,By=0)—P(Ap=0,B; =1)-P(A1 =1,Bp=0)—P(4; =0,B; =0) <0,

(1.28)
which violated by quantum correlations demonstrates the inconsistency of any LHV-
based model.

When entanglement involves more than two parties, or even more than two
qubits due to hybrid encoding, Eq. (1.20) and Eq. (1.28) could no more fully
capture the presence of non-classical behavior. In the case of a tripartite scenario
with parties A,B and C, the Mermin test represents a possible solution. Let us
consider each part can perform two different measurements having dichotomic
results: {Ag, A1}, {Bo, B1} and {Cy, C} for A,B and C, respectively. Further, the
causal structure prevents the communication between all parties simultaneously.
Conversely, the direct influence between two parties is allowed. In such scenario the
Mermin-Ardehali-Belinsky-Klyshko inequality [174, 175, 176] can be used, which
reads:

M = |(AgBCy) + (A1 ByCy) +

+ (A1B1Co) — (AoBoCo) | < 2. (1.29)

The violation of this inequality guarantees the presence of non-classical correla-
tions, i.e., contextual behavior, ruling out any possible non-contextual LHV model.
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Furthermore, if the bound of 2v/2 is overcome, even the presence of genuine multi-
partite entanglement is certified. The latter occurs when the state is not biseparable,
i.e. cannot be separated with respect to some partition [177]. In our 3-qubit space,
the non-biseparable state papc reads:

pasc # Sk(14 Pl @ p(A) +75 088 @ o)+ plh @ o) (1-30)

for any set of 1-qubit states {p } {pg)} {pc }, 2-qubit states {p } {p

{pAC} and probabilities {fyA } {7;)}, {fyc }. Therefore, if M > 21/2 in Eq. (1.29)
is measured, no bipartite separation is allowed and genuine tripartite entanglement
is certified. This is the case of Greenberger-Horne-Zeilinger (GHZ) state [178] which
is able to provide maximal violation of (1.29), that is Mgnz = 4 [179].

1.2.4.3 Entanglement Measures and Witness

When the task is directly revealing or even quantifying the presence of entan-
glement in a quantum state p, different tools are available, commonly known as
entanglement measures E(p). Entanglement monotones are entanglement quantifiers
E(p) which satisfy general properties [180, 181], such as:

o E(psep) = 0 if pgep is separable.
o E(p) is convex: E(p) = E;ip;E(p:) if p = Zipip;.

o E(p) does not increase under local operations and classical communication

(LOCC) UMOCC: B(UOCCp) < E(p).

o Given two entangled systems A and B, E(pap) is invariant under local unitary
transformation Uq ® Up: E(pap) = E(Us ® UBpABUL ® U]T3).

In the bipartite scenario, one of the most adopted monotone E(p) is the concur-
rence, defined as:

C(p) = max(0,1 — vl —v2 — v3 — v4), (1.31)
where v; (i = 1,2, 3,4) are the eigenvalues of matrix [\/5(61')/(X>c73f)p‘L(ay®0’y)\ﬁ}l/2 .
In the case of a pure state |®) the Eq. (1.31) becomes C(|®) (®]) = [2(1—Tr(prea))]"?,
where p,eq is the reduced density matrix of one of the two subspaces.

E(p) generally requires the knowledge of p. However, as previously discussed,
depending on the Hilbert space the QST can be hard to be computed (see Sec. 1.2.4.1).
If the task is only certifying the presence of quantum correlations, an advantageous
approach is represented by entanglement witnesses functions V. These functions
can be different observables, able to recognize the presence of entanglement without
needing the full state tomography. In particular, an observable of the state p is
witness of entanglement if its expectation value (W) = Tr[pW] can distinguish at
least a subset of entangled states from the entire class of separable states, that is:

o TrpsepW] > 0 if peep is separable.
o TripentW] < 0 for at least a subset of entangled states {pent }-

Therefore, for a given W not all the entangled states can be distinguished from the
separable class. On the contrary, for each entangled state we can define a witness W
able to certify the presence of entanglement (Hahn-Banach theorem [180]). Unlike
Bell inequalities, in general the entangled witnesses are not device-independent
but can require more assumptions like the validity of the quantum theory to work
correctly. In particular, a witness function suitable for the Bell state |¢p~) [Eq.
(1.13)] is provided by Wy- =1 — 5,;-, where S,- = Xi—xy,z| (0: ® 03) |.
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1.3 Final remarks

Photonics represents a convenient field to encode and manipulate quantum states,
and realize quantum information protocols.
First, it is possible to encode the quantum state into different degrees of freedom of
light, such as path, polarization, and orbital angular momentum. This capability
makes it possible to choose the most suitable one for the specific task.
Then, photonic technology offers several solutions, such as bulk optics and integrated
photonics to realize optical setups, or free-space and fiber links to distribute light
between distant parties. Using such devices, it is possible to generate and manipulate
optical quantum resources, e.g. entanglement, with different schemes. For instance,
the main probabilistic sources of entangled photons are based on placing nonlinear
crystals within interferometric structures. On-demand single-photon sources, such
as those based on quantum dot devices, can also be realized. Then, the availability
of single-photon detectors allows for the revelation of light in the quantum regime.
Finally, different methodologies exist to measure the quantum state of light and in
particular to reveal the presence of quantum correlation inside it. This is the case of
quantum state tomography, visibility, or witness of entanglement, while the most
commonly recognized one is Bell’s inequality violation. The latter allows for the
revelation of the non-local behavior of Quantum Mechanics and a device-independent
certification of entanglement.
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Chapter 2

Distribution of optical
entanglement

Quantum entanglement lies at the heart of most protocol of Quantum Informa-
tion theory, bringing the highest advantages such as the estimation enhancement
in Quantum Metrology [1], enabling teleportation in Quantum Communication
protocols [3] and improving the unconditional security in quantum key distribution
(QKD) [182, 4]. Therefore, manipulation and distribution of entanglement are as
fundamental as its generation, representing the basis of Quantum Communication.
Quantum entanglement embedded in photonic states can be accessible by using
different platforms and degrees of freedom, providing a large variety of possibilities
(Sec. 1.1). The ultimate challenge is the possibility to bring photonic quantum com-
munication on a real-world scale, up to an intercontinental scale as revealed by recent
demonstrations [93, 99, 101]. Here, basic elements are represented by quantum tele-
portation and entanglement swapping protocols, quantum relays, quantum memories,
and repeaters [3]. These possibilities integrated with fiber systems and free-space
channels inside always more complex quantum network implementations, can realize
the suitable infrastructures for intra-city and inter-cities quantum communication,
up to covering intercontinental distances [93]. Using satellite-based quantum tech-
nologies the entanglement resource has been distributed over 1000 km [183, 99],
even opening the possibility to unprecedented quantum physics experiments. The
workhorse is doubtless the Quantum Cryptography, which has been attracting many
companies because of the improved communication security. Notably, it has been
used by banks and governments, and the first telecommunication by using QKD
was realized between Austria and China [100]. Therefore, the distribution of optical
entanglement in all its meanings, applications, and advantages in the fields, repre-
sents one of the main topics of Quantum Communication. The investigation of such
solutions, interfacing photonic technologies at different levels and using quantum
states encoded by various photonic degrees of freedom is one of the aims of this thesis.

My thesis work has provided different contributions in this context. In this
chapter, after a brief introduction on Quantum Communication (Sec. 2.1), my
contributions in the fields are reported. On the one hand, the generation of useful
entanglement has been demonstrated using SPDC both in bulk and integrated
platforms, and even exploiting a quantum dot. In particular, the integrated source
[10] of entangled photons at telecom wavelength, composed of three cascaded chips
realized through FLW, turned out to be a novelty in the field: different output
states in the path and polarization degrees of freedom are generated by using a
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modular and hybrid approach, together with a reconfigurable PS (Sec. 2.2). On
the other hand, the generated entangled states of light have been manipulated and
distributed in different scenarios. In [11], a hybrid entangled state involving OAM
and polarization of photons has been firstly generated and then fiber-distributed, by
exploiting the special air-core fiber (Sec. 2.3). In [12] a star-shaped quantum network
has been realized and the distribution of multipartite entanglement in polarization
inside the network has been demonstrated (Sec. 2.4). Finally, an Ekert91-based
QKD protocol has been realized [13] by distributing maximally entangled singlet
states in polarization, that were generated using a quantum dot source. Those states
have been sent by air in a 270 m long free-space quantum channel, connecting two
distant buildings, for realizing the QKD experiment. The same experiment has
been replicated using a fiber quantum channel of similar length (Sec. 2.5). In the
following sections, all these experiments are presented in-depth.
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2.1 Quantum Communication

Quantum Communication is the art to communicate by using quantum tech-
nologies and protocols. Here, the most relevant part is represented by Quantum
Cryptography, i.e. the ability to make the communication between different parties
secure by exploiting quantum resources. More generally, Quantum Communication
is a large research field, which comprises other scopes, such as the fascinating quan-
tum teleportation, the study of increasingly complex quantum networks, quantum
internet, together with the investigation of ways to enlarge the achievable distance
in the distribution of quantum resources, such as entanglement swapping, quantum
repeaters, and memories. In the following sections, all the basic elements concerning
the large field of Quantum Communication are introduced. In Sec. 2.1.1 various ways
of distributing quantum resources and entanglement are presented. Then, particular
attention is devoted to the study of entanglement distribution in quantum networks
by means of DAG formalism (Sec. 2.1.2). Finally, in Sec. 2.1.3 the quantum key
distribution is widely discussed.

2.1.1 Communication with quantum channels

Protocols of Quantum Information seem to achieve unbelievable performances
with respect to their classical counterparts. This is due to the exploitation of unique
resources deriving from quantum theory, such as superposition and entanglement.
The adoption of these resources for a real quantum communication scenario requires
necessarily infrastructures able to distribute quantum states without loss of quantum
properties, thus permitting the right realization of each quantum protocol. Therefore
the study of quantum channels and more in general of quantum networks is a
fundamental step in order to make future communications with a quantum approach.

The simplest quantum communication scenario concerns the transmission of
information between two parties, Alice (A) and Bob (B), exploiting a channel able
to preserve one (or more) quantum state(s), namely a quantum channel (Fig. 2.1a).
The more general version also includes the presence of classical communication (Fig.
2.1c), which can be done by appropriate classical channels between A and B (Fig.
2.1b). The main problems of a quantum channel are related to the loss of quantum
properties during the propagation of the state along the channel. These losses are
divided into decoherence and amplitude losses. The first reduces the purity of the
quantum state, while the second attenuates the probability that the signal will arrive
at the receiver part. Using photon heralding-based protocols is possible to control
the effects of fidelity attenuation. Conversely, the reduction of the transmission rate
is not reversible. In order to minimize losses in a given photonic-based architecture it
is necessary to exploit characteristics of light that optimally match such architecture.
Here, telecom wavelengths are ideal for fiber distribution, while infrared light offers
a better single-photon detection efficiency and it is suitable for free-space channels
(Sec. 1.1.3). On the other hand, the right choice of the degree of freedom to use for
encoding quantum states has paramount importance: for instance, high dimensional
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Figure 2.1. Schemes of the communication channel between two parties, from Alice (A) to
Bob (B). (a) A quantum channel is able to transmit quantum information, e.g. a qubit,
without losing the quantum state prepared by Alice. (b) A classical channel enables
the communication of information encoded through classical bits. (¢) The more general
scheme of the communication channel provides both quantum and classical transmission
of information. In all panels, the dashed (double solid) lines represent quantum (classical)
channels.

Quantum Information well suits OAM in free-space [6]; time encoding is one of the
most frequently used in Quantum Communication and Cryptography schemes [6];
while polarization and path often represent optimal choices in fiber and integrated
devices [5].

[¥s) |
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Figure 2.2. Quantum teleportation protocol. A source (Aap) distributes bipartite entan-
glement between Alice and Bob. Arbitrary qubit [¥g) can be transmitted from Alice to
Bob without being directly sent to Bob. The protocol requires a BSM measure of Alice
between her state and |¥g). The result is sent with a classical channel to Bob, who is
able to retrieve the state |Ug) by applying a suitable operator Up on his state.

The most important Quantum Communication protocols which involve bipartite
communication are QKD (Sec. 2.1.3) and quantum teleportation. The latter concerns
the possibility to transmit any single-qubit quantum state |¥g) from A to B, without
sending directly the state along a quantum channel [184] (Fig. 2.2). More specifically,
first a bipartite entangled state |W4p5) is shared between A and B using a quantum
channel. Notably, after this step, the quantum channel could be in principle removed.
Then, A performs a Bell-state measurement (BSM) between the subsystem S of the
interested state and its own system [185]. Using a classical channel, A tells B her
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result, so that B understands what unitary operation to perform on his apparatus
in order to retrieve the state |Ug), such that |[¥p) = |Vg). Quantum teleportation
is one of the most fascinating protocols of quantum science, having no classical
counterpart. The most critical point is represented by the BSM [3]. For example, in
linear optics, no way exists to perform a complete BSM with efficiency greater than
50% [186]. Quantum teleportation not only represents a fundamental scheme for
conceptual comprehension of Quantum Information but also created the basis for
many developments of the quantum theory, such as quantum swapping and repeaters,
measured-based quantum computing, quantum gate, and port-based teleportation
[187].
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Figure 2.3. Quantum swapping protocol and quantum relay scheme. (a) An entanglement
swapping is realized between two parties, Charlie and Bob, that do not communicate
directly. Alice prepares an entangled state between the qubits C and S (A¢g). Then,
she sends the qubit C to Charlie and teleports the qubit S to Bob exploiting a further
entangled state shared with him (Aap). (b) In a quantum relay, Alice first prepares
an entangled state between the qubits S; and Sy (Ag,s,). Then, she performs an
entanglement swapping of both the subsystems towards Charlie and Bob. In this way,
the initial entangled state can be totally teleported between two distant parties which
never directly interacted.

Let us consider now quantum teleportation in a tripartite scenario, in which A
can communicate with two independent nodes, B and C. A prepares an entangled
pair of photons, in order to send one photon to B and one photon to C. He can
teleport the photon to B realizing the so-called entanglement swapping between the
photon owned by C and the photon received by B (Fig. 2.3a). Notably, although
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the two photons of B and C have never interacted, they realize an entangled state.
If the photon towards C is also teleported (Fig. 2.3b), then it is exactly the entan-
glement that is teleported between two parties, realizing a quantum relay [106, 107].
Exploiting quantum relays it is possible sometimes to attenuate some drawbacks due
to single-photon detector dark-counts [3]. However, quantum relays can not improve
the distance and rate in QKD, since it depends on the probability of losing the
entangled photons along the two quantum channels. This probability is substantially
equal to the case in which entanglement is established directly between the external
nodes using a single quantum channel [3].
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Figure 2.4. Quantum memory and repeater. (a) A device able to store quantum information
sent from Alice to Bob for a sufficient period of time is called quantum memory. (b)
Exploiting quantum memories in the quantum relay protocol enables an efficient quantum
communication between Bob and Charlie, realizing a so-called quantum repeater.

Currently, the only way to improve the distance using a chain of different quan-
tum channels without losing rate, is the exploitation of quantum repeaters [95]. The
working principle of a quantum repeater is based on exploiting quantum relays and
quantum memories [96]. The latter are physical quantum systems able to store
quantum information, for instance a qubit, for a sufficient period of time (Fig. 2.4a).
In the case of Quantum Communication protocols, several milliseconds of storing
are typically required. A quantum memory should also have other properties: the
capability to reveal if it has been loaded, e.g. through a heralding mechanism;
or the ability to efficiently release the encoded information into photons suitable
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for communication tasks, e.g. having favorable wavelengths. Several proposals
exist for realizing quantum memories, such as fiber-loops, atomic ensembles and
vapours, rare-hearts ions, Nitrogen-vacancy centers in diamonds and polarization
of photon-atom systems [3]. The standard scheme of a quantum repeater is similar
to the swapping one, but having the availability of quantum memories in the final
nodes (Fig. 2.4b). When A tries to establish an entangled state with B and C
separately, if one of the two fails, the other can be recorded in the quantum memory
until the first retrying succeeds. Thus, considering the losses in both channels is
no more necessary and an improvement with respect to the direct single-channel
entanglement distribution arises. It is not a case that realization and study on
quantum repeaters is one of the most interesting challenges of the modern epoch [3].
When more than two parties want to communicate using quantum resources, the
natural generalization is the development of a network of quantum channels. The
quantum network can in principle have any structure and shape, allowing direct
links between each part or only some of them. Such structures naturally show more
complex characterization and problems, and the distribution of quantum resources
across them is anything but obvious. One of the theories able to study network
scenarios is the graph theory, which is introduced in Sec. 2.1.2.

In this context, we demonstrated the distribution of hybrid entanglement through
a fiber system [11]. Here, the quantum state has been encoded in polarization and
OAM degrees of freedom, requiring a special fiber to be transmitted, namely the air-
core fiber (see Sec. 2.3). Then, in a second work [12] we demonstrated the realization
of a quantum network with 5 nodes — 1 central and 4 peripheral nodes — which
share four independent entangled states. In this case, we certificated the successful
distribution of multiparties entanglement through generalized Bell inequalities (see
Sec. 2.4).

2.1.2 Directed acyclic graphs for quantum networks

Studying a given physical system made in terms of the causal structures represents
a very useful way to approach the general comprehension of the correlations present
within the system. Casual structures can be easily visualized using directed acyclic
graphs (DAGs), which contain the essence of Bayesian networks. Examples of
DAGs are reported in Figure 2.5. A DAG is an ensemble of nodes (or vertices)
and directed edges (or arrows) between them, in which no cycles are allowed (Fig.
2.5d). The correspondence with physical systems is given by considering nodes as
random variables and arrows as the causal influence of one variable to another. The
variables are relevant parameters of the structure, whose values are associated with
certain probability distributions. They can be latent or known variables, such as
measurement choices or results, and so on. Also noise can be considered as a node but
it is often omitted as usually it is latent and does not produce correlations between
relevant variables. The causal influence (arrow) can be represented mathematically
by conditional probability P(X;|X;), indicating the possible influence of a certain
variable X; to a variable X;. The requirement of having no cycles allows preserving
the physical causal order, so avoiding retro-causal influences. Using this formalism is
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Figure 2.5. Directed acyclic graphs (DAGs). (a-c) Examples of allowed DAGs. (c) In
particular, the parent nodes pa(z1) (yellow) correspond to the nodes which influence
directly the value x; of the node variable X;. (d) DAG with cycles is not allowed to
avoid retro-causal influence.

possible to devise and study any scheme involving an arbitrary number of nodes and
causal influences. A node value z; can be always expressed as x; = fi(pa(z;),u;),
that is the deterministic result of its noise u; and parent nodes pa(z;). The latter
represent all the variables that have direct influence over z; (Fig. 2.5¢), ruling out
its direct noise. In a system with n nodes, the Markov condition [188] maps the
causal structure involving the nodes into a constraint on the conditional probabilities,
which reads:

p(x) = I p(xilpa(zi)), (2.1)

where & = (x1,...,x,) represents the set of variable values associated to the nodes.
The Eq. (2.1) provides a device-independent condition for the factorization of the
conditional probabilities, in which there are no assumptions on the inner working of
the exploited apparatus, that is the adopted function f;, but only on the realized
causal structure. Also, a physical system is said compatible with a given causal
structure if its correlations observe Eq. (2.1). These aspects suggest the power of
this formalism: each time experimental data provide correlations outside a certain
considered structure, i.e. are not in agreement with its Markov condition, then that
specific structure can be automatically ruled out. This is the same spirit of Bell
inequality. Indeed, the typical Bell scenario represents a particular case of DAG and
more general Bell-like scenarios, which involve multiple parties in several correlation
schemes, can be studied using the same approach.

The causal structure of the typical Bell scheme is reported in Fig. 2.6. Two
independent parties, Alice (X1 = A) and Bob (X3 = B), are initially correlated by a
certain variable A, the correlation source, whose value is A. Then, two independent
measurement choices, x4 € {0,1} and zp € {0,1}, are performed over the two
parties, affecting their dichotomic result a € {0,1} and b € {0,1}, respectively
for nodes A and B. No arrows connect A and B, so that one can not affect the
other. The resulting values a and b of the observables A and B, respectively, can be
described by conditional probability p(a,b|x,xp, ), which from Markov condition
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Figure 2.7. Bilocality scenario in DAG formalism.
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reads:

pla,blza, x5, ) = plalza, \p(blzp, ). (2.2)
This equation corresponds to the local causality condition [Eq. (1.17)], from which
Bell theorem is derived, as discussed in Sec. 1.2.2. Therefore, if A is an entangle-
ment source, it is possible to violate any LHV model having the typical Bell causal
structure. With the same logic it is possible to investigate more complex scenarios.

Let us consider for example the case of more parties sharing two systems with
a unique central one, called star-shaped network (SSN). The simplest case of SSN
is the bilocal scenario, where two parties are linked with a central node (Fig. 2.7).
This is the scheme typically exploited for entanglement swapping protocols (Fig.
2.3). Here, two independent variables, A; and Ag, distribute correlations between
the three parties Alice (A), Bob (B) and Charlie (C'). The sources are considered
fully independent, that is p(A1, A2) = p(A1)p(A2). Following the same notation of
the Bell scheme, but considering also the variables associated to Charlie’s nodes
(z¢, ¢), the probability distribution of results reads:

pla,bclza, zp,xc) = Y p(M)p(A2)plalza, A)p(blzp, A2)plclzc, A1, A2), (2.3)
A1,A2

in which each measurement is chosen between two possibilities (x4, zp, xc € {0,1})
and has dichotomic results (a,b,c € {0,1}). From this condition can be found a
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Figure 2.8. n-locality scenario in DAG formalism.

non-linear Bell-like inequality, that each bilocal model must satisfy:

S =/l + /IRl < 1. (2.4)

where
1
L== Y (A*B"2(C"),
TATB
1
IQ _ = Z (_1)QDA+-’EB <A-’EAB1’BCI>’ (2'5)
TATR
(A*AB*BC™C) = Z(—l)a+b+cp(a,b,c]wA,xB,a:C).
a,b,c

The violation of Eq. (2.4) has been demonstrated experimentally by different
photonic setup [189, 190, 191, 192, 128] by using entangled quantum states. In
particular, this result can be achieved also using separable measurements [128, 191,
193, 194], thus allowing exploitation of different sources of entanglement and an easier
generalization to a more complex quantum network. This is the case of n-locality
SSN, corresponding to a generalization of the bilocality SSN (n = 2). In the n-local
scheme (see Fig. 2.8) n independent nodes A = (A4y,..., Ay) are interconnected by
the same number of independent correlation sources A = (Aq,...,A,), respectively,
to a single central node B. We consider each node making k dichotomic measurements
(k < n) and the sources fully independents: p(A1...\,) = [[i= p(A\i). Thus, the
output probabilities factorize as follow:

p(a,blz,zp) = Zp(b‘va A) Hp()‘i)p<ai‘xz4w Ai)s (2.6)
A =1

where a = (a1,...,a,), ® = (x1,...,2,) and XA = (A1,..., A,). In a LHV model, Eq.
(2.6) must fulfill the generalized non-linear Bell-like relation:

k
SE=3N" <k -1, (2.7)
=1
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known as chained n-locality inequality [195]. Considering A* = [[j_, A;j, each
element [; of Eq. (2.7) reads:

1
— T TB
Ii=o }w:m BeE),

(A"B"™) = 3 (~1) 2= “Fp(a, bz, vp).

a

(2.8)

Notably, the greater is the number £ of measurements performed by the nodes,
the higher is the violation achievable by entangled quantum states, with respect to
LHV models. Therefore, tuning k£ can provide advantages in device-independent
protocols, either by reducing the experimental constraints for their violation [196]
or by leading to better security tests [197]. The violations of Eq. (2.7) have been
demonstrated experimentally in a photonic quantum network by our recently work
[12] (See Sec. 2.4). The study of more complex quantum networks allows the
investigation of novel non-classical behaviors [198, 8], together with having less
stringent experimental requirement in terms of detection efficiency [199], as well as
testing device-independent protocols over different networks topologies [200].

2.1.3 Quantum Cryptography

Quantum Cryptography is based on the secret sharing of a key between two
parties, Alice and Bob, which want to communicate in a secure way. Such key is used
to encrypt and decrypt their messages using the standard one-time pad technique
[201, 202]. Indeed, this technique guarantees perfect security in principle, provided
that the key is random, is as long as the message and is used only once. Thus, all the
communication security depends on the secret exchanging of such a key. Distributing
quantum resources for this task allows enhancing the secrecy of conventional com-
munication. Quantum key distribution (QKD) is one of the Quantum Information
protocols nearest to real-life applications. Indeed, several commercial companies are
trying to make QKD systems available to everyone '. The great worldwide interest
comes from the possibility for QKD to allow an unconditional secure communication.
Indeed, unlike classical protocols of cryptography, QKD security is based on physical
assumption rather than on the computational capacity of any possible eavesdropper
(Eve). Thus the term "unconditional” indicates that the level of secrecy is guaranteed
to be the same for any computational power of Eve. However, even if the key can
not be stolen, it is always possible to guess the secret shared key randomly during
a brute force attack’. Quantum advantages in cryptography are strictly related to
no-cloning theorem [203], that is the impossibility for Eve to clone completely the
same quantum information exchanged between Alice and Bob. An alternative way
to understand the phenomenology of QKD is to think that any possible attempt of
Eve to extract information is a generalized measure on the system. And contrary
to what happens classically, every measurement on a quantum system inevitably

'idQuantique, Geneva, Switzerland (www.idquantique.com); MagiQ Technologies, Inc., New
York (www.magiqtech.com); and Smartquantum, Lannion France (www.smartquantum.com).
2The key is guessed randomly.
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changes the state. When Alice sends a single photon to Bob, Eve can not intercept
the signal without revealing its presence, which is modifying the single-photon
quantum state (Fig. 2.9). Therefore, the presence of Eve in a quantum channel
can be commonly statistically estimated by the two parties, through the so-called
quantum bit error rate (QBER) [Eq. (2.9)]. Surprisingly, the strength of QKD
does not rely on the ability to detect Eve’s presence, but on the ability to extract
a certainly secret key despite Eve’s presence. Although there is huge interest in
the realization of experimental QKD [182, 4], this non-classical potential is still not
achievable in realistic scenarios due to technological limitations, which do not allow
us to completely satisfy the assumptions of the QKD protocols, together with the
effects of real-life environments. Indeed, even if all the assumptions of the quantum
protocols are respected, only QBER values lower than specific quantities allow a
possible unconditional secure QKD. Thus, photon losses constrain the validity of
QKD protocol to scale as the transmittivity ¢ of the involved quantum channel [4].
The other fundamental limitation in realizing QKD concerns the non-deterministic
multiphoton emission in existing SPSs. This is the case of the photon number
splitting attack [151], which makes QKD protocols currently insecure. Here, Eve
can measure one of the multiple photons produced by the source and send the other
to Bob without changing its state and taking information about it (Sec. 2.1.3.3).
Consideration of such an attack imposes a scaling of t* with distance, i.e., reducing
the achievable QKD by a factor of ¢ [4]. Lots of QKD experimental realizations
exploited attenuated laser pulses as SPS. Here, each wavepacket has an average
number of photons below 1, distributed according to a Poissonian statistic. As seen
in Sec. 1.2.3, also the other types of SPS suffer the possible emission of multiple
photons. This means that non-deterministic multiphoton emissions can generally
occur, opening serious loopholes on the QKD security. The only other way to
improve long-distance QKD is to exploit quantum repeaters [95, 204, 96] and QKD
networks [205], which currently represent hot topic investigations [206]. The current
QKD records in optical fiber was performed in telecom regime covering a distance
of 404 km [207] in prepare-and-measure scheme and 421 km [208] in measurement-
device-independent scheme (see Sec. 2.1.3.1). In satellite-based technology the
best long-distance QKDs have exceeded 1000 km [102, 100, 99], using the Micius
satellite [100], with the highest record of 7600 km [100]. Furthermore, over the
last years a growing research interest is attracting the study of QKD protocols on
chip [209, 210, 211, 212, 213], showing advantages in stability, compactness, and costs.

Therefore, on the one hand it is fundamental to investigate deterministic SPSs.
On the other hand, photonic quantum channels compatible with QKD requirements
must be realized and investigated. Remarkably, during my thesis it has been
successfully demonstrated the first quantum key distribution along a free-space
channel connecting two distant buildings, using a quantum dot SPS [13] (Sec. 2.5.2).
In this section, the fundamentals of quantum key distribution are introduced.

2.1.3.1 QKD protocols

In the final stage of the key distribution, the two communicators use the key
only if it is secure, otherwise the protocol is aborted. In order to exchange a secure
quantum key, Alice and Bob must follow a series of instructions. QKD protocols
can be divided in two main stages: the distribution of quantum information and
the post-processing of classical information. The first concerns all the exploitation
of quantum resources allowing the distribution of bits, with secrecy guaranteed by
quantum laws. The second deals with all the post-processing necessary to elaborate
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Figure 2.9. General scheme of hacked quantum communication between two parties, Alice
and Bob. Any possible eavesdropper (Eve) operates on the quantum link (dashed line)
whenever she tries to catch information. Conversely, she can only hear the information
of the classical channel (double solid line) without changing it.

the results, in order to have the shared key correctly clean and completely sure
from both sides. Therefore, the protocols typically require the presence of both a
quantum and a classical channel connecting Alice and Bob. There are three main
families of QKD protocols [182, 4]: discrete variable encoding, continuous variable
encoding and distributed phase reference encoding. In this thesis, we are interested
in the discrete variable approach, whose most used implementations are BB84 (or
4-state BB84), E91 and SARG84. Further solutions exist, such as 6-state BB84,
BBM92 or B92 [182, 4].

While the post-processing step is similar for all existing schemes, several strategies
can be adopted in distributing the quantum key. The simplest scheme — and the
first historically studied — is the prepare-and-measure (P&M). Here, Alice prepares
the quantum state and sends it to Bob. Bob measures and the results are used
to estimate both the key and the presence of a possible Eve. A second possibility
is the entangled-based (EB) scheme. In this case Alice prepares and measures an
entangled state. A signal correlated to the measurement result is sent to Bob,
which acts as in P&M. EB protocols have been demonstrated to be equivalent to
P&M ones [214]. However, this is not strictly true, as EB shows a degree of device-
independence security that can not be reproduced by P&M with separable states
[131]. Finally, a third possibility is represented by a device-independent scheme,
particularly interesting in measurement-device-independent (MDI) version [215, 216].
In MDI both Alice and Bob prepare and send a state to an external node, which
performs the measurements and distributes the secret key. In the following, the
most common approaches to discrete variable encoding are reported. Finally, a
modified version of K91 is presented, which shows some advantages in practical
implementations.

BB8&4

BB84 is a P&M protocol (Fig. 2.10), introduced by Bennett-Brassard for the
first time in 1984 [217]. Here, Alice sends to Bob a sequence of single bits encoded
in quantum bits. On the Alice side, one random bit is first selected, and then it is
randomly encoded in computational or diagonal basis (Sec. 1.1.1). The prepared

qubit |\I!§f)>, encoded in basis b, is sent to Bob along the quantum channel. On the
Bob side, a measurement basis b’ is randomly selected between the computational
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Figure 2.10. QKD according to the BB84 protocol. One of four different quantum states is
prepared randomly for encoding a bit. The qubit is sent along the quantum channel and
it is revealed by Bob choosing randomly the measurement basis. Then they proceed with
the sifting procedure and classical post-processing in order to obtain an unconditionally
secure distributed key.

and the diagonal ones, and the received qubit is measured. Thus, the quantum state
collapses along one eigenstate |\I»'](3I‘J )> of the chosen basis, proving the correct bit
with probability P(\Il(b) = \Ifg) )) = | (W%)]\Dg,)> 2 = 1 if it correspond to the Alice

encoding (b = V'), while P(\IJXJ) = \11](317/)) = 0.5 otherwise (b # b'). At the end of this
process Alice and Bob have a chain of N bits with the associated basis choices (raw
data). Thus, they perform classical processing of data, known as sifting procedure,
whose result is a shared sifted raw key: they declare on a public channel — the
classical channel — the N basis performed (not the bits!) and keep only the n bits
(n < N) in which the encoding basis was the same of the decoding basis (50% of
cases on average). Therefore, in the ideal case at the end of this process they share
the same n bits. However, two phenomena can introduce errors in the key bits, by
changing the qubits sent from Alice to Bob during the transmission in the quantum
channel. First the presence of losses in the channel and second the signal interaction
with a possible Eve during the communication. Here, Quantum Mechanics acts, by
changing unavoidably the state, each time external elements try to interact with the
transmitted qubit. Alice and Bob can measure with certainty the amount of risk in
the transmission, by randomly declaring a part 7 of the n distributed key — the
same for Alice and Bob — and estimating the quantum bit error rate (QBER):

n,
QBER = ——, (2.9)
where ne;, are the wrong bits arising from the comparison of the declared 7 strings
of Alice and Bob. Notably such a statistical quantity represents an upper bound
to the amount of information acquired by a possible Eve, since it includes also the
errors due to losses. The security of QKD protocols is demonstrated in a pessimistic
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scenario, i.e. considering that all errors present are key information accessible to
Eve. Approaches that optimize the actual knowledge of Eve about the system
are the decoy-state techniques [218]. Such a technique is even able to improve the
experimental feasibility of QKD up to ¢ scaling with the channel length [219, 220].
The subsequent instructions for completing the protocol concern post-processing
operations. They are quantum error correction and privacy amplification, which
provide a final secure key shorter than the original sifted key. These procedures
are described in detail in Sec. 2.1.3.2. Several works [221, 222, 223, 224, 225, 226]
demonstrated that the quantity of QBER must be lower than specific values in
order to guarantee different degrees of safety. In particular, if QBER< 11% the
unconditional security of the QKD protocol is achieved [221]. Notably, during the
various stages of the QKD protocol the original number N of bits that Alice sent to
Bob is importantly reduced, before creating the final ng-long key. Thus, it can be
useful to define a quantity, the secure key rate (R), which estimates such conversion
efficiency of the specific protocol: R = ny/N.

SARGO04

A similar version of BB84 is represented by SARG04 (Scarani, Acin, Ribordy
and Gisin, 2004) [227, 228]. This protocol is less efficient than BB84 in terms of
the secure key rate, but shows higher robustness to photon number splitting attack,
showing an improved scaling with the distance equal to t3/2 [4]. Here, Alice encodes
the random bit in the basis choice: for example bit 0 is codified by computational
basis, while bit 1 by diagonal basis. Then, the qubit is sent to Bob which measures
by randomly selecting one of the two bases. Bob declares the resulting bit (not
the basis!) and Alice agrees only the cases in which the bit is opposite to the one
prepared. Indeed, while all the other cases are ambiguous, this event is possible only
in one way: if Alice prepares a bit in a specific basis, e.g. 0 in computational (|0)),
and Bob measures in the different basis, e.g. the diagonal, in half events the state
collapses into the opposite bit 1 (|—)). Therefore Bob can share the same bit of
Alice by simply flipping his result. From here on, the development of the protocol is
the same as for BB84. Thus, in this case the sifting procedure discards the 75% of
data, which is less advantageous compared to the BB84, achieving on average the
50% of its secure key rate.

E91

Ekert91 (E91) was introduced by Ekert in 1991 [123]. It is an EB protocol where
an entangled state is shared by Alice and Bob. Alice prepares a bipartite maximally
entangled state, correlating the elements of the so-called key basis ({ Ay, By }). Then,
she sends one qubit along the quantum channel and the other qubit to her apparatus.
Bob receives the qubit, knowing the original entangled state prepared. Then, both
the sides perform measurements by randomly selecting between the key basis (A
for Alice; By, for Bob) or the basis able to violate the Bell inequality ({Ao, 41}
for Alice; {By, B1} for Bob)(Sec. 1.2.2). As well as BB84, they publicly declare
the bases used and suppress the cases in which they are different (sifting). In this
way, they obtain sometimes results along the key basis and the other times on the
Bell-test basis. Therefore, ideally each side produces a string of n bits on the key
basis which is correlated (or anti-correlated) to the string of the other side, that
they use as the shared key. In total analogy with the BB84, the presence of losses or
Eve introduces errors in such strings. Those can be estimated by declaring a subset
of n bits in the public channel, measuring the QBER and then proceeding with the
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same post-processing. Remarkably, this protocol shows a further layer of security. If
Alice and Bob declares the results obtained in Bell-test basis, they can compute also
the parameter S = | (Ao Bo) + (AoB1) + (A1 Bo) — (A1Bq) | and certify the expected
violation of Bell inequality: 2 < S < 2/2. Such a test is not only sensitive to
interactions in the transmission along the quantum channel, but also shows some
additional degree of device independence [131] due to the Bell test nature (Sec. 1.2.2).

Modified E91. The security of E91 shows some advantages over what the BB84
can offer. However, while BB84 uses all sifting data results for the key generation, the
E91 protocol gets half the rate, since on average the 50% of the resources is employed
for the Bell observables. Furthermore, in the current photonic QKD implementations
the BB84 can exploit SPSs with the highest recorded rate. Conversely, the photonic
entangled sources still do not achieve the same performances. Therefore, it is
important to develop schemes able to provide E91-like security, while aiming at
the BB84 key rate. In order to optimize the experimental implementation of E91,
a possibility is exploiting the approach developed in [229]. Here, the scheme is
asymmetric: Alice uses three basis { Ay, Ao, A1}, while Bob only two {By, B1}. As
well as in standard E91, {4, A1} and {By, B;} are used for monitoring the Bell test.
At the same time, it is possible to consider By also as the key basis on the Bob side,
thus correlating the entangled state on the basis { A, Bp}. In this way the procedure
is the same as E91, but requiring at least one less single-photon detector than the
standard scheme. Furthermore, the asymmetry allows to statistically encode more
bits in the key basis, thus enhancing the key rate. Despite the historical importance
of E91, these reasons make such a modified version of E91 more interesting for
practical implementations [230, 231].

2.1.3.2 Post-processing of classical information

After the quantum distribution of the key, the starting sifted raw key is ma-
nipulated by the two parties, Alice and Bob, in order to correct any errors (error
correction) and achieve the best security (privacy amplification). These steps of
information reconciliation are made by exploiting the classical channel and classical
operations. In particular, direct or reverse reconciliation is possible, if it is Bob or
Alice to post-process its own data, respectively. Even two-way schemes exist, where
this action is made by both parties.

Error correction. Possible errors can occur due to a possible Eve, malfunctions
of hardware or software components in each side, losses or even for unclear reasons.
These errors are estimated with the QBER and correspond to having some flip bits
at certain positions of the sifted key. Therefore such errors must be found and
corrected. The standard steps of the error-correcting protocol are described in the
following:

(i) the npaw-long sifted raw key is divided in strings of length L; — the same for
Alice and Bob —, such that the probability to find one error in a string is very
small: Ly - QBER <« 1.

(ii) A parity check is performed over each string: the XOR sum of the L; bits
provides a number that is different only if the selected string has one error.
Double errors are neglected since L1 - QBER « 1. Alice and Bob declare on
the public channel their parity-check results. The comparison allows them to
certify if the selected string is good (no error) or not (error). In both cases,
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at the end of the parity check the last bit of such string is discarded, thus
avoiding to provide additional information to Eve.

(iii) If the selected string shows no error, it becomes part of the final key. Otherwise,
it is subsequently divided into shorter strings and the protocol restarts from

(ii).

At the end of the iterative cycle each error in the final key is eliminated, at the cost
of having a reduced key size.

Privacy amplification. As discussed before, measuring the QBER Alice and
Bob compute an upper bound on the external influence to the communication, that
is the best Eve’s knowledge on the key. After error correction the shared key becomes
the same for both, but Eve preserves a partial knowledge about it. Such Eve-own
information must be deleted, in order to establish a final key definitely secure. This
is the goal of the privacy amplification procedure [232], which is able to create a new
shared key, random and independent by the partial eavesdropper information. A
demonstrated possibility is based on two-universal hashing [233, 182]. Alice chooses
a seed s for applying a random hash function f(®) to her n-long key k,, obtaining
a new shorter m-long key (m < n): ky, = f®)(k,). The seed is declared publicly,
thus allowing Bob to apply the same function. In this way, Alice and Bob obtained
the same final key, while Eve did not, despite having access to the seed. Indeed, if
Eve has a slightly different key k!, the probability of obtaining the same key k, is
negligible, upper bounded by 1/2™ [4]. Thus, its final information is automatically
uncorrelated by the final key of the two communicators. At the end of this procedure,
a secure key is distributed between Alice and Bob, but also in this case the price to
pay remains the key size.

2.1.3.3 Attacks and security

Several hacker attacks are known in the information theory. Although QKD
represents an ideal solution, practical QKD still suffers some of them. The main
threats to QKD security are represented by attacks such as photon number splitting,
man-in-the-middle, intercept-resend, side-channel, and Trojan horse [234, 4, 3].

¢ One of the most famous attacks in photonic QKD is represented by photon
number splitting [235, 151]. As already discussed, this problem is due to the
non-ideal emission of SPSs, which randomly produce a multiphoton emission.
When Eve intercepts the wavepacket, she can selectively suppress single-photon
states and preserve only multiphoton cases; Then, she can send to Bob a "fake"
single photon extracted by such cases, but having a copy of the state thanks
to the other elements of the emission. In this way, Eve has access to the same
information exchanged between Alice and Bob, completely unbeknownst to

Alice and Bob.

o In the intercept-resend approach, Eve measures each signal sent by Alice in
the quantum channel, by performing the same measurements that Bob would
do. Then, she encodes the bit measured similarly to Alice and sends it to
Bob. In this way, after the sifting procedure Eve has the same bits of Bob,
but introducing an error of 50% with respect to Alice’s raw key. It is possible
to demonstrate that no secure quantum key in BB84 can be obtained if Eve
detects more than 68% of the qubits sent by Alice [4].
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o During a Trojan horse attack [236, 237], Eve tries to probe information on
Alice and Bob by sending signals to their apparatuses. More generally, this
danger is related to the presence of side-channels due to hardware limitations.
Indeed, the success of such Eve’s strategy is related to the possibility that Alice
correlates the prepared state with other degrees of freedom unwittingly. Thus,
Eve probes the two systems to obtain such informative property, in order to
extract information on the communication. No general solutions are known
about this attack, but the related security is based on the well-characterization
of the involved quantum channel [238, 239]. In some specific setups, it can
be solved by using particular scheme-dependent defense elements, such as an
optical isolator [239] or a spatial filter [240],

o In a man-in-the-middle situation [3, 241], Eve is placed inside the direct
communication from Alice to Bob, such that each information exchanged
passes through the apparatus of Eve. In other words, Eve represents Bob for
Alice and vice versa. This attack can be avoided if Alice and Bob share some
initial secret, i.e. a short secret key. This is possible as the QKD uses fewer
key bits than the amount produced.

For all these attacks, the security of the key distribution is measured in terms
of Shannon’s mutual information (/) [242] between the various parties. The QKD
security is based on the consideration that the Bob’s (B) knowledge of Alice’s (A)
data is bigger than the Eve’s (E) one, i.e. I(A : E) < I(A : B) [243, 244]. This
relation guarantees that some secret is shared between Alice and Bob, which is
not accessible by the Eve information. Unlike classical investigation, quantum
cryptography must consider the possibility that Eve can even take advantage of
quantum technologies and infinite computational resources. Eve could entangle the
quantum signal in the quantum channel and measure her sub-system only after the
key is created and used. Thus, in this case the classical mutual information I(A : E)
is defined only after such measure. Therefore, a quantum counterpart of I(A : E)
must be seriously considered. Fortunately, also in this case the security of QKD
has been rigorously demonstrated [222, 245]. Finally, the practical implementation
of QKD suffers additional flaws, due to the non-ideal characteristics of hardware
components. A relevant problem concerns the weakness of the detection stage [246].
Even if solutions to specific vulnerabilities can be found, only the MDI scheme can
offer a more general solution to all these kinds of attacks.
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2.2  On-chip entanglement generation

Most protocols of Quantum Information and Communication theory found their
power in entanglement, which represents the indispensable resource, such as in
teleportation [118], entanglement swapping [119] and quantum key distribution
[120]. Even overcoming classical performances in Quantum Computation [121] and
Metrology [2] requires the use of such quantum correlations. Therefore, tackling the
generation of entanglement is the first fundamental step to achieve in order to take
delight in any quantum advantages. The benefit of the photonic implementation
has been largely discussed yet (see Sec. 1) but notably, the easy manipulation
of different degrees of freedom of light, with respect to other quantum carriers,
makes entangled photons a really attractive solution. Several photonic platforms
have been developed so far for generating entangled states of light, whose encoding
ranges between the various degrees of freedom of light. Bulk interferometer, folded
sandwich configuration, post-selection entanglement (Sec. 1.2.3), are only some of
the possible solutions. Even hybrid and hyper entangled states can be realized,
correlating simultaneously different light properties [11, 247]. Quantum photonic
sources is already a well-defined technology, which is aiming in the last period
to optimize its generation rate, stabilization, and miniaturization. Moreover, the
large variety of photon solutions require the ability to interface quantum states
of light between different technological levels. The integrated level provides the
possibility to compact dozens of optical components on the same chip, paving the
way to previously impossible implementations [20, 21, 22, 23, 24, 25, 26]. To further
scale up the complexity and fully capitalize on the advantages of the integrated
optics approach, quantum photonics is moving towards the integration of sources
on-chip as well. In bulk optics, sources of entangled photon pairs can be typically
achieved by spontaneous parametric down-conversion (SPDC) in nonlinear crystals
[143] (Sec. 1.2.3). A promising strategy to realize their integrated counterparts is
represented by employing waveguides in nonlinear substrates. Due to the enhanced
light-matter interaction, a boost in source brightness adds up to the standard advan-
tages of the integrated approach, such as miniaturization and optical phase stability.
Path-entangled states can be generated by down-conversion in coupled nonlinear
waveguides [248, 249], while generation of polarization entanglement in an integrated
device requires additional effort. In dielectric waveguides, polarization entanglement
has been achieved either outside the chip [250, 251] or exploiting non-degenerate
photon pairs [252]. Recently, an on-chip source of degenerate polarization-entangled
photons has been demonstrated in lithium niobate waveguides; however, the pump-
ing scheme was not fully integrated and required a bulk Sagnac loop configuration
[253]. Polarization-entangled photon generation has also been demonstrated in
semiconductor materials, either based on SPDC [52, 254] or exploiting spontaneous
four-wave mixing [255]. Finally, the wavelength of generated photons provides
another important experimental choice, which has to consider the specific photonic
scenario, such as free-space or fiber communication, together with the efficiency of
the detection components.

In [10], we realized an integrated photonic source of entangled photons, based
on interfacing different integrated components. The modular approach with hybrid
materials allows us to easily tailor each component to its specific task. First, single-
mode waveguides at different wavelength ranges can be employed for manipulating
both the pump and the generated photons. Then, waveguides in the nonlinear
crystal are used only for the generation of photon pairs, while waveguides in glass
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are exploited to manipulate the pump beam. In addition, the use of linear and low-
birefringence glass circuits allows one to neglect any unwanted nonlinear effects and
to easily manipulate the polarization state of the propagating photons. The device
is fabricated through the advanced FLW technique and can be reconfigured thanks
to the presence of a thermo-optical phase-shifter. This architecture allows us to tune
the output state simply by controlling an electric voltage and even the entanglement
encoding, by exchanging the last chip component, passing from a path entanglement
to a polarization one. All these aspects represent important advantages, which make
our device suitable for a plethora of possible applications. Furthermore, the output
photons are generated at telecom wavelength, where the standard optical fibers show
minimal losses. This property guarantees an optimal coupling of our integrated
entanglement generation with the standard fiber communication networks.

2.2.1 Description of the integrated device

The photon pair generation system is composed of three integrated devices (See
Fig. 2.11a): (1) a reconfigurable balanced directional coupler at 780 nm; (2) two
identical waveguides in a periodically poled lithium niobate (PPLN) chip; (3a-b) a
third interchangeable device operating at 1560 nm for the preparation of different
output states. The combination of such devices permits the generation of identical
photon pairs at the telecom wavelength and to engineer their quantum state through
a reconfigurable Mach—Zehnder interferometer.

The first directional coupler splits the pump equally to feed the two laser-written
waveguides in the PPLN device. Single-photon pairs are generated in both waveguides
through a Type 0 SPDC process. Dynamical control of the phase between the two
paths is ensured by a thermo-optic phase shifter fabricated in the first device. The
third device closes the interferometer and recombines the generated photons to
obtain the desired output. We employed two different devices, giving access to
different classes of output states. In a first case, the third device (3a) consists in a
balanced directional coupler, leading to an output state of the form

0,2y — 12,0 i
W) = S22 oy 1,1y sn ), (2.10)

where |7, j) stands for a state with ¢ and j photons on the two waveguides, respectively.
Here, a NOON state or a product state |1,1) can be selected, controlling the phase
¢ between the two output arms of the directional coupler in the first device.

In the second case, the third device (3b) is composed of a half-wave plate at 22.5°
(on mode 1), a half-wave plate at —22.5° (on mode 2), and a balanced polarization-
insensitive directional coupler. Conditioned to the detection of a single photon on
each output mode of the device, the output state is a polarization-entangled state of
the form

!%MZJN#%+WFrM (2.11)

where |+£) = 27V2(|H) 4 |V)) are diagonal linear polarization states at 45°. As
in the previous case, ¢ can be tuned by the thermo-optic phase shifter in the first
device.
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Figure 2.11. a, Overall scheme of the integrated source, comprising three cascaded
integrated devices. Device (3a) or (3b) can be exchanged depending on the desired
output state. b, Apparatus employed to characterize the photon pair generation in
PPLN waveguides. Device (2) is directly interfaced with input and output FAs. The
output of each waveguide is directly sent to the detection apparatus, where a FBS
separates the output to two detectors to discriminate two-photon events. ¢, Apparatus
for the characterization of the output state by inserting device (3a). The output state,
coupled via input and output FAs, is detected to alternatively characterize the (1,1) and
(2,0)/(0,2) terms, the latter by inserting a FBS on the measured mode. (d) Apparatus
for the characterization of the polarization-entangled state generated when device (3b)
is used. The output state, collected by a FA, undergoes polarization compensation
through a set of wave plates and is then analyzed in polarization by means of wave
plates and a PBSs. Legend: PPLN, periodically poled lithium niobate; FA, fiber array;
LPF, long-pass filter; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing
beam-splitter; FBS, fiber beam-splitter; Det, detector. This image is taken from [10].

2.2.2 Experimental characterization

In order to characterize the generation of photon pairs in each PPLN waveguide,
a Ti:Sapphire oscillator operating in the continuous-wave regime (CW) is coupled
to the integrated device by means of single-mode fiber arrays. A combination of
long-pass filters (leading to a total extinction ratio of 102 dB at 780 nm) is used
at the output to suppress the residual pump beam. The generated photon pairs
are measured by coupling the output of one PPLN waveguide at a time to a fiber
beam splitter (FBS). Two-fold detection is performed by two avalanche photodiodes:
the first operates free running with efficiency nlg = 25% (ID230 by ID Quantique)
and a dead time of 10 us, while the second one is employed in the external gating
mode with efficiency n%; = 25% (ID210 by ID Quantique) and a dead time of 30
us. Detection of one photon on one mode of the FBS triggers the second detector
on the other FBS mode for the detection of the second photon. This configuration
reduces the dark count rate and maximizes the detection efficiency. A proper
time delay is introduced to allow the communication between the detectors. By
controlling the internal trigger delay and the gate width of the second detector,
it is possible to optimize the signal-to-noise ratio (SNR). The generation rate of
the PPLN waveguides has been verified individually with 30 pW of pump power.
The detection rate for each waveguide is ~ 26000 Hz single counts and ~ 10 Hz
coincidences with a maximum SNR value of ~ 140 for the twofold coincidences and
a Klyshko efficiency of 0.04%. We believe that the main factors that limit this figure
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of merit are the PPLN waveguide propagation loss (1.5 dB/cm at 1560 nm), the
collection efficiency of the detection setup (~ 22%), and the detector efficiency.

We performed the characterization of the final output state reported in Eq. (2.10).
This is achieved by exploiting the configuration of Fig. 2.11c, thus connecting device
(3a) in cascade to the PPLN waveguide structures. We measured separately the |1, 1)
and the |0,2) terms as a function of the dissipated power by the thermo-optic phase
shifter, which is linearly related to ¢. The |1,1) contribution was measured directly
at the two outputs of the system, while the |0,2) contribution was measured by
coupling one output to an in-fiber beam splitter. The possibility to engineer the path-
entangled state is highlighted by the anti-phase oscillations of the two contributions
in the coincidence counts, corresponding to cos?(¢/2) and sin?(¢/2), respectively
(Fig. 2.12). The visibilities of the coincidence oscillations are 1y = 0.877 £ 0.004
and VB‘CE” = 0.935£0.003 for raw measurements. Subtracting accidental coincidences,
the visibilities become: V|; 1y = 0.970 & 0.004 and V|g 2, = 0.980 £ 0.004 showing the
high quality of the generated state.
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Figure 2.12. Measured interference fringes in the path-entangled configuration for the
states |1,1) (red dots) and |0,2) (blue triangles) as a function of the dissipated power in
the thermo-optic phase shifter (lower scale) and of the corresponding phase shift (upper
scale). Dashed lines correspond to sinusoidal fitted curves. This image is taken from
[10].

We then carried out the characterization of the polarization entangled state, which
is obtained conditioned to the detection of a photon on each output mode, employing
the setup of Fig. 2.11d. In this case, device (3b) is employed after the PPLN
waveguides. Before being analyzed and detected, the generated state undergoes
polarization compensation to cancel undesired rotations occurring in the output
fiber array. In the polarization compensation stage, we also rotated the basis of the
entangled pair so as to obtain an output state of the form 2-V2(|H, H) + |V, V)).
For ¢ = 0 (¢ = =) this corresponds to a polarization Bell state |¢T)(]¢7)). In
order to characterize the generated output state, we first measured the fringe
pattern as a function of the dissipated power in two different polarization bases.
More specifically, in the diagonal |+) basis the output state is expected to present



2.2 On-chip entanglement generation 51

a sinusoidal oscillation pattern, while a measurement in the |H/V) basis should
present no dependence on the phase ¢. The experimental results are shown in Fig.
2.13 and are in agreement with the expected behavior. The measured visibilities in
the different bases are V‘fvj_> = 0.858 +0.019 and |f,vi> = (0.834+0.018 for raw data
(Vi4,4y = 0.957 £0.015 and V| _y = 0.929 £ 0.017 by subtracting the accidental
coincidences). Furthermore, we observe that the pattern in the |H/V') basis is almost
constant. These results provide evidences of the correct operation of the source. To
further characterize the generated state, we chose a specific value for the phase ¢ = m,
corresponding to the generation of the Bell state |¢~). Hereafter, all experimental
values we report have the accidental coincidences subtracted. We first measured
the expectation values of Pauli matrices products (o; ® 0;), where i = XY, Z,
which correspond to evaluating polarization correlations in three different bases.
We obtained (ox ® ox) = 0.942 + 0.008(|H/V) basis), (ocy ® oy) = 0.895 + 0.010
(|£) basis), and (07 ® oz) = 0.944 £ 0.008 (|R/L) basis), showing the presence of
correlation in all three bases. This allows us to apply an entanglement test on the
generated state [256], namely, S = X;—x vy z| (0; ® 0;) | < 1 for all separable states.
The experimental value is Sexp = 2.782£0.015, thus violating the inequality by ~ 115
standard deviations and confirming the presence of polarization entanglement. We
also performed a full-state tomography [167], to fully reconstruct the state density
matrix. The results are shown in Fig. 2.14, where the obtained density matrix pexp
is compared to the one for an ideal state p,-. We achieved a value of the fidelity
F(pexp; po-) = Tr[(y/PexpPy- \//Txp)l/Q]Q between theory and experiment equal to
F =0.929 4+ 0.011, thus showing the quality of the generated state. The purity and
amount of entanglement are quantified respectively by TY[ngp] = 0.908 £0.018 and
by the concurrence C' = 0.905 + 0.022, which is comparable to the state of the art of
on-chip polarization-entangled sources.
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Figure 2.13. Fringe pattern in the polarization-entangled configuration obtained by
measuring the output contributions, |+,+) (red dots), |+, —) (blue triangles), and
|H, H) (green squares), as a function of the dissipated power (lower scale) and of the
corresponding phase shift (upper scale). Dashed lines correspond to the fitted curves.
This image is taken from [10].
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Figure 2.14. Results of the quantum state tomography performed for a value of the phase
set to ¢ = m, corresponding to the |¢~) Bell state. a, Real part of the experimental
density matrix pexp. b, Real part of the theoretical density matrix p;-. ¢, Imaginary
part of the experimental density matrix pexp. d, Imaginary part of the theoretical density
matrix ps-. This image is taken from [10].

2.2.3 Conclusions and perspectives

We have proposed novel Mach—Zehnder interferometers to generate different
quantum states of light as product, path- and polarization-entangled photon states.
We have shown the versatility and the modularity of the proposed strategy based
on the combination of integrated optical circuits realized in different materials. We
validated the adopted design, realizing the photonic chips by femtosecond laser
micromachining and characterizing properties of the resulting quantum states. We
expect that these results will encourage the choice of hybrid-material approach
for integrated entangled sources, since it potentially allows maximization of the
performances of these devices by choosing the best substrate and component for each
functionality. In particular, glass chips allow easy manipulation of all polarization
states and realize both polarization-sensitive and polarization-insensitive devices,
which would be hard to achieve in a monolithic approach based on a single nonlinear
birefringent substrate. The main limitation of our integrated source is the low
coincidence rate, which could be improved by reducing the losses of the laser-written
waveguides in the nonlinear crystal or by employing other fabrication technologies,
providing better transmissivities for this specific component (another advantage of
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the modular approach). In perspective, the continuous wave and very low pump
power required for operating this integrated source would allow the use of a compact
fiber-coupled diode laser, directly connected to the device, producing a ready-to-
use integrated source of spectrally degenerate entangled photons. Exploiting the
modularity of the approach, it would be possible to directly add devices for photon
manipulation and for performing logic operations. More complex architectures may
be also devised to directly generate path-polarization hyperentangled states [247].
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2.3 Hybrid entanglement distribution through OAM-
supporting fiber

Entanglement is the necessary prerequisite for having non-local correlations,
which are typically achieved by encoding the multiple qubits of the quantum state
over different carriers. In this way indeed each carrier can be space-like separated
and non-locality pointed out. However, a multipartite quantum state is feasible also
using different degrees of freedom of a single carrier, thus allowing the generation
of a so-called hybrid entangled state (Sec. 1.2). Despite this entangled state is no
more correlated in the non-local sense, its quantum properties can be still used for
quantum protocols, showing contextual behavior (Sec. 1.2.2). Hybrid states are
advantageous because they allow multiple qubits to be encoded in the same carrier.
On the other hand, the adoption of high-dimensional quantum states can reduce
detrimental effects due to environmental interaction [6]. This is related to the ability
of the single carrier to transport more information. Qubit is a two-level quantum
system able to encode at most one bit of information. Achieving more information
requires a d-level quantum system, i.e. a qudit (Sec. 1.1.2). Enlarging the dimension
of the Hilbert space allows not only to increase the information capacity but also
to encode this information using fewer carriers, thus improving the noise resilience
during the propagation [6]. The standard properties of the light used to encode qudit
states are the path and the arrival of the photon (time bin), or its orbital angular
momentum (OAM). These degrees of freedom are indeed able to encode potentially
infinite level quantum states. In particular, OAM seems to be very advantageous
because it allows tuning the d parameters simply by changing the azimuthal phase of
the beam (Sec. 1.1.2.2), without requiring complex spatio-temporal interferometers.
Also, the entanglement can be used to improve the dimension capacity of a quantum
channel, for example, using a dense coding scheme [6]. Similar results have been
experimentally demonstrated by using qudit in a bipartite system [257, 258, 259].

If on the one hand the study and generation of such quantum resources are of
great importance, as largely discussed, their distribution also plays a fundamental
role in Quantum Communication. In particular, great interest has been devoted
to the coherent distribution through optical fibers of quantum correlations, since
it constitutes the cornerstone for the future quantum networks [183, 260, 261, 262].
Further, in fiber-based quantum communication it is particularly important to
exploit photons within the C-band (1530 to 1565 nm), or more general telecom band,
where optical fibers show minimal losses (Sec. 1.1.3).

Within this context, during a collaboration with the Technical University of
Denmark, we adopted the polarization and the OAM properties of the light to
generate and transmit a hybrid entangled state at telecom wavelength [11]. Due to
the non-zero OAM used, the spatial profile is not a fundamental Gaussian mode
(Sec. 1.1.2.2) and the quantum state of the light generated is no more transportable
by using standard single-mode fibers. Therefore we demonstrated the capability
of a special fiber, namely air-core fiber, to correctly transmit such state, i.e., a
doughnut-shaped beam with an inhomogeneous polarization pattern, by preserving
its quantum properties. The entanglement distribution between distant parties
represents an important and challenging task, thus remarking the fundamental
importance of our result.
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2.3.1 Description of the experiment
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Figure 2.15. Experimental apparatus for the generation, distribution and anal-
ysis of the hybrid entangled states. Pairs of telecom polarization entangled photons
are generated by exploiting a periodically poled titanyl phosphate crystal (ppKTP)
in a Sagnac interferometer, which contains a dual-wavelength polarizing beam splitter
(DPBS) and a dual half-wave plate (DHWP). Photons exiting along mode 1 are sent
to a polarization analysis stage, composed of a quarter-wave plate (QWP), half-wave
plate (HWP) and a polarization beam splitter (PBS). Photons along mode 2 pass
through a dichroic mirror (DC), which separates the pump from the photons. Photons
in mode 2 impinge on a vortex plate (VP) to generate a VV beam state and, in turn, the
desired hybrid entangled state. The VV states are coupled to an air-core fiber and then
measured with an OAM-polarization analysis stage composed of a second VP followed
by a polarization analysis setup. To perform the measurements on the polarization and
OAM degrees of freedom independently, an additional polarization measurement stage
has to be inserted before the OAM-to-Gaussian conversion regulated by the second VP.
Finally, both photons are coupled into single-mode fibers linked to avalanche photodiode
single-photon detectors (APDs). This image is taken from [11].
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The employed apparatus is reported in Fig. 2.15. A bulk polarization Sagnac
source emits single-photon pairs at 1550 nm wavelength in an entangled polarization
state (|H)|V) + ¢ |V)|H))/+/2. This preliminary state is generated by pumping
the nonlinear crystal PPKTP with a continuous-wave laser at 775 nm. The pumping
beam is a gaussian mode TEMgg, thus the same for the resulting entangled photons.
The relative phase shift between the superposition terms is properly adjusted using
a liquid crystal in order to generate a single Bell state:

), = j§<|H>1 V), — V), [H),) (2.12)

where the subscripts 1 and 2 indicate the two interferometer output modes. Let us
consider the quantum state in the enlarged space polarization-OAM. For example,
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|R,m) (|L,m)) describes a photon with uniform right (left) circular polarization
carrying mh of OAM. To manipulate the OAM we exploit a vortex plate (VP). VP
can be considered as a nontunable Q-Plate (Sec. 1.1.2.2), that is an operator able

to correlate polarization and OAM in the following way: |L, k‘) |R k +2q) and

|R, k> |L k — 2q), where g is the topological charge of the VP and k is the OAM
quantum of the photon impinging the VP. In other words such light property is
shifted of a quantity |2¢|, whose sign depends on its polarization.
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Figure 2.16. Hybrid entangled state transmission. a) Hybrid VV-polarization
entangled photon pair generated in the experiment: entanglement in polarization of
the photon pair (blue ribbon) and entanglement between polarization and OAM of the
single photon (green ribbon, VV state) are sketched. The inhomogeneous polarization
patterns of the VV state |r) (bottom) and |a) (up) are explicitly shown. b) Schematic
of the experiment: hybrid VV-polarization entangled state is generated by an initial
polarization entangled photon pair. One photon of the pair encodes the VV state by
the action of a vortex plate. The VV beam is transmitted through the air-core fiber.
Finally, state detection shows that hybrid VV-polarization entanglement (blue and green
ribbons) is preserved after fiber transmission. This image is taken from [11].

DRON RO
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fibers fibers fibers fibers

Figure 2.17. Examples of transverse profiles of optical fibers. Different fiber-cores
can be developed in order to transmit different light modes. Standard employed fibers
are single- and multi-mode fibers. Our experiment exploits the novel air-core fiber for
transporting OAM states.

Non-zero OAM states can be conveniently described using Laguerre-Gauss (LG)
mode, where the mode dependence on k corresponds to a phase change in the
transverse mode profile. Therefore, varying the OAM quanta changes the transverse
beam shape. As a consequence, it is impossible to transmit such states through the
standard single-mode fiber, which is eigenfunction of TEMg, (Gaussian transverse
profile). For this reason we exploit a special fiber, the air-core fiber. This fiber has the
transverse profile shown in Fig. 2.17, and it demonstrated the capacity to transmit
non-zero OAM quantum states [263]. A special class of states that can be transported
by air-core fiber is the vector vortex (VV) beam. VV is a light state belonging
to the Hilbert space spanned by {|R, m),|L, —m)} [264], that is the superposition
of polarization-OAM eigenmodes (|pol,oam)). VV beam is characterized by an
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inhomogeneous polarization pattern in the transverse profile [265]. More precisely,
it has an azimuthally varying polarization pattern, surrounding a central optical
singularity [266, 267, 264]. Due to their distinctive polarization distributions, VV
beams have shown unique features, making them appealing for different research
purposes, e.g. microscopy [268], optical trapping [269, 270], metrology [271, 272],
nanophotonics [273] and communication [274, 275, 276, 277, 278, 279, 280, 281].
Generally, each state |pol, oam) has a different velocity inside the air-core fiber, due
to its birifrangence [263]. A possibility to correctly propagate the superposition
state in polarization-OAM encoding is to employ a pre-compensation stage [282].
Another possibility is the exploitation of particular VV beam, |ry,) and |a.,), given
by the equally distributed superpositions: |ry,) = (|R,+m) + |L,—m))/v/2 and
lam) = (|R,+m) — |L,—m))/v/2. Indeed, these VV beams are characterized by
superposition of anti-aligned states, which provides time-degeneracy into the air-core
fiber, thus allowing their propagation without using a precompensation scheme
[263]. If m = 1, radially (|r1)) and azimuthally (|a1)) polarized beams are obtained
[266, 267]. In our case we exploited a VP of charge ¢ = 7/2, providing an OAM
order-shift of m = |2¢g| = 7, aiming at generate:

R, A4T) +|L,-T7)
- n
_RAT) — [L,-T)
S

The polarization patterns associated with states |r7) and |a7) are shown in Fig.
2.16a. In the following, we will refer to |r7) (|ar)) as |r) (Ja)). In order to obtain Egs.
(2.13) and (2.14), one photon of the TEMyy singlet pair (photon 2) passes through
the VP, thus generating a global hybrid entangled state, which reads:

|T7) (2.13)

|laz)

(2.14)

9) = () la)y = V), 1)) (2.15)

The resulting state shows a non-local quantum correlation between photon 1 (polar-
ization) and photon 2 (vector vortex), but having a further hybrid correlation of
polarization-OAM properties along the photon 2. Then, the global VV-polarization
entangled state is distributed by injecting the photon in hybrid superposition into a
5 m-long air-core fiber. The conceptual scheme is depicted in Fig. 2.16b. Finally,
the hybrid entangled state is suitably measured by different measurement apparatus,
in order to study independently diversified aspects. The detailed explanation of each
employed measurement setup is shown in the next section.

2.3.2 Experimental results

The generated hybrid entangled states have been evaluated by using correlation
tests, such as Bell test, for certifying the presence of entanglement, and fidelity test
for verifying the distance from the expected ones (Sec. 1.2.4). For analyzing the
degrees of freedom involved, it is necessary to study independently the polarization
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and the OAM of the photons. In each of the employed measurement setups the
polarization analysis is made through the standard polarization measurement stage,
composed by HWP, QWP and PBS (Sec. 1.1). While the OAM measurement
stage is composed by a second VP which provides the inverse operation of the first
one, followed by a polarization analysis setup and single-mode fiber coupling. The
VP indeed is able to convert the problem of measuring the OAM property to the
polarization space, thus allowing its identification by the polarization measurement
stage. This is achieved unequivocally by the final single mode-spatial filter, which
traces out all OAM contributions different from the zero order.

Source state. Firstly, we characterized the entangled state generated by the
source [Eq. (2.12)]. Polarization measurement setups and single-photon detectors
are placed along the output modes of the interferometer, thus recording twofold
detections between them. The quantum state tomography in polarization space (see
Fig. 2.19a) provides a fidelity with respect to ideal singlet Fs = (93.54+0.2)%. While,

(raw)

the Bell test provides the maximum S-value S = 2.67 £ 0.01. Subtracting the
accidental coincidences from Sﬁ’"‘“"), such parameter becomes S; = 2.68 = 0.01. The
CHSH violations confirm the presence of non-local correlations in the polarization
of the photon pairs.

Then, after the VP action and the fiber propagation, we analyzed the global state.
This analysis is divided in two step: the study of the two-qubit hybrid entanglement

between two photons, and the two-qubit intra-system correlation encoded by the
photon 2.
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Figure 2.18. CHSH measurement operators. Expectation values moduli of the
measured operators that maximize the violation of the CHSH parameter S = (41 B) —
(A1Bo) 4+ (AoB1) + (ApBy). The values are relative to the polarization entangled state
generated by the source (green bars), the hybrid VV-polarization entangled state (blue
bars) and the intra-system entangled VV state embedded in the photon 2 and transmitted
through the air-core fiber (yellow bars). All error bars are due to Poissonian statistics of
the measured events. This image is taken from [11].

Hybrid entangled state (HyEnt). First, we consider the space composed by
the polarization of photon 1 and VV states of photon 2, that is the space spanned
by the basis {|H), |a)y, |V){|a)y, [H){|7)5, |V);|7)y}. The qubit encoded in pho-
ton 1 is measured by a polarization analysis stage (green platform in Fig. 2.15).
Conversely, the measurements of the VV qubit, i.e. photon 2, are implemented
by OAM measurement stage (purple platform in Fig. 2.15). In this way, the VV
states |r) and |a) are directly mapped into polarization states |H) and |V'), which
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are measured with the usual polarization analysis (see Fig. 2.15) [275, 283, 284].
The corresponding quantum state tomography in the four-dimensional space is
reported in Fig. 2.19b. We consider as target state the ideal evolution of the density
matrix describing the experimental state generated by the source. The resulting
fidelity between such state and the state measured after the fiber propagation is
Fy, = (979 £ 0.2)%. Furthermore, we observe violation of the CHSH inequality,

obtaining the value S}(me) = 2.62 + 0.03 for raw data and value S, = 2.67 £ 0.03
by subtracting for accidental coincidences, thus violating by 21 and 22 standard
deviations the separable limit .S = 2, respectively.

Intra-system entangled state (Intra). Now, we focus on the VV state em-
bedded in photon 2 and its transmission through the air-core fiber. Such analysis
quantifies the quality of the VV beam state generation, transmission through the
air-core fiber and conversion to the fundamental Gaussian mode. The single-photon
VV states |r) and |a), (2.13) and (2.14), are maximally entangled in the OAM and
polarization degrees of freedom. They correspond to single-particle entanglement
states, referred to as intra-system entanglement. The non-separability between
polarization and OAM states is not related to non-local properties, since they are
relative to the same physical system. However, Bell-like inequalities can be exploited
to demonstrate the single-particle entanglement, ruling out models that assume
realism and non-contextuality of commuting observables, relative to such systems
[134, 285, 286, 287](Sec. 1.2.2). Hence, we certify the presence of intra-system
entanglement carrying out quantum state tomography and performing CHSH-like
inequality in the space of polarization and OAM degrees of freedom of photon 2.
Horizontally polarized heralded single photons are sent to the VP to conditionally
prepare state state |r) for photon 2. The measurements on the polarization and
the OAM degrees of freedom of photon 2 are performed independently. For this
purpose, two cascaded measurement stages are needed (green and purple platforms
in Fig. 2.15). A first stage performs the polarization analysis (green platform in Fig.
2.15) and then, a second stage the OAM analysis (purple platform in Fig. 2.15).
The measured quantum state tomography is shown in Fig. 2.19¢ and the relative
fidelity calculated with respect to the Bell state |®T) is F; = (99.4 + 0.6)%. The
corresponding parameters S; obtained from the CHSH-like inequality violations are

SZ-(mw) = 2.76 £0.05 and S; = 2.82 £ 0.05, for raw data and with data from which
accidental counts are subtracted, respectively.

The set of CHSH violations measured for each state (source, HyEnt and Intra) is
summarized in Table 2.1 and the mean values of the measured operators are shown
in Fig. 2.18.

Three qubits HyEnt. The previous measurements have independently certified
the high fidelity of both the hybrid VV-polarization entangled state and the single-
photon VV beam state after propagation in the air-core fiber. Finally, we reinforced
the characterization of the hybrid VV-polarization entangled state in (2.15) by
considering all the degrees of freedom involved in the process, without assuming
a 2-dimensional Hilbert space for photon 2 spanned by {|r),|a)}. Conversely, we
characterized the final state by considering the global three-qubit space spanned by
the superposition of the eigenmodes |pol), |pol), |oam),. In order to access to the
three qubit independently has been necessary to add the polarization analysis stage
for photon 1 respect to the intra-system setup (Fig. 2.15). Thus, by performing the
three-qubit quantum state tomography of the transmitted state (Fig. 2.20), a final
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State  Measurement G (raw) S
time

Source 160s 2.67+0.01 2.68+£0.01

HyEnt 2560s 2.62+0.03 2.67+0.03

Intra  1920s 2.76 £0.05 2.82+0.05

Table 2.1. CHSH violations. The CHSH violation parameters obtained from raw data
(S"**) and by subtracting for accidental coincidences (), are reported for the polarization
entangled state generated by the source, the hybrid VV-polarization entangled state
(HyEnt) and the intra-system entangled VV state embedded in the photon 2 and
transmitted through the air-core fiber (Intra).

a)  Source entanglement
) = Z5(1H)y [V)y = V), [H),)

b) Hybrid entanglement
[¥) = J5(1H); la)y — V), [7),)

(HIr

WVirl (vl

c) Intra-system entanglement
Iry = J5(IR)[+7) +1L)|-7))

Figure 2.19. Two-qubit quantum tomographies. a) Real (top) and imaginary (bot-
tom) parts of the measured density matrix of the polarization entangled state generated
by the source, before conversion in OAM. b) Real (top) and imaginary (bottom) parts
of the measured density matrix of the two-photon VV-polarization entangled state after
the transmission of photon 2 through the OAM fiber. c¢) Real (top) and imaginary
(bottom) parts of the measured density matrix of the VV state on photon 2, transmitted
through the OAM fiber. The OAM states |0) and |1) in the tomography are defined
by the relations: |0) = (|4+7) + |-7))/V2 and [1) = i(|-7) — |+7))/v2. Real and
imaginary parts of the experimental density matrices are reconstructed via quantum
state tomographies. This image is taken from [11].

fidelity F' = (88.1 £ 0.2)% with respect to the ideal state in Eq. (2.15) is obtained.

This shows that the fiber preserves the injected state without adding noise
contributions. These results provide additional evidence that the fiber is suitable
for the transmission of higher-dimensional quantum states. As for the other cases,
also for the three-qubit case we perform a device-independent test of the quantum
correlations, showing their preservation after fiber transmission of the VV state.
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Three qubits state tomography
) = %(|H>1 la), = V)1 Ir)e) = %(|L>1 |L)y [=T)g — [R)1 [R)2 |+7)2)
Theory Experiment

Re{p} Re{p}

Figure 2.20. Three-qubit quantum tomography. Real and imaginary parts of the mea-
sured density matrix of the hybrid VV-polarization state in space {|pol), [pol), [oam),}
after the fiber transmission (right) and of the theoretical density matrix of state in
(2.15) (left). The OAM states |0) and |1) in the tomography are defined by the relations:
0) = (|+7) +|-7))/v2 and [1) = i(|-7) — |[+7))/v/2. Real and imaginary parts of the
experimental density matrices are reconstructed via quantum state tomography. This
image is taken from [11].

First, we test the Mermin-Ardehali-Belinskii-Klyshko inequality (Sec. 1.2.4.2), which
provides an upper bound for contextual hidden variable theories describing the
correlations between observables relative to three qubits:

M = ‘ <A1_BQCQ> + <A23102> + (2 16)
+ (A2B2Cy) — (A1 B1Cy) | < 2. '
The observables A;, B; and C; (i = 1,2) are dichotomic (with eigenvalues +1) and
relative to the first, the second and the third qubit, respectively. Violation of such
inequality certifies the nonclassical correlations of tripartite states. Furthermore, if a
value M > 2+/2 is found, models in which quantum correlations are allowed between
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just two of the three qubits (biseparable quantum models), are ruled out as well
[288, 289]. The state (2.15) in the three-qubit space is able to reach the algebraic
value of M = 4 by choosing the operators: A; = —aé, Ay = U)A}, B, = —o?,
By = o, where 0; (i = X, Z) are the Pauli operators relative to photons 1 (A) and
2 (B) in the polarization in basis {|H) ,|V)}; and C; = 0§, Cy = 0§, where the Pauli
operators are in the OAM basis {|0) = (|+7) +|-7))/v2, [1) =i(]-7) —|+7))/V2}
relative to photon 2. Measuring such operators after the VV state transmission and
calculating the parameter M, we obtain M("9%) = 3.43 + 0.04 from raw data, and
the value M = 3.53 + 0.04 by subtracting accidental coincidences. In this way, we
violated the classical bound by 35 and 38 standard deviations and the quantum
biseparable bound by 15 and 17 standard deviations, respectively.

Finally, we further study the correlation of the state in (2.15) by performing a Hardy
test [290, 291], recently generalized in a suitable form for more than two parties by
[292]. Given a system with certain null correlation probabilities, a paradox arises
when other events are automatically forbidden in the framework of noncontextual
hidden variable models, while they can happen within a quantum context. Since
experimentally measuring null probabilities represents a difficult task, Hardy logical
contradictions can be conveniently mapped into more general inequalities. In Ref.
[292] an extended multi-party version of Hardy’s paradox is proposed, leading to an
inequality that for three qubits reads:

H = P(A1A2A3) — P(AlBQBg) — P(Al.ég.éd)-f-
— P(B1A3B3) — P(B1A3B3) — P(B1ByA3)+ (2.17)
— P(BlggAg) S 0 s

where A; (B;) represents a dichotomic operator A (B) acting on qubit ¢ = 1,2,3
with eigenvalues +1, B; = —B; and the probabilities P(X1Y2Z3) = P(X; =1,Y2 =
1,Z3 = 1). In our case, the transmitted 3-qubit state permits to maximally violate
the generalized Hardy test by choosing the operators: Ay = Ay = —A3 = 0z and
By = By = B3 = ox relative to the qubits |pol), and |pol), (in basis {|H),|V)})
and |oam), (in basis {|0),|1)}), respectively. The experimental value H obtained
for raw data is H("%%) = 0.085 & 0.008 and by accounting for accidental coincidences
it becomes H = 0.104 £ 0.008 (theoretical value for the ideal state is H = 0.25).
Such values allow to violate the noncontextual bound by 10 and 12 standard
deviations, respectively. Note that the tripartite correlations obtained are generated
by both contextual (intrasystem) and nonlocal (intersystem) entanglement. Thus,
the correlations lie between three qubits and not between three different and spatially
separated parties.

2.3.3 Conclusion and perspectives

Future quantum communication will require distributing quantum states over
long distances. The protocols implemented within such systems will include the
distribution of high-dimensional and entangled quantum states. Indeed, spanning
Hilbert spaces of greater dimensions allows higher information capacity and noise
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resilience, leading to enhanced Quantum Information processing [293, 294, 295]. In
this context, VV states represent a powerful resource for classical and quantum
applications.

Here, we demonstrated the feasibility of distributing complex VV states through an
OAM supporting fiber, also permitting to preserve entanglement with a different
system. In particular, we achieved the transmission of a VV state, presenting
correlations between polarization and OAM, entangled with the polarization of
a separate second photon. To fully assess the robustness to decoherence and
quality of the transmitted complex entangled state, we performed quantum state
tomographies, violations of CHSH-like inequalities and multipartite entanglement
tests. The achieved fidelities of the transmitted state demonstrate the capability
to perform high fidelity distribution in an OAM supporting fiber of a hybrid VV-
polarization entangled state at telecom wavelength. In particular, the possibility
to simultaneously encode and distribute information in the polarization and OAM
degrees of freedom of a single particle represents a useful resource due to the higher
robustness to losses, while tools for their processing have been identified [296]. This
work paves the way towards the adoption of high-dimensional entanglement in
quantum networks. Further perspectives of this work involve the investigation of
the fiber-based distribution of different orders of OAM entangled states and their
distribution over longer distances, exploiting the potential scalability arising from a
fiber-based approach. Indeed, the results presented here are expected to be extended
to long-distance transmission, since low mode mixing can be achieved in longer fiber
[282]. Other perspectives involve interfacing of OAM integrated circuits [80, 79, 81]
through OAM supporting fibers for future quantum networks.
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2.4 Experimental quantum network

Bell’s test has been one of the most relevant results of the last 60 years in Physics.
However, only recently the phenomenon of Bell nonlocality has been proven in a
loophole-free manner in a series of independent experiments [124, 125, 126, 127, 128].
Beyond its importance at fundamental level (Sec. 1.2.2), it provides an indispensable
witnessing tool (Sec. 1.2.2), at the heart of many protocol of Quantum Information,
such as in Quantum Metrology, Quantum Cryptography [123] and Communication
[3], and randomness generation [297, 298]. The generalization of Bell inequalities for
more complex scenarios brought first to the bilocal scheme, i.e. the one adopted for
entanglement swapping, and then to more general multipartite structures (Sec. 2.1.2).
This further step requires not only the definition of general Bell-like inequalities
but also the possibility to distribute and certify entanglement between any number
of parties. This is one of the most interesting theoretical investigations as much
as from the experimental point of view. Such study represents only a part of the
quantum network investigation, which is one of the most attractive and active fields
of research, aiming at the so-called quantum internet [9, 299]. The first aspect
is the generation of multipartite entanglement to be distributed, where an ideal
possibility would be to exploit the GHZ states [300]. These states however suffer from
high experimental drawbacks [301], thus do not provide a good near-term solution.
Multipartite scenarios are much more likely to be composed of independent sources,
each one generating small size entangled states but at much higher quality and rate.
The second aspect concerns the study of distributed quantum correlations inside more
complex networks and their experimental realization. Despite its importance and the
theoretical advances, the non-locality has been so far experimentally demonstrated
only in the simplest tripartite system of a bilocal scheme [128, 189, 190, 191, 302, 193].

We studied the extended n-local scenario [12], providing the quantum enhance-
ment in Bell terms achievable in the general star-shaped multinode scheme. Then,
we provided a proof of principle demonstration of how to move beyond experimental
bilocality, realizing such a quantum network in which we varied the number of
nodes from 2 (n = 1) up to 5 (n = 4). We distributed and certified the presence of
non-local quantum correlation between states generated by independent entangled
photon sources, pumped by different lasers, in order to fulfill all assumptions of
n-locality scenario (see Sec. 2.1.2). Our photonic approach is scalable and allows
for the testing of other general networks of increasing size and complexity. Thus, it
represents a building block for future quantum internet implementations [9, 299].

2.4.1 Description of the experiment

Any n-locality scheme involving one central node and up to 4 external nodes is
reported as DAG representation (Sec. 2.1.2) in Fig. 2.21. In order to realize such
scenarios we exploited up to 4 different laboratories, each having one independent
source of entangled photons in polarization (Fig. 2.22).

These are based on the non-linear interaction with 4 independent pump lasers,
having even different electrical sources. This is an important feature in order to
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Figure 2.21. Directed Acyclic Graph (DAG) representation for the star scenario
with different number of sources.
a) Causal structure of the standard Bell scenario in which a single source A mediates
the correlations between the two measurement stations with outcomes A and B and
measurement choices X and Y, respectively. b) DAG for the bilocal scenario where two
independent hidden variables A; and A, distribute the correlations to three measurement
stations with outcomes A;, As and B and choice of measurements X;, X5 and Y,
respectively. c-d) DAG for the star-network with three and four independent sources
A1,As, A3 and Aq,..., A4 respectively. Each non-central measurement station has
outcomes A; (measurement choices X;) and the central has outcome B (measurement
choices Y'). This image is taken from [12].
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completely realize the n-locality assumptions. Each of the n peripheral nodes (called
A;) is connected through the source A; to the central node of the network (called B).
Central and external nodes can perform k& measurements described by dichotomous
observables. The peripheral nodes are placed into the different laboratories: Lab
1, Lab 2, Lab 3 and Lab 4 (Fig. 2.22). The central node B, which is located in
Lab 1, has to perform not only the measurement over its own source, but also
reveal the photons arriving from other laboratories. For these reasons, polarization
measurement apparatuses composed of HWP and PBS are present in each external
node, unlike for the central one, where up to four different polarization analyzers can
be found (depending on the specific employed scheme). Singlet states in polarization
encoding are prepared in each laboratory and a complex synchronization is made
between the central part and all peripheral ones. The distribution of light in the
network occurs through single-mode fibers and their compensation is made in order
to correctly control the polarization states. The maximum fiber length is 25 m. As
shown is Sec. 2.1.2, labeling the measurements for B and external nodes A; by y
and x; and their outcomes by b and a;, respectively, the LHV in general star-shaped
scheme with n + 1 nodes reads [Eqs. 2.7,2.8]:

k
SE=>" LV <k -1 (2.18)
i=1
1 ! T T i—
where I; = on Z (A7 ... AT BT (2.19)

T1,ee,Tp=0—1

with A¥ = —AY and (A7' A%? ... AZ» BY) being the expectation value of the measure-
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Figure 2.22. Experimental apparatus. a) Four independent polarization-entangled
photon pair sources and five measurement stations are available for the experimental
realization of violation of the chained n-locality inequality (2.18) in a star-network
configuration. b) Physical location of the laboratories and scheme of the experimental
apparatus. Distinct laboratories contain one source and one measurement station each,
with the exception of Lab. 1, which also contains the central node B of the star-network
on a separate optical table. ¢) The entangled photon sources A1, Ag, A4 are realized using
a Beta-Barium Borate (BBO) crystal, pumped in a pulsed regime, which emits photon
pairs at 785 nm using spontaneous parametric down-conversion (SPDC) of type II. The
source Ay instead is pumped in continuous-wave regime and employs a periodically poled
KTP crystal placed inside a Sagnac interferometer to generate entangled photon pairs at
808 nm via a type II SPDC process. Single photons are then measured in polarization
using a half-wave plate (HWP) followed by a polarizing beam splitter (PBS). This image
is taken from [12].

ments outcomes of the n + 1 nodes:

(ATTAT? .. A" BY) = Z (—1)mtaztetantby g o an, bloy, T, . T, Y).
a1,a2,...,an,b=0,1
(2.20)
Considering single states shared between the nodes, the Eq. (2.18) is violated by
the presence of quantum correlations, and the corresponding quantum bound is:

SF = k cos(m/2k). (2.21)

This bound depends exclusively on the number of measurement settings k, but not
on the number of nodes. A list of classical and quantum bounds varying n and k
with values 2, 3,4 is shown in Table 2.3. It is possible to demonstrate that the bound
(2.21) is the maximum achievable by quantum states. Further, its reachability is
guaranteed even by using separable measurements [193, 194, 303]. This characteristic
is fundamental, as allow a scalable implementation of the apparatus. Indeed, in the
central node the general measurement strategy is represented by measurement in an
entangled basis, which can require measurements in GHZ basis to reveal the presence
of non-locality [8]. However, realization of measurements involving simultaneously n
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physical systems is usually a hard task, requiring a difficult synchronization between
different sources. Furthermore, complete Bell measurements cannot be implemented
using linear optics, without resorting to hybrid or nonlinear approaches [304, 186].
To obtain the maximum quantum violation of inequality (2.18), all the peripheral
parties A; must perform the following projective measurements on their subsystem:

\\I/gx> = cos(zm/2k) |0) + sin(zm/2k) 1),

: _ (2.22)
|V, ») = cos(xm/2k) |1) — sin(z7/2k) |0) ,

for each setting x; = x. In turn, the central node B measures each of its n subsystems
in the local basis:

2 1 2 1
199 ) = COSM 10) +SmM 1),
Y 4k 4k
2y +1)m 2y+1)m (2.23)
@) = cos LT 1y i B2 DT gy,

for each setting y; = y, where the index 7 refers to the system B shares with the i-th
non-central part. The resulting measurement corresponds to B, = B; ® -+ ® By,
where Bi represents the measurement performed on each subsystem. Hence, to
evaluate the quantum violation in (2.18), we need to perform k2" combinations of
measurement settings, 2™ for each term I; appearing in (2.18). In the following
section, the experimental results obtained for each scenario, varying n from 1 to 4
with k = 2, 3,4, are shown.

2.4.2 Experimental results

The schemes described above have been experimentally tested. Notably, mea-
surement and data analysis for each configuration was done using sophisticated
software, whose detailed description can be found in Supplementary information
of [12]. In particular, the photon detection events were collected and timed by a
different time tagger device for each party, located in the corresponding laboratory
(see Fig. 2.22b). For each 1 s of data acquisition the events were sent to a central
server, along with a random clock signal shared between all the time-taggers, which
was used to synchronize the timestamps of events relative to different devices. To
filter out part of the noise the raw data was first pre-processed by keeping only
double coincidence events for each photon source, using a narrow coincidence window
of 3.24 ns. Then coincidence events between multiple sources were counted every
time one of such double coincidence event was recorded for each source in a window
of 80 us.

Characterization of the sources

In our experiment, we exploited four different photon sources generating polar-
ization entangled photon pairs in the singlet state[305]: [1v~) = (|01) — |10))/v/2
through a type-II SPDC process (Sec. 1.2.3). Within three laboratories (Lab 1,
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Lab 3 and Lab 4), the generation was carried out by pumping 2 mm-thick BBO
crystals with a Ti:Sapphire mode locked laser, with repetition rate of 76 MHz. The
generation in Lab 2, instead, was accomplished with a continuous wave diode laser
which pumped a PPKTP crystal inside a Sagnac interferometer [147, 306]. The
photons generated in all the sources are filtered in wavelength and spatial mode
by using narrow band interference filters and single-mode fibers, respectively. In
order to characterize the quality of the entangled state we performed CHSH tests
(Sec. 1.2.2) between each peripheral node and the central one. This is made by local
measuring one photon of the generated pair, while revealing the other one in the
central laboratory after propagation in fiber. The results for each source are shown
in Table 2.2.

Source  Crystal Lab. A(nm) Pump Two-fold  Experimental Estimated
laser CC* (Hz) CHSH! Visibility
A BBO 1 785 Pulsed (76 MHz) 25 000 2.408 £0.018 0.763 +0.010
Ay ppKTP 2 808 Continuous 45 000 2.395+£0.021  0.755 +0.012
As BBO 3 785 Pulsed (76 MHz) 1 000 2.388£0.020 0.751 +£0.011
Ay BBO 4 785 Pulsed (76 MHz) 5 000 2.463 £0.013  0.793 + 0.007

Table 2.2. Experimental details for the different laboratories: In the table are
listed the crystals, wavelength, type of pump laser, coincidence rate and experimental
violation of the CHSH inequality within each laboratory. The visibilities were obtained
by exploiting the noise model and the experimental violation of the CHSH inequality.
The superscript ! refers to the average values upon all the collected data.

Violations of n-locality with k£ = 2 measurement settings

First, we consider the case with two measurement settings (k = 2, see Fig. 2.23).
In our apparatus such configuration is realized by correctly tuning HWPs of external
nodes and the central one: the optimal measurements (2.22) and (2.23) are obtained
by setting B to angles 11.25° and 33.75°, respectively for y = 0 and y = 1. While
each involved external node A7* has to be set to angles 0° and 22.5°, respectively for
x; = 0 and z; = 1. All experimental results for n = 2, 3,4 show non-local violation
of (2.18) and are reported in Table 2.3. In particular, we can realize 6 possible
configurations having n = 2 in our network. Here, we obtained a maximum value
of S5 = 1.218 4+ 0.002, violating the classical bound by 109 standard deviations.
Instead, for n = 3 and n = 4 the number of possible configurations are 4 and
1, obtaining maximum values of SS% = 1.199 & 0.004 and S = 1.192 + 0.005,
violating of 50 and 38 standard deviations with respect to their classical bounds,
respectively. Notably, for each considered configuration, the same values of .S should
be in principle obtained by using a unique source shared between all network nodes,
as shown in Fig. 2.23. This possibility makes our assumption about the independence
of the sources still more fundamental, which is realized in our setup as previously
discussed.

Violations of n-locality with k£ > 2 measurement settings

Despite the study with £ = 2 is sufficient to show the non-locality of the system,
as well as being more experimentally feasible and then a scalable perspective, the
investigation of k > 2 can be still interesting, as it brings some advantages. This is the
case for instance of DI protocols, which can be demonstrated while using less stringent
requirements [200]. Therefore, we consider and realize the n-locality scenario with
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Figure 2.23. Experimental correlations represented in the I, I; plane (k = 2
settings). The purple, blue, red and green regions represent the classical correlations
for 1-, 2-, 3- and 4-local scenarios, respectively. The 2-local case corresponds to the
bilocal inequality while the 1-local reduces to the paradigmatic CHSH inequality. For
n > 2 the gray line bounds the correlations allowed by a local model with no assumption
on sources independence. The green point represents the I, I values measured in the
case of n = 4 sources. The red, blue and purple points represent the experimental values
for all the possible combinations of laboratories which are 4, 6 and 4 in the 3-, 2 and
1-star cases, respectively. Error bars represent the standard error of the mean taken over
different sequential acquisitions. This image is taken from [12].

k = 4. This choice required several experimental drawbacks, as the necessity
to realize 4- 6- and 8-fold coincidence events, together with the measure in 1024
different combinations. Nevertheless, we were able to experimentally demonstrate
the violation of the corresponding classical bounds. All results are reported in Fig.
2.24 and Table 2.4. In the particular case of n = 4 with k = 4, we surpassed the
bound of 71 standard deviations, providing a value S9% = 3.157 + 0.002. Our
experimental results are also compatible with models including noise effects. Note
that in our demonstration the measurements are not performed with space-like
separation and so we do not close the locality loophole. However, we demonstrate
that reducing the coincidence window the quantum violation is still valid (Fig. 2.25),
thus providing an enforcement of the assumption about the absence of mutual causal
influence between the parties.

Noise dependence of n-locality violation

Different sources of noise must be considered within the experimental imple-
mentation. The noise can be taken into account by adding decoherence terms
when modelling the quantum state shared by the parties [189]. The photon
pairs in our experiment are generated in the singlet state psing, that in the base
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n Sources Combination I I Gobs
1 Ay 0.576 + 0.007 0.628 + 0.002 1.204 £+ 0.009
As 0.622 £ 0.008 0.572 £ 0.006 1.197 £ 0.010
As 0.662 + 0.011 0.534 £+ 0.012 1.194 +0.010
Ay 0.655 + 0.006 0.576 + 0.004 1.232 4+ 0.007
2 Ay, Ay 0.259 + 0.007 0.363 £ 0.010 1.111 +£0.011
As, Ay 0.325 + 0.004 0.393 + 0.004 1.198 4+ 0.005
Az, Ay 0.310 + 0.008 0.350 + 0.010 1.147 £ 0.011
Aj, Ay 0.3279 £ 0.0017 0.381 £ 0.003 1.190 £+ 0.003
Ay, Ay 0.311 £ 0.006 0.337 £ 0.009 1.138 +0.010
Ay, As 0.370 + 0.003 0.371 £+ 0.003 1.217 4+ 0.003
3 As, Ag, Ay 0.145 + 0.009 0.207 £ 0.010 1.116 £ 0.015
Ay, Ag, Ay 0.156 + 0.005 0.217 + 0.007 1.139 4+ 0.009
Ay, As, Ay 0.204 £+ 0.005 0.238 £ 0.005 1.208 £ 0.006
Ay, Az, Ay 0.190 £ 0.007 0.200 £ 0.008 1.160 £ 0.010
4 Ay, Ag, As, Ay 0.125 + 0.005 0.125 + 0.005 1.190 £ 0.008

Table 2.3. Experimental results for different number of sources n and k = 2
measurement settings. The table shows the experimental values of I, I, and Sobs

for each possible combination of parties {Aq,..., A4}.

n Sources k Settings Sobs Classical Violation o Ssim SQ
2 2 1.217 + 0.003 1 72 1.201 £ 0.007 1.41

3 2.253 +0.002 2 127 2.237 +0.010 2.60

4 3.2261 £ 0.0014 3 162 3.182 +0.014 3.70

3 2 1.208 £ 0.006 1 35 1.211 £ 0.005 1.41

3 2.227+0.003 2 76 2.225 +0.009 2.60

4 3.195 + 0.002 3 97 3.165 +0.013 3.70

4 2 1.190 + 0.008 1 24 1.207 £ 0.005 1.41

3 2.177 £ 0.005 2 35 2.218 +0.008 2.60

4 3.135 + 0.004 3 34 3.154 +0.012 3.70

Table 2.4. Experimental results for different number of sources n and measure-
ment settings k. The values of S°°%, $5™ and S® are the observed, the expected and
the maximum quantum violation respectively. S*™ has been computed using the state
visibility estimated by Bell violations performed in each single source.

{|HH),|HV),|VH),|VV)} can be expressed by the following matrix form:

00 0 0
10 1 -1 0

pine =350 _1 1 of- (2.24)
00 0 0

In particular, two different classes of noise affect the SPDC sources [307]:
e White noise, which consists in an isotropic depolarization of the states:

po = o+ (1 - o)1, (2.25)
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Figure 2.24. Experimental violation of the chained Bell inequality (2.18) for a 2,3
and 4 sources n, depicted in different colors, and 2,3 and 4 measurement settings k. Solid
and dashed lines represent the classical and quantum bounds in (2.18) respectively, while
dotted lines represent the expected value of the violation for noisy states. Measurement
errors are not visible in the plot, numerical values are summarized in Table 2.4. This
image is taken from [12].

where }1 is the completely mixed state.

¢ Colored noise, which is depolarization along a preferred direction, intrinsic of
the SPDC generation process, described by the following matrix:

00 0O
110 1 0 0

Mcolored = 5 0010 (2.26)
00 0 O

The resulting noisy state, then, is the following:
1_
pe = w0 (1) Mo = w1+ 052 () ) )
(2.27)

The final state can be modelled combining these different contributions in a
normalized form:

N\ (ah— Y (ot
p= oy + @DV oyl )

where the parameters v and X represent the total noise and the fraction of colored
noise, respectively. The effects generated by white and colored noise can be extended
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Figure 2.25. Signal for violation as a function of the coincidence window length:
The coincidences identified by our software depend on the choice of time window within
which events are considered as simultaneous. In order to choose the best value for this
time interval and to check how this value influences the signal for violation, we analyzed
S(n, k) as a function of the window. In the plot we are showing the violation in the
case n = 4,k = 2, evaluated with the data from multiple exposures for a total time of
34.2 s. The blue line is the experimental value of S(4,2). The green region represents
the Poissonian error of the expected violation computed from the number of two-fold
coincidences observed. The blue dashed line is the quantum bound while the red region
is the value of S(4,2) achievable within a classical model. This image is taken from [12].
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Figure 2.26. Comparison of different noise types affecting S: Plot of the simulation
results for the S value in a 4-points star-network, where each agent performs k = 3
measurements. As the visibility decreases, the violation S drops from the quantum to
the classical bound. The blue curve refers to violation against coloured noise, while the
green one to violation against white noise. We observe that the amount of violation is
more sensitive to white noise. This image is taken from [12].

to the more complex case of the network, where all of the nodes contain separate
noise contributions. However, as preliminary analysis we consider noise parameters
equal for all of the sources. In such case, the action of both white and colored noises
not only decrease the visibility of the singlet states, but is also observed in the
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reduction of the amount of violation of the chained n-locality inequality [Eq. (2.20)].
By comparing quantitatively the two effects for the same noise strength, we observe
that white noise provides a larger reduction of S. An example of this behavior is
depicted in Fig. 2.26 that shows how white and colored noise affects the experimental
violation for the particular case of 4-nodes star-shaped network, where each agent
performs k£ = 3 measurements. The more general model, where every source has
individual noise parameters, has to be used for an overall laboratory-efficiency
estimation. From the CHSH violations of each entangled source, we inferred the
experimental visibility (Table 2.2), that is the amount of noise v affecting each source
[Eq. (2.28)]. Then, for our generation method, it is known [307] that the white and
colored noises affecting the generated pair are correlated. In particular, we assume
the amount of white noise to double the colored one, i.e. A =1 in Eq. (2.28).

2.4.3 Conclusions and perspectives

Despite the importance of Bell-like test in Quantum Information protocols, its
experimental investigation over more general scenarios, such as complex quantum
networks, is still almost uncharted territory. Here, we realized the first exper-
imental implementation of a star-shaped quantum network, consisting of an in-
creasing number of nodes, independent entangled sources and laboratories, besides
the measurement settings. Lately, this topology has received particular attention
[302, 193, 194, 303, 308]. Via our platform, we detected nonlocal correlations among
the nodes of the multipartite networks, by violating polynomial chained Bell in-
equalities. Notably, we showed that maximum quantum violation is achievable
by using separable measurements, representing a significant advantage from the
experimental side. Our implementation relies on a scalable approach, which paves
the way to the experimental investigation of future quantum networks, such as
quantum internet [299], nonlocality of topologically different scenarios [198], secret
sharing involving multiparties protocols [309, 310, 95], as well as tests for device-
independent protocols of information processing [200]. We didn’t provide a locality
loophole-free demonstration, but showed the possibility to improve the security
by reducing the coincidence interval which approximates the simultaneity of the
events. This approach is limited only by the rate of the sources and therefore can
be controlled. As in our scheme the sources are all independent, the possibility of
tuning these parameters, rate and interval time, becomes a really interesting chance
in the establishment of any quantum network. For instance, this versatile structure
can be used for cryptographic tasks to design the Lee and Hoban proposal [200], or
to study new attractive structures, such as triangle network [198] or linear chain
topologies underlying quantum repeaters [95].
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2.5 Long-distance quantum key distribution

The most important part of communication is providing a secure way to exchange
information between the parties. This is achieved by cryptographic protocols that
are commonly based on exchanging a secret key to encrypt the message, which
must be owned only by the communicators. Classically, this approach can so far
guarantee a high level of security, but not total. Quantum key distribution (QKD)
paves the way to a new level of security, having no classical counterparts (Sec. 2.1.3).
This is because its strength depends on the physical laws of Quantum Mechanics
and not from assumptions over the computational capability of some eavesdropper.
Using photons for quantum communication represents a really convenient choice,
able to realize secret communication even within quantum networks [5]. In this
framework several scenarios, exploiting different configurations and protocols has
been demonstrated [311, 312, 313] (Sec. 2.1.3.1). BB84 [314] was the first protocol
to guarantee unconditional communication security beyond any classical approach.
Entangled-based protocols can give access to improved security, such us Ekert91
[123]. The exploitation of EPR non-locality [315, 123] establishes another crucial
tool for the prevention of key errors, and a subsequent improvement on security of
the communication procedure against individual attacks [316, 317]. Finally, under
certain experimental requirements, it could also provide device-independent operation
[318, 319]. Despite proof-of-principle demonstrations, so far QKD can not provide a
real quantum alternative to the classical approach, due to technological limitations.
One of the most important drawbacks in photonic QKD is the multi-photon emission
of single-photon sources [320], which allows different hacking strategies, such as
beam splitting [150] and number splitting [151] attack (Sec. 2.1.3.3). The short-term
solution is the adoption of quasi-deterministic single-photon sources, which aim
to become deterministic in the future. On-demand photon emitters offer a good
solution to these issues at the hardware level [321] in order to make the photon
distribution nearly unassailable. This feature is measured by the auto-correlation
function ¢(*)(0) of the source, indicating the photon number distribution of the light
(Sec. 1.2.3). Sub-Poisson light with low g(®(0) can improve communication security
even in presence of channel losses [322, 323]. Semiconductor quantum dots (QDs)
are a promising platform for the accomplishment of all these tasks, due to their low
multi-photon emission rate [159], increasing brightness [324, 325] and on-demand
production of high-purity entangled states [326]. The other fundamental point to
address the real-world scenario in quantum communication concerns testing the
infrastructure suitable for intra-city communication. The most viable technology in
this direction is represented by fiber networks and free-space channels (Sec. 1.1.3).
The former provides the most simple and comfortable photonic platform for short-
range communication, within 100 km for guaranteeing sufficient quantum key rates.
The latter becomes the necessary solution to allow more distant communications,
by providing lower absorption losses in long-space propagation. Indeed, such losses
scale exponentially in fiber, while scaling only quadratically in free space. The
ultimate solution, able to cover international distances, is represented by satellite-
based communication, which demonstrated QKD beyond 1000 km [99, 102]. In this
solution indeed the light propagating from a satellite to another one experiences
negligible absorption losses due to propagation in a quasi-free atmosphere area.

In this context, we realized the first experimental demonstration of a QKD E91
protocol having a quasi-deterministic source, a quantum dot, between parties distant
more than 250 m [13]. So far, the application of QD-based light sources has focused
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Figure 2.27. Entanglement-based QKD and optical links overview. Entangled
photon pairs generated by a single QD are shared across the Sapienza University campus
in Rome over a 270 m free-space distance and, in addition, between two laboratories in
the same building via a 250 m SMF. Map data: Google Earth. We illustrate the main
concepts of the asymmetrical Ekert approach: after traveling through the optical link
connecting the users, the photons are measured by Alice and Bob on the measurement
bases {Ay, Ao, A1} and {By, B1} in the Fermi and Marconi building respectively. In
this case, the combination of the horizontal and vertical polarization states { Ay, Bo}
constitute the basis to share the secure key. In parallel, the other pairs ensure verification
of the entanglement quality, by measuring the Bell parameter of the two-photon state.
This image is taken from [13].

on single-photon prepare-and-measure protocols, exploring polarization [323, 327]
and time-bin encoding [328], electrical [329] and optical pumping, lab tests and
field demonstrations [330], possibly even with spectral multiplexing [331]. Most
recent works foresee even the possibility to outperform state-of-the-art solutions
based on the decoy-state protocol and weak coherent pulse sources [332]. One
pioneering demonstration of the entanglement-based BBM92 protocol displaying
abysmal throughput [333]. Moreover, in none of these works entangled photons
have been generated on demand, one of the key features distinguishing QDs from
standard sources based on parametric down-conversion. We adopted a version of
E91, proposed by [229], which allows some experimental advantages with respect
to the original implementation [123] (Sec. 2.1.3.1). We compare the performances
of such protocol using two different quantum channels: a 270 m long free-space
channel, and a 250 m long fiber link. Notably, the free-space case realizes a real
urban channel between two separated buildings, established within the campus of
Sapienza University of Rome. The double approach is motivated by the fact that,
on the one hand, networks based on fiber communication are the common solution
within urban environments, due to their scalability with moderate losses for short
distances. On the other hand, over long distances, free-space links still represent
the best choice to connect users due to their low signal attenuation [334, 99] and
the possibility of sending complex states such as those exploiting the OAM of light —
something still under development with optical fibers — despite the need for more
complex sender and receiver systems.
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2.5.1 Description of the experiment

Figure 2.27 illustrates the principle of operation of the realized QKD protocol.
The employed procedure is a convenient variation of the well-known Ekert proposal,
described in Sec. 2.1.3.1. An entangled pair of photons is distributed between two
parties, Alice and Bob. They randomly select a measurement to perform on their
subsystem from a set of linear polarization bases. In a quarter of the cases, Alice
and Bob pick a combination of the { Ay, By} bases, and their local reference frames
are aligned in such a way that they will get the same result out of the measurement.
When Alice and Bob share among themselves the information that they performed
the same measurement, its random outcome is a bit added to the shared secret key.
In presence of noise or imperfect entangled states, the keys may differ by an amount
quantified by the quantum bit error rate (QBER),

QBER = (1 — E(Ay, Bo))/2 (2.29)

where E(Ag, Bp) is the correlation coefficient, i.e., the expectation value on the
{Ak, Bo} pair of measurements. When the two parties select a different combination
of polarization bases, they use the results of the measurement to estimate entan-
glement and monitor the security of the QKD The measurement bases on Alice
({Ao, A1}) and Bob ({By, B1}) sides are chosen in order to obtain the maximum
value of the Bell parameter S, checking the violation of Bell inequality |S| < 2,
accordingly to the CHSH figure of merit [129] (Sec. 1.2.2). The asymmetrical scheme
of the modified E91 reduces the number of required detectors with respect to the
original Ekert91 protocol, as reported in the practical implementation illustrated
in Fig. 2.29a. At the same time, the fraction of photons dedicated to the key
exchange is increased, while the security check is still performed by monitoring the
Bell inequalities [229]. Additionally, the scheme has been demonstrated viable for
device-independent operation [318].

In our experiment Bob is placed near the entangled photon source, while Alice is
on the other side of the employed long-distance quantum channel. The generation
apparatus adopts the single XX-X cascade of a quantum dot cavity to create an
entangled state in polarization, that is 1/v/2{||HH) + |VV)} (the working principle
of the QD emission is described is described in Sec. 1.2.3.2). Finally, the mentioned
measurements on Alice ({Ag, Ao, A1}) and Bob ({ By, B1}) sides are associated to
single-photon detection on different avalanche photodiodes. The key transmission
along the two different quantum channels — SMF and free-space links — was
performed using two QDs with very similar features.

e The SMF quantum channel consists of a 780-HP fiber with 80% transmission
after its 250 m of length at the wavelength of operation (785 nm).

e In the free-space experiment, a 850 nm diode laser is collected through a 30 m
SMF together with the photon associated to the exciton line and brought to
the transmission platform. Here, the beam is magnified by a factor of 6 by
exploiting a telescope, with the aim of keeping collimation and reducing the
effect of beam wandering during the 270 m travel in air, where the atmospheric
attenuation losses amount at 10%. A mirror with piezoelectric adjusters is
used to compensate for slow drifts in the pointing direction. On the receiver
side, the beam diameter is reduced with a telescope similar to the one used by
the sender. This permits to couple the signal in a SMF connected to Alice’s
apparatus. The 850 nm laser is separated from the QD signal using a dichroic
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Figure 2.28. Synchronization scheme. Compressed timestamps are shared between the
two stations over TCP/IP using the university network. Two GPS-locked oscillators are
connected to the input channels of Alice’s and Bob’s TDCs (Time-to-Digital Converter).
The 10 kHz signal of the oscillator is used to correct the internal drift of the TDCs while
the 1 Hz pulse provides a coarse measurement of the delay between the parties which is
then refined using the actual coincidences events. This image is taken from [13].

mirror, and sent to two position-sensitive detectors that provide feedback
for an active beam stabilization system implemented using two mirrors with
piezoelectric adjusters. The single-photon signal is finally collected in the SMF
with an average coupling efficiency of 40% and sent to Alice’s measurement
apparatus. A more detailed account of the stabilization strategy and the
channel losses is presented in the Sec. 2.5.2.

Finally, in order to realize the protocol, it is necessary to identify the coincidence
events between Alice and Bob. During the key exchange process, photon arrival
events are registered by the single-photon detectors of the two parties. These events
are sorted and timed by a TDC (time-to-digital converter), with a resolution of 81 ps,
and later filtered to select only two-fold coincidences, i.e. simultaneous arrival of a
photon at each of the two stations. Since each party has his/her own independent
TDC device, there is the need of a common time reference, and a synchronization
procedure that allows both Alice and Bob to recover the coincidences events, and
hence, the key. The solution used in this work makes use of two independent
GPS-locked oscillators to generate a common clock signal, and then exploits the
photon coincidences themselves to get to sub-ns accuracy. The scheme used for the
synchronization is depicted in Fig. 2.28.
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Figure 2.29. Experimental realization of the QKD protocol. a, Illustration of the
setup used for the entanglement-based QKD protocol. On the Bob side, the single
GaAs QD generates two entangled photons that are separated by spectral filtering
(F). One photon goes directly to the Bob measurement apparatus, while the other
travels through one of the quantum channels depicted in Fig. 2.27. The photons
arriving at Alice’s station are compensated in polarization with a set of two quarter-wave
plates (QWPs) and a half-wave plate (HWP). After a random splitting with 50 : 50
beam splitters (BS) — which also mirror the polarization of the reflected beam — the
polarization states are measured in the bases {By, B1} on Bob and {Ay, Ay, A1} on
Alice using HWPs and polarizing beam splitters (PBS). The photons are finally collected
and detected by avalanche photodiodes connected to two independent time taggers.
These are synchronized combining a GPS signal and Rb oscillators. b, Autocorrelation
histogram of the X emission line, showing the low multi-photon component of the source.
c Sender and receiver in free-space communication. A diode laser beam at 850 nm is
sent together with the single-photon signal and feeds a closed stabilization system, which
controls the piezoelectric mirror mounts (PM). The QD signal is selected by a dichroic
mirror (DM) and then coupled into a SMF directed to Alice’s measurement apparatus.
This image is taken from [13].

2.5.2 Free-space quantum channel

The global scheme of the experiment using the free-space channel is reported in
Fig. 2.29¢. As previously mentioned, the QD source is placed in the same building of
Bob measurement setup. While Alice’s setup is located in the other building apart
270 m. A SMF brings one photon of the entangled pair to Bob, while a 30 m-fiber
brings the other photon to the building terrace for being sent in the free-space
channel. A suitable platform placed on the terrace first increases the beam waist of
the photon and then sends it along the air-channel. In the second buildings, Alice
exploits two separated cascade tables, for stabilizing and measuring respectively the
received signal.
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Figure 2.30. Light propagation in urban environment. Study of transmittance in
urban environment as a function of the visibility, defined as the distance at which the
radiation power of a 550 nm-beam is attenuated to 2% [338]. Left panel: simulations
as a function of the visibility for a 270 m-long channel (= dapg), at the wavelengths of
both signal (785 nm) and stabilization laser (850 nm). The transmission difference ATr
between these two wavelengths is less than 2% (bottom). Right panel: transmittance for
channel lengths comparable with our experimental distance, investigated for different
possible values of the visibility (vis). Furthermore, in our case we measured a transmission
of 90%, thus expecting an experimental visibility within 10 — 20 km. This image is taken
from [13].

Stabilization

Experimental quantum key distribution in long-distance communication requires
non-trivial setups. In free-space scenarios, the optical link between distant parties
suffers from different effects such as atmospheric absorption, turbulence, bright
background, humidity, or beam wander [335, 336, 337]. These effects contribute
significantly to optical instabilities, increasing scattering, diffraction, beam deviation
and noise while implementing the communication between distant parties. In our
experimental implementation the air-distance between the transmitter (Bob) and
the receiver (Alice) was dap ~ 270 m.

Signal attenuation due to absorption and scattering by propagation through
air is unavoidable. A simulation about these expected losses is reported in Fig.
2.30, considering our working wavelengths and the attenuation model reported in
[335, 336, 337]. Among the different problems, signal stability due to beam wander
oscillations turns out to be crucial while establishing a free-space communication
channel. Differently from attenuation phenomena, there are several ways to reduce
the effect of this problem.

(i) An optimal choice of the beam waist to minimize fluctuation and maximize
collimation has been employed. Minimal waist decreases random oscillations
from optical axes, while reducing Rayleigh collimation range, and viceversa.
Therefore, a trade-off between these opposite phenomena has been used, and
every optical element adopted on the receiver part has a sufficient size to match
the beam oscillations.

(ii) An advanced stabilization system has been employed (see Fig. 2.31), to allow
fiber coupling of the 785 nm-signal into a single-mode fiber. The implementa-
tion of such apparatus requires an additional laser (850 nm) which is employed
as “control". At Bob’s station, the control laser and the 785 nm-signal are
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Figure 2.31. Experimental setup used for stabilization of the optical channel.
Two overlapped beams get in the apparatus after 270 m of air propagation with a beam
waist of 2.2 cm. The two largest mirrors send the light into a telescope, reducing the
waist size of a factor 6.25 (focals fr,; = 50 c¢m, fro = 8 cm). The resulting beams
are stabilized by means of two fast piezoelectric mirrors (FSMs) connected to two
corresponding position-tracking detectors (PDs), driven by the control unit (MRC). An
efficient stabilization is provided by keeping a suitable distance between FSMs and PDs:
a series of three-inches mirrors produces 3 m of optical path (not shown in figure). The
single-photon signal is divided from the stabilization laser thanks to a dichroic mirror,
before being coupled in single-mode fiber. Finally, the fiber brings the signal to Alice’s
measurement setup. This image is taken from [13].

coupled into the same single-mode fiber before being sent to Alice, to ensure the
same fluctuations while travelling through the overall channel. Once arrived at
the stabilization platform, the control laser drives the stabilization mechanism,
while the signal is separated to be sent to Alice setup. This operation is
made by means of a dichroic mirror, which transmits the control beam to the
stabilization system, while reflects 785 nm-photons to the fiber coupling. The
wavelength 850 nm of the control laser has been chosen according to a trade-off
condition. On the one hand the wavelength must be as near as possible to
signal one, thus guaranteeing similar features in propagating both in free-space
and through the same optical elements. On the other hand, after the dichroic
mirror, the residual power of the control laser in the signal path must be
minimal, in order to avoid disturbance while measuring single photons. In
this way, we divide the stabilization platform from the measurement platform
of Alice. A real picture of the receiver and stabilization platform is shown
in Fig. 2.32. Such modular approach permits to control the stabilization
system without modifying the receiver measurement apparatus, and vice versa.
One of the most critical stages for establishing a functional free-space channel
concerns the alignment between the sender launch platform and the receiver
collection table. Indeed, accidental misalignment not only worsens the colli-
mation and the coupling into the single-mode fiber, but it also damages the
correct functionality of the active stabilization system. On the contrary, the
second table is highly stable in its operations.

In the following sections the solutions (i) and (ii) are described in detail. Table
2.5 reports the list of the experimental losses affecting our free-space transmission



2.5 Long-distance quantum key distribution 81

Figure 2.32. Picture of the receiver table used for collecting and stabilizing
the signal from the free-space optical channel. Two 4’ mirrors collect the signal
propagated through the free-space link. Then, the signal is reduced by means of a
telescope, consisting of two achromatic doublets. The reduced-size beam is reflected by
a series of mirrors, which include a pair with piezoelectric adjusters driven by the MRC
system. Finally, the reference laser beam is transmitted by a dichroic mirror and reaches
a beam splitter and two position sensitive detector, while the QD photons are reflected
and coupled into a single-mode fiber, before being sent to the measurement table. This
image is taken from [13].

system, as measured with a diode laser with the same center wavelength as QD
signal (but much larger bandwidth due to the multimode output). The cumulative
transmission is higher than what reported in the main text, as estimated from the
single-photon count rates. We currently attribute the discrepancy to gradual drifts
in the pointing of the sender’s system, which is also cause of instability and could
be mitigated in the future by increasing the mechanical and thermal stability of the
sender’s platform or by having an active control of its pointing mirror, and to minor
misalignment induced by introducing spectral filters in the receiving setup after the
initial positioning with the diode laser.
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(i) Choice of beam specifications

The first fundamental steps towards an efficient stabilization process are to
perform an appropriate choice of the beam waist and of the optical elements for
beam handling. During air propagation, Gaussian beams experience fluctuations and
losses due to phenomena such as diffraction and absorption, related to diversified
composition of the atmosphere. Furthermore, Gaussian beams naturally diverge as
the travel distance increases. Thus, optimal choice of beam waist must take into
account both collimation and low oscillation requirements. To satisfy this condition,
we adopt a beam waist of w,; >~ 2.2 cm, thus guaranteeing a Rayleigh’s collimation
range almost 2 km long (> d4p) and a beam wander with maximum random shift
inside spax = 0.5 cm (strong turbulence regime) (see Fig. 2.33). Therefore, using
four- and three-inches optical elements has been sufficient to correctly manage the
beam. The former are adopted as initial receiver mirrors, which inject the beam
to a telescope employed to reduce the beam waist at the receiving station. After
reduction of a factor 6.25, smaller-size optical elements are sufficient.

—— Waob = 0.2cm (drayteigh = 16m) —— Waop = 1.5cm (drayleigh = 900m)
Wgop = 0.5cm (dRay/efgh =100m) —— Wagop =2.0cm (dRaerigh =1600m)
—— Waop =1Cm (dRaerigh =400m) —— Waop =2.5Cm (dRaerigh =2501m)
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Figure 2.33. Simulation of Gaussian beam propagation in urban environment.
Starting from beam collimation at Bob station, different waist sizes are studied in terms
of waist divergence (left) and waist displacement due to beam wander effect (right). The
latter is calculated in presence of strong turbulence condition (C,, ~ 10713) [339, 337].
Comparison between the results highlights an optimal choice of the Bob waist around
Wair ~ 2.2 cm. Indeed, this value guarantees both high Rayleigh range (drayleigh = 2
km) and minimal random deviation from the optical axis. This image is taken from [13].

(ii) Stabilization system

The stabilization system adopted is the MRC-Laser Beam Stabilization (MRC
Systems GmbH). It consists of two fast steering mirrors (FSMs), connected to a
control unit. The control unit sends a correction signal to the FSMs according to
the information revealed by two position detectors (PDs). The FSMs replace a
couple of three-inches mirrors of the receiver apparatus. The stabilization system
is initialized when the reference spot of the beam hits the center of both PDs
simultaneously (target position). When fluctuations change the beam position, the
control unit drives the FSMs to bring again the spot to the target position. The
system achieves its task with accuracy below 0.1pm, which is suitable for single-mode
coupling. The presence of two FSMs guarantees the retrieval of both the target
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position and incoming directions over the detectors. Inside the maximum angular
deviation corrected (fyax = 4 mrad) and below the maximum frequency supported
by MRC system (< 200 Hz), the expected low frequency oscillation of the beam
wander should be efficiently corrected. In order to keep the fluctuations within
angular tolerance of the MRC system, we consider a relative distance at least of ~ 3
m (> Smax/Omax) from FSMs to the detectors. The MRC system compensates for
fluctuations in the signal overlapped to stabilization laser. Hence, the stabilization
system cannot compensate for the last part of the optical path where the signal is
separated from the 850 nm-laser. Therefore, the single mode coupling is placed as
close as possible to the dichroic mirror that performs such separation.
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0.4+

0.34

P (mwW)

0.2 1

0.14

time (min)

Figure 2.34. Test of the stabilization mechanism. Results of power coupling into a
single-mode fiber by turning on and off the MRC-Laser Beam Stabilization system (MRC
Systems GmbH). The study exploits a simulation laser at 785 nm (signal wavelength).
Measurements (dots) are made over about 10 minutes of acquisition time. Dashed lines
represent the coupled mean value of the two configurations, showing a reduction in the
coupled power of 70% without stabilization. This image is taken from [13].

To verify the quality of the stabilization process we exploited an additional
simulation laser with the same frequency of the single-photon signal. At Bob’s
station, this 785 nm-laser is coupled inside the single-mode fiber shared by the control
and signal light, before being sent into the channel. In this way, travelling towards
the receiver, the new laser beam experiences identical perturbations. Analogously
the single-photon signal, the simulation laser is reflected by dichroic mirror and
coupled in single-mode fiber directed to Alice setup. Differences in stabilization
with and without activation of the MRC system are shown in Fig. 2.34, where the
in-fiber power coupling of the simulation laser is measured. Furthermore, we observe
that the efficiency of the correction depends also on the power which arrives at
the detectors. Minimization of the 850 nm-noise in the 785 nm-signal requires an
accurate choice of the power Pssonm of the stabilization laser reaching the detectors.
The condition in which the MRC system works guaranteeing best performances with
minimal power is Pgsonm ~ 100 pW. Using this approach we obtained a single-mode
coupling efficiency of the 785 nm-signal of approximately 40%, at best up to 50%.
This value could be further improved using a spatial light modulator.
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Source of loss | Optical Losses

Bob side
signal filtering 3%
propagation in the sending table 15%

free-space channel

air propagation 10%

Alice side
propagation in the stabilization table 28%
SMF coupling of the stabilized beam 60%
signal filtering 2%

Table 2.5. Experimental losses budget. List of all losses experienced by the optical
signal which propagates from Bob to Alice. We note that when the signal arrives on the
measurement table of Alice, it is split by two BSs among the three different polarization
bases for measuring (see Fig. 2.29), composed by waveplates and PBSs. Legend: SMF,
single-mode fiber; BS, beam splitter; PBS, polarizing BS.

2.5.3 Experimental results

Characterization of the entangled photon source

Polarization-entangled photons are generated by a single GaAsQD embedded
in a crystalline matrix of Aly4GaggAs (Sec. 1.2.3.2), pumped with a 320-MHz
repetition rate laser . The QDs are fabricated using the Al droplet etching technique,
as described in reference [340]. Due to the presence of distributed Bragg reflectors
in the sample structure and to the use of a hemispherical solid immersion lens, an
extraction efficiency of approximately 8% is achieved in the investigated sample. This
value allows to employ the source in realistic quantum communication schemes, but
further improvements are required to overcome state-of-the-art SPDC as shown in
Fig. 2.35. The entangled photon source is kept at 5 K in a low-vibration closed cycle
He cryostat. The optical excitation is performed with a Ti:Sapphire laser together
with a 4f pulse shaper, to reduce its bandwidth to 0.1 nm, and two Mach-Zehnder
interferometers, to increase its repetition rate four-fold. The signal is collected from
the QD using a 0.81 NA objective and the backscattered laser light is filtered out
with notch filters. The two photons from a single XX-X cascade are then separated
by two volume Bragg gratings, collected by two SMFs and distributed. Two different
QDs from the same sample and with similar characteristics were used in the two parts
of the experiment. In order to completely characterize the two QDs, we implement
fidelity test and auto-correlation measurements.

The entanglement fidelity (Sec. 1.2.4) has been obtained after reconstructing
the density matrix of the entangled-photon state by taking a full quantum state
tomography [342]. The results are 95.8(1.2)% in the free-space case and 94.1(1.0)%
in the in-fiber case (see Fig. 2.36), guaranteeing a high quality of the generated
state for both cases. These values are only slightly different and are due to the
different sub-peV fine structure splitting (F'SS), 0.35 (free-space) and 0.85 (in-fiber)
eV respectively.

The impact of multi-photon emission events is characterized using intensity
auto-correlation measurements in a Hanbury Brown and Twiss setup (Sec. 1.2.3).
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Figure 2.37a shows the coincidence histograms for both the exciton and biexciton
emission lines. The zero-time delay coincidences normalized to the side peaks, due

to consecutive excitation laser pulses, return the values ggg)(h] < 0.8ns) = 0.0034(2)
and gg?)X(\T] < 0.8ns) = 0.0041(3) for the QD used in the fiber experiment,

gg?)(|7'| < 0.8ns) = 0.0040(4) and g&?)X(M < 0.8ns) = 0.0045(4) for the QD used
in the free-space experiment. This result demonstrates a very similar multi-photon
emission of the two employed QDs. Furthermore, achieving these values does not
require polarization suppression for the cancellation of background radiation from
the laser. In Fig. 2.37b we report instead the cross-correlation measurement between
the two emission lines, acquired without selecting any polarization state. This
measurement is used to infer the preparation fidelity of the biexciton state [343]
using a resonant two-photon excitation process. Note that the central peak appears
taller than the side ones in part due to the higher probability of detecting one photon
if its entangled counterpart from the same cascade has already been detected, and in
part due to its narrower temporal width. Indeed, the preparation fidelity estimated
from the integrated intensity of the coincidence peaks of Fig. 2.37b for the QD used
in the free-space QKD demonstration is 94.3(3)%. A value of 90(1)% is estimated
for the SMF case. By extending the correlation range to 100 us we also identify a
blinking dynamics on the microseconds scale, with a characteristic on-time fraction
B equal to 0.22 and 0.26 for the free-space and SMF protocol implementations
respectively.

10-35 T T T T T T T T L B L |
10'4;' 4
£e=065 .~ T ____________ ]
e 10-55' Nat. Nanotechnol. 14, 586-593 (2019) 3
E SPDC '
10'6;‘ 3
[e=00004 & ..
10—7 | PR | PR | PR |
10°® 10° 10 10
Pcoin

Figure 2.35. Secure key rate as function of the total coincidence probability for
one pump pulse. Ideal quantum dot (solid black line) and SPDC (solid green line)
secure key rates are calculated with d = 2.5 x 107%, ¢+ = 0.031 and unitary entanglement
fidelity. For this simulation we fit the parameters with the source in Ref.[341], where
the parameter y = v/ depends on the pulse intensity (3 = 10~%). Ideal quantum
dot with unitary fidelity and perfect photon pair extraction ¢ = 1 (orange dashed line,
star); Circular Bragg resonator quantum dot source with photon pair extraction € = 0.65
[324] and entanglement fidelity F' = 88% (blue dashed line, circle); the maximum
secure key rate extraction of the SPDC (green dashed line); the quantum dot we use
in the free-space experiment, with photon pair extraction € = 0.0064 (red dashed line,
triangle) and fidelity F' = 95.8%. From the experiment this last point is estimated as
Rexp = 1.88 x 1077, All the curves and points in the figure are obtained with the same
experimental parameters. This image is taken from [13].
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Figure 2.36. Entangled-photon pair density matrix. The reconstructed density
matrix of the polarization state of the photon pairs generated through the biexciton-
exciton radiative cascade from a QD. Specifically, the matrix is the result of the full
quantum state tomography performed in laboratory conditions on the QD used in the
QKD demonstration with the SMF quantum channel. The Bell-state fidelity is 94.1%.
This image is taken from [13].

Finally, the resulting single-photon count at the output of the first SMF, disre-
garding losses in the quantum channels and in the Alice and Bob apparatuses, is
700 and 620 kcps for the free-space and in-fiber QD respectively.
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Figure 2.37. Intensity correlation histograms. (A) Auto-correlation histograms of
both the exciton and biexciton lines collected in laboratory conditions on the QD
used in the QKD demonstration on the SMF quantum channel. The zero-time delay

coincidences normalized to the side peaks are gg)(|7'| < 0.8 ns) = 0.0034(2) and
gﬁ?}(|7’| < 0.8 ns) = 0.0041(3). (B) Cross-correlation histogram between the exciton
and biexciton lines collected in laboratory conditions on the QD used in the QKD

demonstration on the free-space quantum channel. The estimated preparation fidelity is
94.3(3)%. This image is taken from [13].

Test with common time-to-digital converter

A preliminary simulation of the experiment was performed by registering all the
detection events with a single multi-channel time-to-digital converter from Swabian
Instruments. While this option does not qualify as quantum key distribution, since
all the measurement outcomes are recorded and analyzed by a single user, it is a good
benchmark to assess the performance of the source independently from technical
aspects related to the synchronization between the communication parties. This test
was performed using a QD with 1.15 peV fine structure splitting, 93.6% entanglement
fidelity, a single-photon count of 850 keps at the output of the first SMF (disregarding
losses in the quantum channels and in the Alice and Bob apparatuses), a preparation
fidelity of 90.5%, and a characteristic on-time fraction 3 equal to 0.3. The results are
reported in Fig. 2.38. While the stable acquisition and synchronization conditions
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grant a sustained raw key rate of 785 bit s~!, the other performance figures of
the protocol — the average quantum bit error rate (QBER) Q = 0.037(1) and the
mean Bell’s parameter S = 2.61(4) — are not superior with respect to our realistic
implementation.

Quantum key distribution

The comparison of the experimental results between the fiber and free-space
approaches is illustrated in Fig. 2.39. The data is synchronously collected on
the two sides in packets of 1.2 s acquisition time and shared over the university
network, for a total time of 224 minutes. For both optical links, we measure the
QBER, the Bell parameter .S and the amount of key shared among the two parties.
Using the fiber communication approach, in Fig. 2.39a, a total 217.76 kB key
is shared, with a mean key rate of 486 bit s™!. The mean QBER of the key is
Qsmr = 0.0337(2), while the mean Bell parameter is Sgyp = 2.647(2). In free-space
communication, see Fig. 2.39b, we manage to share a 34.589 kB-long key string,
relying on 60 bit s~! of mean key rate. In this case, the average values of QBER and
Bell parameter are Qps = 0.040(2) and Sps = 2.37(10) respectively. Both optical
link choices showed a substantial violation of Bell inequality, demonstrating the
two-photon entanglement preservation over the quantum communication channel.
The reliability of the key quality shared during the communication is verified in both
cases by monitoring the QBER, which remains consistently well below the critical
insecure value of 11%. These results constitute a successful field demonstration of
QKD using a QD-based deterministic source of entangled photons. Notably, due to
experimental imperfections, the bits measured during the key exchange process are
expected to be not uniformly distributed, hence, after the binary error correction
process described in [344], one needs to further polish the key to obtain a uniformly
distributed bit string. The class of algorithms that allows one to get a perfectly
random (but shorter) bit string from a non uniform one are called randomness
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Figure 2.38. QKD simulation with a common time-to-digital converter. The Bell
parameter, QBER and raw key rate measured with a single time-to-digital converter,
collecting the timestamps from both Alice and Bob detection setups. The signal is
transferred from the source to Alice’s apparatus through a coiled 250 meter SMF with
80% transmission. This image is taken from [13].
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Figure 2.39. Experimental key sharing via the modified Ekert protocol. The Bell
parameter, QBER and raw key rate measured with both a, the SMF optical link and
b, the free-space optical link. In the latter case, the data transmission was conducted
overnight and interrupted at dawn. Each data point corresponds to 5 acquisitions of 1.2
s. The error bars in the Bell parameter are calculated by Gaussian propagation assuming
a Poissonian distribution for the coincidence counts. ¢, The encryption and decryption
of Sapienza logo using the one-time pad technique with the shared free-space key, after
the error correction and randomness enhancement steps. This image is taken from [13].

extractors, and they usually work by consuming a third uniformly distributed source
of randomness, called the seed. In particular here we use the Trevisan extractor
[345], following the implementation presented in [346]. The advantage of using the
Trevisan’s construction is that the extracted bit string is practically independent
of the seed (strong extractor), which therefore can be publicly shared among the
two parties. Moreover it is known that this kind of extractor is secure also in
the presence of quantum side information, making it an ideal choice for device-
independent quantum protocols [347, 348]. In our case, calling d the length of the
seed, we need: d ~ logy(m)log3(n)loga(1/€), where n is the length and k is the total
amount of entropy of the input bit string, while m denotes the length of the output
string. The parameter € represents the maximum allowed discrepancy between the
output distribution and a uniform one (intuitively, we can think of the output single
bit probability as being 1/2 + €). In particular to extract m = 26 kB bits from
a source with entropy s ~ 0.992 per bit, of length n = 27.938 kB we employed a
seed of d ~ 579 MB. Therefore, after the binary error correction process [349], we
apply a Trevisan extractor to restore uniform randomness [346] and compensate for
a setup-induced polarization changes. Part of the uniformly distributed key was
used to encrypt and decrypt the Sapienza logo as depicted in Fig. 2.39c.
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2.5.4 Conclusions and perspectives

In conclusion, we have experimentally performed an entanglement-based QKD
protocol with the use of a QD photon-pair source, demonstrated to be viable both
with in-fiber and free-space quantum communication channels. The comparison
of the measurements between the two different employed links, highlights some
interesting considerations on the quantum channel choice performing an EPR-based
QKD approach using QDs. Atmospheric turbulence and the complex stability
requirements of optical apparatuses for free-space communication lead to signal
loss and performance degradation when compared with the in-fiber solution for
short distances. This is unavoidable to a certain degree, even if we can identify
excessive losses and room for optimizationin our current implementation. The
complete characterization of the quantum channel is important for controlling
hacking strategies such as side-channel attacks. In this regard, a potentially useful
feature in our free-space implementation is the modular approach of the receiver
apparatus, dividing the collection table from the table dedicated to the measurements
(see Supplementary Materials). In particular, the former is employed for the correct
stabilization of the signal, but in general it could be used for adding particular
scheme-dependent defense elements, such as an optical isolator [239] or a spatial
filter [240], in order to avoid possible attacks based on hardware limitations. While
we do not consider an a priori defense against possible side-channel attacks, our
setup is robust, for instance, to spatial-mode side-channel attacks, since we do not
allow multiple spatial modes at the detectors by filtering the signal through a single-
mode fiber. In a more general context of applications, by increasing the distance
between the QKD users, the free-space communication is expected to deteriorate
less dramatically, becoming a more advisable solution. Moreover, it allows to use
the orbital angular momentum degree of freedom, which can be employed in QKD
schemes, e.g. for independence from local reference frames [350]. Up to date the
generation of OAM states using QD-based light sources is mostly unexplored, but
there is a developing effort to make use of semiconductor microcavities designed
to control the chirality of emitted light [351, 352] and embed QDs in them for
the generation of single photons carrying OAM [353, 354]. Therefore, exactly 20
years after the first theoretical proposal on the possibility of using quantum dots
to generate regulated and entangled photons [355], our study demonstrates that
this semiconductor-based quantum technology is mature to go out of the lab, and
further improvements will soon open the way to real-life quantum communication.
In particular, we envisage that the possibility of interfacing entangled photons from
QDs with the same or other quantum systems [356], together with the prospect of
enhancing photon extraction [324, 325], will be the key to boost secure quantum
cryptography over large distances.
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2.6 Final remarks

Quantum communication aims at distributing quantum resources between differ-
ent and/or distant parties. This is made in order to realize quantum communication
protocols, such as entanglement swapping, teleportation, and quantum key distri-
bution. Photonic entanglement can be easily distributed by using optical fibers
and free-space links. Its manipulation can take advantage of bulk-based setup or
most advanced integrated platforms. In this chapter, the contributions of my thesis
project to the quantum communication fields have been reported.

The generation of entangled photon pairs at the telecom wavelength has been
demonstrated in an integrated device [10]. Three photonic chips, fabricated by
femtosecond laser writing technique, are cascaded to form a Mach-Zehnder interfer-
ometer with two nonlinear waveguides of light along the inner arms. The output
state can be tuned by using a phase shifter in the first device, or by interchanging
the third component in order to realize path or polarization encoding of the final
quantum state. The search for a complete on-chip realization of the entire quantum
protocol — generation, manipulation, and detection — represents a hot topic in
Photonic Quantum Communication. Our result is a building block in this research
direction, especially for the modular composition of hybrid materials. This feature
allows us to better select the various components to optimize specific functionalities.

In a second work [11], we demonstrated the fiber distribution of complex hybrid
entangled states, by using a new special fiber: the air-core fiber. In particular, the
hybrid state corresponds to a vector vortex state — where polarization is correlated
with orbital angular momentum — encoded in a photon, in turn entangled with the
polarization of a second photon. Our result is a crucial step towards the adoption of
high-dimensional entanglement in quantum networks, where the OAM distribution
could cover a crucial role due to its unbounded nature.

Then, the distribution of quantum resources was realized in a quantum network
[12], which represents the most general scheme in the distribution scenario. Our
scheme consists of four independent laboratories connected to a central one. This
allows us to realize a star-shaped quantum network, in which n nodes are connected
with a central one, by means of n independent sources of entangled photon pairs. Our
laboratories are used by varying the network architecture from n =1 to n = 4. The
multipartite entanglement distributed in the network has been revealed and certified
by means of generalized Bell-like inequalities. Our implementation has a scalable
photonic structure, allowing experimental testing of other general quantum networks.
This is crucial for studying nonlocality inside different topological scenarios or in
order to implement a future quantum internet.

Finally, an experimental quantum key distribution was demonstrated between
two buildings of the Physics Department of Sapienza University of Rome [13].
The entangled-based protocol used is a modified version of the Ekert91. The
distributed entanglement was generated by means of a quantum dot source. This
source aims at the on-demand generation that can provide a boost in cryptographic
quantum protocols as photon distribution could become unassailable. Further, the
same experiment was performed twice, distributing entanglement with two different
quantum channels: a fiber link and an urban free-space channel. Our studies refer
to fundamental points of Quantum Communication for the real-life scenario. On the
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one hand, they show that quantum dot technology is mature to go out of the lab.
On the other hand, addressing both fiber and free-space quantum channels allows
for testing the most viable technology for a real-world scenario.
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Chapter 3

Photonic platforms for
Quantum Metrology

The measurement process has always interested the Physics and the science
of measurement it is known as Metrology. Quantum Information theory explains
straightforwardly the difference between classical and quantum uncertainty, and
Quantum Metrology is the most advanced physics theory which aims at achieving
ultimate limits in the measurement of physical quantities. Further, quantum sensing
devices are among the most promising quantum technologies. Their implementation
relies on the use of quantum probes to attain enhanced performances in the estimation
of one or more parameters compared to classical ones. Given an unknown parameter
to be estimated and m classical probes (with m > 1), each interacting a single time
with the system under study, the estimation error will scale at best as ~ m~1/2,
This classical limit is a consequence of the central limit theorem and is called
standard quantum limit (SQL). The term "classical" stands for probes that are
at most classically correlated. If quantum probes are allowed, the SQL can be
surpassed so that the uncertainty of the estimator reaches the more fundamental
scaling ~ m~!, improving the precision by a factor y/m with respect to the SQL.
Such new scaling represents the ultimate limit on estimation precision and is called
the Heisenberg limit. Quantum Metrology aims at identifying the best strategy
able to provide this quantum advantage [357, 358, 359, 360, 2, 361, 234]. This is
achieved by carefully tailoring the probe state, the interaction, and the measurement,
in order to extract the information on the relevant parameter, and by the optimal
choice of the estimator through data post-processing [362]. Here, the presence
of entanglement in the prepared probe plays a fundamental role, since it is the
necessary resource in order to achieve estimation enhancement. Application of
Quantum Metrology are many [1], since different research branches can benefit
quantum-enhanced sensitivity, such as: measurement on biological systems [363, 364],
gravitational waves detection [365], atomic clocks [366, 367], interferometry with
atomic and molecular matter waves [368, 369, 370, 371], plasmonic sensing [372, 373],
magnetometry [374, 375], spectroscopy and frequency measurements [376, 377, 378|,
lithography [379, 380, 381, 382], microscopy and imaging [383, 384, 385, 386, 387,
388, 389, 390, 391], localization of incoherent point sources [392, 393], Hamiltonian
estimation [394, 395, 396], fundamental physics effects [397, 398], coordinates transfer,
synchronization and navigation [399, 400, 401, 402], absorption measurements [403],
thermometry [404] and general sensing technologies [405, 406].

Also in this case, the photonic approach to estimation theory provides a conve-
nient choice and phase estimation is suitably treated with interferometry. Indeed,
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single or multiple optical phases can be manipulated and measured with standard
interferometers, such as the Mach-Zehnder interferometer. MZI even represents the
optimal platform to use in order to access the best estimation of a single phase
(Sec. 3.1.3). In addition to the various advantages offered by Quantum Photonics
(Sec. 1.1), quantum states of light can be conveniently prepared to probe quantum
sensors and achieve enhancements in metrological tasks [1]. The most exciting
application is the gravitational wave detection [407, 408, 409], representing a very
challenging research area and the first actual application of Quantum Metrology
[410, 411, 412, 413, 414, 415, 416, 417]. The small amplitude (~ 10722) of gravita-
tional waves needs very long interferometers to be measured, together with very
low overall noise [360, 418]. Quantum metrological techniques, such as adopting
the squeezing resource as the input state into the interferometer [419], seem to be
the only possible short-term solution for improving the signal-to-shot noise ratio
of such interferometers. Starting from 2007, GEO600 gravitational wave detector
has successful adopted squeezed light for its detection [365, 420]. Recently, after
preliminary tests [421], squeezed vacuum states have been used in the Advanced
LIGO detectors [422, 423]. Other gravitational wave detectors have almost achieved
the best technological performances in their several components [424, 409, 425, 426],
and seems to find further improvements only in squeezing enhancement.

Despite single parameter estimation has been largely studied both theoretically
and experimentally, the scenario involving more parameters still presents several
open questions [1]. Also in this case quantum resources can enhance the simultaneous
estimation of all parameters [427, 428]. This represents a relatively new research area
with different experimental and theoretical open questions, such as the capability
of reaching the quantum ultimate bounds in the simultaneous estimation of all
parameters. On the other hand, surprisingly few photonic platforms have been
realized to test the simultaneous multiparameter estimation. Here, photons can be
employed with different schemes and approaches [427, 428, 429, 430]. In this context,
besides direct mapping of problems to quantum imaging, the multiphase estimation
can represent a benchmark suitable for tests of quantum multiparameter protocols.
Its importance and generality derives also from the fact that unitary evolutions
generally introduce a phase in the evolved states. For these reasons, experimental
multiphase estimation is a really interesting area to investigate. Finally, the study of
adaptive strategies for quantum sensing, in both single e multiparameter scenarios,
represents a further important investigation. Indeed, tuning the operation of the
quantum sensor during the estimation process allows improvements such as optimal
performances in a limited data regime, or an achievable quantum enhancement for a
larger space of unknown parameters (Sec. 3.1.4).

In this thesis a review work has been realized on Photonic Quantum Metrology
[1], in order to provide the basis for an experimental Quantum Metrology, to assess
the state-of-the-art of such field and identify the ultimate challenges. Such work
introduces the photonic technologies available for metrological tasks, with particular
attention to the phase estimation problem. Finally, it shows the multiparameter
scenario and the current theoretical and experimental open questions, by discussing
the quantum-enhanced performances in the presence of noise. Thus, we adopt the
review contents in order to provide fundamentals of Quantum Metrology in Sec.
3.1. Besides such theoretical work, we gave different experimental contributions in
this context. An integrated device has been developed for testing a multiparameter
estimation scenario (Sec. 3.2). Specifically, the chip is a 3-arm interferometer,
representing the 3-mode generalization of the MZI, which is able to investigate two
optical independent phase shifts. The high degree of reconfigurability due to the
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presence of several PSs allows even the study of adaptive phase estimation. Thus
it is possible to optimally change some control parameters during the estimation
process in order to achieve the best-generalized performances for the two-phase
estimation. First, such device has been fully characterized in the classical and
quantum regime, demonstrating experimentally the quantum-enhanced capability
for two-phase estimation in a non-adaptive scenario (Sec. 3.2.1). Then, a reliable
characterization has been demonstrated by using a Neural Network approach (Sec.
3.2.2). Subsequently, my thesis work moved to adaptive protocols for optimizing
the phase estimation. Here, the best results have been achieved using the same
integrated device. In Sec. 3.3.2, a machine learning technique proposed by [394],
based on a Bayesian inference which exploits a Monte Carlo-like approximation,
has been successfully applied for our simultaneous two-phase estimation problem.
We demonstrated improved performances by reducing the number of employed
resources and enlarging the phase interval in which a quantum enhancement is
possible. Finally, further work concerned the study of a genetic protocol suitably
tailored for optimizing the estimation of a single phase in a standard MZI (Sec.
3.3.1).
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3.1 Quantum Metrology: Fundamentals

Photonic Quantum Metrology has attracted a large research effort in the last
years, leading to notable progresses both theoretically and experimentally as reported
in previous review papers. They concern advances in general photonic technologies
[5, 44], theoretical aspects of Quantum Metrology and phase estimation problem
[431, 432, 361, 433, 434, 2, 359], multiparameter estimation scenario [428, 435, 427],
optical metrology [385, 436, 437, 234, 390, 438, 384, 363, 439, 440, 360], and metro-
logical tasks performed by different physical systems [361, 405, 364, 441]. The Table
3.1 reports a list of these mentioned works.

Review Topic
hotonic quantum
[5, 44] P .
’ technologies
[385, 436, 437, 234, 390, 438| quantum optical
[384, 363, 439, 440, 360] metrology

fundamental of Quantum Metrology

< =
[431, 432, 361, 433, 434, 2, 359] and phase estimation problem

: precision bounds
54 of quantum states
[234, 432] photonic quantum
’ sensing
5. multiparameter
1425, 435, 4271 Quantum Metrology
[442, 443] continous variable and
7 gaussian states
[361, 405, 364, 441] metrology performed by

other physical systems

Table 3.1. List of more relevant works which addressed topics around photonic Quantum
Metrology studies.

In this section we describe the fundamentals of single parameter estimation and
the problem of estimating more than one parameter. In particular some results of the
former scenario do not apply for the latter one. Such descriptions are taken from [1].
In Secs. 3.1.1 and 3.1.2 the definitions of the basic quantities are introduced, such as
Fisher Information and Cramér-Rao bound, that characterize a general estimation
process. Sec. 3.1.4 is devoted to adaptive protocols able to enhance the estimation
processes. In Sec. 3.1.3 we describe single- and multi-phase estimation problems.
Finally, we describe the state-of-the-art of experimental photonic realizations of
simultaneous multiphase estimation.
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Figure 3.1. Conceptual scheme of an estimation of parameters. An initial probe is
prepared (red box) in a state pg (eventually, from an initial state p;,). Then, it interacts
with the unknown parameters A through an evolution Uy (green box). The state px
encoding the information on A is measured by a POVM E, (blue box) generating
outcome z. Based on the outcomes x, a suitable estimator provides an estimate A(x) of
the parameters A. This image is taken from [1].

3.1.1 Estimation process

The realization of a sensor for measuring a quantity A embedded in a physical
system requires the study of how to interact with the system and how to extract
the interested information after the interaction. In a more general and complex
scenario the number of parameters can be more than one: A = (A1, Ag,...). The
general estimation process can be described by a cycle repeated v independent times
composed of four steps (Fig. 3.1):

(i) the preparation of a probe state pg, as sensitive as possible to variations of the
unknown parameters;

(ii) the interaction between the probe and the physical system for encoding the
information on the unknown parameters. This interaction depends on A and
can be described as a unitary evolution Uy which evolves the state py in
ox = UxpoU ;L\ — for simplicity we consider only unitary evolution but this can
be extended to non-unitary maps;

(iii) the measurement for extracting information by means of a suitable positive
operator valued measure (POVM) E,, which provides the projected result x
collapsing the state along the corresponding eigenvector;

(iv) finally, a suitable estimator function provides an estimate A (x) = (A1(x), Ao(x), . ..

of the unknown parameters, which at the iteration k of the cycle depends on
all previous measurement results = (z1,xa, ..., Tk).

The goal of the Metrology in choosing the estimator and preparing all the stages
of the estimation process is to optimally converge to the real value of the parameters.
In particular, an estimator is said unbiased if its mean value over all the possible
sequences of x, coincides with the unknown parameters:

A=) PAA(x)=X VA (3.1)

where P(x|A) is called likelihood and it represents the conditional output probability
of obtaining a sequence of measurement results x, given certain values of the
parameters A. The relation (3.1) is valid independently from the values of the
parameters. A less stringent requirement is considering locally unbiased estimators,
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which are unbiased only for limited range of A in which is satisfied the relation

| OP(aA
ZAk i"’ ) _ 5, (3.2)

which corresponds to 9A/OX =1 in the single parameter case. Finally, an estimator
is asymptotically unbiased (locally or not) when it converges to the real value in the
limit of infinite number of probes: lim,_,., A = A. The likelihood depends by the
measurement results through the Born rule:

P(xi|A) = Tr(Ex;px); (3-3)

which describes the conditional probability for the single measurement. In presence
of independent repetitions of the estimation cycle, the final likelihood is given by
P(x|\) = P(z;|X). When we consider a single parameter problem, the accuracy

of the estlmatlon can be studied by two figure of merits: the mean square error
(MSE) defined as

MSE(A) =) "(A(m) — A)*P(z|N), (3.4)

x

and the variance of the estimator, given by

AN = (A(x) — A P(x|N). (3.5)

xr

The Eq. (3.4) indicates how close the estimate is to the real value. While the
Eq. (3.5) provides an interval of confidence for each estimation, without requiring
knowledge of the true value of the parameter A\. Therefore, MSE highlights the
presence of errors in the calibration of the sensor (e.g. due to a potential calibration
bias), while the variance is the more interesting quantity to investigate the actual
achievable precision for a given measurement. The generalization of Eqs. (3.4) and
(3.5) to multiparameter problem is represented by two matrices, the quadratic loss
(QL) function and the covariance matrix, whose generic elements are:

QL(N)ij = D (A(®) = N)i(A(z) — X); P(z|A) (3.6)
Cov(A)ij = Y _(A(x) — A)i(A(x) — A);P(z|N), (3.7)
where i,j € {1,...,d} in presence of d unknown parameters. In addition to the

variance terms of the single parameters these matrices contain also the correlation
contributions, respectively given by diagonal and off-diagonal matrix terms. Fur-
thermore, in the case of an unbiased estimator the relations (3.6) and (3.7) are the
same.
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3.1.2 Quantum estimation limits

Realizing the best estimation requires the optimization of the sensor over each
aspect of the estimation process, from choosing the probe state to adopt, to setting the
measurement to implement, up to selecting the estimator function. This optimization
research reveals the uniqueness of a quantum sensor, able to achieve a precision
unreachable by any classical counterpart. Let us consider the estimation scenario
where probes and measurements are fixed. For clarity, in the following discussion
both single- and multi- parameters will be described in parallel, generalizing the first
case with matrix relations when the parameters are more than one. A fundamental
tool allowing to study the achievable bounds on estimation uncertainties is the
Fisher Information (FI). It is a quantity able to catch the amount of information
encoded in output probabilities of the estimation process, and is defined as [444]:

(;IA) (8P6(§W>2’

1 9P(z|\) dP(z|\)

[single-parameter] F()\) = Z P

(3.8)
[multi-parameters] F(X);; = Z

x

where the sum is made over the possible outcome values of a single projective
measurement x. In particular in the multiparameter scenario the FI generalizes to
the real-valued symmetric Fisher Information matrix (F). Intuitively, being F'(F)
proportional to the derivative(s) with respect to the parameter(s) of the output
probabilities, it allows to quantify the sensitivity of the system to a change of A(X).
More specifically, a larger amount of information is associated with larger variations
of the output probabilities. This intuition was formalized with a fundamental result,
called Cramér-Rao bound (CRB). It links the FI to the ultimate bound achievable
by the precision of any arbitrary estimator, with fixed v identical and independent
probes and measurements [445, 446]. In the presence of a locally unbiased estimator
[Eq. (3.2)], the CRB reads [447, 448]:

1
[single-parameter] AN? > SO’
F1(0);; (3.9)
[multi-parameter] Cov(A);; > ———2,
v
where 7,7 € {1,...,d} in presence of d unknown parameters. Notably, in the

multiparameter case the CRB is well defined only when F is strictly positive, and
thus invertible. An estimator that is able to saturate the inequality (3.9) is said to
be efficient. The inequality (3.9) indicates the ultimate limits achievable by unbiased
estimators when the optimization is made over all possible estimators, but having
both probes and measurement fixed. Maximizing the estimation process over all
possible quantum measurement, a tighter precision bound is given by the Quantum
Cramér-Rao bound (QCRB) [1]:

1 1
>
vE(\) T v FyY (N
F (Nij o Fo' (V)i

v v

[single-parameter] AM? >

(3.10)
[multi-parameter] Cov(A);; >
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where

[single-parameter]  Fo(A) = maxg, F'(}) (3.11)
[multi-parameter] Fg(A) = maxg, F(X) ‘

is called Quantum Fisher Information (QFI), computed by maximixing the FI over
all possible POVMs FE,, having outcome x. The QFI, i.e., represents the amount
of information encoded in the interacted probe state py(pa), regardless of the
measurement. In the multiparameter case, by summing over the diagonal elements
of the matrix inequality (3.10), one can estimate the precision of a multiparameter
estimator as the trace of the covariance matrix in Eq. (3.7): Tr [Cov(A)] = 32;(AN:)?,
that obeys the scalar bound

Sangs TED) TRON]

- v 14
1

(3.12)

The QCRB is saturated when the equality in the second part of Eq. (3.10) is
reached. Note that it is also possible to define other quantities and bounds, and
classify different multiparameter problems [428, 449]. As well as FI, two fundamental
properties of the QFI are additivity and convexity:

Fo(@rh) = D>_Faled) (3.13)

Fa(Yoci pd) < 3 e Falph), (3.14)

where {p§} in Egs. (3.13) and (3.14) are respectively, a set of independent
prepared probes and the pure states of a general mixed state ), ¢; pi)\ (with Y, ¢; =
1). The maximum sensitivity of a quantum state for a parameter estimation is
intimately related with the metric of the state [450, 451, 431, 452]. In particular
the distinguishability of the probe state for small variation of the parameters is
directly linked to the QFI. The distinguishability between two states, p; and ps can be

quantified by the normalized Bures geometric distance: Dg(p1, p2) = /1 — F(p1, p2),

. 2
where F'(p1,p2) = Tr {, /\/prg\/pT} is the standard fidelity (Sec. 1.2.4.1). Given

the state py(px) and an infinitesimal change JA(JA;) of the parameter(s), the
normalized distance squared between py and pxisx (px and pxisa) is proportional

to Fo(pa)(Fq i7(pa)) 453, 339);

. 1
[single-parameter]  Dg(px, patsr)’ = sFale) (60)?,

. . 1 (3.15)
[multi-parameter] Dg(pa, pa+sr)® = 3 > Fqij(pa) 6Ai 6A;.
ij

From these expressions it is clear that the more py and pxisx (pa and paisa)
are "distant', i.e. distinguishable, the greater is F(px)(Fq ij(pa)) and thus the
sensibility of the state to A(A).

One of the goals of Quantum Metrology is to find measurements that are able,
given a probe state, to reach the ultimate precision and then to saturate the QCRB
in Eq. (3.10). This task is equivalent to find the POVM such that the FI associated
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to the process becomes equal to the corresponding QFI associated to the probe
state. The aim is then to find the measurement such that F' = F. Indeed, if a
large number of probes is available, the estimators to asymptotically saturate QCRB
are known, such as maximum likelihood and Bayesian estimators (Sec. 3.1.2.2).
Nevertheless, in the case of limited measurements and data, the saturation of the
CRB is no more guaranteed [454].

3.1.2.1 Standard quantum limit and Heisenberg limit

State Parameter

. . Measure Results
preparation encoding

e i A Xl)\
Pin : : >
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Figure 3.2. Conceptual scheme of a parallel parameter estimation. The measure-
ments here considered are separable. Indeed, employing entanglement in the measurement
process does not allow to obtain better performances than the optimal separable strat-
egy. Conversely, state preparation can lead to quantum enhancement by exploiting
entanglement between probes [358]. This image is taken from [1].

In the single parameter case it is always possible to saturate the QCRB through
suitable measurements [451]. Because of Fq’s additivity property [Eq. (3.13)] it
is possible to saturate QCRB using local adaptive measurements for each probe
without entangling measurements [455, 456, 457, 458, 358, 459]. Then quantum
resources in the measurement stage do not enhance the estimation process [357, 358].
Since in general the optimal POVMs can depend on A-value, it may be necessary
to have a priori knowledge on the parameter. This difficulty can be overcome
through adaptive estimation protocols (Sec. 3.3). The last step, in order to find the
ultimate fundamental bounds, is the optimization over all possible input states. This
task can be done by optimizing Fq over the initial probes. If the evolution of the
interaction is unitary, py = e pge ™ | or equivalently dxpy = i[px, H], where H is
an Hermitian operator, F does not depend on the unknown parameter. Therefore,
the QCRB depends only on the state of the probe py after the interaction and there
is a crucial difference between quantum and classical states. Quantum states can
outperform classical ones, reaching the ultimate quantum limits. In this way there
is a precision region achievable only by exploiting quantum probes, meaning that
a quantum enhancement in the Metrology task can be obtained. Let us consider
the parallel strategy depicted in Fig. 3.2. Here, m probes interact with the system,
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independently, with a separable linear unitary U = @, U)i\, with U/{ acting only
on the i-th probe and such that U; = Uy Vi. The first property of optimal probes
can be derived from the convexity (3.14) of F: the maximum of Fy is always
achieved by pure states.

We initially focus on m probes that are classically correlated, that is, non
entangled. The total state can be then written as a convex combination of separable
states, each one of the following form: p** = p; ® pa - - - @pp,. The value of Fy for a
separable state is:

Fo(pm ®p2--- ®pm) = Y Folpi) <m F§™, (3.16)

2

where for the first equality the additivity of Fy has been exploited, and F5**
represents the maximum of Fg over the states p,,. Then, in presence of v independent
packets of m classical correlated probes, from Eq. (3.10) the minimum uncertainty

AN scales as [358, 460]:

ANt (3.17)

N MVmFémm'

Since F3™* is a constant factor, the error scaling with the number of the probes

m is AX o 1/4/m. Namely this statistical bound is called standard quantum limit
(SQL) (or shot noise limit when dealing with setups involving interferometers). Such
bound corresponds to the QCRB optimized over any arbitrary classically correlated
probe state and can be seen as a consequence of the central limit theorem. We have
seen that quantum resources in the measurement stage are not necessary to reach
the QCRB. Conversely, quantum resources employed for the preparation of probe
states can enhance the sensitivity with respect to classical approaches, beating the
SQL [410, 461, 376, 462, 357, 358, 2].

A key role to obtain quantum enhancement is played by entanglement. In
particular, assuming unitary evolution and calling hg (hs) the maximum (minimum)
eigenvalue of the generator H, the relation:

Fo(po, H) > m (hs — hs), (3.18)

is a sufficient condition for the presence of entanglement in the probe state py [460].
It turns out that entanglement, in the considered estimation scheme, is necessary
in order to have an enhancement in estimation. Eq. (3.18) can be exploited to
detect entanglement [463, 464, 465, 434, 466]: if the Fisher Information, that can be
extracted for instance from an experimental characterization of the state, satisfies
Eq. (3.18) then the state is entangled. Furthermore, this condition is necessary
and sufficient to achieve estimation precision beyond SQL [361, 433]. This captures
the fundamental relation between entanglement and quantum enhanced metrology.
However not all entangled states are able to satisfy inequality (3.18) then this
condition is sufficient but not necessary for the presence of entanglement. Then,
such relation defines also the concept of useful entanglement for Quantum Metrology
[460]. In particular, in Refs. [440, 467] the authors investigate the role of mode- and
particle-entanglement for quantum-enhanced performances in parameters estimation.

In order to identify the states which provide the best quantum enhancement,
let us consider pure states and unitary evolution e . In this case, the QCRB is
saturated by states of the form:

|hmax> + e’i'y |hmin>

\/E I

(3.19)
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where v € C, while |hpax) and |Amin) are the eigenvectors corresponding to the
maximum and minimum eigenvalues hpyax and hyi, of H, respectively. If we define
|hs) (|hs)) as the single probe eigenstate of the generator H relative to the maximum
(minimum) eigenvalue hg (hs), then the optimal state in Eq. (3.19) is realized by
[358]:

|hs) ™™ + € |hg) ™™
V2 '
where m is the number of employed probes. Such state is a maximally entangled state

and has F' = m?(hg — hs)*(= Fg), which is useful entanglement for m > 1/(hg — hs).
For v independent packets of states in Eq. (3.20), the QCRB becomes [358]:

(3.20)

1
AN > .
A2 o (hs = he)

The term (hg — hg) is a constant so, here, the error scaling with the number m
of probes is AX o 1/m, that corresponds to an improvement of the precision by
a factor y/m with respect to SQL. This enhanced scaling is the ultimate limit on
estimation precision and is called Heisenberg limit (HL). The Heisenberg limit in Eq.
(3.21) is saturable in the limit of large independent repetitions v of m entangled
states.

Until now, we have defined the HL scaling for the case of parallel estimation
strategies and linear unitary evolutions, in which the Hamiltonian does not generate
correlations between different probes. If we consider schemes with non-linear inter-
actions between probes and system, the scaling can be different [468, 469, 470, 471].
Furthermore, if one exploits resources other than the number of particles, the SQL
can also be beaten with non-entangled probes [358]. This is obtained for instance
through multiround protocols [472, 473, 474, 475, 476, 477], in which the additional
employed resource is the running time of the estimation process.

(3.21)

Also the multiparameter case can be enhanced by using quantum resources. In
order to find the best possible accuracy in the estimation, it is fundamental to find
necessary and sufficient conditions to saturate the QCRB. However, the possibility
of achieving the ultimate quantum bounds in multiparameter estimations is not
guaranteed [478, 447, 479, 480, 481, 482], at variance with the single parameter case
[359]. Indeed, when different parameters have to be estimated, the corresponding
optimal measurements may not commute, thus making impossible their implemen-
tation in a single experiment [483]. In this way, the capability of achieving the
ultimate bounds is forbidden. A necessary condition for the attainability of the
multiparameter QCRB inequality is provided when the optimal measurements for
the estimation of the single parameters are compatible observables [484, 480], which
in general may not be satisfied. Importantly, for pure states with invertible Fq
there exists a necessary and sufficient condition for the saturation of the QCRB
[480]. In Ref. [482] the authors generalize such results. In particular, in the case
of pure states necessary and sufficient conditions on projective measurements are
derived such that the Fisher Information matrix F is equal to Fq even if Fq is not
invertible. If Fq is invertible, such conditions are necessary and sufficient also for
the saturation of QCRB. When the generators of the parameters commute and
the probe state is pure the QCRB can be saturated [484, 482]. Several studies,
such as Refs. [485, 484, 467, 486, 487], have investigated, in different scenarios,
the potential advantages of performing multiparameter estimation with respect to
sequential single-parameter strategies. Despite the broad range of applications, the
number of experimental implementations of quantum multiparameter estimation
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tasks is surprisingly few. In this scenario, photons can be employed with different
schemes and approaches [427, 428, 429, 430]. In Sec. 3.1.3.1 we list some of the
problems involving multiple phases that have been approached through photonic
platforms.

As a conclusion, a table reporting each relevant optimization of the estimation
process is shown in Table 3.2.

\ Quantity \ Probe pg | POVM E, | Estimator A(xz) |

Qloss(A) [Eq. (3.6)] fixed fixed fixed

F(A) [Eq. (3.8)] fixed fixed optimized

Fq(A) [Eq. (3.11)] fixed optimized optimized
. classically . .

SQL [Eq. (3.17)] optimized optimized optimized
. quantum . .

HL [Eq. (3.21)] optimized optimized optimized

Table 3.2. Table of the relevant metrology quantities, indicating which step of the estimation
protocol is optimized.

3.1.2.2 Estimators

Different approaches exist to post-process experimental data and provide an
optimal estimation of the unknown parameter [432].

One of the most widely adopted estimators is the mazimum likelihood estimator
(MLE) [444]. Tt is the value of the multiparameter vector A that, given a list of
experimental results @, maximizes the likelihood probability P(x|A):

AMEE () = arg [n{l)z\i}x P(w|)\)] . (3.22)

In the asymptotic limit the MLE is unbiased, consistent and saturates the Cramer
Rao bound (see Sec. 3.1.2). Other estimators are Bayesian estimator or the Method
of Moments, the latter not requiring full knowledge of the likelihood function [433].

While MLE with the relative estimation bounds (see Sec. 3.1.2) is based on a
frequentist interpretation of the probability, in the Bayesian approach the conceptual
meaning of probability is that of a degree of belief. In this sense Bayesian approach
can be exploited as a framework to devise estimation protocols [488, 489, 490, 491].
In this approach, the unknown parameters A and the experimental result x are
treated as random variables. Here the relevant quantity is the degree of ignorance
(or knowledge, equivalently) about the parameter. During a Bayesian estimation
such knowledge, that can be regarded as subjective (degree of belief), is updated
according to the measurement results.

The starting point of the process is the prior distribution P(A) that quantifies
the initial ignorance on the unknown parameter. The experimental setup probing
the system is described by the likelihood function P(x|A) [Eq. (3.3)]. Once a
measurement result x is obtained, the degree of knowledge, described by the posterior
probability P(X|x), is updated by the Bayes’ rule:

P(X) P(z|A)
J PA) P(z|A)I1; dN; ’

P(Az) = (3.23)
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where the integral in the normalization term has to be replaced by a sum when the
unknown parameters A assume discrete values. The posterior in Eq. (3.23) contains
the updated information from which interesting quantities can be calculated.

For instance, the quadratic loss of an estimator A(z) [Eq. (3.6)], averaged over
the parameters A, is obtained as:

(QL(A)) = / P(A)P(a[A) (A(x) = X)? dz [, (3.24)

By minimizing Eq. (3.24), the optimal Bayesian estimator A°P*(z) is calculated:

AP (z) = / AP [T dx (3.25)

that corresponds to the mean value of the parameters over the posterior distri-
bution. Also other moments, such as the third moment, of this distribution can be
informative on the estimation, especially to detect possible biases [492].

This thesis is particularly interested in the phase estimation problem (Sec. 3.1.3).
The case of a single phase shift ¢ estimated inside an interferometer is a circular
parameter, where ¢ = ¢ 4+ 2knw with k € Z. For such parameter a circular mean,
calculated over the posterior distribution, can be defined:

(@) = arg | [ doe’ P(ofo)|. (3.26)

The standard variance with circular variables is no more adequate and the Holevo
variance VY can be defined, as function of a quantity S called Sharpness [493):

vH=g672_1 S = |(e)], (3.27)

where the mean (-) is calculated over the probability distribution of the estimation
process under study. The Holevo variance can describe the variance of unbiased

H

=2
phase estimators, V... = ‘(ezq’>‘ — 1, and coincides with the standard variance

for sufficiently sharply picked distribution. With biased estimators, the variance is:
VA = |{cos(® — ¢)) |72 —1. A Bayesian analysis of the sensitivity of coherent states
in an optical interferometer for the estimation of a phase shift, has been carried in
Ref. [494]. A fundamental feature of a Bayesian approach is its direct application to
adaptive protocols, described in Sec. 3.1.4. Note that, since a Bayesian approach
allows to exploit prior knowledge on the parameters, the sensitivity bounds can
be different from those relative to the frequentist approach [495, 496]: for MLE
(frequentist approach) the error is defined by the mean square fluctuations, while in
a Bayesian approach the uncertainty is quantified by the variance of the posterior,
that is a different concept respect to MSE.
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3.1.3 Single- and multi-phase estimation problem

Single-phase estimation

One of the most relevant scenarios for Quantum Metrology is phase estimation
[497, 357, 433]. The problem consists of estimating an unknown phase shift ¢
between two different modes, such as polarization, OAM or different paths. A lot
of physical problems can be cast in a general phase shift estimation, and different
physical probes can be employed. Tasks such as measurements of atomic properties
[498, 499], atomic clocks [500, 366], measurements of forces [501, 502], require the
use of atomic probes [361]. Conversely, for tasks like the estimation of phase shifts
produced by gravitational waves [365], lithography [379, 380, 381, 382], imaging
[383, 384, 385, 386, 389, 387, 390, 388, 403, 391], sensing on biological systems [363],
quantum key distribution [503], measurements of velocity, displacements and lengths
[2], photons are the most suitable systems. Besides the practical applications, phase
estimation represents also a standard benchmark for general metrological protocols.

Consider an estimation of a phase shift ¢ between two paths. The transition of a
system through a phase shift along a mode, say mode 1, is described by the unitary
evolution:

Uyps = e'®Hps = gidalar (3.28)

where a; is the particle annihilation operator along mode 1. The generator and
conjugated operator [504] of the phase shift is the number operator ny along the
corresponding mode:

Hpys = a{al =nj. (3.29)

For the number operator ni, the difference of possible eigenvalues, with a single
probe, is hg — hg = 1. Then, following the same notation as in Sec. 3.1.2.1, Eq.
(3.17) for phase estimation reads:

1
Vvm’

corresponding to the SQL for the single phase estimation. Conversely, the HL then
reads: .

N
Since a general definition of a standard selfadjoint operator associated to phase
shift measurement is problematic, its direct sharp measurement is not possible
[505]. Nevertheless, a phase shift can be treated as an evolution parameter and
estimated from other observables whose values depend on it. In particular in optical
phase estimation, the phase shifts are differences between optical paths that can
be estimated through interferometers. One of the most common and simple two-
mode optical interferometers, suitable for phase estimation, is the Mach-Zehnder
interferometer (MZI) [506].

The two key elements of a MZI are the PS and the BS (Sec. 1.1.2.1). The former
adds a phase shift ¢ between two modes whose annihilation operators are a; and as
[Eq. (1.9)]. The BS represents a basic optical element that allows mixing between
two input electromagnetic modes. It can be realized with a partially reflective mirror
that transmits or reflects the incoming light. In particular we consider here the

Agsqr > (3.30)

Aour, > (3.31)
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balanced BS whose transmission and reflection probabilities are equal to 0.5, whose
action is described by:

1 (1 +i
BSi:E<ﬂ 1), (3.32)

where BS and BS_ differ of an irrelevant, for our purpose, phase shift. The mode

operator bj generated by a unitary evolution U on modes aL, will be: b;r => Uik a}; .
A MZI interferometer is composed of cascaded two BS interspersed with a PS (Fig.
3.3). In the lossless scenario, up to a global phase, it is described by:

Figure 3.3. Scheme of a Mach-Zehnder interferometer. A MZI is composed of two
beam splitters (BS) and a phase shift ¢ between the modes, 1 and 2, of the interferometer.
This image is taken from [1].

MZI(¢) = BS4 PS(¢) BS =<C°S(§) _Sm(g)> (3.33)
_ 2 .

sin(§)  cos(

The first BS can be seen as a preparation step of the estimation process, while the
last one as part of the measurement step. In general the output probabilities of
photons exiting from a MZI depend on the phase ¢. Since the Fisher Information
depends on the derivatives of the output probabilities, the probe is more sensitive to
a phase shift change for larger variation of the fringe pattern.

A convenient way to express the MZI operation on electromagnetic modes is
based on Pauli matrices [Egs. (1.2)] expressed through the annihilation operators

for modes 1 and 2 (a; and ag): ox = ajaz + ayay, oy = —i(aJ{aQ - a;al) and
o7 = aJ{al - agag. The following relations hold [507]:

PS(¢) — e—l¢0z/2 BS:t — 6:|:17r0;</4

3.34
MZI(¢) = BS; PS(¢) BS_ = e71%7v/2, (3.34)

Two cascaded independent PSs interspersed by a MZI can realize any unitary
belonging to Lie SU(2) group. MZI transformation is used also as interferometer in
other degrees of freedom like polarization, for which the BSs are replaced by HWPs
rotated by 22.5°.

Besides the applications to Quantum Metrology and in general to quantum
information tasks, a MZI can be also the testbed for foundational tests, like those
exploring wave-particle duality of photons [508, 509, 510] or even quantum gravity
phenomena when the probes are massive systems [511, 512].

Estimation of multiple phases

An important task in quantum multiparameter estimation is provided by those
problems where the physical quantities to be estimated are multiple phases. This
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scenario has been intensively studied in the last years [486, 429, 513, 514, 485, 515,
516, 517, 487, 518, 482, 467, 519, 520, 521, 14, 15]. More specifically, the unknown
parameters are relative phases corresponding to different paths in an interferometer
with respect to a common reference. Besides direct mapping of this problem to
quantum imaging, multiphase estimation can represent a benchmark suitable for
tests of quantum multiparameter protocols. Its importance and generality derives
also from the fact that unitary evolutions generally introduce a phase in the evolved
states.

Let us now consider multiphase estimation in a multiarm interferometer. Here,
the unknown parameters are a set of phases (relative to a reference) along d arms
of an interferometer: ¢ = (¢1,¢2,...,64). The general scheme of a multiphase
estimation is sketched in Fig. 3.4. Preparation of the probe along the (d + 1) paths

State

preparation Phases encoding Measurement
P A
1 B
— (023 4’“’ Results Estimator
d+1 pln. UA Po U¢ Po UB Py in X — (D(X)
— Z —»]
P

Figure 3.4. Multiphase estimation scheme. An initial probe p', living in the space
of the (d 4 1) paths, is prepared in a state py through a unitary evolution U4. Then,
the probe interacts with the phases ¢y, ..., ¢4 according to an evolution Ug. The state

is measured by means of a unitary U? followed by a projective measurement, giving
outcome x. Finally, an estimate of the unknown phases is given by a suitable estimator
®(x). This image is taken from [1].

is realized by an operation U4, considered to be unitary for simplicity. After the
evolution Uy, that depends on the unknown phases ¢1, ..., ¢4, the state is measured
through a second unitary U? and projective measurements performed on the output
paths. Finally, a suitable estimator ®(x) = [®1(x), P2(x), ..., Pyg(x)] provides an
estimate of the phases by exploiting the m measurement outcomes & = (x1, ..., Ty )-

For pure input probes, prepared in |¥y), the state after the phase unitary

. d
evolution Uy reads |¥y) = Uy| Vo), where Uy = e 22i=1 919 In this expression,
each O; represents the generator of the phase shift ¢; along the mode 7. When the
operators O; mutually commute, and hence [O;, O;] = 0 Vi, j, the Quantum Fisher
Information matrix Fq takes the following form:

Fo(9)ij = 4[(0:05) — (0:)(0;)], (3.35)

where the average (-) is calculated with respect to state |¥g). When the phases are
those corresponding to independent modes, the generators are O; = n;, where n; is
the photon number operator for mode i. Since [n;, n;] =0 Vi, j, from (3.35) we find
that Fq(¢)i; = 4[(nin;j) — (n;)(n;)]. Hence, the Quantum Fisher Information Fq,
of a single phase ¢; corresponds to:

Fog, = Fqii = 4((Any)?), (3.36)

where (An;)? is the variance of the photon number operator n;.

One of the first studies on simultaneous quantum enhanced estimation of multiple
independent phases was performed in Ref. [485]. The authors considered probe states
with a fixed number of photons, and a number d of independent phase differences to
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be estimated for d modes of an interferometer with respect to an additional reference
mode. The simultaneous estimation of the phases can provide an advantage in
the variance that scales as O(d), with respect to the best quantum strategy that
estimates such phases individually [485]. In particular, this result is demonstrated
using suitable optimized projective measurements on the optimal quantum probe
states of the form:

1
[0,N,...,0,0) + ... +10,0,...,N,0)+
d++d

|l>opt

d++Vd

where N is the number of photons contained in the probe state. The state is
distributed along d 4+ 1 modes and the last term of the superposition indicates N
photons occupying the reference arm. Such optimal states lead to a total variance
equal to:

+10,0,...0,N)] + IN,0,...0,0),

d _ d)2d
S (ag0R, > T [Fyp ) = LV (3.39)
=1

This leads to an advantage (in the variance) of a factor O(d) with respect to the
optimal separate quantum single-phase estimation leading to Tr [F?Sp 71] > d3/N2.
This enhancement achieved by performing simultaneous estimation can be found
also with noncommuting unitary parameter generators [522] and in the presence of
small amount of losses [479]. A simultaneous multiphase estimation can even provide
a higher advantage by using entangled coherent states [516, 513]. In particular, Ref.
[513], generalizes the result of Ref. [485] studying generalized multimode NOON-like
states with arbitrary states along the non-vacuum mode.

Multiphase estimation in multimode interferometers has been theoretically stud-
ied in Refs. [518, 523]. A bound on the achievable sensitivity using separable probe
states has been obtained [518], providing conditions of useful entanglement for the
simultaneous estimation. A multimode interferometer is composed of two cascaded
(d + 1)-mode balanced multiport splitters (the (d 4+ 1)-mode extension of beam
splitters), resembling the structure of a Mach-Zehnder interferomer. The internal
modes include d independent phase shifts between the different internal paths with
respect to one of the modes acting as a reference. In Ref. [518] the authors study
input multimode Fock states [1); ® |[1)2 - - ® |[1)g41 = |11 - -1), where |1); represent a
single photon along the mode i. The benchmark for the sensitivity in Eq. (3.12) is
given by the lower estimator variance, achievable by using m separable photons to
jointly estimate the d phases [460, 518]:

Sags TE@N, (3.3
=1

m

IS

This limit is valid for each separable state transformed by the action of the phase
generators, and for all possible POVMs. Hence, it represents the classical limit in this
scenario. Useful entanglement is then present in the state when the variance of the
estimator is lower than the bound (3.39). Such bound can be surpassed by injecting
indistinguishable photons into the multimode interferometer [518]. To reach optimal
and symmetric bounds for each value of the jointly estimated phases, an adaptive
estimation protocol can be in principle exploited (Sec. 3.1.4). This is obtained by
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employing additional control phases along the mode of the interferometer to perform
adaptive measurements [518].

A deeper insight in multiphase estimation is obtained by using the CRB/QCRB
inequality in its matrix formulation of Eq. (3.10): Cov(¢) > F~1(¢)/v > Fél(gb)/l/,
being v the number of repeated independent measurements. The relevance of consid-
ering the covariance matrix Cov(¢) to study the sensitivity bounds is highlighted by
the possibility to compare any target scenario, with corresponding Fisher information
matrix Fiarget, With a benchmark state associated to a Fisher information Fpench.
As shown by Ref. [467] such comparison can be studied through the matrix Ferget -
Fpench- Indeed, the number of positive eigenvalues of this matrix corresponds to the
number of independent combinations of the unknown parameters [467] for which
the target state provides an enhancement compared to the benchmark state.

3.1.3.1 Photonic platforms for multiphase estimation

Photonic systems represent the most natural platform for multiphase estimation
problems. Surprisingly, not many experimental realizations of quantum multiphase
estimation have been reported.

As previously discussed, a relevant benchmark problem is represented by the
estimation of different optical phases along different spatial paths, with direct
application in the vast area of imaging. Integrated circuits represent an ideal and
scalable platform to investigate experimentally such scenario. Besides the quality of
spatial mode interactions, integrated photonics provides the stability that is necessary
to estimate relative phases along different paths, which is almost impossible to achieve
in bulk optics platforms because of thermal fluctuations and mechanical vibrations.

The work [14] realized during this thesis, represents the first experimental
implementation of multiphase estimation enhanced by quantum states (Sec. 3.2.1).
The employed platform is an integrated three-mode interferometer realized through
the femtosecond laser writing technique (Fig.3.5a). After calibrating the device, the
capability to achieve quantum advantage in multiphase estimation was experimentally
demonstrated by performing two-photon measurements [14]. In particular, the Fisher
Information of the device Fex, was estimated from experimental data and compared
with that relative to the optimal simultaneous strategy with separable probes (F.).
For some values of the unknown phases, the matrix Feyp - Fo has two positive
eigenvalues demonstrating a quantum advantage reached by the circuit. Such
advantage can be in principle extended to all pairs of phases through adaptive
protocols (Sec. 3.1.4). The sensitivity enhancement was achieved experimentally
with respect to classical strategies, considering as resources the number of effectively
detected coincidences [14]. The same setup has also been exploited in Ref. [15] for
the implementation of a Bayesian adaptive multiphase estimation [394] using single
photons inputs (Sec. 3.3.2).

Recently, distributed quantum sensing of the linear combination (arithmetic
average) of multiple small phases along four distant nodes was performed [520].
The scenario [528] is a network of M nodes along which independent relative phase
shifts ¢;, with ¢ = 1, ..., M, one for each node, are experienced by the probes. The
final goal is to estimate the arithmetic average of the phases: ¢ = 2%1 oi/M. The
employed probe state is a squeezed coherent state of the form D(a)S(r) |0), where
D(«) is the displacement operator with amplitude «, and S(r) is the squeezing
single mode operator with squeezing parameter r [1]. The output state is detected
through homodyne detectors along each node, thus measuring the phase quadratures
P; (i = 1,...,M) representing the estimators for the phases. Given such kind of
state, two classes of estimation experiments are possible: (i) separable estimation in
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Figure 3.5. Photonic platforms for multiparameter problems. a Integrated plat-
form for the simultaneous estimation of two phases A¢1 = ¢1 — @ref and Ads = Yo — Yref-
The probe states are two indistinguishable photons. The unitaries Uy, p represent
the 2-D decomposition of tritters, while R; are the resistors used to tune the phases.
Described in Ref.[14]. b Scheme of the apparatus for the distributed sensing of the
average of four phases ¢1, ..., 4. In the entangled estimation, the probes are squeezed
coherent states generated in the optical parametric oscillator (OPO) and distributed
along the four nodes through 50 : 50 beam splitters (BS). The measurement of the
phase quadrature p;, along each node i, is performed by the homodine detection HD;.
Finally the average estimation is performed. Described in Ref. [524]. ¢ Scheme of the
Mach-Zehnder interferometer in polarization, realized to perform measurements of phase
and visibility of different samples. The probes are two-photon NOON state in polarization.
Described in Refs. [525, 526, 527]. This image is taken from [1].

which M independent and identical squeezed coherent probes are sent each along
a single node, thus separately estimating the associated phases, and (ii) entangled
estimation in which a single initial squeezed coherent state is equally divided along
the M nodes by initial beam splitters, that generate mode entanglement in the
probe state (Fig. 3.5b). The authors in Ref. [520] showed that, in the ideal case of
unitary transmission, the optimal sensitivity for the entangled estimation shows a
Heisenberg scaling 1/(M N) in both the number of modes M and mean number of
photon N. This is obtained by optimizing over the initial probe state. Conversely,
a separable estimation leads to a SQL scaling in M and Heisenberg scaling in N:
1/(v'MN). The authors experimentally demonstrated this entangled advantage in
a network of M = 4 nodes and a probe state generated by an optical parametric
oscillator at wavelength 1550 nm. In particular, using optimal probes containing
N = 2.5 photons per mode, the measured standard deviation of ¢ estimated was
found equal to geny = 0.099 4+ 0.003 for the entangled estimation strategy, while
being equal to ogp = 0.118 £ 0.002 for the separable estimation one [520]. The
optimality of the demonstrated setup for estimating the average phase has been
proved in a general framework by Ref. [521].

A similar implementation of an entangled sensor network, based on Ref. [52§],
was experimentally realized in Ref. [529] through a reconfigurable radiofrequency
photonic platform. The probe is a phase squeezed state that is prepared through
tunable beam splitters that allow to generate a continuous variables multipartite
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entangled state along three separated sensors. Tuning the beam splitters, different
states can be produced in order to maximize the sensitivity for different tasks, such
as phase gradient and mean amplitude estimations.

Finally, realistic scenarios involve the unavoidable presence of noisy channels.
Here, multiparameter estimation of both phase and noise represents a valid solution.
A possible approach can be performing an a-priori characterization of noise before the
estimation process. However, in many cases time-varying systematical errors cannot
be characterized in advance, such as phase oscillations due to thermal or mechanical
fluctuation of optical systems [530, 531]. In these cases simultaneous estimation of
phase and noise is necessary [532]. All these studies generally require calculation
of multiparameter bounds in which noise is considered as a non-unitary evolution.
An experimental implementation of simultaneous phase and dephasing estimation
was demonstrated in Ref. [533]. In a different work[534], weak measurements were
exploited to experimentally perform multiparameter estimation of a phase shift
and its phase diffusion with classical probes. In Ref. [525] an optical phase shift ¢
and noise over the probe state, measured in terms of visibility v of the interference
fringes, have been simultaneously estimated (Fig. 3.5¢). Other photonic quantum
sensors exploited in multiparameter scenarios that do not involve phase estimation
are reported in [1].

3.1.4 Adaptive protocols for phase estimation

Different estimation protocols have been defined [358, 535], and can be included
in a few fundamental categories. A first example is provided by parallel protocols
(Fig. 3.2) in which all the probes, entangled or not, interact in parallel with the
system [536, 478]. A second class is composed of sequential (or multiround) protocols
[537, 538, 473] where single probes interacts multiple times with the system. Finally,
ancilla-assisted schemes [472, 539, 540, 541, 542, 543] are those where a part of the
probe, generally entangled with the other part, does not interact with the system
and is directly measured. All these protocols can be non-adaptive [2] or adaptive
[544, 491]. Here we focus on adaptive techniques, that represent a powerful tool to
enhance the performances of estimation processes [544, 491, 545, 546, 547, 548, 473].
In non-adaptive estimation protocols, the available probes are sent through a fixed
apparatus and, after collecting the full data set, a final estimate of the unknown
parameter A is obtained. Conversely, adaptive techniques make use of suitable
controls on the experimental setup, namely some physical parameters 8, such
as additional feedback phase shifts, that can be adjusted during the estimation.
Adaptive and entangled protocols can enhance metrology tasks, especially in presence
of noise [535, 549]. Adaptive protocols do not give advantages with respect to non
adaptive schemes when the estimation involves quantum channels that are (jointly)
covariant with teleportation, such as the Pauli or erasure channels. In this case,
Ref. [550] showed that the optimal performance is limited to the SQL, by adapting
techniques previously developed for Quantum Communication [551]. A discrete-time
class of adaptive protocols can be schematically represented through the repetition,
for each probe, of the four-step cycle as shown in Fig. 3.6.

(i) The first step is dedicated to the preparation of an initial probe pj,, through a
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process Up(x) that depends on certain parameters @ and, if available, on the
results « of previous measurements.

(ii) At a second stage, the prepared probe pg(0) interacts with the studied sys-
tem and evolves under a unitary U (for simplicity we are assuming unitary
evolution) in pa, (6, A).

(iii) Then, a measurement II, is performed and its outcome z is recorded.

(iv) The final step of the cycle is post-processing of the measurement results. This
step includes the choice of the parameters € determining the action Up(x) to
apply to the initial probe of the successive cycle.

This cycle is repeated for all the probes. Finally, an estimator A(x) based on all
measurement results x provides an estimation of the unknown parameter \.

START
Pin
Initial state

PROBE STATE
PREPARATION
Po(6)

LEARNING and INTERACTION-
FEEDBACK ACTION PARAMETER
Ug(X) ENCODING U

L
X
l Results I, Prin(6,4)

Figure 3.6. Conceptual scheme of an adaptive estimation protocol. The cycle of
a general adaptive estimation protocol starts from an initial state py,, that is prepared
(blue box) in a state po(#) through the action of Uy. Such state interacts with the
unknown parameter A (brown box), and then the output state pg, (0, A) undergoes an
appropriately chosen measurement II,, (gray box). After such measurement, the results
X are exploited to define a suitable action Uy(X) (orange box), employed to prepare
the initial state of the next probe. In this way, the cycle is repeated for all the probes.
At the end of the process, an estimator provides the final estimate of 8. This image is
taken from [1].

Exploiting adaptive protocols for Quantum Metrology was proposed in 1995
by Wiseman [544]. Such protocols are necessary in order to overcome different
issues. For instance, they can be used for the realization of the optimal POVM to
saturate the QCRB. In certain scenarios, such POVMs can be hard or impossible
to implement. In this case, approximation of such measurements can be achieved
by adaptive techniques [546, 455]. In particular, to approach the QCRB one has
to maximize the Fisher Information of a given setup. However, the latter quantity
depends in general on the unknown parameter. More specifically, given an initial
probe, the QCRB is attainable only when the unknown parameter takes a value
which maximizes the Fisher Information. Nevertheless, it can be demonstrated



3.1 Quantum Metrology: Fundamentals 113

that, even with no prior knowledge on the unknown parameter, the QCRB can be
asymptotically saturated by exploiting adaptive techniques [483].

A second scenario where an adaptive approach represents a useful resource is
found for those systems where the output probabilities, calculated at different values
of unknown parameter, take the same value. For instance, if we consider A = ¢
the internal phase of a Mach-Zehnder interferometer seeded by single photons, the
output probability (P, = 1 — Py = cos? %) is such that, in the range ¢ € [0, 27],
two different values of the phases lead to the same probability P, # 0. Indeed, the
latter is not an injective function of the phase. Hence, without changing the relative
phase shift during the experiment, it is impossible to discern the two equivalent
phases leading to the same probability. Conversely, by changing the total phase
shift during the estimation process, for instance through another known control
phase, it is possible to solve such issue. In any case, when the output probabilities
are periodic with a period less then 27, it is impossible to distinguish some phases.
In such cases, one could employ an adaptive protocol where the probe state can
change at each iteration, thus changing the likelihood function and its periodicity.
For instance, during the first steps one can employ probes whose likelihood has no
periodicity, in order to restrict the range of possible unknown phase values. When
the range is sufficiently small, more sensible states with smaller periodicity can be
used [552]. However, the validity of such recipe depends on the problem symmetries.

Furthermore, an important task where adaptive protocols can be helpful is the
convergence to the ultimate precision bounds in the limited data scenario [454, 553].
The latter regime characterizes different realistic conditions where the amount of
resources that can be employed is restricted. In the single-parameter case, theorems
guarantee that it is always possible to define suitable measurements and estimators,
allowing to reach the minimum error achievable with a given probe state (Sec. 3.1.2).
However, this capability of reaching the ultimate bounds is guaranteed only in the
asymptotic regime. Conversely, when only a limited number of probes is available,
identifying the optimal strategies is a difficult task. To this end, one can employ
adaptive protocols, leading to a boost in the convergence to the asymptotic limits.

Finally, adaptive protocols have to be taken into account to achieve the true
quantum limits [554]. Importantly, feedback and error-correction schemes can be
exploited to face noises and/or time-varying parameters [555, 556, 557, 558, 559,
560, 561, 562, 563, 549, 564, 565, 566, 567, 568].

There exist two prominent approaches to feedback-based phase estimation:

- Online schemes: At each step of the estimation protocol, the feedback is
calculated according to the previous measurement result and a heuristic. An
important class of these schemes is represented by Bayesian adaptive protocols
(Sec. 3.1.4.1). Here, at each step of the protocol, the posterior probability
evolves based on measurement results. In this way, the posterior is used to
calculate the optimal feedback action to be applied at next step. Note that
optimality is defined depending on the particular problem and heuristic.

- Offtine schemes: The feedback values used during the experiments are com-
puted before the estimation process. The goal is then the optimization of such
sequence of feedback values. Different optimization techniques based on trial
and error approaches can be exploited, such as those based on Particle Swarm
Optimization (PSO) [569, 570] and Differential Evolution (DE) [571, 572, 573].

Finally, adaptive protocols can be also exploited to enhance state discrimination
and more general in quantum tomography [574, 575, 576, 577]. This has been
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experimentally demonstrated in the estimation of the photons polarization [578, 579,
580, 581, 582].

3.1.4.1 Adaptive Bayesian protocols

Bayesian estimation (Sec. 3.1.2.2) naturally fits the requirements for adaptive
protocols. In this framework, the posterior distribution is updated at each repetition
of the estimation cycle [Eq. (3.23)]. The information encoded in this distribution
can be exploited to choose the optimal feedback action according to the protocol
heuristic.

One of the first adaptive phase estimation, providing an experimental demon-
stration of the proposal in Ref. [544], was realized exploiting adaptive homodyne
phase measurements on coherent states [583]. Coherent states with homodyne
measurements were also employed for adaptive estimation of a continuously varying
phase, beating the non adaptive filtering limit [584]. HL scaling, in this kind of
schemes, cannot be achieved by employing coherent states as probes. However,
an enhancement of a constant factor with respect to SQL can be obtained. Also
coherent states discrimination can be performed through adaptive schemes [585].

When employing quantum states, one can reach improved scaling in the estimation
process. In this regime, when the phase to be estimated is completely unknown (flat
prior distribution) adaptive techniques can be employed [491, 586]. This is the goal of
an ab-initio quantum phase estimation experiment that was experimentally realized
by Ref. [587]. In such realization, a sequence of different states is used and detected
by a probabilistic photon-number resolving detection. The employed Bayesian
protocol is composed of a first step with random feedback. Subsequently, after the
measurement of a group of single-photon events, the posterior probability is updated
and the next feedback is calculated by optimizing the expected sharpness function
[Eq. (3.27)] over the possible results of the next measurements. Using suitable
sequences of states (with photon numbers N = 1,2, 4), the SQL was surpassed [587].

The SQL can be overcome by employing other classes of states, such as Gaussian
squeezed states with squeezing parameter r that reach a value for the variance
[588, 589] equal to V' = 1/[2N sinh(2r)]. Since for this resource state the optimal
Fisher Information depends on the unknown phase, an adaptive protocol has to be
employed, and Bayesian estimation can be exploited for this purpose. Given this
class of input states, a Bayesian protocol for ab-initio phase estimation has been
experimentally realized using squeezed states and homodyne detection, together with
real-time feedback [590]. The phase of a squeezed state is measured with respect to
a local oscillator through homodyne detection. More specifically, a first set of data
is exploited to perform a rough estimation of the phase. Then, the local oscillator
phase is adjusted to the value that lead to the minimum error in the estimation
process [590]. Finally, also two mode squeezed states can be exploited in adaptive
protocols [591].

Bayesian adaptive estimation can be used to reach the HL. with single photons
in multipass configuration without the need of entanglement as demonstrated in
Ref. [473]. In this case, single photons are employed for a multipass polarization
interferometer estimating phases through a generalized Kitaev’s algorithm [592].
An adaptive hybrid approach, exploiting simultaneously polarization entangled 2-
photon states and a multipass configuration (with N = 3 passes per state, two for
one photon and one for the other), achieved within 4% the exact value of HL at
finite number of resources [593]. This implementation demonstrated the theoretical
proposal of Ref. [546]. The optimal state for this protocol is [546, 593]: |Yopt) =

co |®T) + c1 [UF), with |®F) = (]0,0) + |1,1))/v2, [¥F) = (|1,0) + [0,1))/v/2 and
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¢j = sin[(j+ 1)77/5]/\/Z,1€:0 sin[(k + 1)7/5]? and was realized through a probabilistic
control-Z gate [594] between two SPDC photons.

An efficient and robust adaptive Bayesian phase estimation protocol, called
rejection filtering [595], was realized exploiting the evolution of pairs of photons in
a silicon circuit. The latter implemented adaptive unitaries that depend on single
events, extracted from collections of photon statistics [596].

An adaptive estimation experiment based on single-photon inputs was realized
in a bulk Mach-Zehnder interferometer in the path degree of freedom, implementing
two different Bayesian techniques [597]: (i) particle guess heuristic, in which at each
step the feedback phase is randomly drawn from the posterior distribution [595] and
(ii) an optimal heuristic, which is derived analytically by optimizing the Bayesian
mean square error of the future events over the feedback, under the assumption
of narrow Gaussian prior [597]. In particular, the last optimized technique shows
better performances than the PSO (discussed in details below) and the particle
guess heuristics. Furthermore, such optimized technique has been experimentally
demonstrated to be robust against different classes of noise.

3.1.4.2 Machine Learning offline estimation techniques

Offline machine learning techniques can be exploited to enhance quantum phase
estimations. Machine learning techniques [598, 599] applied to physical problems
represent a new, rich and continuously growing research area in which learning
tools are used to enhance quantum information tasks [1]. Such techniques can be
also used to calibrate quantum sensors [600]. Remarkably, machine learning-based
protocols have been developed also for adaptive Quantum Metrology [569, 570, 595,
596, 597, 572, 573, 571, 601, 602] and entanglement-assisted supervised learning in
an entangled sensor networks can be exploited for sensing tasks [603].

Two significant machine learning techniques employed for Quantum Metrology
with an offline approach are PSO [569, 570] and DE [572, 573]. Such techniques are
able to self-learn the optimal feedback strategy to reach the ultimate limits on the
scaling of the phase estimation uncertainty, with limited number of measurements.
They are both based on reinforcement learning that is model-free, since it does not
necessarily rely on the explicit model of the problem, but mainly on experience
acquired from data. Even if a mathematical model is available, reinforcement learning
techniques can surpass gradient-based greedy algorithms for non-convex optimizations
in high-dimensional problems. In particular, PSO and DE are evolutionary algorithms
[604, 605]. Such algorithms often resemble biological evolution mechanisms and are
characterized by the following features: the presence of a population of points in
the search space, the existence of a figure of merit called fitness to be maximized
and, finally, stochastic evolution of the solutions. One of the biggest advantage of
evolutionary computation is the low probability of getting stuck at local optima
of the function, since the space is explored by many candidate solutions and the
optimization of the searching process happens in a quasi-random way.

For phase estimation tasks, such approaches are applied to calculate, prior to the
experiment, the sequence of optimal feedback phases shifts to be used during the
adaptive experiments with N probes. Considering a Mach-Zehnder interferometer,
at each step k of the experiment, the optimal feedback phase ®; can be updated
according to the following Markovian rule with a logarithmic-search heuristic:

Dy = Pp—y — (—1)" T AD, (3.40)

where ®_; is the feedback phase at previous step, and z;_1 € {0,1} is the result
of the measurement at step k& — 1. The list of optimal phase shifts {A®} for
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k=1,...N is called policy. The final estimate for the unknown phase ¢ coincides
with the last value ®5 of the adaptive feedback phase at the end of the process
according to Pegy = P .

PSO is part of a class of unsupervised reinforcement learning algorithms for
optimization problems [606, 607], and can be exploited to compute the list of phase
shifts {A®y} discussed above. The goodness of a policy is quantified by the sharpness
of Eq. (3.27) relative to the estimation errors. Hence, the average of the sharpness
is calculated over P(f|p), that is the probability distribution of the error € on the
estimate given a policy p. In this way, the sharpness in Eq. (3.27) is the objective
function that is maximized by PSO over the policies, and is related to the Holevo
variance. When the sharpness is maximized, the Holevo variance is minimized. Given
the number N of employed photons in the estimation process, the goal of the PSO
algorithm is to find the optimal policy by maximizing the associated sharpness. At
each iterative step of the algorithm, every policy is mapped to a vector and compares
its fitness with those relative to its neighborhood and to its past history. Then, the
policies are updated according to a stochastic evolution rule depending on global
and local optima. After a certain number of iterations, the last global optimum
represents the solution of PSO. In Ref. [597], an adaptive scheme using PSO policies
was realized using single photons in a path Mach-Zehnder interferometer, and SQL
was approached after few photons (~ 20).

However, it has been observed that PSO algorithm converges to optimal solutions
only when the number of probes is small, and this limitation can be overcome by other
techniques like Differential Evolution [571, 572]. DE is an evolutionary algorithm
that performs a global optimization in the policies space by selecting and rejecting
candidate policies according to their sharpness value. In particular, after a random
initialization of candidate policies, at each iteration of the algorithm new polices are
generated by combining randomly chosen policies. The policies with highest fitness
values are then selected for the next step. This procedure is iterated until a halting
condition for the fitness of the best policy is reached. These techniques are also
resilient to different models of noise [573].
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3.2 Experimental estimation of multiple phases inside
a multiarm interferometer

The simultaneous estimation of more parameters inside a physical system repre-
sents the natural generalization of the single parameter problem (Sec. 3.1). While
the single parameter case has a well-established theoretical framework [359], with
more parameters there are still open questions. This is the case for example of
non-commutative quantum measurements, in which the general strategies to achieve
the ultimate bound are not defined [478, 447, 479, 481, 482]. This is due to the
impossibility in some cases to simultaneously optimize these measurements over all
parameters [483]. On the other hand, in presence of d-compatible parameters, the
multiparameter scenario shows advantages of a factor d with respect to the separate
estimation of the single parameters in terms of variance [484]. Further, in many
problems, different parameters can not be treated separately and their simultaneous
estimation becomes necessary. For all these reasons, the multiparameter Quantum
Metrology finds lots of applications [427], such as phase imaging [608] and measure-
ments on biological systems [609], quantum process tomography [610], gravitational
waves parameters estimation [360] and more general quantum sensing [486]. Here,
both the theoretical and the experimental investigations represent necessary steps to
improve the research [1], but the number of experimental demonstrations is surpris-
ingly few (Sec. 3.1.3.1). This is the case of simultaneous estimation of optical phase
and its diffusion noise [532, 533, 534], phase and probe visibility [611], parameters
in a quantum tomography process [610], quadratures [612] and finally the indirect
inference of a single physical quantity depending by the simultaneous measure of
multiple phases [520]. Conversely, several theoretical works have been reported in
this direction. Remarkably, single-phase estimation is a fundamental problem in
Quantum Metrology, as well as the estimation of multiple phases. Indeed, as shown
in Sec. 3.3.1 these scenarios allow not only the mapping of several physical systems,
but also represent crucial tools for testing the corresponding Quantum Metrology
frameworks. Several theoretical works have been reported multiphase estimation
scenario [517, 518, 460, 486, 485, 613, 361, 514, 516], while no experimental realiza-
tions have been reported yet.

Thus, the main investigation of our Metrology research exploited an integrated
multiarm interferometer injected by multiphoton states, representing the most
suitable platform for the simultaneous estimation of multiple phases [518]. This
platform presents several advantages in terms of stability, tunability, and compactness
[614, 28]. The first fundamental point for Metrology purposes concerns the correct
calibration of the device [14, 16], allowing the correct identification of the effective
achievable performances. Then, using the interferometer, a quantum-enhanced
two-phase estimation in a non-adaptive regime [14] was experimentally realized for
the first time.
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3.2.1 Multiphase estimation on chip

Calibration of the device

a interferometer layout

=
£
— =
PBS b2 integrated FBS —
A P interferometer ey
HWP FBS :
IF ) APDs
i PBS p2 . . L
b generation ¢ coupling and detection Trigger

Figure 3.7. Experimental apparatus. a, Layout of the integrated reconfigurable device.
Three straight waveguide segments are included between two multiport splitters Uz
and Up. The dynamical control of the phases is achieved by thermo-optic phase
shifters. Central inset: conceptual scheme of the interferometer. Top left inset: layout
of the multiport splitters U45, each composed of three directional couplers (T, f} ég,
green regions) and a dynamically reconfigurable phase (@ra,z, red). By appropriately
tuning p7a,5 the two multiport splitters can be set to operate as balanced tritters.
b, Parametric down-conversion source for generation of single-photon and two-photon
states. The dotted path is employed to inject classical light into the device for the device
alignment. The generated photons (p; and ps) are coupled in single-mode fibers and
sent to the integrated device. ¢, Coupling and detection stage. Photons are coupled to
the device by an input fiber array (single-mode operation), and collected with a second
fiber array (multimode operation). For single-photon inputs, photon (p3) is directly
measured to act as a trigger. For two-photon inputs, both photons are injected in the
interferometer, and the output state is measured by adding a set of fiber beam-splitters
to detect bunching events. Legend - PDC: parametric down-conversion, SHG: second
harmonic generation, DM: dichroic mirror, HWP: half wave plate, PBS: polarizing beam-
splitter, IF: interference filter, PC: polarization controller, FBS: fiber beam-splitter,
APD: avalanche photodiode. This image is taken from [14].

The employed device is a three arm interferometer working at 785 nm, fabricated
by FLW (see Fig. 3.7a). The chip has a highly degree of reconfigurability, given
by six thermo-optics phase shifters. These are resistors placed near the integrated
waveguides, generating phase shift along them when dissipating power (Sec. 1.1.3.1).
The structure of the interferometer is composed by two external tritter operators
(UA,UP) interposed by phase shifters along three internal arms. A fine tuning of
each tritter is possible by changing an optical phase, respectively ¢4 and ¢p. In
particular, U4 (UP) realizes a balance tritter when |p4| = 7/2 (|¢p| = 7/2), thus
engineering a reconfigurable 3-mode Mach Zehnder. The mathematical description
of a tritter in a two-dimensional decomposition, in the lossless case, is given by
a unitary matrix U4 defined by its decomposition into cascaded two-mode beam
splitters and a phase shifter [615], as shown in Fig. 3.7. The first directional coupler
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Figure 3.8. Measured input-output probabilities (points) and relative fitted curves (dashed
lines) as a function of the dissipated power by resistor Ry (a-c), R (d-f), Rs (g-i) and
R4 (j-1), where each resistor has been tuned separately. a,d,g,j: Input 1. b,e,h,k: Input
2. ¢,f,i,I: Input 3. For each plot, output 1 corresponds to red points and lines, output 2

to green ones, and output 3 to blue ones. Those data are fitted to retrieve the values of
the device parameters. This image is taken from [14].

mixes the first two modes of the interferometer. Assuming a lossless evolution,
the reflectivity and transmission coefficients of the coupler R{' and T{! are related
according to R{l +T lA = 1. Hence, the directional coupler is described by the unitary

trix U
matrix T 1_Tf4 Z\/T71A 0
WA 1T o

0 0 1

Uz, = (3.41)
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Input 1

n2 Bor

Figure 3.9. Measured single-photon input-output probabilities P(i — j) as a function of
phase differences A¢; and d¢o, tuned by simultaneously varying the dissipated power
in resistors Ry and Ry. Points: experimental data. Surfaces: curves obtained from the
characterized parameters and from the employed model. a-c, Input 1, d-f, input 2 and
g-i, input 3. For each input, the three plots correspond to the three different output
modes. This image is taken from [14].

The second directional coupler mixes the second and the third modes and is described
by the unitary matrix:

1 0 0
vp=|0 J1i-78 it |, (3.42)
0 i1 Ji-Tf

where Tj3' is the transmission coefficient of the second directional coupler. To obtain
the tritter transformation, an additional phase shifter PSwT , that introduces a
phase @a between the first arm and the other two is required. Such transformation
is described by the following matrix:

era 0 0
PS,,=( 0o 10]. (3.43)
0 01
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Finally the first two modes interfere again in a third directional coupler Uﬁ , whose

action is described by the same matrix of Eq. (3.41) (with T§' as the transmission
coefficient). The first tritter is then described by a unitary matrix obtained as an
appropriate product of the previously defined transformations:

UA=U4 - PS, , - U, - Up . (3.44)

The values of the transmission coefficients and the phase shift to obtain a symmetric
tritter described by U®) are: TP = T4t = 1/2, Ts* = 2/3 and |ppa| = 7/2.

After the first transformation, the three phases embedded within the three
internal arms of the interferometer (Fig. 3.7) are described by the matrices:

et 0 0
PSI(@I) = 0 1o )
0 01
1 0 0
PSQ((,OQ) =(0 €% 0 s (3.45)
0o 0 1
1 0 0
PSS(‘Pref) =0 1 O ,
0 0 eupref

where the latter term is chosen as the reference phase. The final transformation U2
has the same form of U4, Eq. (3.44), with transmission coefficients T8, T8, T8
and internal phase ¢;5. The overall matrix U™ of the interferometer is:

Un = UB . PS3(pref) - PSa(a) - PSi(p1) - UL . (3.46)

Therefore, the device is described by several parameters: the transmission coefficients

of the tritters directional couplers TlA 2’2, phases @ra,5 embedded in U AB and the
three internal phases @1, 2 and et of the interferometer. The output probabilities
for single- or multi-photon states entering in the device can be thus calculated by
using the evolution in Eq. (3.46).

In order to exploit the device and control its reconfigurability, a correct and
complete characterization of these parameters is of paramount importance. The
calibration of a quantum sensor represents a fundamental step as well as its imple-
mentation [16]. This step requires reconstructing all relevant static and dynamical
parameters. The former, described above, are given by beam-splitter transmittivities
and internal phases when no voltage is applied. The latter represent the coefficients
of dynamical response of the device. Considering Pgr, as the power dissipated by
resistor R;, the dynamic description of the multiple action of different resistors can
be computed as:

6
Ag; =3 (ajiPr, + ol PR, ). (347)
i=1

where A¢; (j = 1,2) represent the two optical independent phase shifts generated
by dissipated powers, namely A¢; = p1 — et and Ao = o — pret. The coefficients
aj; and agL are respectively, the linear and nonlinear response coefficients associated
to the dissipation Pg,. The linear terms depend on all the geometric, thermal, and
optical properties of the device [614], while non-linear terms are associated with

variations in the resistance value due to temperature increase. The experimental
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Figure 3.10. a-f, Two-photon probabilities P(23 — ij) as a function of the phase differences
A¢p1 and Ago. The latter are varied by changing the dissipated powers on resistors
Ry and Rs. In all plots, dots are experimental data while surfaces are the theoretical
expectations from the circuit characterization process. Error bars are standard deviations
due to the Poissonian statistics of the measured single-photon counts and two-photon
coincidences. This image is taken from [14].

apparatus used to characterize the chip is shown in Fig. 3.7b-c. Pairs of single
photons at 785 nm are generated with SPDC process, by pumping a type-1I BBO
nonlinear crystal with a 392.5 nm-impulsed laser beam. One photon of the pair is
injected into the device while the other is used as an external trigger for revealing
the first one. Coincidence between these photons are measured by four avalanche
photodiode detectors (APDs), placed at the outputs of the chip and along the
external trigger channel. This allowed us to measure the input-output probabilities
P(i — j) from input ¢ to output j. To fully characterize the response of the device
we measured the detected output coincidences in each input configuration as a
function of the power dissipated by the single resistor. Each resistor is studied
independently, by keeping the other resistors off. Calibration results are shown in
Fig. 3.8. The high quality of operation of the device is confirmed by the average
fidelity of the device with respect to the ideal set of achievable transformations.
Indeed, the fidelity (F)ag, Ag,, averaged over the interferometer phase differences
(AP, Ady), reaches a value (F)a¢, Ag, = 0.963 £ 0.015. Here the fidelity is defined
as F' = ’TI‘[U(A(ﬁl, A¢2)UT(A¢1, A(bQ)”/m, while U(A(bl, A(bz) and U(A(bl, A(ﬁg)
are respectively the ideal and reconstructed transformation for phases (A®;, Ads).
By exploiting the results of the characterization process, it is possible to control
arbitrary phase differences between the interferometer arms by applying a suitable
voltage on resistors R;.

After performing the characterization process, in order to confirm the goodness
of the obtained parameters, we test the device and the quality of our reconstruction.
As a first step, we analyzed the results when multiple resistors are simultaneously
active, by setting transformations U4 and UP as balanced tritters. Comparison
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between theoretical prediction with experimental data dissipating power over two
resistors, are reported in Figs. 3.9 and 3.10. This study is made both in single-
and two-photon regime. In particular, two photon input states are produced by
injecting both the two photons of the generated pair by SPDC process into the
device (without external trigger), still recording output coincidences between them.
Notably, two-photon predictions are studied changing the degree of distinguishability
of the photons pair (Fig. 3.11). This is varied by tuning their relative time delay
o7 through adjustable delay lines. All the experimental results show very good
agreement with the expected ones, thus demonstrating the good quality of our
characterization process. This demonstrates the capability to control the device
transformation by simultaneously operating on multiple thermo-optic phase shifters,
also preserving quantum coherence during the evolution. Furthermore, the reported
data in the two photon regime show a clear signature of quantum interference when
tuning the regime from indistinguishable to distinguishable particles.

207 A¢y =1.745, Ap, = — 0.349
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Figure 3.11. Two-photon measurements P(23 — kl) for an input state with a single photon
on modes (2,3) as a function of the relative time delay 67, normalized over the photon
Hong-Ou-Mandel width o. a, Phase values set at A®; = 1.745 and Ads; = —0.349. b,
Phase values set at A®; = 1.048 and AP, = 2.444. Points are experimental data, while
dashed lines are predictions from the reconstructed parameters. [Red: output (1,2),
Green: output (1,3), Blue: output (2,3), Black: output (1,1), Cyan: output (2,2), Purple:
output (3,3)]. Photon indistinguishability is introduced in the predictions by mixing
the probability with indistinguishable and distinguishable photons with a parameter
¢=(07/9)*  Error bars are standard deviations due to the Poissonian statistics of the
measured two-photon coincidences. This image is taken from [14].

Experimental multiphase estimation

The results of the characterization process allow us to calculate the estimation
performances of the device. As shown in Sec. 3.1.2, the best achievable precision
over the two-phase estimation, quantified by its covariance matrix, can be computed
evaluating the Fisher Information Matrix of the system. Here, we consider two-
photon inputs and balanced tritters as U4 and Ug. The total error in terms of
overall variance is bounded by the trace [Eq. (3.12)] and the optimal precision is
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achieved when the equality is reached. The comparison between the ideal three-
mode balanced interferometer and the resulting one from the fitting parameters is
reported in Fig. 3.12. The results show for all input states the presence of special
regions in the phases space, i.e. the ones within the white circles, where the device
performs quantum enhancement. Indeed, in these regions the corresponding QCRB
by injecting classical probes, i.e. distinguishable photons, is higher than the CRB
relative to indistinguishable photons [613, 485, 518]. While regions corresponding
to quantum-enhanced performances are less extended than the ideal device, the
minimum of Tr(Z~1) achieved by the implemented interferometer is close to the
ideal value. Nevertheless, by exploiting adaptive protocols such performances can
be extended in the full phases interval if only a single region performs better than
classical resources.

Then, we verified the actual performances by implementing a simultaneous
two-phase estimation experiment, by injecting pair of indistinguishable photons
into input (2,3) of the device. In order to demonstrate quantum enhancement
we fix the device in (A¢1, Agpay) = (—1.159,2.810), i.e. within one of the white
circles. Then, we adopted a maximum likelihood estimator in a local framework to
efficiently estimate the phases, from which we expect asymptotic saturation of the
CRB. Results are reported in Fig. 3.13. We observe that the overall error on both
parameters, quantified by >, Var(A¢;), drops below the bound with the optimal
separable inputs. More specifically, the achieved performance overcomes the scenario
in which the phases are estimated simultaneously or separately with classical inputs
having the same overall number of photons [485]. Furthermore, the estimation of
both parameters is achieved with comparable errors, thus leading to a symmetric
estimation of the two phases.

Quantum-enhanced performance can be extended to the full phase interval by
considering the application of adaptive estimation protocols [15, 597, 518, 596, 394].
This can be achieved with our device by exploiting the additional resistors R3 and Ry
present in the circuit. The capability of performing adaptive protocols is particularly
crucial in this multiparameter scenario, where the achievement of optimal [447, 479]
or symmetric [518] errors in all parameters are not always achievable.

Tuning input and output transformations

In order to realize a quantum sensor able to measure reaching the ultimate
precision limits, the optimization of each step of the estimation process becomes
fundamental. Such sensor requires the capability to tune both preparation and
measurement stage, in order to saturate the corresponding QCRB and maximizing
its Quantum Fisher Information. Our device represents an important technological
step in this direction, thanks to its high degree of reconfigurability, allowing us to
implement different interferometers by tuning U4 and UP. In a multiparameter
scenario, the optimization of some estimation problems is possible when the measure-
ment operator and the preparation one satisfy UBU4 = I. This is the case of [482],
which provides conditions for projective measurements to saturate QCRB, showing
that such measurements include the projection over the initial state. Therefore, we
test the ability of our integrated interferometer to realize such transformation. In
particular we exploited the tunable phase of the tritter operators together with two
additional resistors, i.e. R3 and Ry4. The adopted layout is shown in Fig. 3.14a.
The additional phases on R3 and R4 are employed to configure the device such that
UBUA =T (up to a set of output phases). In this way, when (A¢1, Ags) = (0,0)
the interferometer realizes the identity. The results are shown in Fig. 3.14b-c. More
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Figure 3.12. Cramer-Rao bound Tr(Z~!) for multiphase estimation with two-photon
input states. a-c, CRB for the implemented device evaluated from the reconstructed
parameters. a, Input (1,2), b, Input (1,3) and ¢, Input (2,3). d-f, CRB for the ideal
three-mode interferometer. d, Input (1,2), e, Input (1,3) and f, Input (2,3). In the ideal
interferometer case, points where the Fisher information matrix is singular are not shown.
Regions included within white closed curves highlight the presence of quantum-enhanced
performances with respect to the QCRB with two distinguishable single-photon inputs.
This image is taken from [14].

specifically, we observe that the single-photon input-output probabilities P(i — j)
closely resembles the identity matrix (see Fig. 3.14b) at (A¢1, A¢ge) = (0,0), with
a similarity 5 = 1 3, P(i — i) = 0.979 £ 0.008. Similar results are observed for
two-photon inputs (see Fig. 3.14c), thus showing the capability of tuning the input
and output transformations by exploiting the additional phases embedded in the
interferometer. The resulting transformations U4 and UP and the characterization
of their resistors are reported in Supplementary Information of [14].

Conclusions and perspectives

The experimental multiparameter estimation still requires a deep investigation,
in order to realize a quantum sensor which shows real quantum enhancement [1].
The presented three mode MZI represents a building block in this direction. The
integrated structure realized via the femtosecond micromachining technology allows
stability and scalability, unreachable with bulk optics. The large number of tunable
elements, i.e. thermo-optics phase-shifters, paves the way to the reconfigurability
necessary to optimize each step of the estimation process and achieving ultimate
measurement bounds. Our platform can be used to develop new methodologies
and to benchmark their performances. In particular, using this photonic device
we demonstrated experimentally the capability of performing quantum-enhanced
estimation of two optical phases. The simultaneous estimation using as quantum
probes pairs of indistinguishable photons, has revealed performances better than
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Figure 3.13. Results of a maximum likelihood estimator for local phase estimation at
(Ad1, Ad2) = (—1.159,2.810) with input (2,3). Points: experimental data, obtained by
averaging over 100 random sequences of m events drawn from the measured Ng, = 1230
two-photon events. Top plot: red dashed line corresponds to Tr(Z~1), black dashed
line to the optimal sensitivity Tr(H~!) with 2m distinguishable single-photon inputs,
black dotted line to the optimal sensitivity when the phases are estimated separately

with classical inputs. Bottom plot: green points (data) and line (1_1)1{2 correspond to

d(A¢1), blue points (data) and line (I’l)ééz correspond to §(A¢s). This image is taken
from [14].

any other classical strategies, in which the adopted probes were separable states.
Quantum-enhanced performances in multiphase estimation with the implemented

Figure 3.14. a, Conceptual layout employed to tune the input and output transformations
U4 and UB b, Experimental single-photon probability measurements (blue bars) at
(A¢1,A¢s) = (0,0), compared with the identity corresponding to the ideal case (red
bars). ¢, Experimental two-photon probability measurements for input (1,3) and output
(1,3) as a function of (A¢1, A¢s) by tuning voltages applied to resistors Ry and Rs. b-c,
Transformations U4 and U are set to reach the condition UBUA = I (up to a set of
output phases) as described in the main text. This image is taken from [14].
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device can be further improved by changing the input state. For instance, let us
consider a three-photon input where all modes are injected with a single photon. By
evaluating the Quantum Fisher information matrix H obtained after application
of U4 we obtain Tr(H~!) ~ 0.527, which is close to the value 0.5 obtained for
an ideal interferometer. The actual sensitivity after measuring the output state
by applying transformation U? is quantified by the CRB Tr(Z~!), shown in Fig.
3.15. We observe that quantum-enhanced performances can be achieved with
the implemented device, leading to min Tr(Z~!) ~ 0.584, lower than the bound
~ 0.5 + v/2/3 obtained by sending three distinguishable single photons prepared in
the optimal state. Other interesting perspectives can be envisaged starting from
the presented results. On the one hand, enlarging the dimensionality of the system
will enable the investigation of a richer landscape [518]. In parallel, the capability
of fabricating devices with additional controlled phases will allow to develop and
test novel adaptive protocols [597, 596, 394, 518], or to tune the detection operator
searching for the optimal measurement [482]. These ingredients can be combined in
the same platform to develop a novel class of optimal quantum-enhanced protocols,
allowing to efficiently extract information on an unknown set of parameters with
minimal resource commitment.
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Figure 3.15. Cramer-Rao bound Tr(Z~!) for multiphase estimation with a three-photon
input state (1,2,3). a, CRB for the implemented device evaluated from the reconstructed
parameters, and b, CRB for the ideal three-mode interferometer. In the ideal inter-
ferometer case, points where the Fisher information matrix is singular are not shown.
Regions included within white closed curves highlight the presence of quantum-enhanced
performances with respect to the QCRB with three optimal distinguishable single-photon
inputs. This image is taken from [14].
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3.2.2 Quantum sensor calibration through a Neural Network

As seen so far, Quantum Metrology is a promising research field that allows
precision unreachable by any classical sensor. However, a crucial point in the
exploitation of a quantum sensor is the calibration of its functionality [362]. Indeed
possible biases can add errors not visible to standard measurement using tools as
the variance. With the rising complexity of the probed system, such as the case of
multiparameter estimation, the number of variables which threaten the measurement
apparatus and its correct functionality increase. Conventional characterization
methods of the sensors are based on modeling the system starting with theoretical
prediction of the involved physical processes, but the possibility to have hidden
variables arise as the complexity increases. Further, in realistic sensors, the user
has typically access and control over a set of physical parameters, which in turn
modify the internal characteristics of the device. Therefore, the target parameters
are not directly evaluated, but inferred from measured quantities. Optical phases,
determined by electrical signals via thermo-optic effects, are a case in point [614, 28,
616, 617]: here, voltages are the parameters of interest, but the measured optical
signal derives from variations of optical phases. Therefore, the sensor inherently
works as a transductor, mapping the parameters to be estimated onto measured
quantities through a suitable response function, which needs to be characterized
as well. In this respect, spurious effects also concur to determining the response
function, and must be taken into account. This poses major difficulties in the
modeling, and increases the complexity of an experimental characterisation via
conventional methods. Then, these standard techniques generally require a lot of data
to be correctly implemented, together with intensive post-processing. Alternatively,
one could rely on refined a-priori physical models of the sensors, including noise
effects, based on measured quantities. Such intensive approaches, however, become
impractical for sensors of increasing complexity, and unfeasible in the perspective
of commercial devices. Therefore the search for novelty strategies to calibrate
a quantum sensor is interesting as well as necessary in the direction of complex
system investigation for Metrology purposes. Here, machine learning could provide
a favorable tool in order to enhance the calibration process. These are capable of
handling large datasets and of solving tasks for which they have not been explicitly
programmed. In the last few years, several applications of machine learning methods
in the quantum domain have been reported [618, 619, 620], including state and
unitary tomography [621, 622, 623, 624, 625, 626, 627, 628, 629], design of quantum
experiments [630, 631, 632, 633, 634, 635, 636], validation of quantum technology
[637, 638, 639], identification of quantum features [640, 641], and the adaptive control
of quantum devices [569, 570, 571, 642, 572, 643, 596, 597, 573, 644, 645, 601, 17,
15, 646, 647, 648]. Also, photonic platforms can be exploited for the realization of
machine learning protocols [649, 650]. Recently, a first insight on the application of
machine learning methods for the calibration of a quantum sensor has been reported
[600]. In detail, the characterization of an optical phase sensor was carried out
by means of artificial Neural Networks (NNs) [651]. This has demonstrated its
advantages, in that it required no detailed model, relied on the same states for the
calibration as for the estimation, and demonstrated robustness to finite-size datasets
when compared to standard methods. When extending the use of NNs to multiple
parameter scenarios, these features can be preserved, and help to solve a crucial
issue. Variations of the parameters can affect the sensor with expected behaviors,
as well as with undesired cross-talk effects, with the latter generally hard to model,
due to their spurious nature. The effective, non-analytical approach of NNs evades
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these difficulties.

In the work [16], we studied the application of a Neural Network for calibrating
a quantum sensor for the estimation of multiple optical phases. Furthermore, the
approach is proven to be versatile and promising for mass production, as the same
Neural Network is able to calibrate different devices having the same structure.
Such devices are the same reported in the Sec. 3.2.1 and Sec. 3.3.2, that are
integrated three-arms interferometers suitable for a two-phase estimation. Each
device is fabricated through FLW and its structure is highly reconfigurable thanks
to the presence of several thermo-optic phase shifters. In the following paragraph,
the work [16] is presented providing first a brief introduction on the Neural Network
tool.

Neural Network

input layer —— hidden layers — ] ouput layer

Figure 3.16. Examples of Neural Network. a) Each node value of a layer is the results of
the activation function hgz(Z), which depends on the values Z of the previous layer and
a set of corresponding weight . b) The NN maps a feature vector & to a prediction gj:
the & values are associated to the nodes of an input layer, and the output layer provides
gj by means of a series of hidden layers, ruled by the chosen activation functions.

Neural Network (NN) is a machine learning technique able to solve supervised
learning problems [651, 652]. Its functionality looks like the one of the human brain,
and it is highly studied in the artificial intelligence context. NN is able to create a
nonlinear map § = f(&) between a set of features Z and the learning task g. The ¥/
values can be continuous variables, resolving regression problems, as stock prices
predictions [653, 654]. Also the case of discrete variables, concerning the field of
discrimination problems, can be solved by NN, such as for the analysis of medical
diseases [655]. In all supervised learning problems, the starting point is a training
set, typically very large, which provides pairs of (#,%). The NN is a reconfigurable

tool, which takes the ¥ values as input and provides output values gj = fan (@),
representing the prediction of 4. Such tunable structure is controlled during the
learning process in order to correctly predict the right values of the training set.
The main advantage of a NN is the ability to find f(#) without requiring a-priori
modelization of the system and the possibility to be applied to a large set of scenarios
and problems with very promising results. Conversely, in order to realize an efficient
NN it requires a good choice of the features to be used and its architecture. The
structure of a NN is reported in Fig. 3.16. The feature vector & corresponds to the
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input layer, with each element of Z assigned to a different layer node (or neuron).
Then, a series of hidden layers manipulates the starting input nodes calculating
the values of subsequent nodes through certain activation functions hg(Z). The
computation of these functions depends on some weights W, which are reconfigurable
network parameters that connect each node of the previous layer to each node of
the next one. Standard choices of activation function are sigmoid (Logistic function)

h*(Z) and rectified linear unit (ReLu function) ARCM(Z) [651, 652]:

; 1
WE@) = e W@ = max{0,7-3). (3.48)

The last layer is the output layer, which provides a prediction gj of the ¢ values. The
training of the NN consists of continuous iterations, called epochs, during which
the network is interrogated and reconfigured over the weights parameters. When
the network is fixed, the error on the NN predictions can be estimated by the total
Root-MSE (RMSE). As the epochs increase, the network is changed in order to
decrease the next RMSE. Network training typically requires a lot of time and
resources, and more common algorithms that optimize this process take advantage
of the computation of the RMSE gradient with respect to the tuned parameters.
Therefore, the weight connecting the different nodes are tuned during the training
process of the NN, in order to provide a prediction § as near as possible to the true ),
thus reconstructing the f-map. Correct construction of the NN characteristics, such
as the choice of the activation function to exploit, the number of hidden layers as well
the number of nodes for each layer to use, up to the features Z more informative to
describe the system, represents the fundamental point, whose right realization is far
from being obvious. Heuristic techniques are commonly used for the research of the
NN characteristic to implement. Here, the analysis of the NN response over a further
independent validation set is the principal way to test different NN architectures.
Specifically, when the architecture is fixed, the NN parameters are trained on the
initial set, while the final RMSE is measured on the validation set. Varying the NN
structure, the best RMSE on the validation set determines the best architecture to
use. Indeed the strength of the validation set relies on its independence from the set
used for the training, thus providing a statistical analysis of the NN performances
totally uncorrelated from the training stage. Indeed, the RMSE over the training
set necessarily decreases as the number of epochs increases. However, while initially
this process represents an improvement of the NN-precision, after a certain number
of iterations, the procedure unavoidable starts to overfit the training set. Conversely,
the independent set of cases (validation set) after the initial decreasing of the RMSE,
starts to grow up as the training set begins to be overfitted. In conclusion, the right
number of iterations necessary to train a given NN with the best precision is provided
by the minimum of the RMSE over the validation set. This number of epochs strictly
depends on the specific problem under study. At last, once the architecture to use
is decided, the final performances of the NN are commonly computed by a new
independent test set. This stage is used to generalize the NN over new uncorrelated
cases, and can be exploited for testing the given NN over any condition, e.g. when
realistic noisy scenarios are involved.

Three mode interferometer calibration enhanced by NN

We implemented a NN to calibrate a quantum sensor for the simultaneous
estimation of two optical phases. This implementation is divided in two stages.
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During a first stage we adopt simulated data to investigate the correct structure of the
NN to use, both in terms of the architecture (number of layers, number of nodes, etc)
and the amount of data necessary for a complete NN training. Then, in the second
stage we experimentally tested the performances of a NN, which uses a structure
resulting from the previous study. These performances are evaluated by training the
NN with experimental data and by subsequently using it to predict values of another
experimental validation set. Notably, the simulated data used for the first stage are
reconstructed by exploiting a maximum likelihood technique over experimental data.
In our case, during the experimental data recording, the parameters controlled by
the user are the electric voltages and not directly the internal phases (Sec. 3.2.1).
If one is interested in the physical relative phase-shifts A¢, and Ags resulting
from the application of the two voltages Vi and Vs, a preliminary calibration step
is required. The characterization of the voltage-to-phase response is unavoidable
for any similar sensor and can result in additional calibration errors of the global
response. A possible model [14] is provided by Eq. (3.47). Therefore, in standard
characterisation, a theoretical model of the circuit is necessary to recover the output
probabilities through a fit of the measured probabilities. This, in turn, allows
extrapolating dynamic and static parameters of the chip [14, 15]. Conversely, the
aim of this work is to avoid relying on knowledge about both the theoretical model
of the circuit and the response function in Eq. (3.47). In fact, this would prove
inefficient for the characterisation of mass-produced devices. The goal, instead, is to
generate a mapping between voltages and output probabilities using only a limited
set of measurements. We exploit the NN approach exactly to realize this goal (Fig.
3.17).

Stage 1: NN architecture analysis

The preliminary step has the only purpose of arranging the structure of the
NN for the calibration of a general three-arm interferometer. As described above,
we start considering as training set the data reconstructed by exploiting a fit over
experimental data. While it is instrumental for our verification of the NN method,
it is not required for its actual use. Specifically such a probability was obtained
from the same reconstruction method employed in [14] (Sec. 3.2.1). In this way, the
simulated data represent roughly the typical approximate probabilities of interest.
In particular, we simulate new output events, distributed according to Poissonian
statistics whose mean values correspond to measured experimental events. Such
events are recorded by tuning in the model the pair of voltages applied over two
internal resistors of the interferometer. The simulated events are converted in new
output probabilities — P(i — j) with input ¢ and output j — and data for the
training are extracted for any possible combination of input-output in a single-photon
regime. In this way we construct a training set of size N, whose single element is:

{z, gj’}k ={P(i — j), (W1, Vg)}k fori,j =1,2,3. (3.49)

The index k = 1,..., N refers to each training example and N represents the total
number of training data. Considering the Poisson distribution for the simulation
procedure is an important step in order to properly study the NN in our scenario,
taking into account the presence of the typical source of uncertainty in photonic
implementations. A part of the data, i.e. 15% of the whole set, is used as a
validation set: it is not directly employed for the training, but rather to obtain an
independent estimate on the training error. As described in the previous paragraph,
this is necessary to avoid overfitting. Using the training data we studied different



3.2 Experimental estimation of multiple phases inside a multiarm
interferometer 132

A Traini t
Circuit raining se
Q D
Ry

1 MM - {Pr(i-)), (V1 Vz )}

R 1
- - 2 APD -
ref AD, l_l‘ ;;
; B echam

w

Mapping

Tramed network

79 il -

d d
(lere VP ) = P"(i-})) 12 input nodes 3 hidden Iayers 4 output nodes

Figure 3.17. Conceptual scheme, showing the calibration steps in clockwise sense. Circuit:
single photons are sent along the inputs of the three-arm interferometer and revealed by
avalanche photodiodes (APDs). Training set: the output probabilities P(i — j) (with
i, =1,2,3) are measured as function of the two applied voltages V; and Va, collecting
a total number of N training examples. As explained in the main text, the kick values
(AVy, AV,) and its probabilities P(i — j) (not shown in the figure), are also considered
for removing ambiguous points. For this reason the NN has four output nodes. NN
learning: a small portion of the data set, is used to train the neural network. Mapping:
after the training the NN is able to map any output probability P**¥(i — j) to the

corresponding pair of voltages, predicting the values (VP VP™) and the kick ones.
This image is taken from [16].
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Figure 3.18. Examples of input-output probabilities P(i — j) for each input ¢ and output
j (i, =1,2,3) of the chip, resulting from predictions of a NN trained with simulated
data, as function of the applied voltages V;,V, over two ohmic resistors. a)-c) Output
probabilities P(1 — j) obtained by injecting single photons along input 1. d)-f) Output
probabilities P(2 — j) obtained by injecting single photons along input 2. This image is
taken from [16].

architecture for the NN. We varied the number of hidden layers and the number
of nodes for each layer. We tested different activation functions, initialization
parameters and optimization algorithms. Finally we chose the configuration which
provided better results, obtaining the lower value for the RMSE calculated over the
validation set. Here, the network is trained using 53 x 53 = 2809 different tension
pairs in the training set and the corresponding output probabilities. The Adam
algorithm [656] is adopted to tune the model’s parameters, by optimizing the cost
function, given by total RMSE. This algorithm exploits the gradient descent, whose
value at each step is computed through the backpropagation technique [651, 652, 657].
Thus, a first version is a NN configuration with 9 nodes in the input layer and 2 in
the output ones, associated respectively to the 9 configuration of probability and
the 2 values of the voltages pair. Further, we notice that the probabilities are not
independent, due to the constraints imposed by the unitarity of the transformation,
and the full set of 9 probabilities is redundant for the network training. Indeed, only
4 of them are required, plus their normalization. Given this redundancy, satisfactory
results can be achieved training the network with the 6 probabilities obtained when
injecting a photon respectively in the first and second input of the device.

However, the above versions suffer the non-injectivity of the likelihood function,
which constrains the application range over the voltages of the NN. Indeed such
characteristic makes different pairs of voltages correspond to the same output
probabilities, thus having multiple equivalent points. This ambiguity is strictly
related to the physical process involved, and solving it is fundamental in order
to guarantee the correct and wider functionality of the sensor. We removed this
ambiguity by adding a further set of probabilities P(i — j), namely a "kick", to each
element of the training set, in this way:

{Z,7}, = {(P(i — j), P(i — j)), (Vi, Vo, Vi + AV1, Vo + AVa) }, (3.50)

where the values P(i — j) are added by considering the probabilities obtained
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by changing Vi (V2) of a fixed value AV; (AVa). The kick is de facto treated as
additional input probabilities by the NN, and as such, once chosen, to allow for the
NN to correctly associate their values to the voltages, they need to be kept fixed
between the training and the test. The optimal values for AV, need to be tailored
to the functions at hand, as they depend on the steepness and periodicity of the
probabilities. In our case, we have implemented kicks associated to AV} = 0.57V
and AVy = 2.27V. Adding this information allows not only to apply the NN limitless
over the voltage values, but even the improvement of the performances measured
over the whole validation set. Indeed, when evaluated in the full range of tension
values, the global RMSE of the validation set is enhanced of a factor 85% respect to
the NN without kick. The advantage obtained is independent from the specific value
of AV} and AV, as long as they are large enough to give information about different
regions of the inspected functions. In conclusion, the best performances are obtained
from a NN having 3 hidden layer with 200 neurons per layer, 12 nodes (6 from kick)
in the input layer and 4 nodes (2 from kick) in the output ones (Fig. 3.17).

All the nodes, except the output ones which are activated by a linear function, are
activated by a ReLu function initializing their weights with random values extracted
from a normal distribution centred in zero and with variance o? = 2/n, where n is
the number of neurons in the previous layer. The number of epochs resulted from
minimizing the loss function on the validation set is 250. During each epoch, all the
training data are passed to the NN which adjusts its internal weights. Moreover,
to make the algorithm more efficient the whole training set can be divided in small
random batches which are iteratively analyzed during each training epoch. The
trends of the values predicted by the trained-NN are reported in Fig. 3.18 as a
function of the applied voltages on the two selected resistors.

Stage 2: generalization of NN performances

Testing the chosen NN on different data scenarios is a fundamental step in order
to provide a correct estimate of its generalization capacity. First of all, to analyze
the variability among different trainings, we study the results obtained, starting
from the same datasets, after performing 50 independent trainings of the network.
The mean value of the normalized-RMSE (NRMSE) achieved on the validation
set in such configuration is NRMSE = (1.5 + 0.1)%. After the network has been
trained, its performances have been evaluated on a further independent test set
of 100 different examples selected randomly among the possible tensions pairs of
the 53 x 53 grid. For these elements, new values of probabilities are computed
by adding random Poissonian noise on the detection events corresponding to the
selected voltages in the initial set. Notably, since both the training and the test
data are corrupted by random Poissonian noise, the resulting NN is robust when
evaluating new noisy examples. In this way, the NN efficiency over data conditions
having realistic noise of an optical interferometer can be tested. To quantify how
close the network estimation of the tension values is to the true ones, we evaluate
the cosine similarity between the vector of network outputs yj’,_'corresponding to the

4 tensions for all the test examples, and the expected results ¢, as follows:
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In the ideal case, when the prediction ﬁ is equal to the true value ¥, the cosine
similarity provides ¢ = 1. Moreover, to estimate how much the cosine similarity
depends on the random sample selected, we compute its value on 500 repetitions each
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Figure 3.19. NN training with different amounts of data grid size. Training performances
are shown in terms of a) NRMSE computed over the validation set and b) cosine
similarity on the test one. This image is taken from [16].

containing 100 examples extracted randomly among the available ones, obtaining a
value of ¢ = 0.999 + 0.001.

Then, we investigate how the NRMSE on the validation set and the cosine similar-
ity between the network estimation and the true tensions values change reducing the
number of tension pairs used for the training. For all the different configurations the
size of the training set, and consequently of the validation one, changes depending
on the dimension of the tension grid used. Conversely, the number of examples
making up the test set remains fixed to 100. For all the new training configurations
the test data are still extracted randomly from the largest grid. This choice is
performed to assess how much reducing the data for the training affects the final
network estimation of new examples. In Fig. 3.19 are reported the NRMSE on
the validation set, obtained from multiple trainings of the network and the cosine
similarity among the network estimation and the expected values in the test set. As
expected, the NRMSE achieved by the network decreases as the number of training
examples increases, allowing a better reconstruction of the function mapping the
input vector onto the output one. A better reconstruction of this function grants
higher network performances on the independent test set, as shown by the growth
of the cosine similarity between the reconstructed tensions vectors by the NN and
the real one. The error on the cosine similarity values gives an indication about the
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variability linked to the analysis of different examples that randomly fall in different
regions of the probabilities functions. In parallel, the error on the NRMSE values
depends on the results of different trainings of the algorithm that, starting with
random initial parameters, can end up in slightly different conditions.

Table 3.3 reports the most characteristic final parameters of each step performed.

] Set \ Parameters \
. size 2809 (grid 53 x 53)
Training epochs 250
S size 421
Validation NRMSE (1.5+0.1)%
Test size 100
cosine similarity c=0.999 £ 0.001

Table 3.3. Parameters of the employed Neural Network resulted from simulated data.

Stage 3: experimental NN evaluation
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Figure 3.20. Study of NN performances by using experimental dataset for both training
and validation stages. a) NRMSE and b) cosine similarity are shown as function of the
computed epochs. This image is taken from [16].
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Figure 3.21. Histogram of the two-point distances obtained over the test set of 100 points.
The error bar represents the standard deviation computed over 500 different random
batches of test sets. Inset: We report one of the 500 random test sets consisting of 100
points represented in the same color and linked by a line to the 100 predicted tension
pairs by the NN. This image is taken from [16].

Figure 3.22. Comparison between voltages predicted from NN (red dots) and grid of
experimental values (blue surface) for different single-photon input-output probabilities.
This image is taken from [16].

Finally, the network architecture resulting from the previous analysis has been
implemented and tested training the NN directly on actual experimental data. This
is possible thanks to the network efficiency to learn the function which maps the
input-output probabilities to the tensions applied. In this way, a good estimate of
the tensions values is obtained. If the explicit model of the voltage-to-phase response
is available, this same procedure is also effective to calibrate the device explicitly in
terms of the phases; the exact description of the further propagation and measurement
steps is not needed. We want to test the robustness of the developed NN with respect
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to its hyper-parameters, such as the number of nodes and layers. For this purpose,
we calibrate another integrated circuit with different output probabilities but the
same structure of the first one. More specifically, we use the data obtained from a
50 x 50 tensions grid applied on a second integrated device with the same layout, to
train the same network as the one described above. The training with such data
takes longer to reach the region where the loss function on the validation set stops
decreasing. This is shown in Fig. 3.20, where the NRMSE and the cosine similarity
are reported as a function of the training epochs. The network tensions estimations
when 100 new data are acquired are reported in Fig. 3.22, showing the ability of the
network to make accurate predictions of the applied voltages. To visualize clearly
the difference among the predictions obtained by the NN and the expected tension
values we report in the inset of Fig. 3.21 the same points of Fig. 3.22 together with
the true tension values. To study the variability among multiple test batches we
compute the standard deviation over the NRMSE obtained on 500 different random
test sets obtaining a value of NRMSE = 0.022 + 0.009 which, as expected, it is
compatible with the results obtained on the validation set and reported in panel a)
of Fig. 3.20. To quantify the difference among the predictions and the true values
we also compute the two-point distances of all the 100 points for all the 500 test
repetitions. The histogram reported in Fig. 3.21 shows that more than the 80% of
the predicted points are at a distance from the true tension values less than 0.1V,
demonstrating the accuracy of the NN predictions. In this way, we have shown that
the parameters chosen for the NN can be applied also for calibrating different circuits
sharing the same structure. This feature is key in the perspective of mass-produced
devices with the same layout. This black-box approach is by no means limited to
calibrations for Metrology, and can find more extensive applications. For instance,
the same NN could be used to extract the voltage settings necessary to obtain target
splitting ratios among the three output probabilities. Also in this case, in which our
device is operated as an intensity partitioner, NN could provide a practical solution
to assess its actual capabilities.

Conclusions and perspectives

We have reported on the application of a NN based algorithm to perform the
calibration of integrated devices depending on two parameters. In this investigation
we relied on knowledge of a model to identify the most appropriate regime for
collecting the training set. However, this is by no means a necessary step in that
the use of the NN itself incorporates the same information that would be present
in the model. Remarkably, the NN is able to account for spurious effects such as,
in our case, cross-talk between thermal actuators, which are otherwise intricate to
describe. Concerning the scalability of the NN approach, two aspects need to be
considered. First, this method is not expected to mitigate the growth of the required
number of collected data points for increasing system size. The gradients of the
response function also significantly affect the collection size. Second, the scaling of
the network itself will depend on the complexity of the studied system. However,
these aspects are well balanced by the fact that NNs are intrinsically well suited to
handle large data sets. Overall, this approach still can be beneficial in tackling more
complex systems, depending on a large number of parameters, otherwise intractable
through standard fitting procedures. Moreover, even if the NN approach does not
require a full description of the device, it can be foreseen that some basic modeling
of it could be nevertheless beneficial. The successful characterization of two devices
based on a single approximate model shows that the NN performance does not
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heavily depend on the model’s level of detail. In the same vein, some anticipation of
the device output, might reveal whether ambiguities may be present in the chosen
range of parameters. We have shown that this is easily accounted for by introducing
additional data as input to the NN.

This study brings forward machine learning applications in two respects: it goes
beyond optimization of the employed resources when these are severely constrained
and shows that this characterization method extends beyond the single parameter
regime. The obtained results give evidence that NN can provide an effective, robust
and reliable tool for the calibration of complex sensors that depend on multiple
parameters, with the advantage of requiring no detailed model of their internal
operation.



3.3 Adaptive phase estimation enhanced by machine learning protocols in
single-photon regime 140

3.3 Adaptive phase estimation enhanced by machine
learning protocols in single-photon regime

In many realistic scenarios, the number of probes that can be exploited in the
estimation process is limited. Examples are provided by highly sensitive biological
samples that can be damaged by high fluxes of photons [363, 658, 527], fragile atomic
or molecular systems [659, 660, 661, 662, 663], or communication scenarios where
few photons are employed [3]. Theorems guarantee the possibility to reach the
fundamental bounds achievable by using a given probe. However, such capability
is guaranteed only in the asymptotic regime where a large number of copies of the
probe state are employed (Sec. 3.1.2). In the case of limited data [664, 553] the
asymptotic recipes do not represent necessarily the optimal solutions and other
kinds of estimation must be investigated. Tuning adaptively the system during the
estimation process seems the only valid alternative (Sec. 3.1.4). In phase estimation
problems this can be done by exploiting further layers of phases that are controlled
as feedback during the learning process. Adaptive protocols have demonstrated the
ability to saturate CRB also when the number of available probes is limited and
avoiding ambiguity problems related to the geometry of the likelihood. The optimal
control phases to be applied can be computed online or offline, respectively, before
or during the estimation process (Sec. 3.1.4). Here, machine learning techniques
represent an efficient solution to improve complex computations in adaptive schemes.
Notable examples of protocols lying in the online category are adaptive Bayesian
techniques (Sec. 3.1.4.1). Those protocols lying in the offline class are crucial for
different practical scenarios. For instance, they are necessary when the computational
power available during the estimation process is limited, or when feedback controls
are used for fast processes and the time available for an online calculation is small.
However, the space of all possible actions for the feedback parameters to be calculated
in an offline approach can be huge, and many parameters functions optimization in
such space is a computationally expensive task. In order to handle the complexity
of this optimization, an effective solution is provided by machine learning. In the
context of phase estimation, different machine learning techniques have been used
to calculate feedback actions in the offline approach. As shown in Sec. 3.1.4.2, two
relevant examples are DE and PSO. These are evolutionary algorithms [604, 605]
inspired by biological dynamics, which are able to solve optimization problems using
a trial and error approach, and thus finding global maxima. The solution of such
algorithms, applied in the context of phase estimation, are lists of optimal feedback
phases to be employed during the process. Such lists live in a high-dimensional space
and are optimal in the sense that they maximize a chosen figure of merit, called
fitness, related to the precision of the estimation. The choice of the fitness function
is performed depending on the specific problem at hand. In general, some machine
learning techniques can be more suitable than others, depending on the task. It is
then of crucial importance to find and explore different approaches able to enhance
phase estimation processes.

On the other hand, the realization of quantum sensors, able to perform estima-
tions in realistic scenarios, poses a second constraint to sensing devices: not only
the demands for the optimization of the limited resources, but also the systems can
show high complexity, often involving more than one parameter. Measuring multiple
parameters at once might be necessary in complex systems characterized by a set
of parameters, where a time or spatial dependency can prevent the successful real-
ization of subsequent single-parameter estimations. The parameters considered can
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span from multiple phases [14, 485, 482], to phase and phase diffusion in frequency-
resolved phase measurements [665, 532, 534], and phase and loss in absorbing systems
[666, 667]. In other instances where a system depends solely on one parameter, a
multiparameter approach could still be favorable as other parameters can be interro-
gated as a control to monitor the quality of the sensor itself [525, 526, 527]. Different
theoretical works have studied a non-asymptotic Bayesian approach in quantum
multiparameter estimation [668, 435, 669, 670, 671], thus providing bounds and
protocols to generally address limited-data Quantum Metrology. In this context, it
becomes of paramount importance to identify both a suitable estimation scenario and
a corresponding platform for an experimental investigation of adaptive multiparame-
ter estimation protocols. A notable scenario to investigate is multiphase estimation
[514, 485, 515, 516, 517, 482, 487, 518, 467, 519, 524, 14, 672]. Not only does such
scenario provide a benchmark for multiparameter Quantum Metrology, but it has a
plethora of practical applications in quantum imaging [427, 428]. A fundamental step
is to find a suitable experimental platform to realize multiphase estimation. A viable
solution is provided by integrated photonics, which enables the implementation of
complex circuits with reconfiguration capabilities [28, 47, 673, 10, 617, 674] with
applications ranging from Quantum Simulation to Computation and Communication.
This platform represents a promising system for optical Quantum Metrology since
interferometers with several embedded phases can be employed as a benchmark
platform to study multiparameter estimation problems. In this direction, we recently
reported the first results on multiphase estimation with quantum input probes [14],
using a three-arm interferometer fabricated by femtosecond laser writing (Sec. 3.2.1).

In the following section two studies of adaptive phase estimation will be presented,
where online and offline protocols are developed and used in two experimental
platforms. In a first work [17] we studied and implemented an adaptive protocol
for the efficient estimation of a single phase in a bulk interferometer (Sec. 3.3.1).
The optimal feedback phases to be applied are calculated offline through a genetic
algorithm. The second platform (Sec. 3.3.2) is a photonic chip with the same
structure adopted in the Sec. 3.2.1, that is an integrated three-arm interferometer,
suitable for the simultaneous estimation of multiple phases. Using the interferometer,
the implementation of an efficient adaptive online protocol for two-phase estimation
in limited data regime [15] was experimentally realized.

3.3.1 Single-phase estimation in a two-mode MZI

Photonic phase estimation employs light probes in an interferometric scheme
to estimate an unknown phase shift between two optical modes. A paradigmatic
scheme for this task is a Mach-Zehnder interferometer (MZI) (Sec. 3.1.3). Here
two input modes interfere in a first optical element. Then, the two modes of the
MZI, after acquiring a relative phase shift ¢, interfere in a second optical element.
A MZI can be encoded in photon path, where photons interfere in beam-splitters
as shown in Fig. 3.23a. The same structure can be obtained in other degrees of
freedom, such as polarization, where modes are mixed via half wave-plates (Fig.
3.23b) [1]. The goal of the process is to estimate the unknown phase shift ¢ by
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measuring the probe states after propagation through the interferometer. When the
probes are composed of single photons, the phase-dependent output probabilities
corresponding to the two possible measurement results (z = 0, 1) are cos?(¢/2) and
sin?(¢/2) respectively. Through the dependence of the output probabilities from
the unknown phase, one can extract information on the parameter. The amount
of information available is quantified by the Fisher Information [Eq. (3.8)], defined
as F(¢) = 3, P(z|¢)(dlog(P(x|¢))/04)?, where P(x|¢) is the likelihood function
that corresponds to the probability to obtain a measurement result x, given a
certain value of the phase ¢. The Fisher Information is related to the bound on the
variance achievable with any arbitrary unbiased estimator by the CRB [Eq. (3.9)]:
Ag¢? > 1/[N F(¢)], where N represents the number of identical independent probes.
For the case of a MZI seeded by single photons, the Fisher Information is constant
for any phase ¢ and the CRB reads A¢? > 1/N, that is, the SQL for the single phase
estimation [Eq. (3.30)], which represents the maximum precision achievable with
classical probe states. In the limit of a large amount of measurements, estimators
such as maximum likelihood or Bayesian ones permit to saturate the SQL [359].
However, this is no more true when the measurements and data are limited [454]. In
this regime the Fisher Information may not represent the ultimate achievable bound,
and non-trivial approaches have to be adopted to optimize the convergence of an
estimation process to the ultimate limits. In this way, even if the Fisher Information
does not depend on the unknown phase, the convergence of the estimation process
(in terms of the number of resources N necessary to saturate the bound) can be
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Figure 3.23. Adaptive phase estimation. a, Conceptual scheme of a Mach-Zehnder
interferometer in the photon path degree of freedom. The interferometer is composed
of two cascaded beam splitters (BS) and relative phase shifts are inserted between the
two paths. Single photons are injected along an input of the interferometer in order
to estimate the unknown phase shift ¢. At each step k of the adaptive protocol, the
control phase shift ®; is calculated by a processing unit, according to an heuristic that
exploits the previous dichotomous measurement result xz; = 0,1 at step k — 1 from
detectors (D). b, Experimental setup, corresponding to a MZI in the polarization degree
of freedom able to implement adaptive phase estimation. A spontaneous parametric
down-conversion source generates pairs of photons: one photon (signal) of each pair
enters in the interferometer, while the other acts as a trigger. After a polarizing beam
splitter (PBS) and a first half-waveplate (HWP) rotated by 22.5°, the signal photon is
prepared in a diagonal polarization state and experiences the unknown phase shift ¢
between the two polarizations H and V, inserted by the first liquid crystal LC1. The
control phase shift ®; at step k is applied by a second liquid crystal LC2, which is driven
by a processing unit that applies the GA-optimized feedback according to the previous
measurement result xx_1. The measurement stage is composed of a final HWP rotated
by 22.5°, a PBS and single-photon detectors (APD) at the interferometer outputs. The
result x is generated by the coincidence between the signal photon and the trigger one.
This image is taken from [17].
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faster around certain phases when the number of data is limited.

Hence, one of the most powerful approaches for this problem is provided by adaptive
protocols [544, 556]. In an adaptive protocol for phase estimation, an additional
controllable known phase shift ® can be introduced in the interferometer. The value
of ® can be changed depending on the previous measurement results, so as to tune
the total phase shift inside the interferometer near the optimal point during the
estimation process. Consider N single photons which are injected, one by one, in
one input port of a MZI. The feedback phase at step k will be chosen according
to some heuristic and to all previous measurement results {1, s, ...,zx_1}. In the
case of offline protocols, the rules to change the feedback phase ® are calculated in
advance before the experiment. The list of all the feedback actions is called a policy.
Different machine learning techniques have been exploited to calculate such policies
[569, 570, 571, 572]. Here, we introduce a novel technique exploiting a genetic
algorithm as an offline approach to calculate the policies for phase estimation.

Genetic Algorithm

Selection &
Pairing for
Crossover

Initialization @

v

Infection

Figure 3.24. Conceptual model for the evolution employed by genetic algorithm.
The humans shown represent an individual or chromosome, with a set of properties known
as genes shown by the board they hold. The algorithm starts with the initialization of a
group of random individuals, known as population. The population then proceeds to
start a cycle of application of Genetic Operators, namely Fitness calculation, Selection,
Crossover, Mutation and Infection. The cycle ends depending on a halting condition and
returns the best individual as output. The Fitness operation assigns a fitness score to all
individuals and sorts them accordingly on that basis. The Selection operator selects an
individual from the population each time it is used. The Crossover operation uses the
selection operation to pair up two individuals and produce offspring from them. This
reproduction is repeated till the population size is achieved. The produced offspring
then mutate randomly using the Mutation operation and the Infection operation with
some probability replaces one of the individuals with a randomly created new individual.
Further, during all the process the individual with highest fitness after the sorting
process, shown by the king, is immune to mutation, infection and is not replaced by the
offspring. The king may or may not change at each cycle. This image is taken from [17].

Genetic algorithms (GAs) represent a class of evolutionary computation approach
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inspired by Darwin’s theory of natural selection [675]. Different search-based op-
timization problems can be faced by GAs. The elements of the search space are
termed individuals and represent the possible solutions of the optimization. The
aim of the algorithm is to find the individual which optimizes a certain figure of
merit called fitness. Starting from a population, which is a group of individuals,
the GA evolves it in the search space. The evolution of the population corresponds
to moving in the search space. The main principle of the algorithm is biological
evolution based on survival of the fittest individuals. GAs are suitable for problems
with large search space, requiring no initial information about the nature of the
solutions, which is a common scenario for many real world problems. The algorithm
decision making also has an advantage in the exploration-exploitation trade-off
helping the algorithm to avoid local extremas, and move towards a globally optimum
solution in the search space. GAs can be used in a large variety of problems like
image processing, artificial intelligence in robotics, computer games, optimization of
parameters of other machine learning algorithms like the weights of Neural Networks,
and a variety of engineering problems among others [676, 677].

Each candidate solution of the optimization problem has a defined structure
(chromosome), that is composed of genes. In some problems, the solutions are
represented with binary encoding of the genes, as arrays of Os and 1s, but encoding
using other structures is also possible, for instance the genes can be encoded in the
elements of a vector of real values. The goodness of each solution is quantified by
the so-called fitness score, calculated through a fitness function that is determined
by the objective function of the problem. Such objective function is at the basis
of the optimization in the algorithm. During the evolution process, some of the
initial set of solutions are selected for reproduction and recombination, according to
particular techniques, to move towards new solutions (offspring) in the searching
space. The offspring produced solutions for the next generation (or iteration) undergo
a process of mutation, leading to the creation of a new generation of individuals. In
particular, the genes of the offspring solutions depend on the properties inherited
from the previous generation through crossover and random mutation processes.
The individuals with higher fitness scores have a larger probability of being selected
for the mating process, that allows the production of new fitter individuals. This
method ensures the survival of better solutions in the iterative evolutionary process,
until the termination criteria is reached or the search saturates in some extrema,
either global or local.

In this work we exploit a modified version of genetic algorithm (see Fig. 3.24)
suitable to perform optimization in the continuous search space of real vectors repre-
senting the policies to be employed in the phase estimation process. We mention in
detail the steps of the used GA (for pseudo-code, see Algorithm 2).

Population initialization and Fitness calculation

The first step of the protocol is the initialization of a population: a set of lists
{A®} of feedback phase shifts, corresponding to the algorithm chromosomes, is
randomly generated. This initialization can be realized also taking into account
eventual prior information on where the optimal solutions are expected to be located
in the search space. In our case, we consider a search space limiting the possible
unknown phases in the range [0, 7]. In the case of a phase estimation experiment
using N single photons, the chromosome associated to each individual is represented
by a vector A® € RY of N real values. Such quantity corresponds to the policy
to be applied during the experiment. In particular, during the optimization of the
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policy with N probes, the population is initialized with the first two chromosomes
taken from the best policy for N — 1 probes, with a Gaussian shift in each gene value
having a standard deviation linearly decreasing as SQL. Instead, the last value (N*"
value) in such policies is chosen as 0. Then, the rest of the population is initialized
with completely randomly created chromosomes. This kind of initialization ensures
that information from previous optimal policies is properly exploited during the
following search processes.

Each candidate solution is then associated with a fitness score, which quantifies
the sensitivity of the policy in the estimation of the unknown phases. Then, it is
necessary to simulate the estimation of different unknown phases to calculate the
fitness. After each step in the simulation, the feedback phase ®; to be applied at k™
step, is updated according to the following logarithmic-search heuristic [569, 570]:

(I)k = (I)k,1 - (_1)Ik—1A<I)k7 (352)

where z,_1 € {0, 1} is the dichotomous outcome of the measurement at (k — 1)

step. In this approach the estimator ¢es for the unknown phase ¢ is provided,
up to a constant phase, by the last value ®5 of the feedback phase, updated
after the last measurement result [569]. The fitness S of a policy A®, is given by
S(A®) = | [T p(0]AP)e?df)|, where 6 = ¢est — ¢ is the error on the estimated value
of the phase, and p(f|A®) is the probability of the error § using the policy A® in
the estimation. Such quantity is computed averaging over 10° values of unknown
phases, uniformly drawn in the interval [0,7]. The chosen figure of merit to be
minimized during the phase estimation problem is the Holevo variance V¥, that is
related to the fitness function as follows [Eq. (3.27)]:

VH = S(A®) 2 - 1. (3.53)

Genetic Operators

The initial population is improved through an iterative process of genetic op-
erations applied on the individual solutions of the population. The fitness score
assigned to the individuals determines the best element of the population and also
the halting criteria of the optimization process. Three genetic operators, namely
Selection, Crossover and Mutation are applied to the population during the iteration
process. In particular, we employ the process of elitism among the individuals: cer-
tain individuals with a very high fitness are immune to the crossover and mutation
techniques. This method ensures the survival of the best solutions of the previous
generation into the new generation, creating a better mating pool for the next
iteration, and preserving the quality of the best candidate solutions. Our algorithm
uses a population size of 12 individuals, with a single elite solution immune to
changes during each generation.

Selection. In each consecutive iteration, an appropriate number of pairs of
individuals, the parents, are selected to reproduce and form the new generation.
The parents are selected through a method where the solutions with higher fitness
have a better chance to be extracted for the mating process. A selection technique
could select the two individuals with highest fitness, but this voids the use of genetic
diversity which is the basis of evolution. This would also restrict the search for a
particular bias, which could get stuck in a local minima. The selection technique used
here is the Tournament Selection method [678] (see Algorithm 1). In particular, it
corresponds to running numerous tournaments among the individuals in a randomly
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chosen subset of the population. The victor is determined by the fitness value, and is
selected for mating. A large number of tournaments ensures the selection of almost
every individual in the randomly chosen subset at least once, creating the possibility
of existence of weak and strong individuals together in a given generated subset.
This selection technique also maintains the diversity in the genomes during the
crossover process by mixing the good genes of parents with the weaker parents, thus
ensuring the survival of the fittest along with the selection of a very small proportion
of weaker individuals. We use a tournament selection size of 5 solutions, which is
the size of the subset of the total population composed of 12 candidate solutions.
The selection technique returns the best individual from the 5 randomly chosen
individuals. The selection is then exploited different times to extract pairs of in-
dividuals used to generate new children chromosome through the process of crossover.

Algorithm 1: Tournament Selection (P, 7)

Input: A population P containing a set of individuals P := {iy,ia...,in};
Tournament size: 7
Output: Selected individual i, € P, x € {1,2...,n}
P’ + Initialize empty population
for k<1 to7 do
j + random Int (between 1 and n);
Insert i; into P’
end
Sort P’ in decreasing order of fitness of i, Vi € P’;
return Fittest individual from P';

i I =2 T S N VU R R

Crossover. Analogously to the crossover that happens during the biological
reproduction, the newly generated offspring of the parent solutions share genetic
information belonging to its parents. We select two parents by repeating the selection
process two times, which then proceeds to generate one offspring solution. The
crossover process used in our problem is the uniform crossover technique, in which
each element of the new chromosome (gene) is randomly chosen from one of the
two parents with equal probability. This spreads out the genetic information evenly
among the genes of the offspring, ensuring equal contribution from both the parents.
This also ensures the exploitation, or the preservation of better solutions. The
mating process is repeated with the selection of other pairs of parents, and their
crossover to produce other offspring until a new population generation with the
suitable size is produced. In our case, a size of 12 individuals has been employed.
The elite chromosomes are immune to crossover, that is, they are the only solutions
not replaced by the new generated child solutions. However, elite chromosomes can
take part in the mating process as parents.

Mutation and Halting. The newly generated children solutions then proceed to
be subjected to the mutation operator. Mutation alters the genetic information in
the individuals from its initial state, modifying the solution from the previous one.
In our algorithm, chromosomes A® with higher fitness values S(A®) have more
immunity to the mutation process. In particular, the mutation probability of each
gene of a chromosome is equal to 0.55[1 — S(A®)|. This rule has been chosen in
order to save the fitter individuals from mutation and expose the weaker or less fit
chromosomes to it, ensuring the increase in genetic diversity as well as preventing
the good solutions from alterations. The number 0.55 signifies the rate of mutation,
and has been chosen using trial and error methods for better exploration of the
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search space when the algorithm reaches saturation near local minima. Every it
gene is mutated by changing the value of the original gene to a value drawn from
a Gaussian distribution with mean equal to the original gene, and with variance
equal to 1/i, where ¢ represents the position of the gene in the chromosome vector.
This mutation variance follows the intuition that, increasing the number of probes,
the difference of feedback phase decreases approximately like SQL. Indeed as the
number of probes increases, the necessary variation around the corresponding gene
to find the optimal solution is expected to be smaller. During the mutation, we also
introduce an infected individual, that is, a randomly created chromosome, in place
of one of the two worse individuals. When the number N of photons is less than
25, such infection process happens with a probability of 0.25, otherwise for N > 25
the probability of infection is N/100. In this way the infection ensures a proper
random exploration of the search space, maintaining the genetic diversity in the
mating pool for the succeeding generations. The new generation, produced through
the application of these genetic operators, commonly has an increased average fitness
value. The whole described processes of selection, crossover, mutation and infection
are repeated in a cycle until a halting criterion is fulfilled. The halting criterion of
the algorithm is the attainment of a threshold fitness value approximately equal to
the SQL for the respective value of N, or when the number of generations exceeds a
fixed limit. In the latter case the fitness value can be far from SQL and thus the
algorithm fails to reach a value near to the bound.

In Table 3.4 are reported the values of all the relevant parameters employed for
the GA algorithm.



3.3 Adaptive phase estimation enhanced by machine learning protocols in
single-photon regime

148

Algorithm 2: Genetic algorithm (M, n, x, u, )

Input: Number of generations after which the evolution is halted: M; Size
of the population: n; Number of elite individuals immune to
evolution: x; Infection rate: 5; Mutation rate: p; Threshold fitness
value: Fp

Output: Optimized solution having fitness near threshold value

1 // Initialize generation 0: ;

2 k<« 0

3 Py < a population of n randomly-generated individuals;
4 // Evaluate Pj:

5 Compute Fitness(i), Vi € Py;

6 Sort P in decreasing order of fitness of i, Vi € Py;

7 while Fitness(first individual € Py,) ~ Fr or k > M do
8 // 1. Copy Elites:

9 for i < 1 to x do

10 | Insert iinto Py, Vi € Py;

11 end

12 // 2. Crossover:

13 for iterator < x + 1 ton do

14 Select i,j € Py using Tournament selection;
15 Create empty individual g;

16 for geneindex <— Length of i (or j) do
17 x < random Boolean;

18 if x is True then

19 ‘ Insert gene value from i into ¢;
20 else

21 \ Insert gene value from j into g;
22 end

23 end

24 Insert ¢ into Py1;

25 end

26 // 3. Mutate and Infect:
27 for i< x+1 ton do

28 yl < random Float (between 0 and 1);

29 if y1 <y then

30 y2 < random Float (between 0 and 1);

31 if y2 < 1—Fitness(i), i € Pyy1 then

32 iz < 1 + random number from gauss distribution around %,
Vig €1, 1 € Pyy1;

33 end

34 end

35 ifi=n-2,19¢€ Py then

36 y3 < random Float (between 0 and 1);

37 if y3 < § then

38 | i + Re-initialize with random values, i € Pj1;

39 end

40 end

41 end

42 // Evaluate Pyiq:
43 Compute Fitness(i), Vi € Pyy1;

44 Sort Py in decreasing order of fitness of i, Vi € Py1;
45 k+—k+1;
46 end

a7 return Fittest individual from Py;
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Parameter Value
No. of averaged phases
for Fitness calculation 10000
Population size 12
Mutation rate 0.55
Infection rate 0.25 for N < 25, else N/100
No. of Elite chromosomes 1
Tournament Selection size 5

Table 3.4. Parameters employed for the GA. List of all parameters value for the
adaptive estimation algorithm based on a GA approach.

Numerical simulations of algorithm performances

In this section, we perform numerical simulation to study the optimal policies
generated by our GA algorithm for phase estimation. We consider values of probes
numbers N ranging from 1 to 80. In Fig. 3.25a we report the average of V'
obtained by the estimation of 10° uniformly distributed unknown phases, showing
that the SQL is attained after small values of N. Furthermore, the inset focuses on
different distant values of N independently, and demonstrates in both cases a good
convergence to every unknown phase. Fig. 3.25b shows the results of estimations at
each independently optimized N-policy, obtained for two different values of unknown
phases. Performances of the policies are studied in terms of Holevo variance V7
scaling as function of N. These results show the high efficiency of the algorithm
even if a small number of resources is used. In particular, the scaling of V¥ shows
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Figure 3.25. Numerical results. Performances of the learning protocol using policies
optimized by GA algorithm for different number N of input photons. a, Comparison
between SQL (red dashed line) and the Holevo variance V¥ obtained by simulations
(blue dots), averaged over 10° phases in the interval [0, 7]. GA searching finds different
optimal feedback strategies for different values of N. The inset graph shows the difference
between simulated value of estimated phase ¢est and the actual phase value ¢, reported
as a function of ¢. Here, results show same performances for two distant values of V:
N =25 and N = 77. b, Numerical phase estimation of two different phases ¢(*) (i=1,2)
as function of N adopted probes. The estimated phase value (;5((;5{ (dot) converges to the

true phase value (solid line) in a few number of probes. Each dot is averaged over 100

independent experiments, and its error (color filled area) is computed by normalizing

the variance to the number of experiments. This image is taken from [17].
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the high quality of optimal solutions found by GA research, by which the estimation
process reaches the true values of the unknown phases. The value of V for N < 5
lower than SQL depends on the fact that the algorithm is optimized for phases
lying in the interval [0, 7]. Conversely for greater N, the SQL retains its role as a
suitable limit on the estimation precision. In the optical system under analysis, the
algorithm finds that the optimal feedbacks are those where the relative phase shift
¢ — ® between the two modes of the MZI is /2, which corresponds to the point in
which the likelihood function has a maximum of the derivative modulus.

These numerical evidences demonstrate the effectiveness of the offline policies
found by GA optimization, able to optimally estimate unknown phases with sensi-
tivities that reach SQL after few data.

Experimental Results

We experimentally tested the GA approach to estimate unknown relative phase
shifts inside a MZI injected by single photons. The employed apparatus (Fig. 3.23Db)
is a MZI in the polarization degree of freedom, where the optical phase to be
estimated is a relative one between the vertical (V) and horizontal (H) polarizations
of the photon. Photons are generated by injecting a A = 404nm continuous wave
pump beam in a periodically poled potassium titanyl phosphate (PPKTP). Through
the SPDC process inside the crystal, two degenerate photons with A = 808nm
are generated. One photon of each pair is sent directly to the trigger avalanche
photo-diode (APD), while the other one is employed for the phase estimation process
after its polarization state is prepared through a polarizing beam splitter (PBS). The
interferometer is composed of two half-waveplates (HWPs) rotated by 22.5° and two
adjacent liquid crystals (LCs) interposed between the HWPs. The first LC controls
the unknown phase shift ¢ and the second one acts as feedback phase ®. After the
second HWP, a final PBS separates H and V polarizations in two different spatial
modes that are measured by two APDs. The complete process is automatically
controlled by a dedicated software. In particular, all three APDs are connected to
an electronic system that reads all the single-photon counts and provides digital
timestamps to the computer. Through an analysis of such timestamps, two-fold
coincidences between trigger and one of the two measurement detectors are recorded
by choosing a coincidence window of 3 ns. The first coincidence recorded within
a fixed amount of time of 0.5 s generates the single event used in the estimation
process. After each recorded event, the processing unit recovers the feedback phase
to be applied from the pre-calculated list, and consequently drives the corresponding
LC. An additional time interval of 0.3 s between two consecutive events is inserted
due to the switching time of LC. In this way, all steps of the experiments, including
phase tuning, photon detection and application of the GA policies, are controlled by
the processing unit.

The apparatus described above has been employed to perform the estimation of
different phases. Experimental results are shown in Fig. 3.26a, for different phases
between 0 and w. Each point, at fixed N, is an average of 100 estimates using
the optimal policy for that N. The results show that the estimation reaches the
true values of the phases after a few photons (~ 25). While in an ideal MZI the
Fisher Information does not depend on the phase ¢ior = ¢ — P, the presence of
experimental imperfection may cause the bound to be phase-related (see Fig. 3.26b)
which is observed when non-adaptive strategies are employed. This different behavior
can be predicted by taking into account the effect of noise in calculation of the
likelihood function of the system. More specifically, our apparatus is characterized
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Figure 3.26. Experimental results. Six different phases have been estimated 100

by

independent times, using adaptive GA protocols. a, Estimation of different phases as
a function of the number of photons N. Dashed lines are the real applied unknown
phase shifts, while dots represent the circular mean of the repetitions with same N. b,
Top: Holevo Variance (V) as function of the phase for three different values of N:
N = 10 (green dots), N = 20 (red dots) and N = 80 (blue dots). Straight lines are
ideal bounds, while dashed ones represent the bounds corrected by depolarizing noise,
considering pexp, = (7.93 £ 0.16) x 1073 (see main text). Bottom: Fisher information
as a function of the phase. Orange solid line represents the experimental information,
while orange dashed line represents the ideal case. ¢, Holevo variance V1 and mean
square error, MSE, as function of the number N of exploited photons. Blue (cyan) dots
are the mean value of V# (MSE) over the six different phases. Filled band represents
the confidence interval inside the standard deviation. The red line is the ideal SQL,
the black dotted line instead is the minimum over all ¢ of SQL in presence of noise. d,
Example of experimental decision tree. Values of the feedback phases employed during
the estimation process of the phase ¢ = 2.35, using the first N = 6 single photons. For
any process, after each photon measurement, the feedback phase is updated according
to the rule in Eq. (3.52), realizing a branch of the tree. Red dashed line represents the
real value of ¢, while the orange branches of the tree are 100 independent processes
of estimation. The intensity of the colour is proportional to the number of times the
estimation follows that branch. The blue cross is the final mean of all estimations:
Gest = 2.15 + 0.42. This image is taken from [17].

a non-unitary visibility of the polarization fringe pattern. This effect can be

expressed by correcting the likelihood function with a parameter p € [0, 1], related
to the visibility as V' = (1 — p) # 1, leading to the following output probabilities:

Pyp=1—-P; = (1 —p)cos? <¢_2(I)> +p/2 (3.54)
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Figure 3.27. Robustness to depolarizing noise. Numerical analysis of GA protocol
performances in terms of Holevo variance V# (top panels), for different values of
depolarizing noise parameter p = 0,0.05,0.15,0.25,0.5. When N probes are adopted, the
dependence on p of the achievable precision CRB,, can be computed by considering the
noisy likelihood in calculation of f&é(cf), p). The applied policies to the noisy scenario

can be calculated via the GA approach by taking into account (right panel b) or not (left
panel a) the noise model. In the bottom panels, we report an equivalent representation

in terms of the ratio AVS%L = (VH —SQL)/SQL. This image is taken from [17].

Where Py (P1) is the probability to find the photons with polarization H (V). By
measuring the output probabilities, we characterized both the phase shifts associated
to the voltages applied to the LCs, and the experimental likelihood function, obtaining
the following estimate for p: pexp = (7.93 £ 0.16) x 1073. The noisy likelihood is
associated with a different Fisher Information F__| (¢), which leads to different limits
on precision for the experimental apparatus, as shown in Fig. 3.26b. The difference
with the ideal noiseless case becomes significant at the edges of the [0, 7] interval.
Since the sensitivity depends on the value of the unknown phase, different phases
would be estimated with different precision if non-adaptive techniques are employed.
Conversely, adaptive strategies allow us to obtain a phase-independent behavior for
the estimation error. Indeed, the feedback phase is adjusted throughout the protocol
by the adaptive strategy to exploit the most informative points of the likelihood. In
this way, we observe a phase-independent behavior as shown in Fig. 3.26b, where
the sensitivities achieve the optimal CRB ming .7-"&%3 /N ~1.016/N obtained from
experimental probabilities (see for instance the case N = 80 in Fig. 3.26b). As a
result, the error of the estimations, shown in Fig. 3.26c¢, quickly approaches the
SQL as a function of N. In our analysis we consider as figures of merit not only the
averaged Holevo variance VH over the M measured phases (blue dots), but also the
circular-MSE (cyan dots), which is defined as:

MSE() = %(arg[e“(ﬁ—fﬁiﬁ?)])? /M. (3.55)
k=1

Finally, in Fig. 3.26d we show how the algorithm works in terms of policies
applied. Then, after sending and measuring each photon, the feedback phase is
updated depending on the outcome according to Eq. (3.52). The feedback phase
shifts are the optimal ones provided by GA protocol. At each step there are 2
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possible outcome values, and the estimation generates a branch. Among all 2V
possible branches relative to each estimation, only the ones observed during the
experiment are represented, with intensity proportional to the number of times a
given path is followed. In general the change in the feedback phase, that is, the
policy, decreases with the step number, meaning an increasing precision of estimation.
Finally, the comparison between the unknown phase and the resulting estimation is
reported, together with its circular variance over all 100 independent runs.

Robustness to noise

We perform some numerical simulations to study the robustness of the policies
generated by our genetic algorithm against different sources of noise. In particular
we consider depolarizing and phase errors, which are two of the most common noise
models in interferometric setups.

Depolarizing noise is caused by the presence of dark counts or by the limited
visibility of the interferometer. This effect is introduced in the simulations via an
additional parameter p, which gives the probability of a random click. In this way,
the simulated data are drawn by a noisy likelihood distribution having the following
form: Phoisy(z) = (1 — p)P(z) + p/2, where & = 0,1 are the measurement outcomes
and P(z) is the probability in noiseless condition. This kind of noise has been
considered to describe the experimental results of the previous section. We now
analyze numerically the robustness of the policies generated by our GA approach.
More specifically, the policies are calculated by assuming a noiseless experiment
(p = 0) and applied to a noisy estimation process (p # 0), where we considered
different noise levels corresponding to p = 0.05,0.15,0.25 and 0.5. This analysis is
performed to quantify the robustness of policies, generated using an ideal model, in
noisy conditions. The results of the simulations are reported in Fig. 3.34a. These
data show that the policies are robust against noises with p < 0.25 even if they are
trained with ideal conditions. This implies that this technique can be employed
also in systems with moderate unknown values of depolarizing noise without losing
the capability to reach the ultimate limit provided by the CRB. More specifically
the CRB of the optimal point in a depolarizing noisy interferometer, using single
photons, is equal to: CRB, = 1/[N(1 — p)?]. For larger p, the policies fail to reach
the sensitivity bounds.

As a second step, we consider the scenario in which the noise parameter is
calibrated before the experiment. In this case, the GA approach can be adapted
to generate policies optimized for this scenario by taking into account the actual
noise level during the computation. Hence, we generated policies using knowledge of
the depolarizing noise parameter. The analysis of the estimation of unknown phase
shifts using policies trained in the presence of noises is shown in Fig. 3.34b. Here, as
expected, the performances of the estimation processes are improved when compared
with those achieved with the policies for p = 0. In particular, the optimal CRB
associated with each noise is approached by the estimations using noisy policies.
Such improvement is larger for increasing values of p. Note that, for large values of
noise (p = 0.5), a difference with the CRB is still obtained, which is to be attributed
to the probabilistic feature of genetic algorithms which may fail to reach convergence
in a given number of iterations. In conclusion, our protocol is not only robust against
depolarizing noise, but can also be adapted to approach the ultimate bound in such
noisy conditions.

Finally, we considered the effect of phase noise, due to random errors in setting
the feedback phase. For instance, this can be attributed to random imperfections in
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Figure 3.28. Robustness to phase noise. Plot of Holevo variance Vi as function of
the number N of photon probes, in the presence of phase noise for k = 0.2,0.4,0.5,0.6
and 0.8. Simulations are performed by using the policies calculated in absence of noise,
applied to noisy simulated phase estimation processes. More specifically, A random shift
around the feedback phase is added at each step of the experiment, according to the
normal distribution around the original value with variance x2. Results for different
noise intensities are compared with the noiseless case (dark blue dots) and the SQL
(red dashed line). Each shown acquisition is averaged over 100 simulated rounds of the
estimation process. The distance of the achievable precision from the SQL becomes
significant only for high value of the noise. This image is taken from [17].

the phase control or to phase fluctuations between the arms of the interferometer. We
have numerically simulated phase estimation processes under this noise by altering
the value of the feedback phase ®; by an amount §®. Such amount is randomly
generated at each step according to a normal distribution with mean equal to the
original value, and standard deviation described by the parameter k. In these
conditions, we test the policies calculated for a noiseless scenario. The results of the
simulated estimation processes for different values of the parameter x are shown in
Fig. 3.28. We observe that the policies generated via GA are robust to this kind of
error, even for a considerable amount of phase noise with x < 0.6.

Conclusions and perspectives

In this work we presented a novel technique based on a genetic algorithm, able to
find optimal feedback actions for single phase estimations, that are also robust against
different sources of noises. We then performed an experimental demonstration of
such protocol through a photonic platform showing fast convergence of the estimation
error to the ultimate limits after few probes. Such demonstration opens the way to
further applications in Quantum Metrology tasks with limited data. Future steps
will require to devise and test experimentally such class of algorithms with different
probes enabling quantum-enhanced performances. Even the study of photonic
realization of probes states can be improved by GA algorithms [639, 630, 633],
giving rise to accessible and robust-to-noise states for metrology tasks. Then, a
natural generalization of this approach is to apply GA optimization for offline
protocols in multiparameter Quantum Metrology problems [427, 428, 14, 1], with
particular attention to the limited data regime [679]. While online adaptive Bayesian
techniques for multiphase estimation were demonstrated [15], offline solutions have
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still to be explored and GA promises to be a useful tool for this task. Notably, this
kind of approach can be applied to other quantum information tasks, in which an
optimization of multiple feedbacks is needed.

3.3.2 Two-phase estimation in an integrated three-mode MZI

Multiparameter estimation is a fundamental problem for the realization of realis-
tic quantum sensors in several scenarios [427, 428, 1]. In this task, there are still
several open problems and a comprehensive framework has yet to be defined. For
instance no general strategies are available for the construction of optimal probes
and measurements in different multiparameter scenarios. While a general framework
for Bayesian quantum multiparameter estimation exists [435], there are several
remaining open questions. In particular, the operational application of optimal
strategies, measurements and probes preparation, is a field that needs to be largely
explored, even if some theoretical results are available also in the limited data
regime [671]. Furthermore, further progresses are still required on the technological
platforms towards reaching unconditional violation of the standard quantum limit
[680] in complex sensors. Hence, it is crucial to identify an experimental platform
versatile enough to address different possible approaches. Multiphase estimation
provides an ideal scenario with different practical applications. Furthermore, it
represents a testbed for different multiparameter estimation protocols. Applying
these to real world scenarios requires a further step, that is, the optimization of
the available resources, so as to attain the minimum reachable uncertainties after a
sufficiently small number of measurements. This can be achieved by implementing
adaptive strategies. In the limited data scenario, theoretical works have shown
the number of required resources to saturate the lower bounds [664, 671], but the
multiparameter experimental counterpart still lacks its investigation. Therefore, the
study of adaptive strategies in single phase estimation is as important as in the more
general scenario involving multiple phases. Also here, it is crucial to identify and
test experimentally protocols to saturate the ultimate bounds with a very limited
number of probes. Integrated multiarm interferometers are suitable for achieving
this goal, as they can perform simultaneous estimation of multiple phases. Indeed,
such platform guarantees high phase stability for each optical phase and the easy
scalability of the number of involved parameters. Then, the other fundamental
resource is represented by the possibility to tune the device, in order to allow the
adaptive change of the apparatus. For all these reasons we employed a similar device
for adaptively estimating two optical phases, which has the same structure of the
one presented in Sec. 3.2.1.

In the following sections, we provide a brief introduction to the general Bayesian
multiparameter framework for adaptive estimation. Then, the particular multiphase
estimation scenario is shown, by focusing on our two-phase estimation problem.
Finally, the study of the adaptive algorithm and experimental results of its imple-
mentation are reported [15].
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Bayesian multiparameter estimation

In multiparameter estimation, the aim is to measure simultaneously an unknown
set of parameters x = (x1, ..., z,) reaching the maximum precision allowed by the
amount of resources employed in the process (Sec. 3.1). In general, the set of param-
eters is encoded within the evolution of a system, either described through a unitary
operator Ux or a more general map Lx. The value of the unknown parameters x
can be estimated by preparing a suitable probe state p and sending it to evolve
throughout the system. Information on the unknown parameters can be retrieved
by measuring the output state px with a set of measurement operators {Il;}, where
d = 1,...,m represents the number of possible outcomes. Such process is then
repeated N times to improve precision in the estimation process. After N probes
have been prepared and measured, the obtained sequence of measurement outcomes
d = (dy,...,dn) has to be converted in a set of parameters estimates %X through a
suitably chosen function % = %(dy,...,dy). As discussed in Sec. 3.1.2.2; a possible
choice of estimator is provided by Bayesian protocols [478, 681, 490, 495]. This class
of estimators is based on encoding the initial knowledge on the parameters in a
probability function p(x), called prior distribution, which is updated according to the
Bayes rule at each step of the estimation protocol. The posterior distribution after N
probes reads p(x|d) = N ~!p(d|x)p(x), where p(d|x) is the likelihood function of the
system expressing the conditional probability of obtaining the measurement sequence
d for given values of the parameters x, and  is a normalization constant. Then, the
mean of the posterior distribution can be exploited as the estimate of the unknown
parameters &; = [ x;p(x|d) [[; dz;. Bayesian protocols present several important
properties. In particular, it can be shown that such approach is asymptotically
unbiased, meaning that the estimated values converge to the true values when N
is large enough. This is related to the quadratic loss L(x,%; W) = >, w;(z; — 24)2,
whose average value over all measurement sequences d is commonly employed as a
figure of merit to quantify the convergence of the estimation process. The average
of posterior distribution is the optimal estimator for minimizing this figure of merit
[1, 496, 490]. The coefficients w; can be chosen to reflect different weights between
the parameters, while for equally relevant parameters they can be set as w; = 1.
Hereafter, we will consider this latter scenario and thus define the quadratic loss
as L(x,%) = 3 ;(z; — #;)%. Furthermore, in a Bayesian framework the posterior
distribution also provides a confidence region for the parameters estimates, which
is represented by the covariance matrix Cov(X) of p(x|d). This figure of merit is
obtained for each single estimation experiment composed of a sequence of N probes,
and has no counterpart in frequentist approaches [496]. In general, Bayesian bounds
for both the quadratic loss and the covariance matrix depend on the amount of
a-priori knowledge p(x) available [496, 664, 553, 671]. Asymptotically for large
values of N, corresponding to the regime where the amount of information acquired
in the estimation process far exceeds the a priori knowledge, the covariance matrix
satisfies the Cramér-Rao inequality [Eq. (3.9)]. In the considered case the CRB
reads Cov(x) > F~!/N, where F is the Fisher information matrix [682] and thus
F~ ! corresponds to its inverse. Such quantity also provides an asymptotic bound
for the quadratic loss as L(x,%) > Tr[F~!]/N.

Adaptive protocols can be employed when, besides the set of unknown parameters
x, the user has access to an additional set of control parameters ¢ = (cy, ..., ¢) that
can be changed throughout the estimation process (Sec. 3.1.4). More specifically,
after each of the IV probes is sent and measured, the acquired knowledge is employed
to change the values of ¢ for the next probe to maximize the extraction of information
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Figure 3.29. Schemes of adaptive estimation. a, General layout of an adaptive
multiparameter estimation protocol. A sequence of probes p are sent to estimate the
parameters x. At each step the results of the measurement I1; and the current knowledge
on x are employed to optimize the control parameters c¢. b, Multiarm interferometer for
multiphase estimation. An m-mode interferometer embeds n = m — 1 unknown phase
shifts ¢, while additional controlled phases ® can be employed for adaptive protocols.
This image is taken from [15].

in the subsequent measurement. Within a Bayesian framework, such knowledge
is encoded in the posterior distribution. Hence, after each step of the estimation
protocol, the user can decide the values of the control parameters c starting from
p(x|{c},d) (see Fig. 3.29a). Considering the presence of these tunable control
parameters during the estimation process, the likelihood after N probes reads
p(d|x, {c}) = [TIY, p(d;|x, c;), where d; is the measurement result of the probe i
after application of control values c;. Therefore, the Bayes rule for updating posterior
distribution becomes p(x|{c},d) x p(d|x, {c})p(x), where p(x) does not depend
on {c}, as control phases have no role in the prior knowledge. Adaptive protocols
represent a relevant tool in phase estimation process. Indeed, the adoption of adaptive
strategies becomes a crucial requirement even in the single-parameter case to optimize
the algorithm performances [544, 491, 583, 569, 584, 394, 571, 595, 596, 597, 17],
with the aim of achieving the ultimate bounds provided by the Cramér-Rao inequality
for small values of N [597]. Furthermore, in more complex systems characterized by
a phase-dependent Fisher information matrix, adaptive strategies become crucial to
reach equal performances for all values of the unknown parameter(s) [527]. Indeed,
in several scenarios the quantum Cramér-Rao bound, namely the ultimate precision
for a given probe, is parameter-independent. However, construction of the optimal
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measurement for its saturation requires in general significant a-priori knowledge on
the parameter(s) since it can be defined in a local estimation framework [485, 482].
Thus, in a scenario where limited or no a-priori knowledge on the parameter is
available, and limited resources can be employed, adaptive protocols represent a
powerful tool.

Adaptive protocols for multiarm interferometers

Given the general scenario described in the previous section, it is crucial to identify
and test experimentally protocols to saturate the ultimate bounds with a very limited
number of probes. In this context, multiarm interferometers represent a benchmark
platform to perform simultaneous estimation of multiple phases. The platform is
schematically shown in Fig. 3.29b, and represents the m-mode generalization of a
Mach-Zehnder interferometer in the multimode regime [613, 683, 518, 14]. More
specifically, it is composed by a sequence of a first multiport splitter, employed to
prepare the probe state, a series of phase shifts between all the optical modes, and a
second multiport splitter which defines the output measurement. Both multiport
splitters can be in principle designed according to appropriate decompositions
[615, 684] to implement any linear unitary transformation. The internal phase shifts
can be divided in two layers. The first one ¢ = (¢1,...,¢,) corresponds to the
unknown parameters to be measured, while the second one ® = (@4, ..., ¢,) takes
the role of the control parameters for adaptive estimation; we note that in our
implementation the number of controls is [ = n. Here, n = m — 1 is the number of
independent parameters, since one of the phases is considered as the reference mode.
Both the unknown parameters and the control ones contribute to the overall phase
differences A¢ = (A¢1, ..., A¢,) within the interferometer.

We study different adaptive protocols for Bayesian learning of the unknown
phases of this platform injected by a single-photon state, by focusing both theo-
retically and experimentally on the three-mode scenario (m = 3) with two inde-
pendent parameters (n = 2). More specifically, we choose both for state prepa-
ration and state measurement transformation a balanced tritter described by uni-
tary matrix U with |U;;|> = 1/3, V(i,7) [523]. Injecting a single photon on
input port 1 corresponds to generating a sequence of probe states of the form
ltin) = 37Y2(|1,0,0) +|0,1,0) + |0,0,1)), which represents a single-photon state
exiting in the balanced superposition of the three modes. The Fisher information
matrix in this scenario shows a phase-dependent profile F(A¢1, A¢2), meaning that
without adaptive strategies the asymptotic precision will be different depending
on the actual phase values. In particular, by looking at the inverse of F, we ob-
tain minag, Ag, Tr(F —1) ~ 3.866, which is obtained for six different phase pairs
(A1, Ags). For those pairs, minimum asymptotic quadratic loss is achieved. Note
that, by using the results of Refs. [485, 482, 672], an optimal measurement can be in
principle constructed saturating the quantum Cramér-Rao bound. For instance, for
small values of the unknown phases a measurement including the projector over the
initial state can be employed, thus requiring a-priori knowledge on the parameters
or adoption of a large number of probes.

Bayesian protocols require in general expensive computational resources, due to
the need of evaluating complex integrals to determine the normalization constant
N, as well as the estimated values and their corresponding covariance matrices.
A possible solution is to perform a discretization of the parameters space, thus
converting integrals to sums. In this case, the bin size has to be chosen depending
on the minimum error expected at the end of the estimation process. However, such
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solution becomes quickly unmanageable when the number of parameters increases,
since such a discretization has to be performed in a n-dimensional space. A different
solution has been explored in [394] for Bayesian learning problems by using a
Sequential Monte Carlo (SMC) approach. Indeed, Monte Carlo methods seem to be
a natural solution, due to their capability of reaching convergence independently
from the integration space dimension. The SMC method approximates the infinite
dimensional support ¢ with a finite number M of elements ¢;, called particles,
with associated probability weights w;. The error in the approximation can be
arbitrarily reduced by increasing the number of particles, leading to a trade-off
between computational time and accuracy of the approximation. In the context of
Bayesian analysis, any distribution p(¢) in the particles approximation is expressed
as p(p) ~ i wid(¢ — i)

We now consider the case of an initial prior knowledge p(¢) corresponding to a
uniform distribution. In the particles scenario, this prior information is approximated
by a set of M randomly drawn pair of phases ¢; with equal weights w; = 1/M
to satisfy the normalization condition (Zf\il w; = 1). During the experiment, the
information about the unknown phases ¢ is updated according to the Bayes rule after
each measurement outcome d. In the particle approximation, having fixed control
phases, this corresponds to updating the particle weights as w; — w; p(d|¢;, ®), while
keeping the particles {¢;} unchanged. The estimation of ¢ is then provided by the
expectation value of the posterior distribution ¢ = [do pp(p|d, ®) ~ Zi]\il W; ;.
As discussed in [394], the particle approximation needs some additional steps to avoid
the introduction of further errors throughout the estimation process. In particular,
after a few iterations the non-zero weights will be mostly concentrated on a small
subset of {¢;}, reducing the validity of the approximation. To avoid such effect,
it is possible to employ resampling techniques [685]. More specifically, when the
particle weights become too concentrated according to a given threshold condition,
a new set of particles {¢}} is generated by adding a small random perturbation to
the original particles. The weights are then reset to w, = 1/M, and the estimation
process restarts.

Within this framework, we now have to define the adaptive rule to determine
the value of the control parameters at each step depending on the actual knowledge.
More specifically, at each step of the estimation process one has to decide the control
parameters c (here, the additional phases ®) for the next probe. To this end, we
consider different strategies.

(i) A first approach is based on choosing the control phases according to QAS +
P ~ J¢p, where d¢p = argminA(z,l’M)QTr(]:_l). This strategy looks to set
the interferometer phases A¢ to those values leading to a minimum bound
for L(¢, ($) according to the Cramér-Rao inequality. While this approach is
tailored to work in the asymptotic regime of large N, its performances are
not guaranteed to be optimal for small N. An upside of this approach is that
setting the control parameters does not require complex optimization steps,
since an analytic rule can be easily defined.

(ii) In order to devise a strategy working in the small N regime, one can consider
a second strategy which is specifically tailored to work for all values of N. To
this end, we adapted the protocol described in [394] to the multiparameter
scenario implemented by our system. By this approach, the choice of the
control phases is performed to optimize a given figure of merit, known as
utility function (/). Canonical choices for U are information gain or quadratic

A A

loss. In our case, we choose U(¢p) = Tr[Cov(¢)], calculated over the posterior
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Figure 3.30. Numerical simulations of Bayesian adaptive protocols. For N, = 100
pair of phases, we simulated the performance of the different strategies described in the
main text, by averaging for each phase over Ny, = 100 different runs and by performing
spline interpolation on the obtained curves. Top: quadratic loss L(¢, (,17)) (solid lines).
Bottom: utility function ¢(¢) = Tr[Cov(¢)] (dashed lines), corresponding to the sum
of the parameters confidence intervals. Inset: (top) ratio R between the performances
of each protocol, compared with the optimized strategy (ii). R is computed both for
L(¢p, $) (solid lines) and U(P) (dashed lines), referring the same colors of the main panels.
(bottom) two-dimensional map of uniform-distributed couples of phases drawn for the
simulations. Green lines: approach (i) based on the Fisher information matrix. Red lines:
approach (i’) which includes first N = 20 events with random control parameters, while
for N > 20 works as (i). Blue lines: optimized approach (ii). Grey lines: benchmark
approach with random control parameters (iii). Dotted black lines: Cramér-Rao bound
for the asymptotic regime. This image is taken from [15].

distribution. Note that this approach is general and different utility functions
can be chosen, based on the specific estimation scenario. For instance, if the
parameter of interest is the correlation between the phases, the utility function
should involve the off-diagonal terms of the covariance matrix. Hence, at each
step the minimization algorithm finds the best control phases ® that, averaged
over all possible measurement outcomes, leads to a minimum value for the
sum of the parameters confidence intervals. This is thoroughly discussed in
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the final Supplementary Information 3.3.2. Given that this method relies on
numerical optimization steps, it is more expensive in terms of computational
resources than the previous strategy based on the Fisher information matrix.
Conversely, it provides the advantage of searching the optimal control phases
for all values of N, thus covering the limited data regime where asymptotic
approaches may not be the proper choice.

We have then performed numerical simulations to characterize the performances
of the two algorithms. More specifically, we have sampled Ny, = 100 random
pairs of phases (¢1, ¢2) in the interval [0, 27] x [0, 27]|. For each pair, we simulated
Nexp = 100 estimation processes where N = 100 single-photon probes are sent in the
interferometer. The results are shown in Fig. 3.30. We first tested the performances
of both algorithms (i) and (ii). We observe that, concerning strategy (i), the protocol
fails to approach the Cramér-Rao bound even for N ~ 100. This is related to the
non-injectivity of the likelihood function. In this way, a given probability can be
associated to different possible pairs of phases. Approach (i) seeks for setting the
phase differences A¢ to a fixed point, and it is not able to resolve such ambiguity
issue.

(iii) Better results are obtained by applying at each step a random (but known)
set of control phases (iii), which shows better convergence while not reaching
the Cramér-Rao bound. However, the application of this strategy is capable of
resolving the ambiguity.

(i) One can then consider a modified version of the asymptotic protocol (i), where
the first K control phases are drawn from a uniform distribution, while for
N > K the strategy works as (i). Numerical evidence shows that the best
choice for this parameter is K ~ 20. We observe that, with this modified
strategy, the Cramér-Rao bound is approached for N ~ 50.

Better results are obtained with the optimized strategy (ii), in particular in
the small N regime. For N > 60, we observe that both strategies (i’) and (ii)
provide similar performances since the experiment progressively approaches a large
N scenario where the Fisher information matrix defines the system sensitivity.

Finally, we perform some numerical simulations to show the superior performance
of the optimized adaptive protocol with respect to non-adaptive strategies, that are
not capable of resolving unambiguously the estimation process in the full [0, 27] x
[0, 27] interval. After, we experimentally implement the optimal strategy to guarantee
a faster convergence of the estimation process.

Comparison with non adaptive estimation

The advantages of our technique can be also found when comparing the per-
formances with respect to non-adaptive scheme. We investigate such aspect by
performing some numerical simulations. More specifically, when performing the esti-
mation with non-adaptive strategies the likelihood function suffers from injectivity
issues. Indeed, when there is very limited a-priori knowledge on the parameters, thus
resulting in an almost flat prior distribution, multiple pairs of phases can lead to the
same outcome probabilities. Hence, in this case a phase estimation experiment is not
able to distinguish between the different pairs, and the posterior distribution evolves
concentrating around multiple equivalent peaks (Fig. 3.31). As a consequence,
the overall error does not scale as CRB, as it represents the variance calculated
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along the multi-peaked posterior. Furthermore, the result of the estimator is not
reliable since the average of the posterior does not correspond to any of the multiple
pairs. Conversely, adaptive scheme allows to remove this injectivity issue, thus
achieving the CRB and providing a reliable estimation. Comparison between these
two approaches with a flat prior over the full 27 interval is reported in Fig. 3.32a.

Additionally, let us consider the scenario when the prior distribution is sharp
enough to avoid ambiguities, and the measurement is fixed. Fig. 3.32b shows a
comparison between the performance of two schemes with a prior knowledge of width
27/10. Also in this scenario, the adaptive algorithm shows improved performances
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Figure 3.31. Examples of non-adaptive two-phase estimation. Posterior evolution
after IV = 100 photons using non-adaptive Bayesian estimation for six different pairs of un-
known phases (red dots): a, (¢1, ¢2) = (1.350, —2.289); b, (¢1, ¢2) = (—1.040, —1.350); c,
(¢1,02) = (1.311, —1.445); d, (@1, ¢2) = (—1.016, —1.218); e, (1, ¢2) = (—1.520,1.441);
f, (¢1, d2) = (2.365,1.628). When limited or no a-priori knowledge is available on the
phases (here, we assume a flat prior), each outcome probability can belong to different
equivalent pairs of phases. This results in the presence of multiple peaks in the posterior
distribution during the estimation process. In all plots, particle colors represent the
corresponding weight. This image is taken from [15].
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Figure 3.32. Comparison between adaptive and non-adaptive strategies. Numer-
ical simulations of Bayesian estimation protocols having both a, a flat prior distribution
and b, a narrow prior distribution of width 27/10. In the top panels, the overall
quadratic loss L(¢, cz)) is shown as function of the number N of employed photons using
an adaptive (red) and a non-adaptive technique (orange). Results have been averaged
over Np, = 100 random pairs of phases, estimated Ny, = 100 independent times. In
the bottom panels, the performances are compared by considering the ratio between the

L(¢, ) of the two techniques. This image is taken from [15].

with respect to the non-adaptive one, since it is capable of progressively find the
working point with higher sensitivity for the chosen measurement.

Integrated circuit for multiphase estimation

The platform employed in this experiment is an integrated three-arm interferom-
eter. This system has been employed in Ref. [14] for the simultaneous estimation
of two relative phase shifts ¢ = (¢1, ¢2) between the arms of a three mode inter-
ferometer (Fig. 3.33). We first discuss the circuit layout and parameters, while
we subsequently describe the working condition used for the multiphase estimation
experiments reported below.

The platform is a three-arm interferometer realized in a glass chip through
femtosecond laser writing [56, 60]. The interferometer, optimized for operation at
A = 785 nm, is implemented by two cascaded tritters (three-mode beam splitters)
A and B interspersed with phase shifters. Each tritter is decomposed in a 2-D
planar configuration [615] consisting of three balanced directional couplers and one
phase shifter ¢4 (¢2) for tritter A (B). These phase shifters, as well as those placed
between the two tritters, can be tuned by means of the thermo-optic effect, using
microresistors that are patterned in a thin gold layer covering the chip surface.
When an electrical current is applied to the resistor, an optical path change on the
waveguide is induced by the dissipated heat [614]. In particular, let us consider the
dissipated power P; = R; IIQ%Z, on resistor R; subjected to a current Ip,, where we also
include that the value of the resistor depends on the current due to its temperature
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processing
unit

Figure 3.33. Experimental platform. A type-II parametric down-conversion source
(PDC) generates photon pairs, which are spectrally selected via interference filters (IF)
and coupled to single-mode fibers (SMF). One of the photons is directly measured by
detector Dr acting as a trigger for the experiment. The other photon, after polarization
compensation (PC), can be injected in any of the three input ports of the interferometer
via a single-mode fiber array (SMFA). After evolution, photons are collected via a
multi-mode fiber array (MMFA) and measured through detectors D;, with i = 1,2, 3.
Coincidences between Dp and any of D; are recorded via a time-to-digital converter. The
results of the measurement are processed and employed to apply the adaptive protocols.
The layout of the integrated circuit (shown in the bottom panel) includes 8 resistors to
modulate the input transformation (Ry ), the output one (Rp), and the internal phases
(R;, with i = 1,...,6) as described in the main text. This image is taken from [15].

change. The two induced relative phase shifts A¢ = (A¢1, Apa) between the arms
of the interferometer with respect to the reference mode, have the following general
dependence on the dissipated powers:

6 6
A¢j=djo+ ) <0‘jipi +> O‘?Iz‘lﬁpipk> ’ (3.56)

i=1 k=i
where j = 1,2 and ¢;o stands for the static phases of the interferometer. Parameters

aj; and a?]iL:k are the linear and quadratic response coefficients relative to the

dissipated power P;, respectively, while a?};ﬁk represent the nonlinear coefficients
associated to the product of the two powers P; and Py to include cross-talk effects.
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In our device 8 independent resistors are present (Fig. 3.33). Resistors Ry and Rp
are exploited to tune tritter phases gb% and qﬁ% respectively. Conversely, resistors
R1, Ry along mode 1, Ry, R5 along mode 2 and Rj3, Rg along mode 3, are employed
to tune the internal relative phase shifts of the interferometer, according to (3.56).
The operations of tritters A and B are described through the unitary evolutions
Ua and Usg, respectively, while the action of each phase shifter along mode 7 is
described through a unitary matrix PS; (i = 1,2,3). The overall evolution U of
the interferometer is given by Ut = Ug(I]2_; PS;)Ua.

In order to characterize the relevant parameters necessary to fully describe the
evolution of the interferometer, we measure the output probabilities when single
photons are injected along input 1, tuning the current applied on each resistor. The
probabilities have been theoretically modeled by modifying the ideal expression
with additional terms, taking into account non-ideal visibilities and dark counts
of the detectors. In this way, we performed an overall fit of all the measured
probabilities to determine the 58 chip parameters (see Supplementary Information
of [15] for more details) and finely reconstruct the likelihood probability p(d|A¢)
of our system. According to the scheme of Fig. 3.29b, the unknown phases to
be estimated are the pairs (¢1, ¢2), relative to the chosen reference arm ¢per. The
8 resistors allow us to finely tune and control all the relevant phase shifts of the
interferometer. The tritters phases can be tuned and are chosen in order to maximize
the sensitivity of the interferometer. Thus, after the characterization of all parameters,
we reconstructed the Fisher Information matrix Feyp. Then, we optimized the
quantity Tr[(Fexp) ~H(Ad1, Ao, ¢4, 2)] over the phases Agy, Ado, ¢h, ¢8, in the
range of total dissipated power permitted by the circuit. Indeed, a total dissipated
power greater than 1 W could damage the resistors. We found that the minimum
value of this quantity is reached when the single photons are injected along input 1,
arm 2 of the circuit is chosen as a reference, and the values of tritter and internal
phases are the following: gb% = 1.49 rad, gi)% = 0.72 rad, A¢; = —3.07 rad and
Agpy = 0.34 rad.

Fixing these conditions we reconstruct the Fisher Information matrix, obtaining:

L (2171 0.839
Fexp = <0.839 2.034)' (3.57)

Hence, estimating the two phases with N probes, the bound over the sum of the
quadratic losses is:

£ (0548 0226
exp = (0226  0.585

NL(¢, $) > Tr[(Foxp) '] = 4.2 (3.58)

Such minimized value of Tr[(Fexp) '] represents the (phase-dependent) Cramér-
Rao bound of our device, where the aim of the protocol is to saturate such bound
for all phase pairs by using limited probes. In absence of adaptive strategies, such
precision cannot be reached for all phase pairs, thus rendering the sensitivity of the
sensor phase-dependent. The aim of our strategy is thus also to reach the bound
Tr[(Fexp) 1] = 4.2 for all values of the parameters.

In order to achieve this goal, we discuss below how we exploit the phases in our
interferometer. The unknown phases ¢ = (¢1, ¢2) are tuned by means of resistors
Ry, Rs and Rg, according to (3.56), while the control phases ® = (&1, $2) are tuned
by resistors R; and Rs.
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Tuning of circuit parameters for adaptive two-phase estimation

In the employed interferometer the pair (¢1, ¢2) represents the unknown phases
relative to a reference arm with phase ¢t (Fig. 3.29b). All the relevant phases of
the circuit can be finely tuned by means of 8 resistors.

The first step performed aimed at finding the optimal choice for the tritter phases
qﬁ%, qb% to maximize the sensitivity of the interferometer. As previously discussed,
the best scenario for our interferometer corresponds to use mode 2 as reference mode
and arm 1 as input mode for single photons, with the following values of phases:
(;5% = 1.49 rad, ¢¥ = 0.72 rad, A¢; = —3.07 rad and Ay = 0.34 rad. In this working
point, the trace of the inverse of the Fisher Information matrix is Tr[(Fexp)}] = 4.2.
We now have to assign each resistor R; (i = 1,...,6) to tune both the unknown
phase shifts ¢ = (¢1,¢2), and the control phases ® = (&, P3) for the adaptive
algorithms. More specifically, we choose to employ resistors Ry, R5 and Rg to tune ¢.
Conversely, the control phases ® are those modified by dissipating power in R; and
Rs. Hence, considering (3.56) as A¢ = ¢ + P, we find the following expressions:

6 6
¢ = djot+ ). <ajipi +> a%{;ﬂ&) (3.59)
i=4 k=i

2 2
b = Z<ajip,-+2a§},;apk> , (3.60)

=1 k=i

with j = 1,2. In setting all phases of the device (equations 3.59 and 3.60) the
effective number of applicable phases is finite, due to the upper damage threshold of
global power (< 1 W) and to the limited precision of the power supply (Keithley
2230). In particular, the generated control phases are distributed uniformly and
quite densely over all the interval [0, 27] x [0, 27|, sufficient to guarantee the correct
functionality of the tested algorithms. Note that, in principle, only 4 resistors would
be sufficient to tune independently the 4 phase shifts (2 unknown and 2 controls).
However, we employed 5 resistors in order to obtain large tunability of the device
within limits of the damage threshold of each resistor.

Experimental results

We perform the experiment by continuously adapting the present tunable circuit
following the optimized Bayesian-SMC method [strategy (ii)]. This allows us to
achieve best attainable estimation with a limited number of resources. The probes
are heralded single photons at 785 nm generated by a degenerate type-1I SPDC
process inside a BBO crystal, pumped by a pulsed 392.5 nm laser. A photon from
each pair is sent through the circuit, entering in input 1, and acts as a probe, while
the other photon acts as the trigger for the heralding process (see Fig. 3.33). An
event is then recorded as the coincidence between the trigger detector and one of
the three outputs of the circuit. The interaction of the probe with the chip operator
encodes information about ¢ onto its state. Finally, the result of the measurement
is collected and used to identify the optimal settings for the next experimental step.

The phases ¢ to be estimated can be chosen by setting the currents flowing in
three resistors Ry, R5, Rg [Eq. (3.59)]. In order to test the protocol over different
estimation experiments, we have identified N, = 15 pair of phases uniformly
distributed (Fig. 3.34). Resistors Rj, Ry are used to tune the control phases
necessary for the adaptive strategy [Eq. (3.60)]. After the first event, where currents
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Figure 3.34. Final distribution of the estimated phases. Experimental simultaneous
estimations of Ny, = 15 different uniform-distributed pairs of phases. The estimation
process uses an amount of NV = 100 resources and Bayesian adaptive approach. Dark
orange regions represent the error in the estimation obtained from the covariance matrix.
Each estimated pair (red dot) is distant from the true set value (blue dot) within the
error (orange area), thus confirming the good performance of the algorithm. This image
is taken from [15].

IR, , IR, are chosen at random, we implement strategy (ii): optimal control phases ®
are calculated by minimizing the expected posterior variance. The nearest available
control currents I, , Ir,, limited by the precision of our power supply (Keithley 2230)
and by maximum dissipation power (< 1 W), are calculated and effective control
phases are applied to the device. The calculation of the prior distribution for each
step is made through the particle approximation. A uniform grid of M = 2000 pairs
of phases (Fig. 3.35a) is assumed as the initial set for the prior distribution. This
choice is performed to avoid any possible harmful periodicity during the estimation
process. Examples of prior information evolution during an experiment are reported
in Fig. 3.35b-d. In Fig. 3.35c the resampling step is shown, where particles with
zero weight of the previous step (Fig. 3.35b) are rearranged in more significant
locations (see the final Supplementary Information 3.3.2 for more details). Each
pair is estimated Ney, = 100 times, adopting N = 100 resources (photons) as for
the numerical simulations discussed above. Some examples of single experiments are
reported in detail in Fig. 3.36. Algorithm performances are shown in Fig. 3.37. A
first evaluation consists in averaging the experimental quadratic loss for each pair
of phases over all Ney, independent runs. As a result, the overall quadratic loss

L(¢, (13) saturates the CRB with a limited number of resources, in agreement with
the numerical simulations described above. Furthermore, saturation occurs both
for off- and diagonal matrix elements of the CRB. In particular, the latter show
that the CRB is reached with similar performances in the estimation of both phases.
This result is a fundamental feature for multiparameter metrology tasks when both
parameters are treated equally. We observe from Fig. 3.37c that our algorithm
reaches the CRB also when looking at the correlations between the parameters.
This means that the employed estimation approach does not add additional sources
of undesired correlations in the estimation process, which is relevant given the
addressed multiparameter scenario. In our case the resulting difference in estimation
of the two parameters is less than 10%, when compared to the sensitivity bound.
Furthermore, a heuristic estimation of the convergence time to saturate the CRB can
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Figure 3.35. Example of experiment. A typical estimation of two phases (red dots) is

be

reported. a, A uniform grid is generated as initial support for the prior distribution.
b-d, Evolution of the posterior distribution during experiment for three subsequent
moments. In particular, the distribution before and after the resampling are shown
respectively in b and c, where particles are rearranged in order to eliminate zero weight
cases. The new posterior weights are uniform, while particles are distributed closer to
the estimated phases. In a-d, particle colors represent the corresponding weight. e,
Study of standard deviation in estimation of the single phases (blue dashed lines) and
their sum (red dashed lines). The saturation of their CRB (solid lines) occurs for small
N. f, Experimental estimated pair of phases as function of the number N of adopted
probes (dots). Dashed lines indicate true set values of the phases. This image is taken
from [15].

calculated by studying the difference L(¢, ¢) — Tr[(Fexp) t]/N. A characteristic

time can be computed by using a + bexp (—N/7n) as fit function, with a,b, 7nx € R
the fitting parameters. The value obtained for 7 is Tﬁ‘,t = 5.6, which underlines the
good performance of the adaptive adopted technique in using a small number of
probes. Note that the number of probes necessary to achieve the bound is generally
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Figure 3.36. Examples of adaptive two-phase estimation experiments. L(¢,$)
from Ney, = 100 independent experiments (light blue solid lines) are reported for six
different pairs of phases: a, (¢1, ¢2) = (0.131,0.149); b, (¢1, ¢d2) = (—2.525, —2.535); c,
(b1, do) = (—0.230, —2.001); d, (¢1, po) = (2.386, —2.146); e, (1, b2) = (2.471,2.458); £,
(¢1, P2) = (—2.321,2.682). The average over all experiments (red dots) saturates the
CRB (Tr[(Fexp) " !]/N = 4.2/N) (dashed lines). The inset shows the average estimated
phases (red dots), the true phases to be estimated (blue dot) and the confidence interval
associated to the covariance matrix (orange region). This image is taken from [15].

scheme-dependent, as it can be seen studying different multiparameter scenarios
[671]. Another significant property of Bayesian approach is the ability to provide
the statistical error in each step of the estimation process, calculated as the variance
of the posterior distribution. Final estimated pairs fall on average within the error
from true set values of phases (Fig. 3.34).

All these experimental results demonstrate the quality of Bayesian-SMC strategy,
confirming it as largely suitable for multiparameter estimation problems. While
the convergence to CRB in limited data regime has been accurately studied by
theoretical works in both single- [664, 553, 686] and multi- [670, 671] parameter
estimation, the obtained results show the robustness of the employed Bayesian
approach when applied to a realistic sensor, where calibration of the system has to
be performed before it can be employed for phase estimation experiments. Indeed,
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Figure 3.37. Experimental results. Simultaneous estimations of Ny, = 15 different
pairs of phases using Bayesian adaptive protocol. Quadratic loss is averaged for each
phase over Ney, = 100 independent runs. a, Comparison between overall quadratic
loss L(¢, ) (red dots) and Tr[(Fexp)~!]/N (red solid line). The performances are
in agreement with the numerical simulations. Red shaded regions represent the one-
standard deviation interval where L(¢, cZ)) can be found. b, Analysis of diagonal elements
of CRB by comparing quadratic loss relative to the single phase of the estimated pair
L(s, ¢i) (with i = 1,2) (blue triangles) and Tr[(Fexp)~']/(2N) (blue solid line). The
algorithm shows symmetric optimal performances for estimation of both parameters, by
using the same amount of resources. This feature is highlighted by the inset panel, where
the ratio AL(¢, qAS) between the difference of the two estimations and the bound value is
reported. ¢, Analysis of phase correlations by comparing off-diagonal terms of ]-'C’X}) [Eq.
(3.57)] and [(Fexp) t12/N (green solid line). d, Estimation of convergence time (7x) to
CRB. The value can be estimated by fitting the distance between the averaged L(¢, cZ))
and CRB, after N > 2. The adopted fit function is a + bexp (—N/7x), with a,b, 7y € R
the fitting parameters, leading to 7y = 5.6. The choice of this function is performed to
provide a reasonable estimation of 7, as the number of probes necessary to approach
the CRB. This image is taken from [15].

we have shown the capability of saturating the Cramér-Rao bound by using limited
probes when the calibration procedure is performed with finite size data. Note
that such result is non-trivial, and shows that the actual sensor modeling permits a
high degree of device control to be reached, even when a larger number of phases is
simultaneously tuned. Implementation of this strategy has been enabled only by
the high reconfigurability of our employed integrated device, which highlights the
fundamental role of an appropriate platform for metrology tasks which involve more
than one parameter. These features characterise our proof-of-principle experiment,
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defining it as a necessary step towards the realisation of adaptive multiparameter
algorithms for technological applications.

Conclusions and perspectives

We have reported the experimental implementation of a multiphase Bayesian
adaptive protocol on an integrated platform, optimized to operate in the limited
data regime. We have reviewed different adaptive strategies and selected the one
optimizing the cost function given by the trace of the covariance matrix. This has
been employed to perform several simultaneous estimations of uniformly distributed
pairs of phases. As we have shown, the achievable bounds are attained for both
unknown phases after a limited number of N ~ 40 probes. Our experiment permits to
underline the suitability of such an integrated circuit for performing multiparameter
estimation tasks, as well as to exploit the capabilities of the proposed Bayesian
adaptive strategy.

This work provides a versatile approach for future perspectives in multiparameter
Quantum Metrology. In particular, these techniques can be directly generalized
for multi-photon quantum probes which would provide insight on the achievable
quantum accuracy limit. Indeed, the framework behind this approach is general,
and thus different probe states can be employed by suitable choice of the system
likelihood function. At the same time, the algorithm here described can be applied
to more complex integrated platforms, which enable optimized extraction of infor-
mation. The realized platform can be exploited also for the realization of different
optimal multiphase Bayesian protocols, such as that proposed in Ref. [671]. In this
paper, given an arbitrary state, prior knowledge and number of repetitions of the
experiment, explicit recipes for the optimal measurements are provided in the case
where the estimators commute. Further perspectives include the study of different
multiparameter scenarios, as well as practical applications to quantum sensing of
delicate samples [687] and quantum error correcting algorithms [688, 689, 690].

Supplementary information

The machine learning technique exploited to realize two-phase estimation exper-
iments is based on approximating the prior probability distribution support with
M discrete particles [394]. More specifically, a probability weight w; is associated
with each i—particle by keeping normalization Zi]\il w; = 1. Then, the posterior
distribution is updated according to the Bayes rule. In this section we discuss two
aspects of this technique: the resampling strategy, and the utility function chosen to
tune the control parameters.

Resampling strategy

Fig. 3.35a shows that the initial support is uniformly covered by particles.
During the estimation protocol, the updating process according to the Bayes rule
modifies the particles weights towards more likely phases values. Greater weights are
attributed to particles closer to the estimated values. Conversely, distant particles
tend to zero weights according to the normalization rule (Fig. 3.35b), thus bringing
no useful information. Furthermore, the estimation sensitivity of the unknown
phase pairs is limited by the initial density of particles around the true values. To
solve these problems, resampling techniques can be adopted to update particles in
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more significant positions. Following Ref. [394], the employed resampling technique
is based on introducing, at particular steps of the process, perturbations on the
particles ({¢}) to move them on more likely position ({¢'}), according to the
posterior probability. First, M particles are selected randomly following the prior
distribution. Then, the selected particles are moved randomly according to the
multivariate distribution defined by:

p) =S wi——exp(—n(p— ) TSNP ). (3.61)

1
=/ @2n)kz 2

The various distribution peaks are generated by displacing the original estimated
pair (u) in the direction of each ¢;, of a quantity pu; = a¢; + (1 —a)u. The parameter
a is the resampling parameter, that we set to a = 0.98 as suggested in Ref. [394].
The covariance matrix (%) is calculated by multiplying (1 — a?) with the covariance
matrix of the initial particles. As a result, the particles are rearranged by increasing
the density around the estimated phase values. Then, the weights of new particles
are set to a uniform distribution (w; = 1/M), and the learning process restarts.
Resampling is performed when the following condition is fulfilled: 1/ SM w? < M/2
[394].

Utility function

The utility function U defines the figure of merit that is employed to tune the
control parameters ® during the estimation process. Canonical choices for the utility
function are the information gain or the quadratic loss. In our case we chose to
minimize the expected variance of the posterior distribution after each step. Given the
prior distribution {w}, each output d of three possible cases (d = 1,2, 3) will update
the posterior following the Bayes rule, and a precise overall variance can be assigned
to that specific output. The overall variance is computed by tracing the covariance
matrix associated to the posterior distribution: U(d|{w}) = Tr[Cov(¢|d,{w})]. The
expected variance U(®) is computed by averaging this quantity over the probability
to obtain that specific output p(d|®). More specifically, the utility function reads:

3

U(®) = p(d|®)U(d|{w}) (3.62)
d=1

where p(d|®) is given by p(d|®) = =M, wip(d|¢, ®). Finally, we note that p(d|¢, ®)
represents the likelihood of the system. A suitable characterization of the device is
thus crucial to correctly apply the algorithm.
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3.4 Final remarks

Photonic Quantum Metrology is an active research field, in which quantum
states of light are employed to improve the estimation precision in the measurement
process. Here, the phase estimation scenario is a relevant framework that can be
used as a benchmark for many others. Furthermore, the realization of quantum
sensors, able to perform estimations in realistic scenarios, poses two main constraints
to sensing devices. On the one hand, the demands for the optimization of the
limited resources, for which adaptive strategies provide a valid solution. On the
other hand, the systems can show high complexity, often involving more than one
parameter. Here, the estimation of multiple parameters in the quantum regime has
reported few experimental investigations to date, although it is crucial to generalize
the single parameter case. During my thesis work I contributed to such research
directions realizing first a review on Photonic Quantum Metrology [1], and then
several experimental studies on phase estimation.

The first experimental results exploited an integrated photonic platform, real-
ized through the femtosecond laser writing technique. The device is a three-arm
Mach-Zehnder interferometer able to manipulate two independent optical phase
shifts [14]. Such quantities can be tuned using different phase shifters placed along
the interferometer. The high degree of tunability of the platform, together with the
phase stability provided by the integrated level, allowed us to study the multiphase
estimation performance of the sensor in the quantum regime. In particular, by char-
acterizing the device, we showed that it achieves quantum-enhanced performances
over classical strategies when injected by multi-photon states. This result was
subsequently tested, by performing the first non-adaptive simultaneous two-phase
estimation experiment with two-photon input states. Our platform represents a
building block for tasks of multiparameter Quantum Metrology. On the one hand, it
can be used to test protocols for a practical multiparameter estimation, e.g. adaptive
strategies. On the other hand, our integrated platform can be generalized enlarging
the dimensionality of the system and considering more complex interferometers.
Furthermore, we tested the performance of a Neural Network in calibrating the same
device [16]. The approach provides optimal results, by showing the ability to not
require a detailed model of the internal operation. This study showed that the Neural
Network is an effective, robust, and reliable tool for the practical calibration of
complex sensors that depend on multiple parameters. Moreover, it provides a useful
methodology for a mass-production characterization of similar quantum sensors.

Other works concerned the study of adaptive strategies for phase estimation.
Using a device similar to the previous one, we tested adaptive strategies during the
multiphase estimation process [15]. Exploiting the high number of phase shifters
of the photonic platform, we identified some feedback phases to tune the chip
transformation. Different online adaptive strategies have been studied, and the
best one — a Bayesian-Sequential Monte Carlo technique — was selected for the
experimental estimation. In this way, we demonstrated an efficient experimental
adaptive two-phase estimation with limited data. Such an approach is general and
can be used with different probes and systems. More complex integrated platforms
can be used to optimize information extraction. Then, different probe states can
be employed by suitable choice of the system likelihood function. A final study
concerned the investigation of an offline adaptive strategy for the estimation of
a single phase into a bulk Mach-Zehnder interferometer in polarization [17]. The
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presented novel technique, based on a genetic algorithm, is able to find optimal
solutions for the feedback phases with a large research space. The obtained results
showed that the genetic algorithm provides optimal performances even when the
system is affected by two types of common losses. This algorithm is a promising
candidate for investigating adaptive phase estimation problems in an offline fashion.
In perspective, it could be tested with different probes or in a multiphase estimation
scheme.
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Conclusions

Quantum Communication and Quantum Metrology have been growing signifi-
cantly in recent decades, showing an ever-increasing interest, that is reaching not
only research institutions but even governments and private companies, especially re-
garding the quantum key distribution (QKD) and the realization of quantum sensors.
Such fields find their power in the laws of Quantum Mechanics and particularly in
the non-classical resource of entanglement. The generation, the distribution of such
resources, as well as their implementation to enhance the classical limits is a funda-
mental direction of Quantum Information, representing the purpose of my Ph.D..
During this thesis work, these two fields have been intensively studied exploiting
Quantum Optics as the main framework for their optimal experimental investigation.
Indeed, photons provide a variety of solutions that can be opportunely chosen accord-
ing to the specific task. Furthermore, photons are currently the only feasible flying
qubits, which give access to quantum communication between distant parties. In my
Ph.D. thesis different contributions have been experimentally demonstrated for both
Quantum Communication [10, 11, 12, 13] and Metrology [14, 15, 16, 17]. Moreover,
a review on the state-of-the-art in Photonic Quantum Metrology has been realized [1].

In Quantum Communication the role of entanglement has been largely shown and
studied for different scenarios. In Sec. 2.2 it is shown how to generate entanglement
in telecom wavelength — the most suitable region to enable fiber communication

— using an integrated photonic platform realized in femtosecond laser writing [10].
The hybrid and modular approaches of such device, together with the presence
of a tunable element, i.e. an integrated phase shifter, allow the preparation of
several output states; such states are even encoded using different degrees of freedom
of light, that are photon path and polarization. This realization has potentially
a plethora of future applications, since it is compatible with fiber networks and
suitable for possible all-in-chip circuits, simply by adding components in the same
modular fashion. A second telecom distribution of quantum resources is presented
in Sec. 2.3. Here, the distribution of a hybrid entangled state is demonstrated, i.e.,
exploiting different properties of the same photon. Specifically, after the generation
of the photon pair in the telecom regime, the polarization of one photon is quantum
correlated with the vector vortex state of the second one. The latter is a further
entanglement between its OAM and polarization degrees of freedom. Such state
has been successfully transmitted through a particular fiber, namely the air-core
fiber, preserving its quantum properties [11]. Indeed, the involved spatial transverse
profile is peculiar due to the presence of a non-zero OAM quantum. Thus standard
single-mode fibers can not be used for this task. This work not only improves
the research for hybrid entangled state exchange between distant parties, but also
paves the way to high-dimensional entanglement distribution in future quantum
networks, where telecom generation of OAM quantum states can be interfaced with
OAM-supporting fibers. Then, more complex structures have been investigated
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where to distribute photonic entanglement. First, a photonic star-shaped quantum
network was experimentally realized in [12] (Sec. 2.4). This scenario was achieved
using up to four different laboratories, each containing an independent source of
entangled photons. We successfully certified the presence of distributed multipartite
entanglement in the system by adopting generalized Bell-like inequalities. Finally,
the entanglement distribution between two parties more than 250 m apart led to
the realization of a QKD protocol based on a modified version of Ekert91 (Sec.
2.5). This contribution represents the first realization in the field that exploits the
quantum dot (QD) as a single-photon source to generate the distributed quantum
state [13]. The QD aims to have a deterministic generation in the future. The same
experiment has been realized using two different quantum channels: a fiber link and
a free-space connection between two buildings, belonging to the Physics Department
of Sapienza University of Rome. Remarkably, the last solution represents an urban
free-space channel. The achieved results demonstrated that QD technology repre-
sents a promising solution for real-life secure quantum communication: it is mature
to be used outside the laboratory, enabling QKD in both fiber and free-space links,
as well as it can be interfaced with other quantum systems.

In Quantum Metrology, the realized review work [1] analyzes the state-of-the-art
in Photonic Quantum Metrology. It first introduces the basic concepts of Quantum
Metrology for experimental implementations and then reviews existing photonic
solutions. Here, the problem of phase estimation is discussed, together with the
role of the adaptive approach during the learning process and the multiparameter
scenario, which to date shows surprisingly few experimental investigations. Elements
of this review work have been used to introduce the Chapter 3 and integrating the
subsequent experimental results achieved. Besides the review contribution, several
works have been demonstrated in the context of phase estimation. First of all, it
was realized the first quantum sensor capable of attaining quantum enhancement
for a two-phase estimation problem (Sec. 3.2.1). In [14] such device has been
characterized in both classical and quantum regimes, thus revealing its actual
potential. The platform is an integrated interferometer with highly reconfigurable
capabilities, thanks to the presence of several phase shifters. This sensor has been
used to investigate multiphase estimation protocols in the adaptive online regime
(Sec. 3.3.2). Thus, different machine learning-based algorithms for the Bayesian
learning framework were studied and tested with simulations in the online mode.
Then, the best one was employed to demonstrate the actual experimental realization
with the aforementioned integrated platform [15]. Furthermore, if one is interested
in the realization of a quantum sensor, a key aspect concerns the characterization
of its response. In Sec. 3.2.2, we demonstrated how to tackle this problem for
our device using a Neural Network attaining reliable performances [16]. A final
contribution dealt with the adaptive single-phase estimation (Sec. 3.3.1). Here,
an offline algorithm was studied to increase the performance in estimating a single
phase inside a two-mode MZI in polarization [17]. The technique investigated is a
genetic algorithm inspired by the natural selection process, in order to deal with the
search for optimal solutions within an extremely large search space. All the results
described within the framework of phase estimation represent benchmark scenarios
for single and multiparameter problems, providing testbeds for a great number of
applications. They show the attempt to face a multiparameter quantum sensor in
a regime of single photons, studying the optimization of different features, from
the calibration to the study of its adaptive control. In the latter, we have provided
contributions in both online and offline approaches, thus increasing the optimization
of estimation problems in the limited data regime. This task is particularly relevant
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for the adaptive multiphase scenario, where optimizing the simultaneous estimation
of multiple unknown parameters is far from obvious.
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