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Abstract. This paper focuses on logical aspects of choices being made by the consumer under conditions of uncertainty or
certainty. Such logical aspects are found out to be the same. Choices being made by the consumer that should maximize her
subjective utility are decisions studied by revealed preference theory. A finite number of possible alternatives is considered.
They are mutually exclusive propositions identifying all quantitative states of nature of a consumption plan. Each proposition
of it is expressed by a real number. This research work distinguishes it from its temporary truth value depending on the
state of information and knowledge of the consumer. Since each point of the consumption space of the consumer belongs
to a two-dimensional convex set, this article focuses on conjoint distributions of mass. Indeed, the consumption space of
the consumer is generated by all coherent summaries of a conjoint distribution of mass. Each point of her consumption
space is connected with a weighted average of states of nature of two consumption plans jointly studied. They give rise to
a conjoint distribution of mass. The consumer chooses a point of a two-dimensional convex set representing that bundle of
goods actually demanded by her inside of her consumption space. This paper innovatively shows that it is nothing but a
bilinear and disaggregate measure. It is decomposed into two real numbers, where each real number is a linear measure. In
this paper, different measures are obtained. They can be disaggregate or aggregate measures, where the latter are independent
of the notion of ordered pair of consumption plans.
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1. Introduction

Choices being made by the consumer are directly
observable. Revealed preference theory studies them
as decisions that should maximize her subjective util-
ity (see also [31], where a comprehensive approach
to revealed preference theory is considered). The cor-
rect criterion of decision-making is based on logical
aspects characterizing both choices being made by
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the consumer under uncertainty and the ones being
made by her under certainty. Such logical aspects are
found out to be the same. Since the consumer actu-
ally finds herself in a state of uncertainty in almost all
circumstances, the usual modes of deciding pragmat-
ically depend on the factor uncertainty as the peerless
and determinative element. We consequently realize
that choices being made by the consumer under cer-
tainty are a simplification (see also [37], where the
consumption theory is dealt with in terms of revealed
preference). They are a particular case (see also [3],
where choices under conditions of uncertainty are
studied). This research work focuses on the general
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2 P. Angelini and F. Maturo / A statistical approach to consumers’ consumption spaces

one without changing anything. It innovatively iden-
tifies a more general approach.

In this paper, choices of bundles of goods being
made by the consumer are dealt with. An infinite
number of alternatives cannot realistically be con-
sidered. There are not repeatable alternatives into the
formulation of any choice problem concerning bun-
dles of goods and into the arguments required for
its solution. Thus, the consumer is naturally faced
with a finite number of possible alternatives, where
each of them is not itself subdivisible for the purposes
of the problem under consideration. The linearity of
their arithmetic interpretation plays a fundamental
role. For this reason, all quantitative states of nature
of a consumption plan are studied inside of a lin-
ear space over R furnished with a measure. Each of
them is a possible proposition expressed by a real
number. If we consider m mutually exclusive states
of nature then they identify an m-dimensional con-
sumption vector expressed by y = (y1, y2, . . . , ym).
It belongs to an m-dimensional linear space over R

denoted by Em. With regard to an orthonormal basis
of Em, we have just written the contravariant com-
ponents of y ∈ Em as an ordered m-tuple of real
numbers. Each proposition is associated with a mass
identifying its temporary truth value lying between 0
and 1, end points included. The temporary truth value
of a possible proposition is of a relative and subjective
nature. Indeed, it depends on the state of information
and knowledge of the consumer as well as her attitude
towards uncertainty (see also [15], where essential
psychological aspects connected with evaluations of
mass are considered). Within this context, uncertainty
about a state of nature of a contingent consumption
plan is meant in the simple sense of ignorance by
the consumer (see also [9] with respect to possible
interpretations of uncertainty). Uncertainty about a
state of nature of a contingent consumption plan is
numerically expressed by the value of the mass asso-
ciated with it (see also [28] with respect to problems
concerning choices under conditions of uncertainty).

Whenever the consumer rationally chooses her
bundle of goods she actually chooses a point belong-
ing to a convex set. Since it obeys a logical criterion,
this paper studies its characteristics.

We are interested in decomposing the geometric
representation of the logical situation by consider-
ing the two logical elements identifying it inside of a
linear space over R. Indeed, we distinguish between
real numbers and the corresponding allocation of an
evaluation of mass being made by the consumer (see
also [42], where behavioral aspects connected with

evaluations of mass are studied). We say that in the
case of logical entities expressed by real numbers the
most useful arguments are not quite effective if one
thinks in terms of the set of real numbers without ref-
erence to the linear space over R in which this set
has to be embedded (see also [13], where operational
definitions of notions based on criteria permitting to
measure them are dealt with). Conversely, they are
absolutely effective if one considers such numbers as
points belonging to the set denoted by I(Y ) contain-
ing different logical entities all together. Accordingly,
I(Y ) is embedded inside of a linear space over R (see
also [10], where current researches associated with
the subjectivistic conception of probability are taken
into account). Regarding an evaluation of mass, it
must not be absolutely inadmissible from a logical
point of view. On the other hand, given two sets of
quantitative states of nature of two consumption plans
separately considered, we assign the arithmetic prod-
uct of the two corresponding real numbers to each
state of nature of a joint consumption plan character-
ized by a conjoint distribution of mass.

With regard to the structure of the paper, we show,
in section 2, that it is appropriate to use contravariant
indices together with covariant ones. In section 3, we
define the consumer’s demand functions by decom-
posing a bilinear measure into two linear measures.
In section 4, we study two contingent consumption
plans that are jointly considered. In section 5, since
we study bilinear and aggregate measures obtained
by defining antisymmetric tensors of order 2, we
go away from the notion of ordered pair of con-
tingent consumption plans. In section 6, we show
that the Bravais-Pearson correlation coefficient can
be obtained starting from a bilinear and aggregate
measure. In section 7, we find out that the consumer’s
demand functions connected with two ordinary goods
having downward-sloping demand curves are sim-
ilarly obtained by decomposing a bilinear measure
into two linear measures. In the appendix, the two
theorems stated in section 5 are lastly proved.

2. Propositions and their masses: a particular
and reasonable notation

Within this context, a function defined on a set
having only a finite number of possible values coin-
cides with Y (see also [7] with respect to problems
concerning previsions of random entities). Y is a ran-
dom quantity whose possible monetary values are
given by I(Y ) = {y1, y2, . . . , ym}, where we have
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y1 < y2 < . . . < ym without loss of generality (see
also [23] with regard to the notion of partition of
events). If we interpret Y as a function then we
have to consider particular intervals of R such that
the pre-image of any [yi, yi], i = 1, . . . , m, is a real
number coinciding with yi and belonging to I(Y )
on which Y is defined. The finest set of possible
propositions coincides with I(Y ). It identifies mutu-
ally exclusive propositions (see also [8] with regard
to problems involving evaluations of probability). Its
extent depends on the state of information and knowl-
edge of the consumer. That point contained in I(Y )
that it will occur whenever uncertainty finally ceases
expresses everything there is to be stated with respect
to the problem under consideration (see also [32],
where an additive measure evaluating uncertainty is
dealt with). Its final truth value is objectively equal
to 1.

After establishing m masses denoted by
p1, p2, . . . , pm, the consumer puts them on m

real numbers denoted by y1, y2, . . . , ym inside of
a linear space over R (see also [2] with respect
to distributions of mass studied inside of a linear
space furnished with a measure). Each proposition
under consideration can be subjected to infinite
translations, so it is also possible to write

{y1 + λ, y2 + λ, . . . , ym + λ},
with λ ∈ R. Nevertheless, all masses associated with
them do not change. This is because expectations
and sensations of the consumer related to yi + λ,
i = 1, . . . , m, do not change (see also [33], where the
notion of probability is studied in connection with the
one of utility). Even though her expectations and sen-
sations affect each temporary truth value, it turns out
to be p1 + p2 + . . . + pm = 1 if and only if there is
coherence (see also [38] with regard to the notion of
probability).

Let Ei, i = 1, . . . , m, be the generic proposition
expressing in terms of statement a state of nature
of a contingent consumption plan (see also [4] with
respect to the nature of logical entities connected with
probabilistic evaluations). The following sequence
written in the form

(y1, p1), (y2, p2), . . . , (ym, pm)

tells us that y1 is the monetary wealth that Y provides
and that can be spent by the consumer if E1 actually
occurs, . . . , ym is the monetary wealth that Y pro-
vides and that can be spent by the consumer if Em

actually occurs. It is clear that the mass identifying

the temporary truth value of y1 is denoted by p1, . . . ,
the mass identifying the temporary truth value of ym

is denoted by pm.
We use contravariant indices together with covari-

ant ones. This is because we distinguish the two
logical elements on which decisions being made by
the consumer under conditions of uncertainty are
based. On the other hand, contravariant and covari-
ant components of a same vector are always the same
numbers whenever we use an orthonormal basis of
the linear space over R under consideration (see also
[34] with regard to geometric aspects of logical enti-
ties). Hence, with respect to a same geometric entity,
we can use both upper indices and lower ones. This
thing makes no difference.

3. Prevision bundles and their bilinear nature

Let 1Y and 2Y be two random quantities, where
the number of the possible values for each of them
is equal to m. Let I(1Y ) = {(1)y

1, . . . , (1)y
m} and

I(2Y ) = {(2)y
1, . . . , (2)y

m} be the sets of possible val-
ues for 1Y and 2Y . The two vectors identifying the
possible values for 1Y and 2Y are linearly indepen-
dent. Firstly, two located vectors at the origin of
Em are completely determined by their end points.
Since it is possible to call an ordered m-tuple of real
numbers either a point of Em or a vector of Em, it
follows that Em and Em are isomorphic. Secondly,
if we consider all collinear vectors with regard to the
two vectors identifying the possible values for 1Y and

2Y then we obtain two straight lines. It is therefore
possible to go away from Em. We are interested in
considering two mutually orthogonal straight lines
coinciding with the two axes of a two-dimensional
Cartesian coordinate system on which an origin, a
same unit of length and an orientation are established
(see also [43], where essential geometric aspects con-
nected with structures of logical entities are dealt
with). On the other hand, we have elsewhere proved
that all the m possible values for a random quan-
tity identifying an m-dimensional vector of Em can
be studied by considering a one-dimensional straight
line on which an origin, a unit of length and an ori-
entation are established.

Moreover, we suppose that the two contingent
consumption plans under consideration are logically
independent, so the Cartesian product of I(1Y ) and
I(2Y ) denoted by I(1Y ) × I(2Y ) is considered to
obtain all states of nature of a joint contingent con-
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sumption plan. Their number is overall equal to m2

(see also [35], where finitely additive measures are
studied).

3.1. Two half-lines

Given Y , its weighted average is denoted by P(Y ).
Since P is linear, we have to write

P(λ Y ) = λP(Y )

for every real number denoted by λ. The same is true
if we consider a finite number of summands, where
each summand is a random quantity.

If λ ∈ R then we establish that λ lies between λ′
and λ′′. Nevertheless, if this thing holds then it is
also valid with regard to λ Y in the sense that λ Y

has to lie between λ′ Y and λ′′ Y . Consider we are
reasoning about P(λ Y ). However, we have to note
that λ Y lies between λ′ Y and λ′′ Y when and only
when I(Y ) contains all non-negative elements. Oth-
erwise, all of this is not true. Accordingly, since we
can always write Y = X − Z, where we have X = Y

(Y ≥ 0) and Z = −Y (Y ≤ 0), we observe that these
quantities are non-negative. All their possible val-
ues are non-negative numbers. This is because we
have X = Y , if Y > 0 and zero otherwise, whereas
we have Z = −Y , if Y < 0 and zero otherwise. We
therefore note that the conclusion is valid for X as
well as for Z. Accordingly, the possible values for
X are non-negative numbers. The same is true with
respect to Z. It follows that the conclusion is also
valid for Y = X − Z.

It is clear that if we consider 1Y and 2Y then it is
possible to write 1Y = 1X − 1Z and 2Y = 2X − 2Z,
where the possible values for 1Y and 2Y are found on
two half-lines.

3.2. Additivity and convexity of P

P(Y ) is the mathematical expectation of Y . We
write

P(Y + X) = P(Y ) + P(X) (1)

as well as

y1 ≤ P(Y ) = y1 p1 + y2 p2 + . . . + ym pm ≤ ym,

(2)
where we have I(Y ) = {y1, y2, . . . , ym}, with y1 <

y2 < . . . < ym, because P is respectively additive
and convex.

Since the possible values for Y are found on a
half-line, all coherent values of P(Y ) obtained by

considering infinite real numbers such that we have
0 ≤ pi ≤ 1, i = 1, . . . , m, identify a line segment
whose end points are given by y1 and ym. This line
segment is a one-dimensional convex set. On the other
hand, (1) tells us that it is possible to consider a more
extended line segment. It also tells us that the num-
ber of the possible values for Y is the same of the one
of the possible values for X, so their corresponding
masses are the same as well. It follows that P has
the same properties of the ones of well-behaved pref-
erences for which more of both goods is better and
averages are weakly preferred to extremes (see also
[45] with regard to the notion of utility).

P is a linear measure whose properties tell us
that any point belonging to a one-dimensional con-
vex set is logically admissible. In other words, any
point belonging to a one-dimensional convex set is
admissible in terms of coherence of P. If the con-
sumer chooses a point identifying what is actually
demanded by her for a random good then her choice
is not rational whenever such a point does not belong
to a convex set. Hence, given a random quantity, this
choice leads to a sure loss or win. Strictly speak-
ing, if the consumer pays ym + a, with a ∈ R

+, in
order to receive at most ym at the right time then
she certainly loses ym + a − ym = a. Conversely, if
she pays y1 − a in order to receive at least y1 at the
right time then she certainly wins y1 − (y1 − a) = a.
However, we are not interested in knowing decisions
providing favorable results, but we are interested in
knowing decisions providing results whose conse-
quences are undesirable in order to avoid them.

We establish the following

Definition 3.1. P is a linear measure such that
it is possible to replace {y1, y2, . . . , ym} with
P(Y ), where the latter is obtained by using those
temporary truth values associated with each propo-
sition expressed by a real number contained in
{y1, y2, . . . , ym}. The sum of such values has to be
equal to 1, so P(Y ) is a coherent summary identify-
ing that proposition expressed by a real number which
is actually chosen by the consumer. Each final truth
value associated with a proposition of a contingent
consumption plan represented by a real number con-
tained in {y1, y2, . . . , ym} objectively coincides with
0 or 1 whenever the state of information and knowl-
edge of the consumer changes because uncertainty
ceases.

We note the following

Remark 3.1. The theory of decision-making is in
general interested in knowing what the decision-
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maker actually chooses. Within this context, we are
especially interested in knowing what the consumer
actually demands for a good. Since her rational choice
coincides with a coherent summary, such a summary
identifies a proposition expressed by a real number
(obtained inside of a linear space over R) whose truth
value is equal to 1. This is because she is indifferent
to the exchange of Y , with I(Y ) = {y1, y2, . . . , ym},
for P(Y ) with certainty. �

3.3. A two-dimensional convex set

Given two random quantities denoted by 1Y and

2Y , the object of consumer choice denoted by
(P(1Y ), P(2Y )) is of a bilinear nature (see also [22]
with regard to the connection between a bundle of
goods and utility). It is called a prevision bundle.
Indeed, P stands for prevision (mathematical expec-
tation) of a random quantity.

The budget set of the consumer is a right triangle. It
is established by the negative slope of the budget line.
It is also established by the two mutually orthogonal
axes of a two-dimensional Cartesian coordinate sys-
tem. The point (0, 0) where they meet, together with
all those points whose coordinates are expressed by
positive numbers, belongs to it. The budget constraint
of the consumer expresses what she can afford (see
also [19] with regard to the notion of risk connected
with what the consumer prefers).

The necessary and sufficient condition for coher-
ence of decisions is made clear by saying that the
inequality between 1Y and 2Y denoted by

b1 (1Y ) + b2 (2Y ) ≤ b (3)

has to be satisfied by the corresponding previsions
given by P(1Y ) and P(2Y ). We consequently write

b1 P(1Y ) + b2 P(2Y ) ≤ b, (4)

where b1, b2 and b are positive real numbers coin-
ciding with prices and income respectively (see also
[30] to realize how some choices being made by the
investor can be optimal). The budget line is given by

b1 P(1Y ) + b2 P(2Y ) = b, (5)

so its slope coincides with

−b1

b2
. (6)

The budget line always passes through the point hav-
ing its coordinates denoted by

(
sup I(1X), sup I(2X)

)
, (7)

where we have 1Y = 1X − 1Z and 2Y = 2X − 2Z.
We consider a conjoint distribution of mass

because all its coherent summaries coincide with all
points of the budget set of the consumer (see also
[44], where problems involving more than one vari-
able are considered). They coincide with all points of
her consumption space.

We note the following

Remark 3.2. The consumption space is generated by
all coherent summaries of a conjoint distribution of
mass. �

A conjoint distribution of mass is summarized by
means of P(1Y 2Y ), with P(1Y 2Y ) being a bilin-
ear and disaggregate measure. We decompose it into
P(1Y ) and P(2Y ) (see also [39], where decisions are
based on psychological elements).

We note the following

Remark 3.3. The choice of the consumer from her
budget set coincides with the choice of a point belong-
ing to a two-dimensional convex set. Such a point
is decomposed into two points belonging to two
one-dimensional convex sets. To be interested in
studying rational choices being made by the con-
sumer means to be interested in studying coherent
summaries. �

3.4. Average quantities of consumption

The average quantities of consumption con-
nected with two random goods denoted by 1Y

and 2Y that are actually demanded by the con-
sumer are expressed by P(1Y ) = P(1Y )[(b1, b2, b)]
and P(2Y ) = P(2Y )[(b1, b2, b)]. It is clear that they
depend on objective and subjective elements. In gen-
eral, what the consumer actually chooses always
depends on objective and subjective elements. In par-
ticular, the subjective elements must not logically be
inadmissible, so they have to be chosen in such a way
that finite additivity of masses and non-negativity of
each of them hold.

In this paper, we do not consider a conjoint distribu-
tion of mass only (see also [14], where psychological
elements characterizing a conjoint distribution of
mass are considered). This is because we are also
interested in knowing aggregate measures that are
established by the consumer on the basis of her state
of information and knowledge.
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6 P. Angelini and F. Maturo / A statistical approach to consumers’ consumption spaces

4. Geometric aspects of temporary truth
values

Let (1Y, 2Y ) be an ordered pair of random quanti-
ties. We write

I(1Y ) = {(1)y
1, . . . , (1)y

m}
and

I(2Y ) = {(2)y
1, . . . , (2)y

m},
where each set is characterized by m mutually exclu-
sive propositions (see also [6], where situations
characterized by incomplete information are stud-
ied). Since each proposition of I(1Y ) and I(2Y ) is
expressed by a real number, we assign the arithmetic
product of the two corresponding real numbers to
each element of the Cartesian product under con-
sideration. It follows that if a joint random quantity
denoted by 1Y 2Y is interpreted as a function then it
is written in the following form given by

1Y 2Y : I(1Y ) × I(2Y ) → R,

where it turns out to be 1Y 2Y ((1)y
i, (2)y

j) =
(1)y

i
(2)y

j , with i, j = 1, . . . , m.

Let B⊥
m = {

ei | i ∈ Im = {1, . . . , m}} be an
orthonormal basis of Em. By using the Einstein
notation, if we write

(1)y = (1)y
iei

and

(2)y = (2)y
iei

then (1)y ∈ Em and (2)y ∈ Em identify two m-
dimensional vectors whose contravariant compo-
nents with respect to B⊥

m coincide with all elements
belonging to I(1Y ) and I(2Y ) respectively.

Since 1Y and 2Y are the two marginal random
quantities of 1Y 2Y , their temporary truth values do
not change when the consumer establishes the ones
of 1Y 2Y . The temporary truth values of 1Y and 2Y

are mathematically expressed by using the covari-
ant components of two m-dimensional vectors, where
such vectors identify all marginal masses (see also
[17], where coherent evaluations of mass under con-
ditions of uncertainty are dealt with). Conversely, the
covariant components of an affine tensor of order 2
represent all the masses of the joint distribution of
1Y and 2Y . They have to be established by the con-
sumer in accordance with the temporary truth values
related to each proposition contained in I(1Y ) and
I(2Y ). Hence, the temporary truth values related to

each proposition contained in I(1Y ) and I(2Y ) repre-
sent a limitation with regard to the ones characterizing
I(1Y ) × I(2Y ). It is possible to associate in an orderly
manner the covariant components of an affine tensor
of order 2 with the masses of the joint distribution of
1Y and 2Y . Their number is overall equal to m2. They
are associated with m2 mutually exclusive proposi-
tions. We write

p = pij, (8)

with p ∈ Em ⊗ Em. If a basis of Em ⊗ Em is denoted
by Bm2 = {ei ⊗ ej | (i, j) ∈ Im × Im} then it is pos-
sible to write

p11 e1 ⊗ e1 + p12 e1 ⊗ e2 + . . . + pmm em ⊗ em.

(9)
We note that it turns out to be

m∑
i=1

m∑
j=1

pij = 1 (10)

if and only if all evaluations being made by the
consumer are coherent (see also [16] to realize that
conditions of coherence are of an objective nature).

We establish the following

Definition 4.1. A bilinear and disaggregate measure
denoted by P(1Y 2Y ) is obtained by considering the
notion of α-product between (1)y and (2)y. It is a
weighted average of states of nature of two contin-
gent consumption plans jointly considered. It is a
scalar product obtained by using all the masses of
the joint distribution of 1Y and 2Y together with the
contravariant components of (1)y and (2)y. We write

〈(1)y, (2)y〉α = (1)y
i
(2)y

jpij = P(1Y 2Y ).

An ordered pair of random quantities denoted by
(1Y, 2Y ) is represented by an ordered triple of geo-
metric entities denoted by

(
(1)y, (2)y, pij

)
,

where we have (i, j) ∈ Im × Im.

4.1. Changes of origin

Now, we go away from the budget set of the con-
sumer. Hence, we go away from a two-dimensional
Cartesian coordinate system. Let Y t be a random
quantity whose possible values represent all devia-
tions from P(Y ) (see also [36], where generalized
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deviations are considered). We write

ȳ =

⎛
⎜⎜⎜⎜⎝

ȳ1 = P(Y )

ȳ2 = P(Y )
...

ȳm = P(Y )

⎞
⎟⎟⎟⎟⎠ .

The contravariant components of ȳ ∈ Em are all
equal. We note that Y t is identified with an m-
dimensional vector of Em given by

yt = y − ȳ.

Its contravariant components are expressed by

yti = yi − ȳi,

where we have i = 1, . . . , m.
Given 1Y and 2Y , they can therefore be represented

by two vectors of Em denoted by
(1)yt and

(2)yt. We
write

(1)yt = (1)t

and

(2)yt = (2)t.

Given a linear combination of (1)t and (2)t expressed
in the following form

x = μ1 (1)t + μ2 (2)t,

where we have μ1, μ2 ∈ R, it is possible to write

‖x‖2
α = (μ1)2 ‖(1)t‖2

α + 2μ1 μ2〈(1)t, (2)t〉α

+(μ2)2 ‖(2)t‖2
α,

with

〈(1)t, (1)t〉α = ‖(1)t‖2
α = Var(1Y ),

〈(2)t, (2)t〉α = ‖(2)t‖2
α = Var(2Y )

as well as

〈(1)t, (2)t〉α = Cov(1Y, 2Y ).

We establish the following

Definition 4.2. We call a linear metric the expression
given by ‖x‖2

α. Only a joint distribution of 1Y and 2Y

depending on the notion of ordered pair of contingent
consumption plans is taken into account whenever we
consider a linear metric.

5. Bilinear and aggregate measures

We note the following

Remark 5.1. If the possible values for 1Y and 2Y log-
ically coincide with the contravariant components of
two m-dimensional and linearly independent vectors
of Em then the possible values for 1Y 2Y coincide
with the contravariant components of an affine tensor
of order 2 belonging to Em ⊗ Em. �

Remark 5.2. Let 1Y and 2Y be two random quanti-
ties. If we jointly consider two random quantities then
an ordered pair of them is denoted by (1Y, 2Y ). If we
want to study two random quantities in a joint way,
but we want to go away from the notion of ordered
pair of random quantities then we have to consider
four ordered pairs of random quantities denoted by
(1Y, 1Y ), (1Y, 2Y ), (2Y, 1Y ) and (2Y, 2Y ). It follows
that an antisymmetric tensor of order 2 has to be
defined. It is based on the notion of affine tensor of
order 2. It is possible to obtain bilinear and aggre-
gate measures whenever we consider two random
quantities regardless of the notion of ordered pair.
�

We have to define a double random quantity. It is
denoted by

Y12 = {1Y, 2Y},
where its possible values coincide with the contravari-
ant components of an antisymmetric tensor of order
2 (see proof of Theorem 5.1 later). It is clear that the
components ofY12 are 1Y and 2Y (see also [29], where
the ratio of two measured quantities is dealt with).
After choosing m2 masses connected with 1Y 2Y , it
is necessary to consider four joint distributions char-
acterizing 1Y 1Y , 1Y 2Y , 2Y 1Y and 2Y 2Y , with

1Y 1Y : I(1Y ) × I(1Y ) → R,

2Y 2Y : I(2Y ) × I(2Y ) → R

and

2Y 1Y : I(2Y ) × I(1Y ) → R,

in order to define Y12 in such a way that the notion of
ordered pair of random quantities is put away.

It is evident that the possible values for the marginal
components of Y12 are always considered together
with their marginal masses. It follows that each dis-
tribution of mass of a marginal random quantity is
viewed as a peculiar joint distribution within this con-
text. Since we can think of putting all conjoint masses
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into a two-way table having m rows and m columns,
all off-diagonal conjoint masses of it coincide with
0, whereas all conjoint masses on the main diagonal
of it coincide with the marginal masses of a marginal
random quantity.

We prove (in the appendix) the following

Theorem 5.1. The mathematical expectation of
Y12 = {1Y, 2Y} is a bilinear and aggregate measure
coinciding with the determinant of a square matrix
of order 2. Each element of such a determinant is a
bilinear measure. Each element of this determinant
is a real number coinciding with the mathematical
expectation of iY jY , where we have i, j = 1, 2.

Given 1Y and 2Y and their coherent previsions
denoted by P(1Y ) and P(2Y ), we also consider all
deviations from P(1Y ) and P(2Y ) of the possible
values for 1Y and 2Y .

We consequently prove (in the appendix) the fol-
lowing

Theorem 5.2. The variance of Y12 = {1Y, 2Y} coin-
cides with the determinant of a square matrix of order
2. Each element of such a determinant is a bilinear
measure. Each element of this determinant is a real
number coinciding with the variance of 1Y and 2Y

and with their covariance.
We observe that P(Y12) is a coherent measure in

the same way as P(1Y ), P(2Y ) as well as P(1Y 2Y ) =
P(2Y 1Y ) (see also [18] to know the real nature of
such measures).

The origin of the variability of Y12 is not random,
but it depends on the state of information and knowl-
edge of the consumer (see also [27] to realize how to
measure uncertainty). All deviations from P(1Y ) and
P(2Y ) of the possible values for 1Y and 2Y depend on
her state of information and knowledge. This implies
that the model with regard to which it is possible
to compare a concrete distribution of mass is not a
theoretical distribution characterized by one or more
than one parameter, but it is itself a concrete distribu-
tion (see also [24], where a binomial distribution is
considered).

6. A line of argument about relevance of
bilinear and aggregate measures

We go away from the budget set of the consumer.
It is known that it is possible to study consumption
data outside of the budget set of the consumer. For
instance, it is possible to check whether her choices

maximize her utility, or do not maximize. However,
we always study them inside of a linear space over
R. It has a different dimension with regard to the one
of her consumption space. Everything can therefore
be studied from a geometric point of view provided
one takes a sufficient number of dimensions.

If we deal with two random quantities denoted by
1Y and 2Y then the Bravais-Pearson correlation coef-
ficient is always referred to a double random quantity
denoted by Y12 (see also [21], where uncertainty is
considered). Such a coefficient is a metric measure of
linear correlation between two sets of possible propo-
sitions, so we consider all deviations from P(1Y ) and
P(2Y ) of the possible values for 1Y and 2Y (see also
[1], where a measurable property is dealt with). Given

‖12t‖2
α =

∣∣∣∣∣
‖(1)t‖2

α 〈(1)t, (2)t〉α
〈(2)t, (1)t〉α ‖(2)t‖2

α

∣∣∣∣∣ ,

with 12t which is an antisymmetric tensor of order
2 representing Y12 whenever we consider all devia-
tions from P(1Y ) and P(2Y ) of the possible values
for 1Y and 2Y , we observe that if (1)t and (2)t are
α-orthogonal vectors then we obtain

‖12 t̂‖2
α =

∣∣∣∣∣
‖(1)t‖2

α 0

0 ‖(2)t‖2
α

∣∣∣∣∣ = ‖(1)t‖2
α ‖(2)t‖2

α.

Since it turns out to be

〈(1)t, (2)t〉α = 〈(2)t, (1)t〉α
according to commutative property of the notion
of α-product, if we want to obtain the square of
〈(1)t, (2)t〉α by using ‖12 t̂‖2

α and ‖12t‖2
α then we have

to write

[〈(1)t, (2)t〉α]2 = ‖12 t̂‖2
α − ‖12t‖2

α.

The Schwarz’s α-generalized inequality derives from

[〈(1)t, (2)t〉α]2 ≤ ‖(1)t‖2
α‖(2)t‖2

α,

so we write

‖12 t̂‖2
α − ‖12t‖2

α ≤ ‖12 t̂‖2
α.

All of this allows us to consider the Schwarz’s α-
generalized inequality in the following form given
by

∣∣∣∣
(
‖12 t̂‖2

α − ‖12t‖2
α

)1/2
∣∣∣∣ ≤ ‖12 t̂‖α.
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It follows that it is possible to obtain

−1 ≤
(‖12 t̂‖2

α − ‖12t‖2
α

)1/2

‖12 t̂‖α

≤ +1,

that is to say, it is possible to write

−1 ≤
(

1 − ‖12t‖2
α

‖12 t̂‖2
α

)1/2

≤ +1.

We finally realize that the above expression within
the parentheses coincides with the Bravais-Pearson
correlation coefficient referred to Y12, where ‖12t‖2

α

and ‖12 t̂‖2
α are two bilinear and aggregate measures.

We write it in the following form expressed by

cos γ = 〈(1)t, (2)t〉α
‖(1)t‖α ‖(2)t‖α

. (11)

We consequently note that it always depends on the
angle between (1)t and (2)t, with (1)t, (2)t ∈ Em. An
appropriate numerical example verifying all of this
requires some mathematical steps. For the sake of
brevity, it is preferable to avoid showing them. On
the other hand, we believe that it is possible to do this
without leaving misunderstandings.

7. Discussion and conclusion

A particular case of the theory of decision-making
is the consumer theory (see also [40], where an
approach to demand analysis is considered). It is con-
structed with respect to an implicit scheme. We make
it clearer by considering decisions of consumption
being made by the consumer under conditions of
uncertainty. We also enrich it by considering aggre-
gate measures based on disaggregate ones. To study
disaggregate and aggregate measures is equivalent to
study decisions being made by the consumer under
conditions of uncertainty or certainty.

With regard to decisions being made by the con-
sumer under certainty, let y1 and y2 be two quantities
of consumption (expressed in the same unit of mea-
surement) of two ordinary goods of the consumer’s
consumption bundle denoted by (y1, y2). It is a list of
two numbers, where such numbers can also be equal.
The same is true if we consider two random goods.
Given two ordinary goods having downward-sloping
demand curves, it is possible to say that the quantity
of consumption actually demanded for each of them
by the consumer under conditions of certainty is an
average quantity. It is denoted by (y1, y2). Without

using the Einstein notation, we write

y1 = y1
1 p1

1 + . . . + ym
1 pm

1 (12)

and

y2 = y1
2 p1

2 + . . . + ym
2 pm

2 , (13)

where {pi
1} and {pj

2} are two sets of m temporary
truth values viewed as masses to distribute inside of
a linear space over R whose sum is always equal to
1 with respect to each of them. The possible quan-
tities of consumption of good 1 are expressed by
{y1

1, . . . , y
m
1 }, whereas the possible quantities of con-

sumption of good 2 are given by {y1
2, . . . , y

m
2 }, where

{y1
1, . . . , y

m
1 } and {y1

2, . . . , y
m
2 } are two sets contain-

ing propositions expressed by real numbers. It is clear
that the consumer replaces {y1

1, . . . , y
m
1 } with y1 and

{y1
2, . . . , y

m
2 } with y2, where y1 and y2 are two linear

measures coinciding with two propositions expressed
by two real numbers whose truth values are objec-
tively equal to 1. We do not go further because this
thing is not currently possible unlike what happens
with regard to choices under conditions of uncer-
tainty. We are not interested in going further because
we cannot observe final truth values. To say whether
a proposition is true or false at the right time has no
meaning within this context (see also [11] to real-
ize how to judge consumption choices according to
axioms of consumer theory). Strictly speaking, it is
possible to observe (y1, y2) at first, where (y1, y2) is
decomposed into y1 and y2. Afterwards, it is possible
to consider the weighted average of m2 quantities of
consumption of good 1 and good 2 that are jointly
considered. Given {y1

1, . . . , y
m
1 } × {y1

2, . . . , y
m
2 }, the

weighted average of m2 possible quantities of con-
sumption of good 1 and good 2 is obtained by using
m2 truth values. It is a bilinear measure that is decom-
posed into two linear measures (see also [20], where
new developments in revealed preference theory are
dealt with). We therefore consider the weighted aver-
age of m possible quantities of consumption of good 1
and good 2 that are separately considered (see right-
hand side of (12) and (13)). All coherent weighted
averages of m2 possible quantities of consumption
of good 1 and good 2 that are jointly considered
identify a two-dimensional convex set coinciding
with a subset of a two-dimensional Cartesian coor-
dinate system. It is the consumption space of the
consumer (see also [26], where the subject of choice
is studied). Moreover, they also identify two one-
dimensional convex sets coinciding with two line
segments belonging to two mutually perpendicular
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axes of a two-dimensional Cartesian coordinate sys-
tem. The budget line identifying the budget set of the
consumer is given by

c1 y1 + c2 y2 = c, (14)

where c1, c2 and c are respectively prices and income.
The consumer theory is developed with respect to
this framework (see also [12], where normality of
demand is studied). It is clear that one of the two
goods under consideration could represent everything
else the consumer wants and can afford.

In this paper, the real nature of the objects of con-
sumer choice has been identified (see also [5], where
decision-making under conditions of uncertainty
is considered). We have defined two consumer’s
demand functions connected with two contingent
consumption plans. On the other hand, such functions
based on P have also been considered with regard
to two ordinary goods actually chosen by the con-
sumer under conditions of certainty (see also [41],
where the consumer behavior is dealt with). We are
interested in knowing those temporary truth values
by means of which it is possible to obtain those sum-
maries which are actually chosen by the consumer.
Such values are referred to possible and mutually
exclusive propositions in the case of random goods
whose values can in general be of a monetary nature
or not. They are conversely referred to propositions
viewed as if they are mutually exclusive proposi-
tions in the case of ordinary goods. It is clear that
propositions viewed as if they are mutually exclusive
propositions coincide with possible propositions. The
temporary truth values must not be in logical contra-
diction among themselves. If they are not in logical
contradiction among themselves then it is possible to
obtain coherent summaries. Rational choices being
made by the consumer under conditions of uncer-
tainty or certainty satisfy a logical criterion as well
as maximizing her utility (see also [25] with regard
to the notion of preference). These choices comply
with a fundamental dichotomy between sets. Indeed,
a finite number of possible alternatives gives rise to
an infinite number of coherent measures summariz-
ing them, where such measures always exist. A finite
number of possible alternatives could also be embed-
ded in a larger and more manageable space containing
an infinite number of them. Nevertheless, informa-
tion and knowledge of the consumer permit her to
exclude many of them as impossible, so a limitation
of expectations is actually carried out.

Lastly, we outline our future works. They focus on
logical aspects of revealed preference theory applied
to multiple random goods whose order is greater than
2. The idea of revealed preference can be measured.
Prevision and utility can be measured as well. Empir-
ical applications of revealed preference theory can be
considered. How the consumer maximizes her utility
associated with prevision bundles can be dealt with.
On the other hand, since the scale of the budget set
of the consumer is of a monetary nature, her util-
ity associated with prevision bundles is the higher,
the farther they are from the origin of her consump-
tion space. However, it is also interesting to consider
those situations where the scale of a monetary nature
coincides with the one of utility.
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Appendix

A. Proof of Theorem 6.1

Proof. Given a basis of Em ⊗ Em expressed by
Bm2 = {ei ⊗ ej | (i, j) ∈ Im × Im}, an affine tensor
of order 2 can be written in the form

T = (1)y ⊗ (2)y = (1)y
i
(2)y

jei ⊗ ej (15)

or in the form

T = (2)y ⊗ (1)y = (2)y
j

(1)y
iej ⊗ ei, (16)

where the former corresponds to (1Y, 2Y ), whereas
the latter corresponds to (2Y, 1Y ). A same affine ten-
sor of order 2 denoted by T whose m2 contravariant
components are not the same has therefore been writ-
ten. Since we want to go away from the notion of
ordered pair of contingent consumption plans, we
have to consider (15) and (16) together. Thus, we
write an antisymmetric tensor of order 2 in the form

T =
∑
i<j

(
(1)y

i
(2)y

j − (1)y
j

(2)y
i
)
ei ⊗ ej, (17)

where i < j under the summation symbol means that
we avoid 0 inside parentheses. It is obtained whenever
we have i = j. We denote by 12y an antisymmetric
tensor of order 2 identifying Y12 from a logical point
of view. We write

12y
(ij) =

∣∣∣∣∣∣∣
(1)y

i
(1)y

j

(2)y
i

(2)y
j

∣∣∣∣∣∣∣
= (1)y

i
(2)y

j − (1)y
j

(2)y
i

(18)
to identify the strict contravariant components of it.
We have i < j. The number of such components is
overall equal to (

m

2

)
.

The corresponding strict covariant components of 12y

are given by

12y(ij) =

∣∣∣∣∣∣∣
(1)yi (1)yj

(2)yi (2)yj

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(1)y

jpji (1)y
ipij

(2)y
jpji (2)y

ipij

∣∣∣∣∣∣∣
,

(19)
where we have i < j. They are characterized by vec-
tor homographies being made by using those conjoint
masses belonging to a row or column of a two-way
table having m rows and m columns. We do not
compute the scalar value of (19). The number of

the strict contravariant and covariant components of

12y is inessential because we always obtain the same
outcome regardless of such a number. We always
put together (18) and (19) in the same way. We
always associate (1)y

i with (1)yi, (1)y
j with (2)yj ,

(2)y
i with (1)yi and (2)y

j with (2)yj . After putting
together (18) and (19), we obtain different monomials
for which the Einstein notation works. We consider
two determinants because we are studying multilinear
relationships. We obtain the mathematical expecta-
tion of Y12 given by

‖12y‖2
α =

∣∣∣∣∣∣∣
‖(1)y‖2

α 〈(1)y, (2)y〉α
〈(2)y, (1)y〉α ‖(2)y‖2

α

∣∣∣∣∣∣∣
= ‖(1)y‖2

α‖(2)y‖2
α − (〈(1)y, (2)y〉α

)2

,

(20)

where we evidently observe

〈(1)y, (2)y〉α = 〈(2)y, (1)y〉α. (21)

By putting together (18) and (19), we are always
faced with four joint distributions characterizing
1Y 1X, 1Y 2X, 2Y 1Y and 2Y 2Y . They are all sum-
marized. We write

‖12y‖2
α = P(Y12), (22)

where it turns out to be

P(Y12) =

∣∣∣∣∣∣∣
‖(1)y‖2

α 〈(1)y, (2)y〉α
〈(2)y, (1)y〉α ‖(2)y‖2

α

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
(1)y

i
(1)y

ip
(11)
ii (1)y

j
(2)y

ip
(12)
ij

(2)y
i

(1)y
jp

(21)
ji (2)y

j
(2)y

jp
(22)
jj

∣∣∣∣∣∣∣
.

(23)

We note that p(11) is the tensor of all conjoint masses
associated with (1y, 1y), p(12) is the tensor of all
conjoint masses associated with (1y, 2y) and so on.
It is possible to observe that, in general, it turns out
to be

P(1Y 2Y ) /= P(Y12). (24)

We finally write

P(Y12) =

∣∣∣∣∣∣∣
P(1Y 1Y ) P(1Y 2Y )

P(2Y 1Y ) P(2Y 2Y )

∣∣∣∣∣∣∣
, (25)
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where the determinant of the square matrix of order
2 under consideration is a bilinear function of the
columns of it. �

B. Proof of Theorem 6.2

Proof. All deviations from P(1Y ) and P(2Y ) of the
possible values for 1Y and 2Y are translations. It is
then possible to write

‖12t‖2
α =

∣∣∣∣∣∣∣
‖(1)t‖2

α 〈(1)t, (2)t〉α
〈(2)t, (1)t〉α ‖(2)t‖2

α

∣∣∣∣∣∣∣
= ‖(1)t‖2

α‖(2)t‖2
α − (〈(1)t, (2)t〉α

)2
.

(26)

We write

‖12t‖2
α = Var(Y12) = σ2

Y12
. (27)

We note that it turns out to be

〈(1)t, (2)t〉α = 〈(2)t, (1)t〉α
= Cov(1Y, 2Y ) = Cov(2Y, 1Y ), (28)

so it is possible to write

Var(Y12) =

∣∣∣∣∣∣∣
Var(1Y ) Cov(1Y, 2Y )

Cov(2Y, 1Y ) Var(2Y )

∣∣∣∣∣∣∣
. (29)

We call a non-linear metric the expression given by
(26). It is the area of a 2-parallelepiped whose edges
are two single random quantities having their possible
values that are subjected to two changes of origin. �
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