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Abstract
The trophic ecology of Chiloneus weevil species from Sicily was unknown until recently when the host plant of these closely 
related species was discovered. The opportunity to collect many samples of these elusive species allowed us to re-evaluate 
the morphology and the genetic relationships among the three closest of the four species inhabiting Sicily and the adjoining 
islands. We analysed a fragment of the cox1 mitochondrial gene of adult specimens collected from the host plant Drimia 
pancration in Sicily, Pantelleria, Pelagie Islands and Malta to study the population structure and the relationships among 
the different nominal species known so far. Both morphological and genetic results suggest that the previous three species 
are actually two species with disjunct distribution, for which the new synonymy C. hoffmanni (González, 1970) (= C. solarii 
Pesarini, 1970, syn. nov.) is established. Chiloneus meridionalis (Boheman, 1840) inhabits the main island of Sicily and 
Pantelleria island, while C. hoffmanni is restricted to Malta and Pelagie islands. Adults of the two species are very similar in 
general appearance but still distinguishable by a set of well-established characters presented here in a key to their 
identification. The genetic approach provided evidence of a certain degree of structure of the genetic variation within 
the two species that would be worth addressing from a phylogeographic perspective in future work.

urn:lsid:zoobank.org:pub:1F03BA05-B7A9-44B7-8225-321174A1E3FB
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Introduction

Chiloneus Schoenherr, 1842 is a genus of 
Sciaphilini Sharp, 1891 that currently includes 
41 species, 40 included in the subgenus 
Chiloneus and a single one from southern Italy, 
Chiloneus (Mylaconeus) lonai Pesarini, 1970, 
placed in the quite diverse subgenus Mylaconeus 
Pesarini, 1970 (Alonso-Zarazaga et al. 2017; 
Casalini et al. 2017). All the species, except the 
possibly misplaced Chiloneus pallidus Bajtenov, 
1974 from Kazakhstan, are distributed in the 
warmer parts of the Mediterranean basin. The 
most recent, although now outdated, revision of 
this group was published by González (1970). 

Unfortunately, González confused members of 
Chiloneus with those of the morphologically simi-
lar Desbrochersella Reitter, 1906, which is a genus 
of Omiini Shuckard, 1840 (Alonso-Zarazaga & 
Lyal 1999). Precise distinguishing features of 
both genera were provided by Borovec and 
Perrin (2016), who revised several type speci-
mens, described new species, and established 
new combinations and new synonymies.

In general, most Chiloneus are uncommon, and 
a good few of them are known only from type series 
and a handful of additional specimens, probably due to 
the complete lack of information about their biology. 
Four species of the nominotypical subgenus are 
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currently known to be distributed in Sicily and neigh-
bouring islands: C. aliquoi (Pesarini, 1975) from Sicily, 
C. hoffmanni (González, 1970) from Malta and 
Lampedusa islands, C. meridionalis (Boheman, 1840) 
from Sicily and C. solarii Pesarini, 1970 from Malta and 
Linosa islands (Alonso-Zarazaga et al. 2017). The first 
of them, C. aliquoi from the Madonie mountains, is 
already set apart from all other species dealt with in 
this note because of its entirely piliform elytral scales 
and small size (3.6–4.2 mm). The latter feature is 
shared with 27 other species of C. (Chiloneus), which, 
in turn, can be divided into at least two groups accord-
ing to their body shape and vestiture. The remaining 13 
larger species are rather similar to each other and badly 
in need of revision.

We had the opportunity to discover the habits 
and phenology (Casalini et al. 2017) of the three 
close species C. hoffmanni, C. meridionalis and 
C. solarii and to collect enough specimens to submit 
them to molecular analyses in order to clarify their 
true identity, given their extreme similarity. 
It is worth pointing out that these three species 
were separated by Pesarini (1970) on the basis of 
tiny morphological differences, having scarce mate-
rial at hand.

Materials and methods

Sampling

Specimens of several different populations were col-
lected by us in various sites of Sicily, mostly along the 
coast or just inland, between 2016 and 2018 (Figure 1). 
Fresh samples of two populations were collected by 
E. Colonnelli in 2017 in Malta. Specimens from 
Pantelleria were sampled by Pietro Ferrandes on the 
suggestion of Andrea Corso. We hand-collected more 
than 300 adult specimens on plants that had feeding 
damage, of which 133 individuals were used in the 
molecular screening here reported. Table S1 (see 
Supplementary material) lists the details of the localities 
and host plants. The recorded host plant was Drimia 
pancration (Steinh.) J. C. Manning and Goldblatt 
(Asparagaceae). Given the still controversial generic 
arrangement of Mediterranean bulbous Asparagaceae, 
in this paper the nomenclature of the genus follows 
Crespo et al. (2020) rather than that proposed by 
Bartolucci et al. (2018). Specimens were labelled by 
location, date and host plants and stored in American 
Chemical Society (ACS) grade acetone for the mole-
cular genetic analyses. In four populations a share of the 
specimens were stored in ethanol 100°.

Figure 1. Area of study. Red and blue dots refer to sampling sites of Chiloneus meridionalis and C. hoffmanni, respectively.
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Morphological analysis

Samples were morphologically analysed by two of us 
(EC, RC) using Pesarini (1970) and Casalini et al. 
(2017) to confirm the assignment to morphospecies 
and to detect possible differences useful in the dis-
crimination of the available populations. The mor-
phological analysis was performed using a Leica 
M205C and a Wild M5 binocular microscope on 
some 500 dried or wet samples. When necessary, 
specimens were dissected to permit a more in- 
depth analysis of internal structures such as the 
median lobe of aedeagus and the spermatheca. 
Pictures were taken by Francesco Sacco with 
a Nikon 810 camera provided with a Mitutoyo 
Plan Apo 10× objective and an f80 mm 4× tube 
lens. Photos were then stacked using the program 
Helicon Focus v. 6.1, and further processed with the 
program Adobe Photoshop CS5.

Mitochondrial marker sequencing

Following the procedure described in De Biase et al. 
(2019), the total genomic DNA was extracted and 
used as a template in polymerase chain reactions 
(PCR) to amplify a fragment of the mitochondrial 
genome coding for the cytochrome c oxidase sub-
unit I (COI). Folmer’s primers LC01490 and 
HC02198 (Folmer et al. 1994) were used to amplify 
the 5′ upstream region of the cox1 gene or, when 
needed, the TY-J-1460 primer of Simon et al. 
(1994) as the forward one. We used several PCR 
thermal cyclers among those available at our labora-
tory (i.e. MWG® Biotech Primus 25, Biometra® 
TPersonal 48, Biometra® TProfessional 96 
Gradient), with the following amplification condi-
tions: 94°C denaturation (5 min), followed by 35 
cycles of 95°C denaturation (1 min), 41°C anneal-
ing (1 min), and 72°C extension (1 min and 30 s), 
followed by a final 7 min elongation step at 72°. In 
vitro reactions were carried out in 25 μL of cocktail 
containing (NH4)2SO4 16 mM, Tris-HCl 67 mM 
(pH 8.8), MgCl2 3 mM, Tween-20 0.01%, 1 mM of 
each deoxynucleotide, 0.8 pM of each primer, and 
1.25U of Taq DNA polymerase (Bioline Reagents 
Ltd, London, UK).

Amplified products were purified by Exo-SAP 
enzymatic reactions and sequenced at the 
Macrogen Europe genomic centres (Amsterdam, 
The Netherlands and Madrid, Spain), employing 
Applied Biosystems® 3730xl DNA Analysers and 
using the BigDye Terminator Kit (Applied 
Biosystems, USA) according to the manufacturer’s 
protocol. Sequencing primers were LC01490 or 
TY-J-1460. When needed, the DNA of a few 

individuals was sequenced on both strands using 
the same reverse primers used during the PCR 
amplifications. The acquired sequences were 
screened by a blast search of the GenBank nucleo-
tide collection of the National Center for 
Biotechnology Information (NCBI) using the 
Mega BLAST procedure (Wheeler et al. 2007) 
available at its website (http://www.ncbi.nlm.nih. 
gov/blast). The screening procedure was aimed at 
checking the assignment of the specimens to high- 
level categories (e.g. family and subfamily). Next, 
the sequences were edited and aligned using the 
Staden Package v. 2.0.0b11 software (Staden et al. 
2000). All peaks were checked for wrong base calls 
and noise and were cleaned when required. The 
alignment was visually assessed without requiring 
any insertion–deletion (indel) typing and was col-
lapsed using FaBox tool (Villesen 2007) to retain 
the detected haplotypes only.

Data analysis

Bayesian analyses were performed on haplotypes 
using BEAST v. 2.6.3 (Bouckaert et al. 2019) with 
the bModelTest module (Bouckaert & Drummond 
2017) for the evaluation of the substitution model 
(BEAST Model Test; transistionTrasversionSplit). We 
used the Random Local Clock model (Drummond & 
Suchard 2010) implemented in the software to take 
into account the variation of the substitution rate 
among lineages with Clock.rate 0.0177 according to 
Papadopoulou et al. (2010). The tree prior was set 
using the Yule model (Yule 1925). Two analyses 
were run adopting the adaptive Metropolis coupled 
MCMC strategy implemented in the coupledMCMC 
module of Beast 2.6.3 (Müller & Bouckaert 2020) 
using for each analysis a random starting tree and 
two Markov chains with length 50 × 106, resampling 
every 1000 iterations and logging trace and tree 
every 1000 iterations. Finally, the same analysis 
was performed sampling from priors only, to evalu-
ate the priors that we applied to the analysis para-
meters. Convergence was evaluated with Tracer v. 
1.7 (Rambaut et al. 2018), and the two chains were 
combined with Logcombiner routine of Beast 2.6.3, 
discarding 25% of burn-in trees each; the combined 
set of trees was summarised as a Maximum clade 
credibility tree with Beast’s TreeAnnotator program. 
Finally, genetic divergence was estimated using the 
Kimura two-parameter evolutionary model 
K80 = K2P (Kimura 1980); distances and standard 
errors (1000 bootstrap replicates) were computed as 
pairwise values among all haplotypes and as net 
averages among the groups detected on the inferred 
Bayesian topology, by means of MEGA X v. 10.1.8 

950 A. De Biase et al.

http://www.ncbi.nlm.nih.gov/blast
http://www.ncbi.nlm.nih.gov/blast


(Kumar et al. 2018). To further display the genea-
logical relationships among haplotypes and to indi-
cate possible missing mutational connections, we 
performed a network analysis of the entire set of 
nucleotide sequences, using the statistical parsimony 
method (Templeton et al. 1992) as implemented in 
the software TCS v. 1.23 (Clement et al. 2000). 
The results were depicted as a network using the 
web-based program tcsBU (Múrias dos Santos et al. 
2016) available at https://cibio.up.pt/software/ 
tcsBU/ (last access January 2021).

As discussed in De Biase et al. (2016), the degree 
of genetic divergence has a non-linear relationship 
with the taxonomic rank of detected genetic groups. 
In the framework of the species delimitation 
approach, the automatic barcoding gap discovery 
(ABGD) approach (Puillandre et al. 2012) is a fast 
and simple method to discover partitions in DNA 
sequence data sets thus suggesting those clusters to 
be considered as putative distinct species on 
a phylogenetic tree. The ABGD method stems 
from the barcoding methodology, which was origin-
ally focused on the identification of biological sam-
ples using a standard nucleotide sequence (a 5′ 
fragment of the mitochondrial cox1 gene) compared 
with a reference data set of previously 
characterised species. The method aims at defining 
partitions in a set of cox1 sequences that must be 
considered as hypotheses of prospective distinct spe-
cies to further investigate in an integrative frame-
work. The partitions are defined by analysing the 
distribution of all pairwise distances between 
sequences to locate the most reliable “barcode 
gap” between the intraspecific and interspecific 
divergence. After the initial partitions are defined, 
the algorithm is performed in a recursive way until 
no new partitions are defined. Our analyses were 
carried out on the alignment of the all 133 cox1 
sequences obtained for the sampled populations by 
using the ABGD method as available at the website 
https://bioinfo.mnhn.fr/abi/public/abgd/ (Puillandre 
et al. 2012; last access January 2021) with the fol-
lowing parameters: Pmin 0.001, Pmax 0.1, Steps 
10, X (relative gap width) 1.5, Nb bins (for distance 
distribution) 20, K80 distance, and TS/TV 2.0.

We used as another approach for species delimita-
tion the general mixed yule-coalescent (GMYC) 
model (Pons et al. 2006; Fontaneto et al. 2007; 
Monaghan et al. 2009; Fujisawa & Barraclough 
2013), which helps in seeking the threshold that 
marks the transition between evolutionary dynamics 
within and among species, thus suggesting those 
clusters to be considered as distinct species on 
a phylogenetic tree. The method is aimed at model-
ling in a probabilistic framework both the 

coalescence processes that occur within species at 
population level, as described by topology and 
length of the branches of a phylogenetic gene tree, 
and the speciation processes occurring at a certain 
level of divergence and identified as a threshold 
above which all nodes describe speciation events as 
defined by the Yule speciation model (Yule 1925). 
This approach thus combines standard coalescent 
models that consider the diversification within 
populations (Hudson 1991; Wakeley 2008) with 
those models that describe the branching pattern of 
speciation events (Nee 1994, 2001; Nee et al. 
1994). The method evaluates, by means of 
a likelihood test, alternative scenarios by assessing 
several thresholds as a boundary between intra- and 
inter-specific dynamics, and fitting the best one 
for delimiting the species encompassed by the gene 
tree under analysis. The analyses were performed 
starting from the ultrametric Bayesian tree 
previously inferred on the cox1 haplotypes data set 
by using the web service available at the URL 
https://species.h-its.org/gmyc/ (more information at 
The Exelixis Lab https://cme.h-its.org/exelixis/ 
index.html) setting both the single and multiple 
threshold option of the method (Monaghan et al. 
2009).

Finally, considering the results obtained with the 
previous analyses, we analysed in detail the align-
ment of the nucleotide sequences to detect all the 
positions that showed alternative bases shared 
among all individuals belonging to each of the enti-
ties highlighted through the statistical analyses 
described above. Subsequently, the amino acid 
sequences obtained from the translation of the 
nucleotide sequences, on the basis of the standard 
code for Invertebrate Mitochondrial DNA 
(Table S5), were analysed in the same way. This 
procedure was performed using the AliView v. 1.27 
(Larsson 2014).

Results and discussion

Morphological analysis revealed that certain 
external and internal characters used by Pesarini 
(1970) are too variable to use to reliably differ-
entiate some populations at the species level. In 
particular, we noted that the only diagnostic 
external features are the disposition and number 
of lifted elytral setae (Figure 2a, b), the shape of 
the protibiae (Figure 3a, b), the length of the last 
segments of the antennal funiculus (Figure 3c, d) 
and the shape of the aedeagus (Figure 3e–h). In 
contrast, the depth of elytral striae, density of 
recumbent scales, and shape of spermatheca are 
of little use for separating taxonomic entities. 
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Based on morphological evidence, only two mor-
phospecies can be identified among the studied 
material, one distributed in Sicily and in the 
Aegadian Islands, and the other occurring in 
Malta and the Pelagie Islands, both showing 
a moderate variability of external features, often 
depending also on the freshness of the studied 
individuals. Thus, we propose here the following 
synonymy: Chiloneus hoffmanni (González, 1970) 
(= Chiloneus solarii Pesarini, 1970; syn. nov.). The 
species dealt with in this note, both quite variable 
in terms of the density of their scaling and punc-
tuation of the pronotum, can be separated using 
the following key, which modifies that published 
by Pesarini (1970).

1 – Elytral setae erect also near base, although here 
they are shorter than those on elytral declivity. 
Anterior tibiae of both sexes quite strongly curved 
inwards at apical fifth. Segments 5–7 of funiculus at 
least a trifle longer than wide. Apex of aedeagus 
bisinuose at apex in lateral view, extreme apex 
curved downward. Sicily and Aegadian islands……. 
….……………………..meridionalis (Boheman, 1840)

1’ – Elytral setae recumbent near base. Anterior 
tibiae of both sexes only feebly curved inwards at 
apical fifth. Segments 5–7 of funiculus not longer 

than wide. Apex of aedeagus slightly bisinuose at 
apex in lateral view, extreme apex not or impercept-
ibly curved downward. Malta and Pelagian 
islands….….….….……..hoffmanni (González, 1970)

For the purpose of testing whether morphological 
differences coincide with genetic ones, we amplified 
a fragment of the mitochondrial cox1 gene, of nearly 
680 bp, from 133 adult samples. The alignment was cut 
at the shortest aligned sequence, giving a final set of 
sequences each 552 bp long. The collapsed alignment 
was composed of 28 unique haplotypes; the distribution 
among samples and the accession numbers of the 
nucleotide sequences deposited in the NCBI/EMBL/ 
DDBJ databanks are listed in Table S2. Table S3 gives 
the complete matrix of pairwise K80 distance values 
among the scored haplotypes (range 0.002–0.029).

Bayesian analyses carried out on the haplotype data 
set produced a tree topology (Figure 4) highlighting 
two clades that were well differentiated (K80 dis-
tance = 0.194; SE = 0.021) and supported by very 
high posterior probability values (pp 1.00 and 1.00; 
Figure 4). Clade #1 (pp = 1.00) includes eight haplo-
types (h1–h8; mean K80 distance within clade = 0.004, 
SE = 0.002) scored from individuals collected on 
Drimia pancration in Pelagie Islands (Lampedusa and 
Linosa) and Malta archipelago only. One haplotype 
(h1) is shared between Malta and Lampedusa while 

Figure 2. Habitus of (a) Chiloneus meridionalis from Palermo, Monte Pellegrino, and (b) C. hoffmanni from Malta, St. Thomas Bay.
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Linosa reveals two unique haplotypes only (h3–h4); 
the remaining haplotypes (h2, h5–h8) are unique to 
Malta. Clade #2 (pp = 1.00) is made up of all remain-
ing haplotypes (h9–h28) scored from samples col-
lected in the whole of Sicily and from Pantelleria 
Island. It shows two clusters (2a: h9, h10, h11, h13, 
h15, h16, h17, h20, h21, h24, h25, h26; 2b: h12, h14, 
h18, h19, h22, h23, h27, h28) at a small divergence 

level of 0.007 (K80 distance) nonetheless suggesting 
a somewhat structured genetic variation for this clade.

Table S3 lists the pairwise K80 distance values 
among all scored haplotypes. The inferred statistical 
parsimony network (Figure 5) shows an overall topol-
ogy reflecting that obtained by the Bayesian analysis, 
bringing to light two separate networks matching 
clades #1 and #2. The smaller network shows the 

Figure 3. Left protibia of (a) C. meridionalis and (b) C. hoffmanni of the same specimens as those shown in Figure 2. Last antennomeres 
and club of (c) C. meridionalis and (d) C. hoffmanni. Aedeagus of C. meridionalis in (e) dorsal and (f) lateral views. Aedeagus of C. hoffmanni 
in (g) dorsal and (h) lateral views
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relationships among haplotypes h1–h9, all sampled 
from the Malta archipelago and Pelagian Islands as 
discussed. The second network mirrors clade #2 of the 
Bayesian topology, highlighting the more entangled 
relationships among haplotypes. The network topol-
ogy clearly shows two haplotype groups correspond-
ing to clusters 2a and 2b discussed for the Bayesian 
topology. Even if the geographic distribution of the 
haplotypes does not unveil a clear-cut pattern, it is 
noteworthy that haplotypes h14 and h18 are more 
frequent in south-eastern Sicily whereas h9 is more 
widely distributed in and frequent in the western-
most part of the island (Figure 5; Table S2). 
However, it must be noted that, overall, the two 
clusters exhibit a largely overlapping geographical 
distribution.

The results of the ABGD analysis (Figure 6) 
clearly indicate that our data set contains two parti-
tions that coincide with the clades identified through 
Bayesian analysis and statistical parsimony. The list 
of haplotypes and individuals contained in the two 
clades are listed in Table S4 (including some para-
meters). In contrast, single-threshold (Figure S1a) 
and multiple-threshold (Figure S1b) GMYC analyses 
produce six and five putative species, clearly over-
splitting our data set, probably owing to the already 
discussed genetic differentiation observed in clades 

#1 and #2 (Figures 4 and 5). Many authors have 
discussed the oversplitting behaviour of the GMYC 
model due to several different circumstances (e.g. 
Talavera et al. 2013), and we are convinced that the 
convergence of the results of all of the analyses except 
GMYC strongly suggests that our data set includes 
haplotypes of two well-distinct taxa only. Both taxa 
show a certain degree of intra-specific variation that, 
among other factors, could also be related to the flight-
less characteristic of these insects. The two taxa include 
individuals that were morphologically identified as 
C. hoffmanni (group/clade #1) and C. meridionalis 
(group/clade #2) and show a very high level of genetic 
divergence (K80 = 0.194), well above the 0.01 thresh-
old level between intra- and inter-specific divergence 
frequently encountered in the DNA barcoding litera-
ture (e.g. Bergmann et al. 2013; Magoga et al. 2018). 
The K80 values computed as net divergence within 
groups #1 and #2 are 0.004 and 0.010, respectively, 
falling within the range of intraspecific distance varia-
bility frequently reported for weevil taxa (e.g. Astrin 
et al. 2012; De Biase et al. 2016). Overall, we are 
therefore inclined to believe that the K80 value 
scored between groups #1 and #2 suggests, as 
do the results of the morphological analysis and 
of the other adopted approaches (except GMYC), 
an interspecific level of differentiation.

Figure 4. Bayesian consensus tree of the scored haplotypes of the cox1 gene; figures at nodes are posterior probability values; vertical black 
bars refer to scored groups discussed in the text; vertical double arrow shows the K80 distance between groups #1 and #2.
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Finally, Table S5 lists all the nucleotide positions 
that showed alternative fixed bases for C. hoffmanni 
and C. meridionalis. Altogether, 83 fixed alternative 
nucleotide positions are observed, some of which 
give rise to seven fixed alternative amino acid sub-
stitutions. These are therefore molecular character-
istics that can be used as diagnostic characters for 
the two species, in addition to the morphological 
characters illustrated above. However, it must 
always be borne in mind that further analyses of 
the mitochondrial genetic variability of these two 
species could change the picture of variability of 
some characters now considered diagnostic. 
Therefore, the use not of single molecular characters 
but of the group of them as a whole is the best 
strategy to identify specimens taken in nature with 
a greater degree of safety.

Conclusions

The above results clearly show the existence of only 
two population groups that might be considered 

distinct species of Chiloneus. Group #1 is very 
clearly differentiated and clumps haplotypes dis-
tributed in Malta and the Pelagie Islands; this 
group coincides with the taxonomic entity 
C. hoffmanni. Group #2 clumps all other sampled 
populations and matches the taxonomic entity 
C. meridionalis that is distributed in the whole of 
Sicily and on Pantelleria Island, being more vari-
able than the previous species, although the level of 
genetic differentiation is still within the range of 
intra-specific variation. The indication of 
C. meridionalis from Pantelleria is a new record for 
this island.

Further investigations are needed to improve 
our knowledge of the relationships among these 
species and with other members of the genus 
Chiloneus, particularly with the Greek ones very 
close to those dealt with in this note. Finally, we 
are currently running a project to unveil the phy-
logeographic history of these taxa, which appear 
to be of great interest for evaluating the expan-
sion–contraction model of Pleistocene 
biogeography.

Figure 5. Statistical parsimony network of the scored cox1 haplotypes; each haplotype is represented by a circle whose size is proportional 
to the haplotype frequency (number of individuals found); empty circles correspond to missing or not sampled (presumed) haplotypes; 
numbers and abbreviations refer to groups and clades discussed in the text and illustrated in Figure 4.
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