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Abstract: Anterior cruciate ligament (ACL) injury represents one of the main disorders affecting
players, especially in contact sports. Even though several approaches based on artificial intelligence
have been developed to allow the quantification of ACL injury risk, their applicability in training
sessions compared with the clinical scale is still an open question. We proposed a machine-learning
approach to accomplish this purpose. Thirty-nine female basketball players were enrolled in the
study. Leg stability, leg mobility and capability to absorb the load after jump were evaluated through
inertial sensors and optoelectronic bars. The risk level of athletes was computed by the Landing Error
Score System (LESS). A comparative analysis among nine classifiers was performed by assessing the
accuracy, F1-score and goodness. Five out nine examined classifiers reached optimum performance,
with the linear support vector machine achieving an accuracy and F1-score of 96 and 95%, respectively.
The feature importance was computed, allowing us to promote the ellipse area, parameters related to
the load absorption and the leg mobility as the most useful features for the prediction of anterior
cruciate ligament injury risk. In addition, the ellipse area showed a strong correlation with the LESS
score. The results open the possibility to use such a methodology for predicting ACL injury.

Keywords: machine learning; inertial sensors; basketball; ACL injury; leg stability; leg mobility; load
absorption; Landing Error Scoring System

1. Introduction

Basketball is one of the most widespread team sports with more than 450 million
amateur and professional players in the world [1]. During both training sessions and
competitions, athletes are asked to perform dynamic movements, requiring also physical
contact between players. Moreover, basketball is a vertical sport, which requires jump-
ing and landing activities two or three times more often than other team games, such
as soccer and volleyball [2]. These aspects lead to a high incidence of injuries among
basketball players; specifically, the knee joint has been demonstrated as the most com-
monly stressed and injured body area [3]. Among others, anterior cruciate ligament (ACL)
rupture can be considered as the most debilitating injury, often leading to extended rest
periods before the return to play [4]. In addition, ACL injury, together with ankle sprains,
has the main incidence in female basketball players; in fact, 16% of them may incur an
ACL injury during their career. It is worth highlighting, as the risk of ACL rupture in
female players is up to eight times more than male players [5]. The treatment of ACL
injury always requires reconstructive surgery, which leads to the absence from playing
field for at least six months, and a rehabilitation program that may be not sufficient to
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recover the complete functionality of the knee and the athlete’s skills before the injury [2].
Several studies have been conducted to understand the main underlying risk causes, as the
combination of anatomical, physiological and biomechanical factors can cause an increase
in the injury occurrence [6–8].

From this perspective, different methodologies have already been validated to provide
useful information for the identification of athletes at higher risk, aiming at proposing ded-
icated programs that can reduce the injury incidence [9–11]. In this context, optoelectronic
systems combined with force platforms still represent the gold standard in order to have
accurate and repeatable measures of selected movements, such as crossover test, pivoting
jumps and countermovement jumps [12–14]. In addition, video analysis has shown its
potential in the identification of ACL injury risk by offering the possibility to record data
during sport activities with low-cost devices and easy post-processing operations that
do not require skilled operators [15,16]. From the video analysis approach, a predictive
methodology for knee injury has been implemented and validated, named the Landing
Error Scoring System (LESS) [17,18]. The LESS is a clinical screening tool able to identify
potential ACL injury, consisting of the analysis of biomechanical factors based on three
jumping tasks [18]. However, LESS has shown several limitations and its validity is still
questioned, mainly due to the subjectivity of the video analysis that leads to a poor inter-
operator reliability of the procedure [19–21]. In the last decades, wearable solutions have
been proposed for overcoming the intrinsic limitation of the optoelectronic systems. In
fact, it is well known that the optoelectronic systems cannot be used to perform an in-field
experimental protocol if the light conditions are not constantly controlled; in addition,
wearable solutions often allow reductions in instrument costs [22,23].

Taking into account the above-reported existing methodologies and their limitations,
as well the recent advances in artificial intelligence (AI), the application of machine-learning
algorithms appears to be a promising approach for diagnosis and prediction in several
fields, such as ACL injury [24–30], and, more generally, in biomedicine approaches [31–33].
Focusing on ACL, diagnosis and prediction represent two correlated analyses that permit us
to solve two different issues. In fact, an early diagnosis allows both a reduction in incorrect
evaluation at initial presentation, which has been shown to be up to 14% of cases [34],
and the minimization of the delay to surgery. Conversely, an early prediction leads to
a reduction in the probability of suffering from the effective ACL rupture by adopting
specific training programs [26]. Considering diagnostic aspects, Lao et al. provided an
overview on the application of AI on magnetic resonance imaging (MRI) able to detect the
ACL injury [27], among others. The study proposed by Mazlan et al. showed the support
vector machines were able to classify up to 100% of three different ACL injuries, which were
normal, partial and crucial [24]. Similar results were obtained by applying a convolutional
neural network on coronal MRI, reaching an accuracy of 96% in ACL diagnoses [25]. By
moving to the use of AI as a predictive tool, Jauhieinen and colleagues demonstrated a
random forest was able to detect the most predictive biomechanical factors, which were
mostly related to the knee joint kinematics and kinetics, during vertical jumping tests
performed by 314 basketball and football players [28]. They also assessed the difficulty in
the prediction of future injuries, also confirmed by the low value of the area under receiver
operator curve, lower than 0.70 for both random forest and logistic regression. Similar
accuracy results were obtained by Oliver et al., who tested 355 football players during
single-leg countermovement jump and single-leg hop for distance tests, analyzing data
related to the knee kinematics [29]. Moreover, Tedesco et al. demonstrated that a gradient
boosting algorithm, fed with data related to the acceleration and stability of the leg, was
able to discriminate, with an accuracy close to 82%, between healthy players and post-ACL
injury subjects. Thus, this approach can be useful for the identification of the return to
sport time as a monitoring tool [30].

Although it is evident the promising usefulness of artificial intelligence for providing
automatic information to both diagnose and predict ACL injury, the obtained results are not
completely satisfactory to propose the use of such methodologies in training programs. In
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fact, the already published findings are often characterized by a greater percentage of false
negative occurrences, which are severe misclassifications since they lead us to consider
athletes at no risk at higher risk. In addition, to the best of the authors’ knowledges, no
studies have evaluated neither the correlation between the use of the AI approach and the
predictive tool actually used, such as the LESS score, nor the feasibility of using data related
to the leg stability and load absorption capability to feed machine-learning algorithms.
Thus, this paper aims at understanding the feasibility of machine-learning algorithms to
classify basketball players at higher ACL injury risk by using the LESS score as a supervisor
for algorithm training. More specifically, we conducted an observational study on female
basketball players when performing monopodalic vertical jump and single-leg squat tests
and compared different machine-learning algorithms fed with features extracted from
inertial data concerning leg stability, leg mobility and load absorption capability. The
results of this study could offer the possibility to use AI for the automatic identification of
athletes at higher risk, allowing us to implement customized training programs addressed
to injury prevention.

2. Materials and Methods
2.1. Participants

Thirty-nine basketball players belonging to the female Under 14 Italian team (height
= 170.5 ± 6.3 cm, body mass 62.9 ± 4.9 kg, age = 13 ± 1 years) were involved in the
experimental protocol. Athletes were included in the study if: (i) they did not suffer from
severe injuries in the last three years, (ii) they trained at least five times per week and
(iii) their parents, or tutor, accepted the written informed consent. Any injuries at knee
level, both severe and moderate, caused the exclusion from the test. All the tests in the
experimental protocol were decided with the coach and athletic trainer and they met the
criteria required by the Declaration of Helsinki.

2.2. Experimental Setup and Protocol

The experimental setup consisted of three sensor systems: an inertial measurement
unit—IMU (GyKo, Microgate S.r.l., Bolzano, Italy), optoelectronic bars (Optogait, Microgate
S.r.I, Italy, 2010) and cameras. The IMU is composed of 3D linear accelerometers, gyroscopes
and magnetometers, allowing us to measure linear acceleration, angular velocity and
magnetic field vector, with a full scale of ±16 g, ±2000 ◦/s and ±4800 µT, respectively. The
sensor was placed on the shank using an elastic belt, appropriately designed to reduce the
movement artifacts. Four optoelectronic bars were used in order to create a square field of
dimensions 2 × 2 m2; each bar consisted of 96 LED diodes, which allowed us to estimate
both the flight and contact time during jumps. Finally, two cameras (Logitech C920 HD)
were used to acquire both sagittal and frontal plane images and placed at 2 m from the
participant. The experimental setup is shown in Figure 1.

Sensors 2021, 21, x FOR PEER REVIEW  4  of  17 
 

 

landing task was repeated three times. During this phase data were gathered from the two 

cameras.   

 

 

Figure 1. Subject equipped with the inertial sensor on the black stripe and placed within the area 

defined by the optoelectronic bars. 

Finally, the sensor‐based assessment was composed of two motion tasks. Firstly, each 

participant was asked to perform five consecutive monopodalic countermovement jumps 

(mCMJ) [35], receiving the instruction to complete this movement sequence (Figure 2a): 

(i) reach a single‐leg starting position with the foot shoulder‐width apart; (ii) perform a 

downward movement; (iii) immediately execute a concentric phase; and (iv) repeat point 

(ii) and (iii) five times. During all movements the arms were free to move. The second task 

consisted of a single‐leg squat (SLS), in which the participant had to perform a squat on a 

single leg maintaining the arm with the hands on the hip and extending the other leg in 

front of the body [36], as in Figure 2b. Five repetitions of SLS were performed. Both GyKo 

and optoelectronic bars were used during the first task, whereas only the GyKo was used 

for gathering data during the second one.   

All the tests were performed with the dominant leg, which was selected as the one 

used to kick a ball [37]. The entire protocol lasted 20 min per athlete, also considering the 

time for the sensitization and the time needed for a static acquisition in upright position 

before each motion task. 

 
(a) 

Figure 1. Subject equipped with the inertial sensor on the black stripe and placed within the area
defined by the optoelectronic bars.



Sensors 2021, 21, 3141 4 of 17

The experimental protocol consisted of three phases: warm-up, clinical assessment
and sensor-based assessment.

With regard to the first phase, a 10-min warm-up for the lower limb joint was con-
ducted, including standard stretching exercises for lower limb mobility and five minutes
of biking.

Successively, the clinical assessment phase was performed in order to compute the
LESS score. Each athlete was asked to perform a jump-landing task that involved both
vertical and horizontal movements; specifically, they jumped forward from a 30 cm box
and after the landing they immediately performed a maximum vertical jump. The jump-
landing task was repeated three times. During this phase data were gathered from the
two cameras.

Finally, the sensor-based assessment was composed of two motion tasks. Firstly, each
participant was asked to perform five consecutive monopodalic countermovement jumps
(mCMJ) [35], receiving the instruction to complete this movement sequence (Figure 2a):
(i) reach a single-leg starting position with the foot shoulder-width apart; (ii) perform a
downward movement; (iii) immediately execute a concentric phase; and (iv) repeat point
(ii) and (iii) five times. During all movements the arms were free to move. The second task
consisted of a single-leg squat (SLS), in which the participant had to perform a squat on a
single leg maintaining the arm with the hands on the hip and extending the other leg in
front of the body [36], as in Figure 2b. Five repetitions of SLS were performed. Both GyKo
and optoelectronic bars were used during the first task, whereas only the GyKo was used
for gathering data during the second one.
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All the tests were performed with the dominant leg, which was selected as the one
used to kick a ball [37]. The entire protocol lasted 20 min per athlete, also considering the
time for the sensitization and the time needed for a static acquisition in upright position
before each motion task.

2.3. Data Analysis and Feature Extraction
2.3.1. Clinical Assessment Phase: LESS Score

Data acquired during the jump-landing task were analyzed through a video analysis
performed by a skilled operator. The feet, ankle, knee, hip, trunk, shoulder, neck and head
posture was assessed through the video and the LESS score was obtained by analyzing
the landing technique error based on a 17-items questionnaire shown in the Table 1, as
proposed by Padua et al. [18].

Table 1. The 17 items for the evaluation of the LESS score.

Item Possible Score

1. Knee flexion angle at initial contact > 30◦ 0 = yes 1 = no
2. Knee valgus at initial contact, knees over mid-foot 0 = yes 1 = no

3. Trunk flexion angle at contact
0 = trunk is flexed

1 = not flexed

4. Lateral trunk flexion at contact
0 = trunk is vertical

1 = not vertical
5. Ankle plantar flexion at contact 0 = toe to heel 1 = no
6. Foot position at initial contact, toes > 30◦ external rotation 0 = no 1 = yes
7. Foot position at initial contact, toes > 30◦ internal rotation 0 = no 1 = yes
8. Stance width at initial contact < shoulder width 0 = no 1 = yes
9. Stance width at initial contact > shoulder width 0 = no 1 = yes
10. Initial foot contact symmetric 0 = yes 1 = no
11. Knee flexion displacement before jumping > 45◦ 0 = yes 1 = no
12. Knee valgus displacement before jumping knee inside great toe 0 = no 1 = yes
13. Trunk flexion at maximal knee angle, trunk flexed more than at initial contact 0 = yes 1 = no
14. Hip flexion angle at initial contact, hips flexed 0 = yes 1 = no
15. Hip flexion at maximal knee angle, hips flexed more than at initial contact 0 = yes 1 = no
16. Joint displacement, sagittal plane 0 = soft 1 = average 2 = stiff
17. Overall impression 0 = excellent 1 = average 2 = poor

In more detail, items from 1 to 6 indicate the jump-landing quality in terms of lower
limbs and trunk positioning at the initial contact; from 7 to 11 the errors in positioning
of the feet; from 12 to 14 assessing the lower extremity and trunk movements between
initial contact and the moment of maximum knee flexion angle; the item 15 at the moment
of maximum knee valgus; and finally the last two items indicate the overall quality of
the motion gesture. A maximal score of 19 can be achieved, representing the worst jump-
landing performance.

It has been demonstrated that a LESS score value equal to or lower than 5 is associated
with athletes who can be considered not at risk of ACL injury; conversely, a score greater
than 5 indicates athletes at risk [38]. The evaluation was performed for each of the three
jumps; then, the median value was considered to define athletes at risk of injury and used
as a reference for the further analyses.

2.3.2. Sensor-Based Assessment Phase: mCMJ and SLS

Considering both tasks, the data acquired during the static calibration in upright
position were firstly used to perform the re-alignment of the sensor axes with the absolute
reference system; then, the Mahony filter was applied to extract the orientation of the
sensors by combining linear accelerations and angular velocities [39].

Two sets of parameters were computed for assessing the leg stability and the load
absorption capability.
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Leg Stability

Linear accelerations and angular velocities were used to estimate the orientation of

the vertical axis (
→
S ) of the sensor. The path covered by the projection of

→
S on the horizontal

plane placed at 1 cm below the inertial sensors was analyzed with parameters typically used
in posturography. Following the equations proposed by Prieto et al. [40], we computed the
following stability parameters:

• The total length of the path in the plane, named PL;
• The total length of the path in antero-posterior direction, named PLAP;
• The total length of the path in medio-lateral direction, named PLML;

• The area of the bivariate confidence ellipse that includes at least 99% of the
→
S projection

points, named EA.

These parameters were computed for both tasks. For mCMJ, the parameters were
then normalized for the stabilization time (Ts), which was defined as the time between the
initial contact time with the ground, detected by the on status of the optoelectronic LED
diodes, and the instant in which the leg could be considered stable, which was associated
with the first minimum of the absolute value of the shank’s angular velocity after the
contact time, which guarantees to take into account the time period identified as the most
likely for injury occurrence [41]. Conversely, for SLS the parameters were normalized
for the duration of the descending phase (TDP) since it is associated with a greater stress
for the knee joint with respect to the ascending phase [36]. TDP was defined as the time
between the start and the end of the movement. Specifically, the start of movement was
identified as the instant in which the standard deviation of the module of the three angles
overcame five times the value of the average SD obtained during the static trial; the end of
the movement was identified as the maximum value reached by the angle around the y
axis, which approximately corresponds to the knee flexion axis, named θymax. The θymax
was considered as the index related to the leg mobility; specifically, the lower the value, the
lower the mobility [42,43].

The leg stability parameters allowed us to quantify the leg stability; in fact, it was
shown that greater values corresponded to greater instability after the jump [22], which is
considered as one of the main causes of ACL injury [41].

Load Absorption Capability

Load absorption capability was assessed only related to mCMJ. The root mean square
(RMS) of the shank linear acceleration was computed both considering the vertical compo-
nent (RMSz) and the module of the components along the xy horizontal plane (RMSxy),
both expressed in m/s2. The parameters were normalized to Ts. Greater values of RMS
indicated the poor capability of the athlete to absorb the load during the landing phase [44].

All the examined parameters, summarized in Table 2, were considered as features for
the training and testing of the machine-learning algorithms in order to distinguish between
two classes: athlete at risk or not, hereinafter class R and class NR. Regardless of the type
of parameter, all of them were averaged, finally, across the five jumps or the five squats.

Table 2. Feature selection for both motion tasks.

Features mCMJ SLS

Leg stability

PL (cm) X X
PLAP (cm) X X
PLML (cm) X X
EA (cm2) X X

Load absorption RMSz (m/s2) X
RMSxy (m/s2) X

Leg mobility θymax (◦) X

Time parameters Ts (s) X
TDP (s) X
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2.4. Machine-Learning Algorithms

In this study, we decided to examine two different categories of supervised machine-
learning algorithms, i.e., geometric and binary, since they represent two of the most
widespread algorithms for motion recognition [45]. Among geometric classifiers, we
selected the support vector machine (SVM) and the k-nearest neighbor (kNN); instead, the
decision tree (DT) was chosen among binary algorithms.

SVMs are geometric supervised machine-learning algorithms that work on the iden-
tification of the hyperplane that guarantees the best separation of the features related to
different classes. The kernel function, which is used to linearize the feature space, repre-
sents the fundamental parameter to be selected before the classification process. Specifically,
we here tested three SVMs, considering the kernel function as linear (l-SVM), quadratic
(q-SVM) and cubic (c-SVM).

kNN are geometric supervised machine-learning algorithms that perform the classi-
fication decision by identifying the most common class among the k-nearest neighbors
and maximizing the distance among other classes. Thus, the equation for the computation
of the distance represents the first parameter to be selected. Specifically, we here tested
three kNN: the fine kNN (f-kNN), which considered the Euclidian distance to recognize
different classes with the number of neighbors set to 1; the cosine kNN (c-kNN), which
considered the cosine distance and the number of neighbors set to 10; and the weighted
kNN (w-kNN), which used the weighted Euclidian distance based on the squared inverse
approach by selecting the number of neighbors equal to 10.

DTs are binary supervised machine-learning algorithms that predict the most likely
class by creating a set of nodes, in which the classification process is performed through
specific split criteria. In this study, the split criterion was based on the Gini index. In
addition, the maximum number of splits represents a fundamental parameter to be selected
before the classification process. Specifically, we here tested three DTs: the coarse (c-DT),
medium (m-DT) and complex DT (cx-DT), in which the maximum number of splits was
equal to 4, 20 and 100, respectively.

For further theoretical details on the selected classification algorithms, please refer
to [46].

To summarize, we here compared nine machine-learning algorithms, as reported in
Table 3.

Table 3. List of tested machine-learning algorithms and acronyms.

Geometric Binary

SVM kNN DT

Linear (l-SVM) Fine (f-kNN) Coarse(c-DT)
Quadratic (q-SVM) Cosine (c-kNN) Medium (m-DT)

Cubic (c-SVM) Weighted (w-kNN) Complex (cx-DT)

By using the above-mentioned features, we evaluated the performance of all the
selected machine-learning algorithms with the application of a 9-fold cross-validation. In
this way, 30 subjects comprised the dataset of training, and the remaining nine the dataset
of validation, in turn. Cross-validation is an approach that guarantees the robustness of the
obtained performance [46]. Then, the algorithm performance was assessed by averaging
across all the folds.

2.5. Performance Evaluation

The classes, risk and no risk, estimated by means of the above-mentioned algorithms
were compared by the reference value obtained through the LESS score. For each classifier,
a 2 × 2 confusion matrix was then obtained. Successively, the algorithm performances
were measured in terms of accuracy, F1-score and goodness index [46].
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Accuracy (A) was computed as the ratio between the correct predicted risk classes
and the total of predictions though the following Equation (1):

A =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP and FN represent true positive, true negative, false positive and false
negative, respectively. Considering the positive as the class “no risk” (NR), a true positive
and true negative were obtained when the algorithm correctly classified the athlete at
no risk (NR) and at risk (R), as they were classified by the LESS score. A value close
to 1 represents the perfect classifier, and 0.80 is usually selected as threshold value for
considering an optimum classifier [46].

Even though the class imbalance in the present study can be considered slight, as in
accordance with [47], we decided to compute additional metrics in order to avoid bias in
the results due to the higher number of no risk athletes in the dataset [48]. Specifically,
F1-score and G-index were computed.

The F1-score was computed as a harmonic average of the recall (Re) and the precision
(P) value; where the recall represents the ratio between the true positive and the sum of the
true and false positive, and the precision (P) was, instead, computed as the ratio between
the true positive and the sum of the true positive and false positive. F1-score was calculated
according to the following Equation (2):

F1− score = 2· (Re·P)
(Re + P)

(2)

As for the A, F1-score can range from zero to one, with a value close to 1 indicating a
perfect classifier and a threshold value of 0.80 identifying an optimum classifier.

Moreover, the goodness index (G) that represents the Euclidian distance in the re-
ceiver operating characteristic space between the tested classifier and the perfect one was
computed as in Equation (3):

G =

√
(1− TP)2 + (1− TN)2 (3)

G assumes values from 0 to
√

2 and the following goodness range can be considered:
(i) optimum when G ≤ 0.25; (ii) good when 0.25 < G ≤ 0.70; (iii) random if G = 0.70; and
(iv) bad if G > 0.70 [46].

After the validation of the algorithms, the feature importance was measured through
the mean decrease accuracy (MDA) based on random forest [49,50]. MDA represents the
average loss of accuracy achieved by the random forest on data out-of-bag (OOB), where
the OOB approach consisted of three steps. Firstly, one feature in turn was excluded from
the model and the prediction error was computed; secondly, the predictor variables of the
new model were permuted to lose the correlation with the true class and the prediction
error was computed on this new dataset; and, finally, the difference between the two
predictor errors was computed and averaged across all the turns to obtain MDA, expressed
as a percentage. The greater the value of MDA, the greater the feature importance.

Finally, the correlation between the most important features and the LESS score was
computed by means of Spearman’s correlation tests, considering a significance level set
to 0.05. The absolute value of r can be interpreted as: (i) no correlation, if |r| ≤ 0.1; (ii)
mild/modest correlation, if 0.1 < |r| ≤ 0.3; (iii) moderate correlation, if 0.3 < |r| ≤ 0.6;
(iv) strong correlation, if 0.6 < |r| < 1; and, finally, (v) perfect correlation, if |r| = 1, as
in [37,51].

3. Results

The results of the LESS analysis led to the identification of 26 athletes belonging to the
class NR and the remaining 13 to the class R. In particular, the mean value of the LESS was
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equal to 3.5 and 7.5 for the NR and R group, respectively. As an example, the path length
of the vertical axis projection on the horizontal plane obtained during a jump task, as well
the waveform of the angle θ during a squat task performed by one subject belonging to
either the R or NR group, are reported in Figure 3.
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It is possible to observe how the subject belonging to the R group was characterized
by a greater excursion of the path length in the ML direction, leading also to a greater
value of the ellipse confidence area when landing after a monopodalic countermovement
jump, as well as by a lower value of the knee angle during a single-leg squat movement.
More generally, the mean values and standard deviations of the computed features for each
group are reported in Table 4. By analyzing these results, it can be observed that athletes
in the R group generally showed a greater path length in the ML direction and a greater
value of the EA than those in NR, as well as a reduction in stabilization time related to the
leg stability evaluation when performing mCMJ. Similarly, the load absorption parameters
were found to be higher when computed on data gathered from athletes at risk of injury.
Focusing on SLS, stability parameters showed similar behavior in both groups; conversely,
the R group was characterized by a lower leg mobility and a lower descending phase time.
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Table 4. Mean (SD) of the computed features for the R and NR group.

Task Features R NR

mCMJ

TS (s) 0.21 (0.04) 0.33 (0.06)
PL (cm) 2.7 (0.9) 2.9 (0.8)

PLAP (cm) 1.5 (0.5) 1.6 (0.3)
PLML (cm) 2.8 (0.2) 1.1 (0.1)
EA (cm2) 1.5 (0.2) 0.7 (0.2)

RMSz (m/s2) 247.4 (85.6) 95.6 (19.4)
RMSxy (m/s2) 169.4 (26.7) 70.1 (14.9)

SLS

TDP (s) 3.22 (0.95) 3.90 (1.23)
PL (cm) 0.8 (0.1) 0.8 (0.3)

PLAP (cm) 0.6 (0.1) 0.6 (0.2)
PLML (cm) 0.4 (0.1) 0.5 (0.2)
EA (cm2) 0.5 (0.0) 0.7 (0.0)
θymax (◦) 16.8 (2.7) 26.0 (5.3)

Figure 4 shows the confusion matrices calculated for all the examined classifiers.

Sensors 2021, 21, x FOR PEER REVIEW  10  of  17 
 

 

It is possible to observe how the subject belonging to the R group was characterized 

by a greater excursion of the path  length  in the ML direction,  leading also to a greater 

value of the ellipse confidence area when landing after a monopodalic countermovement 

jump, as well as by a lower value of the knee angle during a single‐leg squat movement. 

More generally, the mean values and standard deviations of the computed features for 

each group are reported  in Table 4. By analyzing  these results,  it can be observed  that 

athletes in the R group generally showed a greater path length in the ML direction and a 

greater value of the EA than those in NR, as well as a reduction in stabilization time related 

to the leg stability evaluation when performing mCMJ. Similarly, the load absorption pa‐

rameters were found to be higher when computed on data gathered from athletes at risk 

of injury. Focusing on SLS, stability parameters showed similar behavior in both groups; 

conversely, the R group was characterized by a lower leg mobility and a lower descending 

phase time.   

Table 4. Mean (SD) of the computed features for the R and NR group. 

Task  Features  R  NR 

mCMJ 

TS (s)  0.21 (0.04)  0.33 (0.06) 

PL (cm)  2.7 (0.9)  2.9 (0.8) 

PLAP (cm)  1.5 (0.5)  1.6 (0.3) 

PLML (cm)  2.8 (0.2)  1.1 (0.1) 

EA (cm2)  1.5 (0.2)  0.7 (0.2) 

RMSz (m/s2)  247.4 (85.6)  95.6 (19.4) 

RMSxy (m/s2)  169.4 (26.7)  70.1 (14.9) 

SLS 

TDP (s)  3.22 (0.95)  3.90 (1.23) 

PL (cm)  0.8 (0.1)  0.8 (0.3) 

PLAP (cm)  0.6 (0.1)  0.6 (0.2) 

PLML (cm)  0.4 (0.1)  0.5 (0.2) 

EA (cm2)  0.5 (0.0)  0.7 (0.0) 

θymax (°)  16.8 (2.7)  26.0 (5.3) 

Figure 4 shows the confusion matrices calculated for all the examined classifiers.   

 

Figure 4. Confusion matrices for all the tested classifiers. NR and R stand for no risk and risk class. 

Table 5 shows the results in terms of accuracy, F1‐score and goodness index achieved 

by all the tested classifiers and derived from the confusion matrices.   

   

    l‐SVM    f‐kNN    c‐DT 

Output 
NR  23  1    21  1    22  4 

R  3  12    5  12    4  9 

    NR  R    NR  R    NR  R 

    q‐SVM    c‐kNN    m‐DT 

Output 
NR  23  2    17  4    22  2 

R  3  11    6  9    4  11 

    NR  R    NR  R    NR  R 

    c‐SVM    w‐kNN    cx‐DT 

Output 
NR  22  3    19  4    23  1 

R  4  10    7  9    3  12 

    NR  R    NR  R    NR  R 

    Target    Target    Target 

Figure 4. Confusion matrices for all the tested classifiers. NR and R stand for no risk and risk class.

Table 5 shows the results in terms of accuracy, F1-score and goodness index achieved
by all the tested classifiers and derived from the confusion matrices.

Table 5. Accuracy (A), F1-score and goodness index (G) achieved by the nine tested classifiers.

A F1-Score G

l-SVM 0.95 0.96 0.08
q-SVM 0.87 0.87 0.19
c-SVM 0.82 0.81 0.28
f-kNN 0.85 0.86 0.21
c-kNN 0.67 0.71 0.46
w-kNN 0.74 0.75 0.35

c-DT 0.79 0.79 0.34
m-DT 0.85 0.85 0.22
cx-DT 0.90 0.90 0.14

By focusing on the accuracy, the linear SVM achieved the best results, equal to 0.96;
instead, the worst was associated with the cosine kNN with a value of 0.67. More generally,
six out nine of the tested classifiers overcame the optimum threshold set to 0.80. Similar
outcomes were obtained by considering the F1-score, whose values ranged from 0.71,
which was associated with the cosine kNN, to 0.96, which was related to the linear SVM.
With regard to the F1-score, the same six out nine classifiers achieved the performance of
an optimum classifier. By considering the G index, the best performance was achieved by
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the l-SVM, i.e., a value equal to 0.08, and the worst by the c-kNN, i.e., a value equal to 0.46.
Concerning G, only five classifiers fell into the optimum range with the cubic SVM that
passed only the threshold related to the accuracy and F1-score.

The MDA values for all the used features, in order to understand their importance,
are reported in Figure 5.
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By analyzing the histograms, the ellipse area computed during the monopodalic
countermovement test was associated with the highest value of the MDA, i.e., 49.2%,
leading us to define it as the most important feature of the dataset. A high importance
was also found for the RMSxy computed during the mCMJ; an MDA greater than 15% was
also achieved by the RMSz gathered during the mCMJ and the θymax computing for the
single-leg squat. MDA values lower than 5.0% were obtained by all the other features.

Considering the correlation analysis, the four features that reached an MDA at least
equal to 15.0% showed different behavior, as reported in Table 6.

Table 6. Accuracy (A), F1-score and goodness index (G) achieved by the nine tested classifiers.

r p-Value

EA 0.88 0.01
RMSz 0.25 0.12
RMSxy 0.59 0.04
θymax 0.60 0.03

Considering the goodness of the correlation, EA was found to be the only parameter
that strongly correlated with the LESS, whereas RMSxy and θymax reached a moderate
correlation, and RMSz a modest correlation.

4. Discussions

This paper presents an investigation on the feasibility of using a machine-learning
approach to measure the risk of anterior cruciate ligament injury in female basketball
players and to propose such a methodology in training programs. Through this scope,
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a comparison among nine machine-learning algorithms fed with data gathered from an
inertial sensor and optoelectronic bars was carried out.

Is It Possible to Use a Machine-Learning Approach to Measure the ACL Risk?

By analyzing the general results shown in Figure 3 and Table 4, it is confirmed that
athletes at a higher risk of injury are typically characterized by a reduction in knee stability
and mobility, well recognized as two of the main causes of ACL injuries [4,52]. In addition,
the qualitative differences related to the two examined groups open the possibility to use
such parameters as features to feed machine-learning algorithms. In fact, it is well known
that a machine-learning approach is more promising when classes to be recognized are
characterized by distinguishable motor patterns [46].

Such a possibility is strongly confirmed by the optimum performance achieved by
the tested classifiers, especially when referring to the linear SVM. The selection of the
right model parameters, such as kernel function for SVM, distance equation for kNN and
number of splits for DT, appears to be a fundamental step for the classification process,
since it can lead to a worsening of the algorithm performance. This result is in line with
previous studies, in which it was demonstrated that the tuning of model parameters should
be always conducted to avoid misclassifications [53,54]. After the right selection of the
model parameters, by combining the results we can assess that l-SVM, q-SVM, f-kNN,
m-DT and cx-DT meet all the criteria to be considered as optimum classifiers. Among
the five optimum classifiers, the linear support vector machine reveals itself as the best,
considering all the synthetic indices. In addition, we can assess that the l-SVM should
be chosen not only for the highest value of A and F1-score, as well the lowest of G, but
also taking into account that: (i) it is characterized by a higher value of prediction speed, a
lower memory usage and an easier interpretability of the results than q-SVM due to the
lower order of the kernel function [55]; (ii) SVM outperforms kNN in managing outlier
data, reducing the number of false positives and false negatives [56]; and (iii) geometric
classifiers are generally more robust across subjects than decision trees, which apply a
threshold-based classification logic [57].

Furthermore, by considering the results related to the feature importance, we can
speculate that the ellipse area, RMSxy and RMSz computed during the jump task, as well
as the θymax computed for the squat task, present significant differences that permit us
to distinguish the athletes at higher risk ACL injury. Consequently, the involvement of
the remaining nine parameters among the feature set can be avoided, permitting us to
reduce the computational time of the automatic classification algorithm. The sensitivity
of the parameters related to the load absorption capability and the leg mobility in the
recognition of athletes at higher risk is, instead, in line with the outcomes already reported
in the literature. Concerning the load absorption, Shimokochi et al. [58] demonstrated
that prevention programs addressed to increasing the athlete ability in reacting to the load
during the landing phase after a jump can help to reduce the risk of injury. In addition, this
aspect is emphasized in female athletes, who adopt an absorption strategy that consists
of the use of distal joints, causing an increase in the risk of ACL injury with respect to
male players [59]. As for the leg mobility, knee angle joint has been shown as one of the
main aspects to be investigated during motion tasks for the assessment of ACL injury risk
in different sports, such as basketball, soccer and volleyball [16,60]. Among the stability
indices, only the confidence ellipse area reveals itself as a useful predictor in this context;
this finding is in contrast with those reported in the study conducted by [61], in which the
absence of a correlation between knee stability parameters and ACL injury was assessed
in soccer and handball players. However, it is worth noting that the outcomes in [61]
were obtained through semi-static tests, i.e., the execution of the star excursion balance,
rather than jump-based tasks, and with a different population; indeed, it is recognized that
the evaluation of the instability during the landing phase after a jump can be used as a
predictor factor [41]. By combining the results on the best performing classifier and the
most important feature, we can assess that the evaluation of leg stability, leg mobility and
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load absorption capability in athletes performing monopodalic jump and single-leg squat
tasks and the successive application of a machine-learning algorithm based on a linear
support vector machine can be a useful screening tool for the identification of athletes
at higher ACL injury risk. In addition, it is also possible to suggest performing only the
monopodalic countermovement jump, since the exclusion of the θymax, which is the only
important parameter related to the squat task, did not lead to a significative change in
the algorithm performance. One of the main advantages of the proposed algorithm can
be ascribed to the possibility to apply such a procedure without the necessity of a skilled
operator, which is fundamental for the computation of the LESS score in order to avoid the
limitation related to the subjectivity of the operator [20].

Implications

Considering our findings, we can speculate that the linear SVM, moreso than others,
may be introduced as a screening tool for the identification of the athletes at a higher risk
of injury if it is fed with data gathered from athletes when performing jumps and squat
tasks. In addition, the use of artificial intelligence based on quantitative and objective
measures could permit us to overcome the intrinsic limitation of a subjective evaluation,
which the landing error scoring system is. The performance achieved here by the test
classifiers are encouraging results, since they are up to more than 20% higher with respect
to the previously published applications of artificial intelligence in this context [29,30].
This improvement can be ascribed to a greater robustness of the linear SVM to the type
II error; in fact, in the previously published studies the limitation was the high value of
false negatives, as in [29]. Since the cited papers only used ground reaction force during
the landing phase, we can speculate that the computation of additional parameters, such
as the stability ones and those related to the linear acceleration, leads to the reduction in
the false negative classification.

Finally, the strong correlation found for EA permits an objective evaluation of the
knee stability, revealing itself as a predictive factor, and a better quantification of changes
over time also when functional scales appear no longer sensitive. In particular, since
EA index is not a discrete variable, unlike the functional scales used in clinics, it could
permit a greater resolution in the discrimination of different risk levels; as well, by not
presenting a maximum possible value, it could guarantee to overcome the well-known
intrinsic limit of clinical score associated with the saturation effect at the upper limit of the
scale [62]. These considerations are still true if considering other clinical scales, such as the
Cutting Movement Assessment Score (CMAS), a validated qualitative screening tool to
identify athletes at higher risk [63]; though it is worth noticing that CMAS is specifically
addressed to sports in which side-step cutting is a predominant mechanic, such as rugby
and soccer [64].

By summarizing, we can affirm that the method proposed here could be positively
exploited during training sessions since it only requires: (i) the execution of easy motor
tasks typical of training programs, since their correct execution is shown to be correlate
to the prevention of ACL injury [65,66] and (ii) the use of only one low-cost wearable
inertial sensor, which has already been demonstrated to be useful for the assessment of
ACL injury [67]. Using this protocol as a screening method, customized interventions
could be implemented for the athletes identified as potentially at higher risk of injury.
Thus, we can conclude that practitioners are encouraged to include the protocol and data
analysis methodology validated here during the training sessions to constantly monitor
athletes at higher risk. In addition, it has to be noted that such an approach can be also
used to monitor the effectiveness of customized interventions, which are tailored training
programs, for the reduction in the injury risk.

Even though this study is promising, it should be highlighted that the obtained results
are only related to the tested cohort. Thus, further studies should be carried out in order
to understand if such a methodology can be extended to both other contact sports and
populations with different demographic characteristics, such as age and gender.
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5. Conclusions

With the aim to assess the feasibility of using a machine-learning algorithm for the
identification of basketball players associated with a higher risk of anterior cruciate liga-
ment injury, we compared nine different classifiers fed with data related to leg stability,
leg mobility and load absorption capability. Data were gathered from thirty-nine female
basketball players when performing single-leg countermovement jumps and single-leg
squats. The Landing Error Scoring System was used to identify the athletes at higher risk
of injury and as a supervisor for the machine-learning algorithms. The results reveal that a
support vector machine implemented with linear kernel achieved the best performance in
terms of accuracy, F1-score and goodness index, equal to 0.96, 0.95 and 0.06, respectively. By
analyzing the feature importance, the ellipse area and root mean square of the acceleration
measured during the jump test, as well as the angle reached during the single-leg squat, we
showed the greatest sensitivity to discriminate if an athlete is at risk of injury. In addition,
the ellipse area strongly correlated with the LESS score. The obtained findings permit us
to validate the use of the artificial intelligence approach as a predictive tool for anterior
cruciate ligament injury monitoring. Thus, the proposed methodology should be adopted
by practitioners during training programs to monitor athletes at higher risk and, eventually,
implement customized programs to reduce the risk level. Future works will consider the
application of such a methodology on players of different contact sports, such as soccer or
handball, and also taking into account the age and gender effects.
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