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One of the fundamental goals of nanotechnology is to exploit selective and directional interactions
between molecules to design particles that self-assemble into desired structures, from capsids, to
nanoclusters, to fully formed crystals with target properties (e.g., optical, mechanical, etc.). Here, we
provide a general framework which transforms the inverse problem of self-assembly of colloidal crystals
into a Boolean satisfiability problem for which solutions can be found numerically. Given a reference
structure and the desired number of components, our approach produces designs for which the target
structure is an energy minimum, and also allows us to exclude solutions that correspond to competing
structures. We demonstrate the effectiveness of our approach by designing model particles that
spontaneously nucleate milestone structures such as the cubic diamond, the pyrochlore, and the clathrate
lattices.

DOI: 10.1103/PhysRevLett.125.118003

Self-assembly is a broad category of processes by which
elementary components organize themselves into ordered
structures [1]. Inspired by its ubiquity in biology, nano-
technology has long looked at self-assembly as the most
promising avenue for the bottom-up realization of struc-
tures with specific properties. Successful experimental
examples include two-dimensional lattices [2], fully
three-dimensional crystals [3,4], and polyhedral shells
[5–7]. On the molecular scale, perhaps the most successful
results were obtained using DNA nanotechnology, where
DNA sequences are designed so that they form the
maximum number of base pairs only by self-assembling
into the desired target 2D or 3D shape, e.g., DNA origami
[8]. Very recently, DNA origami have been crystallized into
three-dimensional superlattices [9,10]. At the colloidal
scale, promising strategies for self-assembly include
DNA-functionalized particles and patchy particles. In the
former case, a mixture is obtained from colloids whose
surface is randomly decorated with single strands of DNA
such that particles of different types can selectively bind to
each other. This strategy has led to the self-assembly of the
double diamond (or B32) crystal [11]. In the case of patchy
particles, colloidal particles acquire anisotropic interactions
either via their shape [12] or via chemical patterning of
their surface [13–16]. Hybrid solutions where patchy
interactions are realized by attaching DNA sequences at
well-defined positions have also been proposed [17–20].
The experimental methodologies so far described,

while successful, are system specific and hard to

generalize. In many cases, we lack a theoretical under-
standing of why certain structures have self-assembled
from elementary building blocks. The search for the
general principles behind the inverse self-assembly
problem has attracted several theoretical investigations.
Instead of predicting which structures self-assemble out of
specific building blocks, the inverse problem is concerned
with designing building blocks that form a specific target.
So far, two types of approaches have emerged: optimi-
zation algorithms and geometrical strategies. In optimi-
zation algorithms the pair potential is tuned to minimize
the energy of a target structure [21–27]. While powerful
and general, the major limitation of this approach
is that the level of control over the shape of the pair
potential is in most cases far beyond current experi-
mental possibilities. The geometric approach to self-
assembly instead uses specific interactions to match the
geometrical properties of the target structure to kinetically
guide the assembly process. The following interaction
properties are usually tuned to match the target structure:
shape [28], directionality [29–32], selective binding [33],
and torsional interactions between neighbors [34,35].
Geometrical approaches allow experimentally realizable
systems to self-assemble into specific structures, but the
process of designing the potential is system specific and
requires ad hoc solutions. An example of these limitations
is the self-assembly of the colloidal diamond structure,
which usually requires either torsional interactions
[34,35] or hierarchical assembly [35–38] to avoid the

PHYSICAL REVIEW LETTERS 125, 118003 (2020)

0031-9007=20=125(11)=118003(6) 118003-1 © 2020 American Physical Society

https://orcid.org/0000-0002-7396-8456
https://orcid.org/0000-0002-6234-6344
https://orcid.org/0000-0003-1565-6769
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.118003&domain=pdf&date_stamp=2020-09-10
https://doi.org/10.1103/PhysRevLett.125.118003
https://doi.org/10.1103/PhysRevLett.125.118003
https://doi.org/10.1103/PhysRevLett.125.118003
https://doi.org/10.1103/PhysRevLett.125.118003


formation of stacking faults. Importantly, some of these
features lack a convincing experimental counterpart.
Here, we formulate a general framework for designing

self-assembling systems of patchy particles (PP) into any
arbitrary structure, with the option to exclude the formation
of competing structures that are identified in simulations.
We focus on designing PP systems that have geometric
properties, such as the number and placement of the
patches that reflect the local environment of the target
lattice. To introduce selectivity in the model, we assign to
each patch a “color” that encodes its binding properties and
define Nc as the number of different patch colors. Binding
is allowed only between patches that have compatible
colors as specified by an interaction matrix [Fig. 1(d)]. We
do not impose any torsional restrictions and all bonds have
the same strength. While all particles have the same
placement of the patches, we allow for the possibility of
having Ns different PP “species,” which are defined by the
coloring of their patches. Relative concentrations are also
free parameters. This system can be realized experimentally

with patches based on single-stranded DNA [39] thanks to
the selective binding of DNA sequences. To simplify
sequence design, we impose that each patch is assigned
a color that can only bind one other color (which can be the
same in the case of self-complementarity). The goal is to
determine the patch coloring for each PP species and color
interaction matrix so that the PPs assemble into a desired
structure.
The target structure is described by a unit cell, com-

prising l ∈ ½1; L� particles [Fig. 1(a)]. The unit cell can be a
combination of two or more true unit cells of the target
lattice. The positions of the patches in the target lattice
(slots) are labeled as k ∈ ½1; Np�, from which a list of
neighboring slots is computed [Fig. 1(b)]. Our designed
PPs can be of different species s ∈ ½1; Ns�, and have p ∈
½1; Np� patches on their surface which can take a color
c ∈ ½1; Nc�. o represents one of theNo possible orientations
of each particle, and it is uniquely identified by a map
between its patches and the patch slots they occupy. Not all
mappings are possible, only those that can be reached by a
physical rotation of the particle.
A brute-force search of all possible combinations of

(i) patch color arrangements for all particle species ðNcNs
Np

Þ,
(ii) rotations and symmetry operations of each particle up to
NL

p!, and (iii) interaction matrix between patch colors,
ððNcþ1Þ=2

Nc
Þ, becomes intractable with increasing Nc, Ns, Np,

and L even if they are relatively small. Instead, and this a
crucial contribution of this Letter, we map the problem to a
Boolean satisfiability problem (SAT), where recent
algorithmic developments have dramatically advanced
our ability to solve problems involving tens of thousands
of variables and millions of constraints [40–43]. We use a
publicly available SAT solver [40] that can find solutions to
the design problems considered here in time ranging from
few seconds up to one hour.
Mapping the particle design onto a SAT problem

requires the definition of (i) binary variables xi that
describe the PPs’ patch coloring for each particle species
and the color interaction matrix and (ii) binary clauses Cj
that represent the constraints that the variables need to
satisfy, such as the ability to form all the bonds in the
target lattice. Each binary clause contains a subset of the
variables xi (or their negation ¬xi) connected by an OR
statement, and a solution is found whenever a combina-
tion of values of the xi satisfies all clauses at the same
time. Formally, this corresponds to finding a set of
variables xi such that C1 ∧ C2 ∧ C3 ∧ � � � is true. The
SAT mapping can also be used to prove the impossibility
of achieving some (desired or unwanted) binding pattern
with a given combination of input parameters Ns and Nc
by proving the absence of solutions to the associated
SAT problem. This is crucial since it allows us to filter
undesired binding patterns, which may represent compet-
ing global arrangements (i.e., another crystal form) or
local arrangements (kinetic traps).

FIG. 1. (a) A schematic representation of the unit cell of a
tetrastack lattice consisting of 16 positions (red spheres), each
bound to its neighbors (using periodic boundary conditions) via
numbered “slots,” shown in green. (b) A topology representing
the unit lattice, showing each lattice position connected to six
other positions (interacting slot numbers on each respective
position are shown as link labels). (c) A PP with six patches
with each patch colored differently. The PP can be positioned into
the lattice so that its patches overlap with the green slots. There
are six different orientations that allow us to position a PP into
the lattice position so that all patches overlap with the slots.
(d) The SAT solver assigns colors to each patch and designs the
interaction matrix between the colors. In this particular solution
for tetrastack crystal, there are 2 PP species (red and green) with
each patch assigned its unique color. The interaction matrix
shows which colors interact. (e) The SAT solver assigns to each
lattice position a corresponding PP species and an orientation so
that all patch interactions are satisfied. Patches that interact with
each other are drawn using the same color for convenience.
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Our design problem thus translates into a set of binary
variables and clauses, as defined in Table I. In order, the
clauses enforce that (i) Cint: each color is compatible with
exactly one color, (ii) Cpcol: each patch is assigned exactly
one color, (iii) CL: each lattice position is occupied by a
single PP species with one assigned orientation, (iv) Clint:
colors of patches that interact in the target lattice can bind to
each other according to the interaction matrix, (v) CLS: the
slots in each lattice position are set to have the color of the
patch occupying them, (vi) Calls

s : all Ns particle species are
used for the lattice assembly, (vii) Callc: all Nc patch colors
are used in the solution. The final SAT problem is a
conjunction of all clauses (i)–(vii). The conditions (vi) and
(vii) are used to avoid getting trivial solutions such as
having a single PP species with all patches colored by the
same self-complementary color. It allows us to formulate
the SAT problems for different combinations of Ns and Nc
and see for which the solutions exist.
For the lattice design problems considered in this work,

the number of binary variables ranges from about 103 to
105, and the number of clauses ranges from approximately
104 to 107, which we found to be within reach of a
commonly used SAT solver [40]. If a solution is found in

terms of the binary variables x, it can be straightforwardly
converted into human-readable form by listing the variables
xpcols;p;c and xintci;cj that are 1, as their subscripts will specify
respectively (i) the color c of patch p in PP species s,
(ii) the compatible colors ci and cj. Additionally, our
framework allows the user to quickly check if a specific
combination of PP species with a patch coloring and color
interaction matrix can satisfy a given lattice geometry. We
use clauses (i)–(iv) discussed above, and additionally add
clauses that constrain the variables xpcol and xint accord-
ingly for the set of PPs we want to check. If such a SAT
problem is solvable, the indices of the variables xLl;s;o that
are 1 readily provide the particle species s and orientation o
assigned to each lattice position l, allowing visualization of
the lattice [Fig. 1(e)].
To demonstrate the versatility of the SAT mapping

approach for particle design, we selected three of the most
challenging and sought-after lattice geometries. After using
our SAT solver to obtain PP species design and color
interaction matrix, we run molecular simulations [44] and
study the success and quality of the crystals obtained from
homogenous nucleation. The SAT solver guarantees that
the target structure is an energy minimum, but cannot say
whether kinetic traps or other energy minima, both often
associated with competing crystalline structures, are
present along the self-assembly pathway. If a competing
structure is found in the molecular simulations, we can
explicitly exclude it by redesigning the SAT problem by
adding additional clauses or by discarding all generated
solutions that can form the identified undesired structures.
Thus we iteratively arrive at a design which self-assembles
into the desired crystal through homogeneous nucleation.
In contrast to previous solutions to this problem, we stress
that these crystalline structures are being nucleated without
introducing torsional interactions or hierarchical assembly.
Moreover, the crystals are nucleated homogeneously, with-
out the need for seeding or templating, and grow without
stacking defects.
Our first target structure is the cubic tetrastack lattice

(also known as pyrochlore) that together with the cubic
diamond has been proposed for its omnidirectional
photonic band gap for use as a photonic crystal [45].
We adopt a design with six patches in the direction of the
closest neighbors [Figs. 1(a) and 1(c)]. To mimic the
possible experimental realization of the system using 3D
DNA nanostructures [46], with single-stranded DNA
representing individual patches, we model the PPs as soft
spheres with attractive point patches (as described in
Supplemental Material [47]). Solutions can be found with
Ns ¼ 1, Nc ¼ 3 but suffer from the geometric problem in
which two particles can bind with two bonds at the same
time, leading to alternative assemblies in the simulations.
To avoid this we introduced an additional clause (defined in
the Supplemental Material [47]) that requires that no pair of
particles can bind through more than one bond. This SAT

TABLE I. SAT clauses and variables. The color interaction is
given by binary variables xintci;cj which are 1 if color ci is
compatible with color cj and 0 otherwise. The patch coloring
for each PP species is described by binary variables xpcols;p;c which
are 1 if patch p of species s has color c, and 0 otherwise. The
arrangement of the particle species in the lattice is described by
xLl;s;o which is 1 if the position l is occupied by a PP of species s in
the specific orientation o. The mapping ϕoðkÞ ¼ p for a given
orientation o means that PP’s patch p overlaps with slot k in a
given lattice position. The variable xAl;k;c is 1 if slot k of lattice
position l is occupied by a patch with color c and 0 otherwise.
The clauses and variables are defined for all possible combina-
tions of colors c ∈ ½1; Nc�, patches p ∈ ½1; Np�, slots k ∈ ½1; Np�,
PP species s ∈ ½1; Ns�, orientations o ∈ ½1; No�, and lattice
positions l ∈ ½1; L�. Clauses Clint are defined only for slots ki,
kj that are in contact in neighboring lattice positions li, lj. For a
given s, clause Calls

s is defined as a list of xLl;s;o for all possible
values of l and o, joined by disjunctions. Clause Callc

c is defined
analogously.

Id Clauses Boolean expression

(i) Cint
ci;cj;ck ¬xintci;cj∨¬xintci;ck

(ii) Cpcol
s;p;ck;cl ¬xpcols;p;ck∨¬xpcols;p;cl

(iii) CL
l;si;oi;sj;oj

¬xLl;si;oi∨¬xLl;sj;oj
(iv) Clint

li;ki;lj;kj;ci;cj
ðxAli;ki;ci ∧ xAlj;kj;cjÞ ⇒ xintci;cj

(v) CLS
l;s;o;c;k xLl;s;o ⇒ ðxAl;k;c ⇔ xpcols;ϕoðkÞ;cÞ

(vi) Calls
s ⋁∀ l;ox

L
l;s;o

(vii) Callc
c ⋁∀ s;px

pcol
s;p;c
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problem has no solution for Ns ¼ 1. For Ns ¼ 2, we found
solutions for Nc ¼ 6, 8, 10, and 12. We show the solution
for Nc ¼ 12 in Figs. 1(d) and 1(e) and its successful
nucleation in Fig. 2(a). To simulate the assembly kinetics,
we used simulations at a range of temperatures of a point-
patch-particle model [49] (see the Supplemental Material
[47] for model and simulation details). The simulations
were carried out with 2048 particles at number density 0.1
(corresponding to a volume fraction of ≈0.05). This density
was chosen to mimic the common experimental scenario
of phase-separation-induced crystallization from a low-
density solution. Figure 2(a) shows a nucleation event: the
top panel shows a snapshot of the nucleus, the bottom panel
shows the time evolution of the energy for runs at different
temperatures, where the nucleating trajectory is signaled by
the sharp decrease in energy. We further obtained success-
ful nucleation for Nc ¼ 8 and 10, but only observed gas or
glassy state for Nc ¼ 6 with no crystal nucleation in
simulations. The dependence of the phase diagram on
Nc will be explored in future work.
We next consider the tetravalent PP assembly. One of the

most popular models for the study of tetravalent systems is
the Kern-Frenkel (KF) potential [50], which is a square-
well potential with angular dependence (see Supplemental
Material [47]). The thermodynamic and crystallizability of

the model have been well characterized [44,51], and have
highlighted the difficulty of obtaining nucleations of a
pure crystal due to the many kinetic traps represented
by competing structures. Because of the discontinuous
nature of the potential, the Monte Carlo (MC) method is
commonly employed to study its assembly [44,52,53]. In
the following, we hence adopt MC to identify alternative
stable or metastable structures competing with the desired
target tetravalent lattice.
We seek the assembly of the cubic diamond (DC) lattice,

probably the most sought-after crystal for photonic appli-
cations [54]. Systems that can assemble DC lattice are
almost inevitably found to be also able to assemble into
hexagonal diamond (HD) lattice [51], resulting in imperfect
crystals with defects and stacking faults. We adopted a
tetrahedral PP design (Np ¼ 4), and we looked for
solutions that color an 8-particle unit cell of DC but cannot
color a 8-particle unit cell of HD. Even in this case, our
SAT solver showed that any PP solution that satisfies
8-particle DC cell can also assemble a 32-particle HD unit
cell. A strategy to avoid the HD lattice in this case is to
employ a larger unit cell for the DC. We hence used a larger
16-particle unit cell of a DC lattice and scanned a range of
combinations of Ns > 8 and Nc. For each solution that we
obtained for a given Ns and Nc, we checked with the SAT

FIG. 2. Overview of simulations of the assembly of (a) tetrastack, (b) diamond cubic, and (c) clathrate Si34 lattices. Top panels show a
snapshot of the final configuration of simulations that nucleated a crystal assembly, with each particle species colored differently.
Patches are not shown for clarity. The bottom row shows the energy per particle over the course of the simulations at different
temperatures, where nucleation events are signaled by sudden drops in E. For tetrastack, we saw multiple independent nucleations for
T < 0.127. Energy is reported in simulation energy unit ϵ� and temperature is in ϵ�=kB.
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solver if it can assemble into a 32-particle HD unit cell. The
solution with the smallest Ns that we found to be able to
form DC and not form 32-particle HD cell had Ns ¼ 9 and
Nc ¼ 31, and it successfully nucleated the DC lattice in a
Kern-Frenkel PP [51] simulation [Fig. 2(b)], which was
done with 495 particles split equally into 9 PP species, at
number density 0.2 (corresponding to volume fraction 0.1).
We have also carried out simulations at 0.1 number density
with 2048 particles, which also showed homogeneous
nucleation of a DC lattice (shown in the Supplemental
Material [47]).
As the last example, we used our approach to find a

system able to nucleate into the Si34 clathrate (CSi34)
starting from tetrahedral PPs in the KF model. The smallest
Ns for which a solution was found that could form CSi34
and not DC or HD lattices had Ns ¼ 4, Nc ¼ 12, and was
confirmed to successfully nucleate CSi34 [Fig. 2(c)] in a
simulation at 0.2 number density with 476 particles in
species ratio 6∶3∶2∶6, as well as in a larger simulation at
number density 0.1 and 1904 particles (shown in the
Supplemental Material).
The patch coloring and interaction matrices for all PP

solutions are given in the Supplemental Material [47].
While we focused so far only on designing systems for the
assembly of difficult 3D lattices, our approach can be
generalized to other systems, such as finite-size clusters.
Our method is not limited to spherical PPs and can be used
for any model where simulations or other stochastic
methods can identify undesired assemblies as a list
of interactions between PP species and their patches.
It can be also combined with other techniques, such as
using different strengths of interactions to disfavor unde-
sired assemblies identified in the simulations. The approach
proposed here is extensible and the systems designed
in this work should be amenable of experimental
realization.

J. R. acknowledges support from the European Research
Council Grant No. DLV-759187. P. Š. acknowledges
support from the ONR Grant No. N000142012094. J. R.
and P. Š. acknowledge support from the Università Ca’
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