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Abstract
The continuous adherence to the conventional “one target, one drug” paradigm has failed so far to provide effective thera-
peutic solutions for heterogeneous and multifactorial diseases as amyotrophic lateral sclerosis (ALS), a rare progressive and 
chronic, debilitating neurological disease for which no cure is available. The present study is aimed at finding innovative 
solutions and paradigms for therapy in ALS pathogenesis, by exploiting new insights from Network Medicine and drug 
repurposing strategies. To identify new drug-ALS disease associations, we exploited SAveRUNNER, a recently developed 
network-based algorithm for drug repurposing, which quantifies the proximity of disease-associated genes to drug targets 
in the human interactome. We prioritized 403 SAveRUNNER-predicted drugs according to decreasing values of network 
similarity with ALS. Among catecholamine, dopamine, serotonin, histamine, and GABA receptor modulators, as well as 
angiotensin-converting enzymes, cyclooxygenase isozymes, and serotonin transporter inhibitors, we found some interesting 
no customary ALS drugs, including amoxapine, clomipramine, mianserin, and modafinil. Furthermore, we strengthened 
the SAveRUNNER predictions by a gene set enrichment analysis that confirmed modafinil as a drug with the highest score 
among the 121 identified drugs with a score > 0. Our results contribute to gathering further proofs of innovative solutions 
for therapy in ALS pathogenesis.
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Introduction

Many notions have been disclosed and more evidence is cur-
rently claimed about amyotrophic lateral sclerosis (ALS), a 
rare progressive and chronic debilitating motor neuron dis-
ease that impairs voluntary muscle control and movement, 
and that gathers the attention of scientists and clinicians 
since the past two hundred years [1, 2]. The main pathologi-
cal hallmarks of the disease are as follows: damage to upper 
and lower motor neurons spanning from the motor cortex, 
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brainstem, and spinal cord [3–5]; defects in neuromuscular 
junctions causing disassembling and denervation of skeletal 
muscle [6]; and gradual muscle atrophy leading to strength 
reduction and alteration of the contractile apparatus [7]. All 
these processes are accompanied by inflammation caused 
by toxic factors secreted by activated T cells, gliosis sus-
tained by activated macrophages/microglia/astrocytes, and 
demyelination triggered by damaged Schwann cells and oli-
godendrocytes [8].

There are no doubts that all these features make ALS a 
hot topic and a challenge for investigation. However, the 
heterogeneous and multifactorial nature of ALS that is char-
acterized by a complex interplay among multiple genetic 
and environmental factors, together with its low incidence in 
the worldwide population, can discourage further research, 
particularly by those pharmaceutical companies mostly 
interested in capitalizing on human diseases. In addition, the 
conventional “one target, one drug” paradigm has not pro-
vided effective therapeutic solutions for ALS that remains 
an undefeated disease in the search of new markers and a 
cure [9, 10].

In the pursuit of alternative and more efficacious treat-
ments, a promising strategy relies on drug repurposing for 
the identification of novel uses (outside the scope of original 
medical indications) of drugs already approved by the US 
Food and Drug Administration (FDA) [11, 12].

To identify drug repurposing opportunities, very prom-
ising insights come from the newly emerging field of Net-
work Medicine, which applies concepts and tools from net-
work theory to elucidate the relationship between structural 
properties of the human interactome (i.e., the integrated 
network of all physical interactions within a cell), its func-
tional organization, and consequences of its perturbation 
[13–18]. In the Network Medicine construct, diseases are 
rarely caused by a single gene mutation, but more typically 
by the deregulation of a network of genes interconnected 
to each other. In this innovative vision of human diseases, 
the interactome can be interpreted as a map, and diseases as 
local perturbations. In this map, genes that are associated 
with the same disease tend to aggregate within specific net-
work neighborhoods, or “disease modules” [14, 19]. Similar 
to the effects of a disease, also the actions of drugs can be 
interpreted as local perturbations of the interactome and, 
as a consequence, drug targets that are closer to a specific 
disease module tend to be more effective for that disease 
[13, 20–22].

In the present study, we adopt a new network-medicine-
based algorithm for drug repurposing called SAveRUNNER 
(Searching off-lAbel dRUg aNd NEtwoRk) [23, 24] for pre-
dicting potential off-label use of drugs in ALS. By quantify-
ing the interplay between ALS-associated genes and drug 
targets in the human interactome, we identify new drug-ALS 
disease associations.

Methods

Data Retrieval

The human protein–protein interactome was downloaded 
from Cheng and coauthors [21], where the authors assem-
bled their in-house systematic human protein–protein inter-
actome with 15 commonly used databases with several types 
of experimental evidence (e.g., binary PPIs from three-
dimensional protein structures; literature-curated PPIs iden-
tified by affinity purification followed by mass spectrometry, 
Y2H, and/or literature-derived low-throughput experiments 
such as BioGRID [25], HPRD [26], MINT [27], IntAct [28], 
InnateDB [29]; signaling networks from literature-derived 
low-throughput experiments; kinase-substrate interactions 
from literature-derived low-throughput and high-throughput 
experiments). This version of the interactome is composed 
of 217,160 protein–protein interactions connecting 15,970 
unique proteins.

Disease-associated genes were downloaded from Phen-
opedia [30], which collects gene associations for 3255 dis-
eases (released 27-04-2020).

Drug-target interactions were acquired from DrugBank 
[31], which contains 13,563 drug entries including 2627 
approved small molecule drugs, 1373 approved biolog-
ics, 131 nutraceuticals, and over 6370 experimental drugs 
(released 22-04-2020). The targets Uniprot IDs provided 
by DrugBank were mapped to Entrez gene IDs by using 
BioMart – Ensembl tool (https:// www. ensem bl. org/). For 
some drugs of interest for which no targets were found in 
DrugBank, we integrated drug-target interactions available 
from the Therapeutic Target Database [32].

Study Design

The pipeline of our analysis can be summarized as follows 
(Fig. 1). Given as input, (i) the human interactome network, 
where nodes are molecular components of human cells and 
a link occurs if a physical interaction exists among them, 
and (ii) the lists of disease-associated genes, we applied 
the Random Walk with Restart (RWR) algorithm to build 
the human disease network, where nodes are diseases and 
a link occurs between ALS and other diseases if, starting 
from the ALS disease module, the other disease module is 
more likely to be reached by a random walker on the inter-
actome (see “Random Walk with Restart Algorithm”). Next, 
given the same input data of the RWR algorithm jointly 
with additional drug-target interactions, we applied SAve-
RUNNER algorithm. SAveRUNNER searched for drugs 
that could be a repurposable candidate for ALS disease by 
exploiting the vicinity between the drug modules and the 
ALS disease module in the human interactome network (see 

https://www.ensembl.org/
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“SAveRUNNER Algorithm”). SAveRUNNER provided as 
output the drug-disease network, where nodes are FDA-
approved drugs and diseases, while a link between them 
occurs only if a drug is predicted to be repositioned for that 
disease. Among the drugs predicted by SAveRUNNER 
as repurposable candidates for ALS, we focused on those 
whose original medical indications referred to diseases con-
nected to ALS in the human disease network.

SAveRUNNER Algorithm

Recently, we developed a new network-medicine-based algo-
rithm for drug repurposing called SAveRUNNER [23], with 
the aim of efficiently screening novel potential indications 

for currently marketed drugs against diseases of interest, and 
optimizing the efficacy of putative validation experiments. 
A detailed description of SAveRUNNER algorithm can be 
found in reference [23, 24].

Gene Set Enrichment Analysis

In order to test whether the candidate anti-ALS repurpos-
able drugs predicted by SAveRUNNER can counteract the 
gene expression perturbations caused by ALS pathopheno-
type (i.e., if they could up-regulate genes down-regulated 
by the disease or vice versa), we performed a gene set 
enrichment analysis (GSEA). We first collected three gene 
expression datasets of ALS patients and control samples 

Fig. 1  Pipeline of the analysis. The analysis proceeds by following 
two branches. [Left, grey arrows] The human interactome network 
obtained from [21] and the lists of disease genes retrieved from Phe-
nopedia [30] for the analyzed disorders (blue box, Input data) were 
given as input of the Random Walk with Restart (RWR) algorithm 
(red box, Method), which provided as output (purple box, Out-
come) the human disease network, where nodes are diseases and a 
link occurs between two diseases if, starting from one disease mod-
ule, the other one is more likely to be reached by a random walker 
on the interactome. [Right, turquoise arrows] The human interactome 

network, the lists of disease genes, and the drug-target interactions 
downloaded from DrugBank [31] (blue box, Input data) were given 
as input to SAveRUNNER algorithm (red box, Method), which pro-
vided as output (purple box, Outcome) the drug-disease network, 
where nodes are FDA-approved drugs and diseases, and a link occurs 
if a drug is predicted to be repositioned for that disease. Among the 
drugs predicted by SAveRUNNER as potentially repurposable for 
ALS disease, we focused on those drugs that are histaminergic modu-
lators and whose original medical indications referred to diseases 
connected to ALS in the human disease network
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available through the GEO public repository. In particular: 
(i) the expression profiling by high throughput sequencing 
(corresponding to RPKM-normalized expression values) of 
induced pluripotent stem cell (iPSC)-derived motor neurons 
of 4 ALS patients and 4 controls samples (GSE52202 [33]); 
(ii) the expression profiling by array (corresponding to nor-
malized expression values obtained from Affymetrix Gene-
Chip 3.1 software) of postmortem spinal cord grey matter 
from 7 ALS patients and 4 control samples (GSE833 [34]); 
and (iii) expression profiling by array (corresponding to nor-
malized expression values obtained by using Rosetta error 
models [35]) of an extensive cohort of well-characterized 
postmortem central nervous system tissues from 10 ALS 
patients and 10 control samples (GSE26927 [35]). For the 
GSE833 dataset, the probe-sets were mapped to official gene 
symbols using the platform GPL80 (Affymetrix Human Full 
Length HuGeneFL Array) available from the GEO reposi-
tory. Multiple probe measurements of a given gene were 
collapsed into a single gene measurement, by considering 
the mean. For each dataset, data were processed by apply-
ing a logarithmic (log2) transformation of the expression 
values, and by conducting a preprocessing analysis via the 
computation of the interquartile range (IQR) for each gene. 
IQR is a measure of data variability around the median, that 
is equal to the difference between the 75th and 25th percen-
tiles of the data distribution. Those genes with an IQR value 
smaller than the 10th percentile of the IQR distribution (cor-
responding to those genes less scattered around the median) 
were filtered out. Then, we performed the nonparametric 
Wilcoxon signed rank test for GSE52202 and GSE26927 
datasets with paired samples, and the Mann–Whitney test 
for GSE833 dataset with unpaired samples. Finally, we 
adjusted the obtained p values for multiple hypothesis test-
ing, by using Benjamini–Hochberg procedure. In order to 
select statistically significant differentially expressed genes, 
we set a threshold of 0.05 on the adjusted p values for the 
dataset with the largest number of samples (i.e., GSE26927). 
For the other two datasets (i.e., GSE52202 and GSE833), 
we obtained adjusted p values that have been always greater 
than the standard significant level. Thus, only for these data-
sets, we decided to discard the adjustment of the p values, 
and to compensate for this shortcoming by using a more 
severe threshold of 0.01 on the original p values. We used 
the so-defined three lists of differentially expressed genes as 
three separated ALS signatures.

Then, we queried the connectivity map (CMap) database 
that collects high-throughput reduced representation gene 
expression data obtained by using L1000 assay [36, 37]. The 
L1000 profiling is performed in a variety of drug-treated 
human cell lines for which there are well-established culture 
and treatment protocols. Thus, the CMap database of cellu-
lar signatures catalogs transcriptional responses of human 
cells to chemical and genetic perturbation. A total of 27,927 

perturbagens have been profiled in a core set of 9 cell lines 
to produce 476,251 expression signatures. We used the dif-
ferentially expressed genes of drug-treated human cell lines 
from the CMap database as drug signatures.

For each drug that was in both the CMap database and 
predicted by SAveRUNNER to be effective against ALS, we 
evaluated the treatment effects on differentially expressed 
genes that are hallmarks for ALS disease phenotype, by 
exploiting the CMap query tool for each ALS signature 
given as a separated input list [36]. The disease signatures 
and the drug signatures were ordered by increasing fold-
change, and then CMap computed an enrichment score (ES) 
that measures if the effect of the drug could counteract the 
effect of the disease (ES < 0), or not (ES > 0) [37, 38]. The 
idea behind this is the following: one ordered disease signa-
ture is compared to one ordered drug signature, to determine 
whether the highest up-regulated (down-regulated) gene in 
the disease signature is near the bottom (top) of the drug sig-
nature. This would mean that drug and disease have comple-
mentary expression profiles (ES < 0), and the drug might be 
a possible treatment option for the disease of interest. Details 
on the computation of this score are provided in [37–39]. In 
particular, a selected repurposing candidate drug was con-
sidered to have a potential treatment effect against ALS if 
the drug signature was negatively correlated with the ALS 
signature. We stated that drugs and diseases were negatively 
correlated if the corresponding ES was negative, and we 
assigned a score equal to 1 to that drug for that disease sig-
nature. Inspired by the procedure adopted in [20], the num-
ber of ALS signature datasets satisfying this criterion was 
used for each drug as the final GSEA score, which ranges 
from 0 to N, being N the total number of ALS signatures 
used. By considering in this study N = 3 disease signatures, 
the maximum GSEA score for each drug will be 3.

Module Significance

As well-established by Network Medicine principles [13, 
14, 19], disease-associated genes have unique, quantifi-
able characteristics that distinguish them from other genes. 
This observation can be translated into the verification that 
disease-associated genes do not map randomly in the inter-
actome but, rather, they agglomerate in locally dense and 
topologically well-defined regions of this network (called 
disease modules), whose nodes show an increased tendency 
to interact with each other, more frequently than expected 
by chance.

We investigated whether genes associated to ALS (as well 
as to other analyzed disorders) had the propensity to aggre-
gate in a local neighborhood of the human interactome, and 
constituted a statistically significant disease module. To 
do that, we mapped the disease-associated genes onto the 
human interactome, we extracted the corresponding disease 
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subnetwork, and we computed the following three metrics 
[17]: (i) the total number of interactions (edges); (ii) the size 
of the largest connected component (LCC); and (iii) the num-
ber of edges in the LCC. Then, we complemented these met-
rics with a measure of statistical significance, named mod- 
ule significance, which measures the probability that a given 
list of disease genes is localized within a certain network 
neighborhood, more frequently than expected by chance [17].  
Specifically, for each analyzed disease, we randomly selected 
groups of proteins of the same size and degree distribution as 
the original list of disease genes in the human interactome. 
We then extracted the corresponding random subnetwork, 
and we computed the three above-described metrics. This  
procedure was repeated 1000 times. As reported in the major-
ity of state-of-the-art approaches [40–48], 1000 permutations 
are commonly used for estimating the power of a randomiza-
tion test and are considered reasonable for a test at the 5%  
level of significance. Finally, we derived three distributions for 
all three metrics corresponding to the subnetwork induced by 
the random gene set. By using a z-score, we have normalized the  
three metrics calculated for the original list of disease genes, 
with respect to the corresponding reference random distribu-
tion, and we assigned the p value for the given z statistic. If  
all three metrics are statistically significant (p value ≤ 0.05),  
we can conclude that disease genes form statistically signifi-
cant modules in the human interactome.

Random Walk with Restart Algorithm

We implemented a Random Walk with Restart (RWR) algo-
rithm to measure the closeness between the ALS disease 
module and the other disease modules in the human inter-
actome network. RWR is an algorithm based on an intuitive 
concept that revolves around random walks. Given a random 
walker starting from a given node x, there are two different 
options at each iteration: either moving to one of its neigh-
boring nodes, or returning to x with a certain probability. 
Thus, the task is to calculate the most likely locations where 
the walker is going to be. Formally, the RWR algorithm can 
be described by the following equation:

where W  is the network adjacency matrix, representing the 
matrix of transitions between nodes, whose element W[i, j] 
denotes the transition probability of going from node j to 
node i; E is the starting point vector, whose element E[i] is 
equal to 1, if i is a starting node, 0 otherwise; Rt is a prob-
abilities vector, whose element Rt[i] denotes the probability 
of being at node i at iteration t  ; � is a number ranging in 
(0,1), and (1 − �) expresses the probability of “restarting” 
from the starting point node at each iteration. At iteration 

Rt = �WRt−1 + (1 − �)E

t = 0, the value of Rt−1 is equal to E. The probabilities vector 
Rt will be iteratively calculated until the point of conver-
gence is reached (i.e., Rt = Rt−1 , or the difference between 
probability to stay and the probability to move on is lower 
than a given threshold). Finally, the RWR returns as output 
the vector R of the steady-state probabilities for each node 
in the network.

We run the RWR by considering the adjacency matrix 
Wmxm built from the human interactome as a transition 
matrix, and the vector E of the ALS disease genes as start-
ing point vector. We selected only those diseases with a fre-
quency to be reached greater than 30 (i.e., number of reached 
disease genes greater than 30). For each disease, we aver-
aged the RWR steady-state probabilities of the correspond-
ing disease genes and obtained a mean probability for each 
disease, that is the probability to reach it, when starting from 
ALS. This disease probability was then normalized by using 
the modified z-score defined as:

where x is the disease probability, x̂  is the median value 
of the distribution of all the disease probabilities, MAD is 
the median absolute deviation, defined as the median of 
the absolute difference of the observation from the sample 
median (i.e., median(||x − x̂|| ), and c is a scale factor equal 
to 0.6745, such that zmod is equal to the standard z-score for 
normal distribution [49]. We named this z-normalized dis-
ease probability as ALS closeness, and we assigned it the p 
value corresponding to the z-score. Values of ALS closeness 
> 2.5 can be labeled as potential positive outliers, whereas 
values < −2.5 as negative outliers. Diseases corresponding 
to positive outliers are more likely to be reached by the ran-
dom walker starting from ALS, and thus represent diseases 
closer to ALS.

Module Separation

We computed the non-Euclidean separation distance of the 
ALS disease module with respect to other disease modules 
as follows [50]:

where p(A,B) is the network proximity defined as:

and d(a, b) is the shortest distance between disease gene a of 
module A , and disease gene b of module B . A positive value 

zmod = c ⋅
x − x̂

MAD

s(A,B) = pAB −
pAA + pBB

2

p(A,B) =
1

|A| + |B|

[
∑

a�A

min
b�B

d(a, b) +
∑

b�B

min
a�A

d(b, a)

]
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for the separation measure indicates that two disease modules 
are topologically well separated in the human interactome, 
whereas a negative value for the separation measure indicates 
that two disease modules are located in the same network 
neighborhood, and thus they overlap. To evaluate the signifi-
cance of module separation across two disease-specific mod-
ules (A, B) of disease genes, we built a reference distance 
distribution corresponding to the expected distance between 
two randomly selected groups of proteins of the same size 
and degree distribution as the original two sets of disease 
genes in the human interactome. The random selection was 
repeated 1000 times in order to build the reference distance 
distribution. The module separation measure across the two 
lists of disease genes was z-score-normalized by using the 
mean and the standard deviation of the reference distribution. 
Subsequently, the p value for the given z statistic was calcu-
lated. A p value < 0.05 indicates that the module separation 
in the human interactome of the two lists of disease genes is 
more (or less, see below) than expected by chance.

Pathways Enrichment Analysis

In order to investigate the pathways in which the target 
genes of the most promising histamine-related compounds 
(i.e., amoxapine, clomipramine, mianserin, and modafinil) 
are involved with, we queried the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway database [51] and  
the Reactome pathway knowledgebase [52], by using the  
Enrichr web tool [53]. The p values were adjusted with the Ben- 
jamini–Hochberg method, and a threshold equal to 0.05 was 
set to identify the molecular pathways significantly enriched 
among the target genes given as input lists.

Results

ALS‑drug Network

In the present study, we applied the recently developed 
SAveRUNNER algorithm [23, 24], to identify repurposable 
drug candidates for ALS.

SAveRUNNER requires a list of drug targets as input, 
and a list of disease genes to evaluate the extent to which a 
given drug can be eventually repositioned to treat a disease.

Here, the disease-associated genes were downloaded 
from Phenopedia [30], which provides 267 ALS-associated 
genes, whereas drug-target associations were obtained from 
DrugBank [31]. In particular, we assembled target infor-
mation about a total of 1860 FDA-approved drugs. Besides 
considering single drugs in our input list of drug targets, we 
considered also 80 drug combinations that are lately gaining 
more interest in ALS research. The complete list of the 1940 
analyzed drugs is provided as Supplementary Table 1 along 
with the corresponding number of target proteins, for a total 
of 2138 unique target proteins.

The rationale behind SAveRUNNER lies in the hypoth-
esis that, for a drug to be effective against a specific disease, 
its associated targets (drug module) and the disease-specific 
associated genes (disease module) should be nearby in the 
human interactome [21]. To quantify the vicinity between 
drug and disease modules, SAveRUNNER implements a 
novel network similarity measure and assesses its statistical 
significance by applying a degree-preserving randomization 
procedure [23].

Its novelty resides in implementing a procedure to pri-
oritize the predicted off-label drug indications for a given 
disease. This prioritization procedure exploits a clustering 
analysis to reward associations between drugs and diseases 
belonging to the same cluster, based on the assumption that 
if a drug and a disease group together, most likely that drug 
can be effectively repurposed for that disease. In this sense, 
we say that drugs and diseases that are members of the same 
group are more similar to each other than to members of 
other groups.

As output, SAveRUNNER releases a weighted bipartite 
drug-disease network, where a link between a drug and a 
disease occurs if the corresponding drug targets and disease 
genes are closer in the interactome than expected by chance. 
The weight of their interaction corresponds to the network-
based similarity measure.

In this study, SAveRUNNER identified 403 repurposable 
drugs (out of 1940 drugs) that were significantly associated 

Table 1  The table lists histamine receptor modulators (with corre-
sponding Drug Bank number) that are identified by SAveRUNNER 
as repurposable drugs for ALS. The action of each ligand on H1R, 

H2R, H3R, and H4R receptors is indicated, together with the detail 
of their additional receptor ligand binding properties (as from https:// 
www. drugb ank. ca/ drugs/)

Drug Bank code H1R H2R H3R H4R Other receptor p value Adjusted 
similarity

GSEA score Ref

Amoxapine
DB00543

Antagonist — — Agonist D1-3, M1, 5-HT1-3,6,7 0.006 0.89 1 [59, 60]

Clomipramine
DB01242

Antagonist/inverse agonist — — — 5-HT2 0.003 0.99 2 [61]

Mianserin
DB06148

Antagonist/inverse agonist — — Agonist D1-3α1,2, 5-HT1, 2,6,7, 0.06 0.92 1 [62]

https://www.drugbank.ca/drugs/
https://www.drugbank.ca/drugs/
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(p value < 0.07) with ALS (Supplementary Table 2). Among 
those, we found modafinil (adjusted similarity value = 0.99, 
p value = 0.04), a drug elevating histamine release and levels 
in the neocortex and hypothalamus [54–56], whose effects 
are abolished by depletion of neuronal histamine [57], and 
that is used to treat hypersomnolence of narcolepsy and to 
increase locomotor activity. Modafinil significantly affects 
also the dopamine transporter, acting as a dopamine reup-
take inhibitor, moreover activates glutamatergic and inhibits 
GABAergic circuits [58]. Corroborating the histaminergic 
implication of modafinil with ALS, SAveRUNNER identi-
fied additional drugs mainly (but not exclusively) interfering 

with the histaminergic system, such as amoxapine [59, 60] 
(adjusted similarity = 0.89, p value = 0.006), clomipramine 
[61] (adjusted similarity = 0.99, p value = 0.003), and mian-
serin [62] (adjusted similarity = 0.92, p value = 0.06) (Fig. 2, 
Table 1, and Supplementary Table 2). Furthermore, by 
searching for drug combinations and analyzing compounds 
already adopted in clinical trials for ALS such as arimoclo-
mol, erythropoietin, masitinib, minocycline, ozanezumab, 
and perampanel, SAveRUNNER disclosed that modafinil 
indeed improves the p value and adjusted similarity ranking 
of erythropoietin (adjusted similarity = 0.99, p value = 0.05), 
masitinib (adjusted similarity = 0.99, p value = 0.04), and 

Fig. 2  Schematic representation of the predicted drug-disease ALS 
network. This sketch shows the high-confidence predicted drug-
disease associations (p value < 0.07) connecting ALS with 121 
FDA-approved non-ALS drugs showing a GSEA score > 0. Drugs 
are colored according to their targeting of receptor/enzyme classes 
reported in the legend. The edge color indicates the adjusted similar-

ity increasing from red to violet. The different edge line types cor-
respond to different GSEA scores ranging from 1 (dashed lines) to 
3 (solid line). Note that the p value threshold of 0.07 allowed us to 
include some promising histaminergic compounds such as mianserin, 
showing a borderline p value of 0.06
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perampanel (adjusted similarity = 0.99, p value = 0.05) (Sup-
plementary Table 2).

GSEA Analysis of Anti‑ALS Repurposable Drugs

In order to further investigate the anti-ALS repurposable 
drugs predicted by SAveRUNNER, we performed a GSEA, 
by using the transcriptome data from nervous system tissues 
of ALS patients as disease signatures, and the gene expres-
sion data of drug-treated human cell lines from the Con-
nectivity Map (CMap) database as drug signatures. For each 
drug predicted by SAveRUNNER and included in the CMap 
database, we calculated a GSEA score as an indication of its 
possible counteraction to the gene expression perturbations 
caused by ALS pathophenotype. In particular, for each ALS 
dataset, we selected drugs whose signatures were negatively 
correlated with the ALS signature according to the CMap 
query tool [37–39], as able to have a potential treatment 
effect against genes that are a hallmark of ALS phenotype 
(see “Methods”). The assigned GSEA score, ranging from 0 
to 3, corresponded to the number of ALS datasets satisfying 
this criterion for a specific drug.

The GSEA analysis highlighted a total of 121 out of the 
403 candidate drugs to be repositioned against ALS, includ-
ing 21 with a GSEA score of 3, 52 with a GSEA score equal 
to 2, and 48 with a GSEA score equal to 1 (Fig. 2, Supple-
mentary Table 2).

Drugs showing a GSEA score > 0 belong to several inter-
esting classes, some directly involved in the mechanisms and 
pathways of ALS, including again histamine receptor mod-
ulators, angiotensin-converting enzyme (ACE) inhibitors, 
Prostaglandin G/H synthase 1 and 2 (cyclooxygenase 1/2 
isozymes) inhibitors, α1/β2-adrenergic receptors, dopamine 
D2 receptors, and benzodiazepine/GABA receptor modula-
tors (Fig. 2, Supplementary Table 2). Among the histamine 
modulators, it is important to highlight that modafinil indeed 
showed the highest GSEA score equal to 3. Remarkably, also 
the other histamine receptor modulators (i.e., amoxapine, 
clomipramine, and mianserin) were confirmed by GSEA 
analysis, showing GSEA scores > 0 (Table 1).

Prediction of ALS Comorbidity

In order to predict potential comorbidity patterns between 
ALS and other diseases, we implemented two network-based 
approaches that measure the comorbidity: (1) the Random 
Walk with Restart (RWR) algorithm; (2) the module separa-
tion measure.

Once verified that ALS-associated genes formed a sta-
tistically significant disease module in the human inter-
actome network (Supplementary Table 3), we applied the 

RWR algorithm, which computed the closeness between 
ALS disease module (starting points) and other diseases 
in the human interactome, by assigning to each disease a 
modified z-score normalized value, defined as ALS close-
ness score (see “Methods”). Values of this score greater than 
2.5 were considered as positive outliers and therefore dis-
eases closer to ALS. Among them, we interestingly found 
frontotemporal dementia (modified z-score = 6.65), vascu-
lar dementia (modified z-score = 5.21), muscle weakness 
(modified z-score = 5.18), neuromuscular diseases (modified 
z-score = 3.27), polyneuropathies (modified z-score = 2.89), 
and diabetic neuropathies (modified z-score = 2.58), patholo-
gies that all share some features with ALS, although within 
different severity degrees, comorbidities and pharmacoepi-
demiology, and for which some of the anti-ALS drugs pre-
dicted by SAveRUNNER/GSEA (i.e., clomipramine, mian-
serin) were originally approved (Fig. 3a, Supplementary 
Table 3).

These results appeared to be confirmed also by comput-
ing the module separation between the ALS module and 
the other analyzed diseases (Fig. 3b, c). At first, we ensured 
that all the analyzed diseases (i.e., neuromuscular diseases, 
muscle weakness, frontotemporal dementia, polyneuropa-
thies, vascular dementia, vascular, and diabetic neuropa-
thies) formed statistically significant disease modules in the 
human interactome network (Supplementary Table 3). Then, 
we found that the ALS disease module directly overlapped 
with the above-mentioned disease modules in a statistically 
significant way (Fig. 3b), showing negative separation val-
ues and p values ≤ 0.05 (Fig. 3c, Supplementary Table 3), 
and thus corroborating that a potential ALS treatment can 
be derived from the arsenal of therapies approved for other 
specific diseases.

Pathways Analysis of Histamine‑related Compounds

Seeking to probe if the most promising histaminergic com-
pounds pointed out by our analysis (i.e., amoxapine, clomi-
pramine, mianserin, and modafinil) could act in the ALS 
disease pathway, we next investigated the pathways in which 
their target genes are involved, by performing a functional 
enrichment analysis via the Enrichr web tool [53]. Of note, 
the significantly enriched pathways comprised, for instance, 
“amine ligand-binding receptors, class A/1 (rhodopsin-like) 
receptors, GPCR ligand binding, GPCR downstream sign-
aling, G alpha (i)/G alpha (q)/G alpha (s) signaling events, 
CREB signaling pathway via PKC and MAPK, amine com-
pound SLC transporters” that include the signal transduction 
machinery of histamine receptor activation and pathways 
that are known to be deregulated during ALS (Fig. 4 and 
Supplementary Table 4).
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Discussion

New technologies have shaped an outburst of results about 
CNS diseases comprising ALS at an unprecedented speed. 
Innovative computational approaches, among which scalable 
algorithmic methodologies, are now being established and 
implemented to address questions linked to human health 
and diseases, by incorporating different data types such 
as omics data, digitalized medical records, whole-genome 
sequences, and phenotypes signatures [63]. Here, we suc-
cessfully applied a recently developed network medicine-
based algorithm, called SAveRUNNER, to identify candi-
date drugs repurposable for ALS. Our study was motivated 
by the ultimate goal of linking experimental knowledge with  
computational analysis, and prospectively translating this 

information into the clinic. By prioritizing network-predicted  
drugs by decreasing values of their network similarity with 
ALS, in addition to catecholamine, dopamine, serotonin, hista- 
mine, and GABA receptor modulators, as well as angio-
tensin-converting enzymes, cyclooxygenase isozymes, and 
serotonin transporter inhibitors, we found some interesting 
no customary ALS drugs such as modafinil (2-[(diphenylme-
thyl) sulfinyl] acetamide) (p value ≤ 0.05, GSEA score = 3). 
The compound was developed a long time ago as a potent, 
long-lasting wake-promoting substance and was approved 
in 1998 by FDA (Provigil®) for the treatment of sleep dis-
orders [64]. Modafinil normalizes cognitive functions in 
sleep-deprived conditions, and being non-addictive has 
been clinically investigated for nicotine and cocaine addic-
tion, moreover for attention deficit, affective disorders, 

Fig. 3  Network-based modules analysis. (a) Distribution of modified 
z-score normalized probabilities (ALS closeness) of nodes that are 
visited by the Random Walk with Restart (RWR) algorithm starting 
from nodes belonging to the Amyotrophic Lateral Sclerosis (ALS) 
disease module. The RWR probabilities of all visited nodes belonging 
to a disease are averaged and z-score normalized by using a modified 
z-score ( zmod ). Values of zmod > 2.5 can be labeled as potential posi-
tive outliers, while values of zmod < −2.5 as negative outliers. Dis-
eases corresponding to positive outliers are more likely to be reached 

by the random walker starting from ALS, and thus represent diseases 
closer to ALS. The ALS closeness of frontotemporal dementia, vas-
cular dementia, muscle weakness, neuromuscular diseases, polyneu-
ropathies, and diabetic neuropathies are highlighted with red, blue, 
violet, orange, green, light blue dashed lines, respectively. (b) Sketch 
of the overlapping modules identified by disease genes of ALS and 
other diseases in the human interactome. (c) Bar plot reporting the 
values of the module separation measure computed between ALS and 
the other analized disease modules
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depressions, and schizophrenia, while preclinical evidence 
suggests effects also in Alzheimer’s and Parkinson’s diseases 
[65–68]. A further assessment indicates that modafinil leads 
to a slight improvement of fatigue syndrome in chronic neu-
rological disorders [69], myotonic dystrophy type 2 [70], and 
surprisingly also ALS [71], thus confirming and validating 
the prioritization of modafinil that emerged from our SAve-
RUNNER/GSEA drug-disease network predictive results.

Although the brain areas where modafinil exactly oper-
ates are proven difficult to localize [72], primary targets 
include the following: subcortical thalamus, hypothalamus 
and amygdala, for reinforcing activation and maintenance of 
wakefulness and cognitive performance [73]; thalamocorti-
cal circuits, for increasing electrical coupling among corti-
cal interneurons [74]; visual, frontal cortex and cerebellum, 

for increasing whole functional connectivity [75]; finally 
the ventromedial region of the spinal cord, for normalizing 
hyperreflexia [76]. Because the frontal and motor cortex 
with the ventral spinal cord enclosing motor neurons show 
distinct patterns of neurodegeneration in ALS, and moreover 
diffuse thalamic and cerebellar abnormalities are also pre-
sent in ALS patients [77, 78], modafinil targeting these same 
brain areas would thus support our SAveRUNNER/GSEA 
predictive results for ALS and encourage its exploitation 
and repurposing.

Most research on modafinil’s wake-promoting actions 
has highlighted monoaminergic effects through stimula-
tion of histamine, norepinephrine, serotonin, dopamine, 
and orexin systems in the brain. Besides working as a dopa-
mine reuptake inhibitor [58], modafinil indirectly activates 

Fig. 4  Histamine receptor signaling cascades that are deregulated 
during ALS pathological conditions. Signaling cascades driven by 
amoxapine, clomipramine, mianserin, and modafinil binding to G 
protein-coupled histamine receptors (HRH), comprise pathways that 
are deregulated during ALS pathological conditions (MAPK, PLC, 
PLA2, PI3K, PKC, PKA, NFκB, NFA, CREB, AP-1). Remarkably, 
these same pathways emerged as significantly enriched amongst the 
target genes of the histaminergic compounds given as input of the 
Enirchr web tool (see Supplementary Table  4). AA arachidonic 

acid, AC adenylate cyclase, AP-1 activator protein 1, cAMP cyclic 
AMP, CREB cAMP response element-binding protein, DAG diacyl 
glycerol, HRH histamine receptor, IP3 inositol 3-phosphate, MAPK 
microtubule-associated protein kinase, PI3K phosphoinositide 
3-kinase, PKA cAMP-dependent protein kinase, PKC protein kinase 
C,  PLA2 phospholipase A2, PLCβ phospholipase C beta, NFA 
nuclear factor 1 associate, NFκB nuclear factor kappa-light-chain-
enhancer of activated B cells
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the histaminergic system [72], presumably via attenuation 
of the inhibitory GABAergic input to histaminergic neu-
rons located in the tuberomamillary nucleus of the poste-
rior hypothalamus, and through intensification of the his-
taminergic tone through orexinergic neurons [55, 72, 79, 
80]. Although the way modafinil functions at the circuits’ 
level is still unclear, the possibility that it might act on ALS 
through a modulation of the histaminergic circuit is substan-
tiated by our SAveRUNNER/GSEA analysis showing that 
several additional histaminergic modulators such as amoxap-
ine, clomipramine, and mianserin are indeed significantly 
associated with ALS, by possessing a GSEA score greater 
than 0. Of note, the SAveRUNNER/GSEA histaminergic 
predictions find a solid experimental support by preclini-
cal results obtained in the best characterized animal model 
for ALS, the SOD1-G93A mouse [81], where the histamine 
precursor histidine was proven to ameliorate pathological 
features of ALS, delay disease progression, improve motor 
performance, increase lifespan, decrease motor neuron loss 
and neuroinflammation in the spinal cord, finally reduce neu-
romuscular junction fragmentation and muscle atrophy [82]. 
Actually, the histamine compounds are not new as drug tar-
gets in various animal models of diseases, and are moreover 
suggested to show a clear value in a wide range of clinical 
CNS conditions [83] comprising ALS [84, 85].

Contemporary approaches to human disease classifica-
tion are in part still grounded on observational correlations 
between pathological analysis and existing information 
about clinical conditions, often neglecting the interrelated 
features of many diseases, because of a reductionist par-
adigm that has guided clinical diagnosis in the old days. 
However, there is now mounting attention paid to disease 
classifications that rely on Network Medicine information 
and data correlation. In the present work, by adopting a 
network-based module separation measure and an RWR 
algorithm, we gained an additional probative degree of the 
prospective use of histaminergic compounds in ALS. In par-
ticular, we demonstrated comorbidity patterns and disease 
module overlaps between ALS and pathologies including 
dementia and polyneuropathies that are already alleviated 
in clinical practice by histamine receptor modulators such 
as mianserin and clomipramine. In this context, ALS can be 
viewed as the breakdown of a sequence of linked networks 
that integrate the primary disease-causing genes with the 
disease-modifying genes shared by all diseases, with their 
network-based environmental and behavioural determinants, 
including those that control gene expression at the transcrip-
tional or epigenetic level, and those that drive posttransla-
tional modifications of the proteome or uniqueness of the 
metabolome. These subnetwork determinants are those that 
contribute to yield comorbidities between complex illness 
such as dementia and ALS on one side, as evinced from 
our analysis, but on the other to distinguish each clinical 

phenotype in highly individualized ways. By further explor-
ing the interplay between drug/disease networks and ALS, 
we are confident to be able to more comprehensively and 
accurately map this disease, thus facilitating the emergence 
of more favourable therapeutic solutions.

In summary, there are three overarching findings in our 
study. First, SAveRUNNER/GSEA predictive analysis sup-
ports our previous hypothesis corroborated by preclinical 
evidence that some histaminergic compounds might have 
a successful translational impact in the development of 
therapeutics to be repositioned for ALS. Second, among 
various histaminergic modulators, our analysis prioritizes 
modafinil, a drug targeting specific brain regions that in part 
overlap with those controlling motor circuits well known to 
be affected in ALS. This notion can also provide a basis for 
further dissecting the mode of action and target of modafinil, 
subtyping ALS features and tracking the disease. Finally, 
by matching network-predictive with previous preclinical 
testing, our SAveRUNNER/GSEA algorithm introduces a 
more integrative framework for the identification and future 
clinical assessment of drugs possibly functioning in ALS.

The strategy of “one-molecule-one-target” for defeating 
ALS has failed so far and we strongly believe that therapies 
based on “multi-target drug” and/or “polypharmacology” 
approaches must be addressed next, for understanding the 
several heterogeneous aspects and halting the progression 
of the disease. Also in this regard, modafinil seems to be 
a very promising candidate. Not only it can interfere with 
histaminergic, dopaminergic, glutamatergic and GABAergic 
neurotransmission, but modafinil is identified by SAveRUN-
NER as a drug that combined with compounds actually in 
a clinical trial for ALS such as masitinib [86], erythropoi-
etin [87], and perampanel [88] significantly improves their 
p-value and adjusted similarity ranking. Although the hista-
minergic drugs certainly meet some of the requirements for 
being possibly repurposed in ALS, validation of druggable 
targets has to be continuous and further research about his-
tamine signaling, its dosing and druggability, is certainly 
needed to deepen our understanding of the insurgence, pro-
gression and pharmacological treatment of ALS. As a pre-
dictive value matures and scales up, as shown in the present 
work by our SAveRUNNER/GSEA and module separation 
analysis, continuous integration is also needed: this is our 
ongoing and future aim.

Indeed, we believe that the network-medicine approach 
to drug repositioning, as implemented by SAveRUNNER/
GSEA analysis, can significantly catalyze innovation in the 
discovery of promising repurposable drug candidates that 
deserve further investigation and experimental validation 
for ALS. However, the first step in exploring the interplay 
between networks and human diseases is to assess how 
comprehensive and accurate the current molecular and phe-
notypic network maps are for humans. The past few years 
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have witnessed systematic efforts to increase the coverage 
of human interactome maps, estimate the interactome size 
and correct for known biases. Still, human interactome maps 
remain incomplete and noisy, a fact that needs to be taken 
into account when studying diseases. Yet, the list of ALS-
associated genes is far from completeness and continuously 
updated by the discovery of mutated genes having a pheno-
typic impact on the disease. Thus, suffering from the noto-
rious incompleteness of literature-based input parameters, 
SAveRUNNER may also lead to incomplete predictions. In 
this regard, a first example might be clemastine, a direct 
histamine H1 receptor antagonist that was shown to ame-
liorate ALS disease progression in the SOD1-G93A mouse 
model [89, 90], but that is not included in the candidate 
drugs predicted by SAveRUNNER algorithm. Satisfying the 
histaminergic hypothesis, on the other hand SAveRUNNER 
pointed out an unconventional histamine receptor modula-
tor, modafinil (Provigil®), which elevates histamine release 
and levels in the neocortex and hypothalamus [54, 55, 91]. 
Allowing to greatly save on time and resources, SAveRUN-
NER has perhaps identified a promising and worth of inves-
tigation candidate that a conventional drug discovery pre-
clinical study would not have considered for ALS.

These considerations confirm the impelling need to find 
further synergies between network-based analysis and pre-
clinical drug testing, in order to draw deeper knowledge 
of the inherent complexity of ALS and, more importantly, 
develop a cure for the disease. Despite all attempts to search 
for treatments have failed so far, and current therapies can 
only reduce morbidity [10], we believe that the right answer 
to ALS might come from a multidrug strategy or broad- 
spectrum molecules capable of interfering with multiple patho- 
logical pathways, as modafinil and histaminergic compounds 
might indeed be doing. Only further search will tell us what 
is exactly going to improve the therapeutic development in 
ALS.

Abbreviations ALS: Amyotrophic lateral sclerosis; CMap: Connectiv-
ity map; FDA: Food and Drug Administration; GSEA: Gene set enrich-
ment analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
RWR : Random Walk with Restart; SAveRUNNER: Searching off-
lAbel dRUg aNd NEtwoRk

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13311- 021- 01064-z.

Required Author Forms Disclosure forms provided by the authors are 
available with the online version of this article.

Author contribution PP and CV contributed to conceptualization, 
design, funding acquisition and supervision of the study; GF and FC 
performed computational analyses; CV and SA performed biologi-
cal analysis, interpretation, and elaboration of biological results. All 
authors participated to the manuscript draft and editing.

Funding This work was financially supported by PRIN 2017—Settore 
ERC LS2—Codice Progetto 20178L3P38 and by The Italian Ministry 
of Health (Ricerca Corrente) to Fondazione Santa Lucia IRCCS.

Data availability All data generated during this study are included in  
this published article as supplementary material. SAveRUNNER code  
is open-source and available at https:// github. com/ sport ingCo de/  
SAveR UNNER, together with an exhaustive and well-documented 
user guide, which includes a detailed description of all R scripts and 
all input/output files through a working example of SAveRUNNER 
application on 15 diseases.

Declarations 

Conflict of interest The authors declare no competing interests.

References

 1. Masrori P, Damme PV. Amyotrophic lateral sclerosis: a clinical 
review. Eur J Neurol 2020; 0: 1–12.

 2. Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclero-
sis: An Update for 2018. Mayo Clin Proc 2018; 93: 1617–1628.

 3. Gromicho M, Figueiral M, Uysal H, et al. Spreading in ALS: The 
relative impact of upper and lower motor neuron involvement. 
Ann Clin Transl Neurol 2020; 7: 1181–1192.

 4. Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyo-
trophic lateral sclerosis. Acta Neuropathol (Berl) 2019; 137: 
859–877.

 5. Ravits J, Paul CJP. Focality of upper and lower motor neuron 
degeneration at the clinical onset of ALS. Neurology 2007; 68: 
1571–1575.

 6. Cappello V, Francolini M. Neuromuscular Junction Dismantling  
in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18 (10): 2092.

 7. Guo Luo JZ, Jianxun Yi, Changling Ma, et al. Defective Mito-
chondrial Dynamics Is an Early Event in Skeletal Muscle of an 
Amyotrophic Lateral Sclerosis Mouse Model. PLoS ONE 2013; 
8: e82112.

 8. Beers DR, Appel SH. Immune dysregulation in amyotrophic lat-
eral sclerosis: mechanisms and emerging therapies. Lancet Neurol 
2019; 18: 211–220.

 9. Verber N, Shaw PJ. Biomarkers in amyotrophic lateral sclero-
sis: a review of new developments. Curr Opin Neurol 2020; 33: 
662–668.

 10. Wobst HJ, Mack KL, Brown DG, et al. The clinical trial landscape 
in amyotrophic lateral sclerosis—Past, present, and future. Med 
Res Rev 2020; 40: 1352–1384.

 11. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: pro-
gress, challenges and recommendations. Nat Rev Drug Discov 
2019; 18: 41–58.

 12. Kukharsky MS, Skvortsova VI, Bachurin SO, et al. In a search 
for efficient treatment for amyotrophic lateral sclerosis: Old drugs 
for new approaches. Med Res Rev. Epub ahead of print 20 August 
2020. https:// doi. org/ 10. 1002/ med. 21725.

 13. Caldera M, Buphamalai P, Müller F, et al. Interactome-based 
approaches to human disease. Curr Opin Syst Biol 2017; 3: 88–94.

 14. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a 
network-based approach to human disease. Nat Rev Genet 2011; 
12: 56–68.

 15. Barabási A-L. Network Medicine — From Obesity to the “Dis-
easome”. N Engl J Med 2007; 357: 404–407.

https://doi.org/10.1007/s13311-021-01064-z
https://github.com/sportingCode/SAveRUNNER
https://github.com/sportingCode/SAveRUNNER
https://doi.org/10.1002/med.21725


Drug Repurposing: A Network-based Approach to Amyotrophic Lateral Sclerosis  

1 3

 16. Silverman EK, Schmidt H, Anastasiadou E, et al. Molecular 
networks in Network Medicine: Development and applications. 
WIREs Syst Biol Med 2020; 12: e1489.

 17. Paci P, Fiscon G, Conte F, et al. Gene co-expression in the 
interactome: moving from correlation toward causation via an 
integrated approach to disease module discovery. Npj Syst Biol 
Appl 2021; 7: 1–11.

 18. Sonawane AR, Weiss ST, Glass K, et al. Network Medicine in 
the Age of Biomedical Big Data. Front Genet 2019; 10: 294.

 19. Goh K-I, Cusick ME, Valle D, et al. The human disease network. 
Proc Natl Acad Sci 2007; 104: 8685–8690.

 20. Zhou Y, Hou Y, Shen J, et al. Network-based drug repurposing for 
novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020; 
6: 1–18.

 21. Cheng F, Desai RJ, Handy DE, et al. Network-based approach 
to prediction and population-based validation of in silico drug 
repurposing. Nat Commun 2018; 9: 2691.

 22. Morselli GD, do Valle Í, Zitnik M, Ameli A, Gan X, Varol O, 
Ghiassian SD, Patten JJ, Davey RA, Loscalzo J, Barabási AL. 
Network medicine framework for identifying drug-repurposing 
opportunities for COVID-19. Proc Natl Acad Sci U S A 2021; 
118(19):e2025581118.

 23. Fiscon G, Conte F, Farina L, et al. SAveRUNNER: A network-
based algorithm for drug repurposing and its application to 
COVID-19. PLOS Comput Biol 2021; 17: e1008686.

 24. Fiscon G, Paci P. SAveRUNNER: an R-based tool for drug repur-
posing. BMC Bioinformatics 2021; 22: 150.

 25. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, et  al. The 
BioGRID interaction database: 2015 update. Nucleic Acids Res 
2015; 43: D470-478.

 26. Peri S, Navarro JD, Kristiansen TZ, et al. Human protein reference 
database as a discovery resource for proteomics. Nucleic Acids 
Res 2004; 32: D497-501.

 27. Licata L, Briganti L, Peluso D, et  al. MINT, the molecular 
interaction database: 2012 update. Nucleic Acids Res 2012; 40: 
D857-861.

 28. Orchard S, Ammari M, Aranda B, et al. The MIntAct project-
-IntAct as a common curation platform for 11 molecular interaction 
databases. Nucleic Acids Res 2014; 42: D358-363.

 29. Breuer K, Foroushani AK, Laird MR, et al. InnateDB: systems 
biology of innate immunity and beyond-recent updates and con-
tinuing curation. Nucleic Acids Res 2013; 41: D1228-1233.

 30. Yu W, Clyne M, Khoury MJ, et al. Phenopedia and Genopedia: 
disease-centered and gene-centered views of the evolving knowl-
edge of human genetic associations. Bioinformatics 2010; 26: 
145–146.

 31. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major 
update to the DrugBank database for 2018. Nucleic Acids Res 
2018; 46: D1074.

 32. Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: 
enriched resource for facilitating research and early develop-
ment of targeted therapeutics. Nucleic Acids Res 2020; 48: 
D1031–D1041.

 33. Sareen D, O’Rourke JG, Meera P, et al. Targeting RNA foci in 
iPSC-derived motor neurons from ALS patients with a C9ORF72 
repeat expansion. Sci Transl Med 2013; 5: 208ra149.

 34. Dangond F, Hwang D, Camelo S, et al. Molecular signature of 
late-stage human ALS revealed by expression profiling of post-
mortem spinal cord gray matter. Physiol Genomics 2004; 16: 
229–239.

 35. Durrenberger PF, Fernando FS, Magliozzi R, et al. Selection of 
novel reference genes for use in the human central nervous system: 
a BrainNet Europe Study. Acta Neuropathol (Berl) 2012; 124: 
893–903.

 36. Subramanian A, Narayan R, Corsello SM, et al. A Next Genera-
tion Connectivity Map: L1000 Platform and the First 1,000,000 
Profiles. Cell 2017; 171: 1437-1452.e17.

 37. Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using 
gene-expression signatures to connect small molecules, genes, and 
disease. Science 2006; 313: 1929–1935.

 38. Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical vali-
dation of drug indications using compendia of public gene expres-
sion data. Sci Transl Med 2011; 3: 96ra77.

 39. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrich-
ment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci U A 2005; 
102: 15545–15550.

 40. Anderson MJ, Legendre P. An empirical comparison of permuta-
tion methods for tests of partial regression coefficients in a linear 
model. J Stat Comput Simul 1999; 62: 271–303.

 41. Hayes AF. Cautions in testing variance equality with randomiza-
tion tests. J Stat Comput Simul 1997; 59: 25–31.

 42. Kennedy PE. Randomization Tests in Econometrics. J Bus Econ 
Stat 1995; 13: 85–94.

 43. Marozzi M. A bi-aspect nonparametric test for the two-sample 
location problem. Comput Stat Data Anal 2004; 44: 639–648.

 44. Shipley B. A permutation procedure for testing the equality of pat-
tern hypotheses across groups involving correlation or covariance 
matrices. Stat Comput 2000; 10: 253–257.

 45. Wan Y, Cohen J, Guerra R. A permutation test for the robust sib-
pair linkage method. Ann Hum Genet 1997; 61: 77–85.

 46. Smith EP. Randomization methods and the analysis of multivariate 
ecological data. Environmetrics 1998; 9: 37–51.

 47. Bailer AJ. Testing variance equality with randmization tests. J Stat 
Comput Simul 1989; 31: 1–8.

 48. An Almost Exact Solution for the Multivariate Behrens-Fisher 
Problem - Fortunato Pesarin - Google Libri, https:// books. google. it/ 
books? id= qoLFo QEACA AJ& dq= An+ Almost+ Exact+ Solut ion+ 
for+ the+ Multi varia te+ Behre ns- Fisher+ Probl em& hl= it& sa= X& 
ved= 2ahUK EwjPp brQwP XqAhXE- qQKHc fVD5g Q6AEw AHoEC 
AEQAQ (accessed 30 July 2020).

 49. Iglewicz B, Hoaglin D. How to detect and handle outliers. ASQC 
Basic Ref Qual Control Stat Tech 16.

 50. Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease 
relationships through the incomplete interactome. Science 2015; 
347(6224): 1257601.

 51. Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference 
resource for gene and protein annotation. Nucleic Acids Res 2016; 
44: D457–D462.

 52. Jassal B, Matthews L, Viteri G, et al. The reactome pathway 
knowledgebase. Nucleic Acids Res 2020; 48: D498–D503.

 53. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a com-
prehensive gene set enrichment analysis web server 2016 update. 
Nucleic Acids Res 2016; 44: W90-97.

 54. Ishizuka T, Sakamoto Y, Sakurai T, et al. Modafinil increases 
histamine release in the anterior hypothalamus of rats. Neurosci 
Lett 2003; 339: 143–146.

 55. Ishizuka T, Murotani T, Yamatodani A. Modanifil activates the 
histaminergic system through the orexinergic neurons. Neurosci 
Lett 2010; 483: 193–196.

 56. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical 
actions and effects on cognition. Neuropsychopharmacol Off Publ 
Am Coll Neuropsychopharmacol 2008; 33: 1477–1502.

 57. Ishizuka T, Murakami M, Yamatodani A. Involvement of central 
histaminergic systems in modafinil-induced but not methylpheni-
date-induced increases in locomotor activity in rats. Eur J Phar-
macol 2008; 578: 209–215.

https://books.google.it/books?id=qoLFoQEACAAJ&dq=An+Almost+Exact+Solution+for+the+Multivariate+Behrens-Fisher+Problem&hl=it&sa=X&ved=2ahUKEwjPpbrQwPXqAhXE-qQKHcfVD5gQ6AEwAHoECAEQAQ
https://books.google.it/books?id=qoLFoQEACAAJ&dq=An+Almost+Exact+Solution+for+the+Multivariate+Behrens-Fisher+Problem&hl=it&sa=X&ved=2ahUKEwjPpbrQwPXqAhXE-qQKHcfVD5gQ6AEwAHoECAEQAQ
https://books.google.it/books?id=qoLFoQEACAAJ&dq=An+Almost+Exact+Solution+for+the+Multivariate+Behrens-Fisher+Problem&hl=it&sa=X&ved=2ahUKEwjPpbrQwPXqAhXE-qQKHcfVD5gQ6AEwAHoECAEQAQ
https://books.google.it/books?id=qoLFoQEACAAJ&dq=An+Almost+Exact+Solution+for+the+Multivariate+Behrens-Fisher+Problem&hl=it&sa=X&ved=2ahUKEwjPpbrQwPXqAhXE-qQKHcfVD5gQ6AEwAHoECAEQAQ
https://books.google.it/books?id=qoLFoQEACAAJ&dq=An+Almost+Exact+Solution+for+the+Multivariate+Behrens-Fisher+Problem&hl=it&sa=X&ved=2ahUKEwjPpbrQwPXqAhXE-qQKHcfVD5gQ6AEwAHoECAEQAQ


 G. Fiscon et al.

1 3

 58. Avelar AJ, Cao J, Newman AH, et al. Atypical dopamine trans-
porter inhibitors R-modafinil and JHW 007 differentially affect 
D2 autoreceptor neurotransmission and the firing rate of midbrain 
dopamine neurons. Neuropharmacology 2017; 123: 410–419.

 59. Richelson E, Nelson A. Antagonism by antidepressants of neuro-
transmitter receptors of normal human brain in vitro. J Pharmacol 
Exp Ther 1984; 230: 94–102.

 60. Lim HD. Evaluation of Histamine H1-, H2-, and H3-Receptor 
Ligands at the Human Histamine H4 Receptor: Identification of 
4-Methylhistamine as the First Potent and Selective H4 Receptor 
Agonist. J Pharmacol Exp Ther 2005; 314: 1310–1321.

 61. Gillman PK. Tricyclic antidepressant pharmacology and therapeu-
tic drug interactions updated. Br J Pharmacol 2007; 151: 737–748.

 62. Nowak JZ, Arrang JM, Schwartz JC, et al. Interaction between 
mianserin, an antidepressant drug, and central H1- and H2- 
histamine-receptors: In vitro and in vivo studies and radioreceptor 
assay. Neuropharmacology 1983; 22: 259–266.

 63. Hatzopoulos AK. Disease Models & Mechanisms in the Age of 
Big Data. Dis Model Mech 2019; 12(8): dmm041699

 64. Jian-Sheng Lin MJ Bernard Roussel, Alexandre Gaspar, Yan 
Zhao, Yiping Hou, Markus Schmidt, Anne Jouvet. The unfinished 
journey with modafinil and discovery of a novel population of 
modafinil-immunoreactive neurons. Sleep Med 2018; 49: 40–52.

 65. Gerrard P, Malcolm R. Mechanisms of modafinil: A review of 
current research. Neuropsychiatr Dis Treat 2007; 3: 349–364.

 66. Zager A. Modulating the immune response with the wake-promoting 
drug modafinil: A potential therapeutic approach for inflammatory 
disorders. Brain Behav Immun 2020; 88: 878–886.

 67. Hashemian SM, Farhadi T. A review on modafinil: the character-
istics, function, and use in critical care. J Drug Assess 2020; 9: 
82–86.

 68. Urban AE, Cubała WJ. The role of eugeroics in the treatment of 
affective disorders. Psychiatr Pol 2020; 54: 21–33.

 69. Brola W, Ziomek M, Czernicki J. [Fatigue syndrome in chronic 
neurological disorders]. Neurol Neurochir Pol 2007; 41: 340–349.

 70. Schoser B. Myotonic Dystrophy Type 2. In: Adam MP, Ardinger 
HH, Pagon RA, et al. (eds) GeneReviews®. Seattle (WA): Univer-
sity of Washington, Seattle, http:// www. ncbi. nlm. nih. gov/ books/ 
NBK14 66/ (2006, accessed 15 September 2020).

 71. Gibbons C, Pagnini F, Friede T, et al. Treatment of fatigue in 
amyotrophic lateral sclerosis/motor neuron disease. Cochrane 
Database Syst Rev 2018; 1: CD011005.

 72. Yu X, Ma Y, Harding EC, et al. Genetic lesioning of histamine  
neurons increases sleep-wake fragmentation and reveals their  
contribution to modafinil-induced wakefulness. Sleep 2019; 
42(5):zsz031.

 73. Mereu M, Bonci A, Newman AH, et al. The neurobiology of 
modafinil as an enhancer of cognitive performance and a poten-
tial treatment for substance use disorders. Psychopharmacology 
(Berl) 2013; 229: 415–434.

 74. Urbano FJ. Leznik RRLE . Modafinil enhances thalamocortical 
activity by increasing neuronal electrotonic coupling. Proc Natl 
Acad Sci 2007; 104: 12554–12559.

 75. Miriam Punzi SLS Tommaso Gili, Laura Petrosini, Carlo Caltagirone, 
Gianfranco Spalletta. Modafinil-Induced Changes in Functional Con-
nectivity in the Cortex and Cerebellum of Healthy Elderly Subjects. 
Front Aging Neurosci 2017; 30(9): 85.

 76. Yates CC, Charlesworth A, Reese NB, et al. Modafinil normalized 
hyperreflexia after spinal transection in adult rats. Spinal Cord 
2009; 47: 481–485.

 77. Gellersen HM, Guo CC, O’Callaghan C, et al. Cerebellar atrophy 
in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psy-
chiatry 2017; 88: 780–788.

 78. Sicong Tu, Ricarda MRT, Menke AL, et al. Regional thalamic 
MRI as a marker of widespread cortical pathology and progres-
sive frontotemporal involvement in amyotrophic lateral sclerosis. 
J Neurol Neurosurg Psychiatry 2018; jnnp-2018–318625.

 79. Ishizuka T, Murotani T, Yamatodani A. Action of modafinil 
through histaminergic and orexinergic neurons. Vitam Horm 
2012; 89: 259–278.

 80. Philipp O. Valko TES Yury V Gavrilov, Mihoko Yamamoto, 
Hasini Reddy, Johannes Haybaeck, Emmanuel Mignot, Christian 
R Baumann. Increase of histaminergic tuberomammillary neurons 
in narcolepsy. Ann Neurol 2013; 74: 794–804.

 81. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in 
mice that express a human Cu,Zn superoxide dismutase mutation. 
Science 1994; 264: 1772–1775.

 82. Apolloni S, Amadio S, Fabbrizio P, et al. Histaminergic transmis-
sion slows progression of amyotrophic lateral sclerosis. J Cha-
chexia Sarcopenia Muscle 2019; 10(4): 872–893.

 83. Hu W, Chen Z. The roles of histamine and its receptor ligands in 
central nervous system disorders: An update. Pharmacology and 
Therapeutics 2017;175:116–132.

 84. Volonté C, Morello G, Spampinato AG, et al. Omics-based explo-
ration and functional validation of neurotrophic factors and his-
tamine as therapeutic targets in ALS. Ageing Res Rev 2020; 62: 
101121.

 85. Volonté C, Apolloni S, Sabatelli M. Histamine beyond its effects 
on allergy: Potential therapeutic benefits for the treatment of 
Amyotrophic Lateral Sclerosis (ALS). Pharmacol Ther 2019; 202: 
120–131.

 86. Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy 
to riluzole in patients with amyotrophic lateral sclerosis: a ran-
domized clinical trial. Amyotroph Lateral Scler Front Degener 
2020; 21: 5–14.

 87. Kim HY, Moon C, Kim KS, et al. Recombinant human erythro-
poietin in amyotrophic lateral sclerosis: a pilot study of safety and 
feasibility. J Clin Neurol Seoul Korea 2014; 10: 342–347.

 88. Bedlack R. ALSUntangled 48: Perampanel (Fycompa). Amyo-
troph Lateral Scler Front Degener 2019; 20: 453–456.

 89. Apolloni S, Fabbrizio P, Amadio S, et al. Actions of the anti-
histaminergic clemastine on presymptomatic SOD1-G93A mice 
ameliorate ALS disease progression. J Neuroinflammation 2016; 
13: 191.

 90. Apolloni S, Fabbrizio P, Parisi C, et  al. Clemastine Confers 
Neuroprotection and Induces an Anti-Inflammatory Phenotype 
in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. 
Mol Neurobiol 2016; 53: 518–531.

 91. Michael J Minzenberg CSC. Modafinil: A Review of Neurochemi-
cal Actions and Effects on Cognition. Neuropsychopharmacology 
2007; 33: 1477–1502.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.ncbi.nlm.nih.gov/books/NBK1466/
http://www.ncbi.nlm.nih.gov/books/NBK1466/

	Drug Repurposing: A Network-based Approach to Amyotrophic Lateral Sclerosis
	Abstract
	Introduction
	Methods
	Data Retrieval
	Study Design
	SAveRUNNER Algorithm
	Gene Set Enrichment Analysis
	Module Significance
	Random Walk with Restart Algorithm
	Module Separation
	Pathways Enrichment Analysis

	Results
	ALS-drug Network
	GSEA Analysis of Anti-ALS Repurposable Drugs
	Prediction of ALS Comorbidity
	Pathways Analysis of Histamine-related Compounds

	Discussion
	Required Author Forms 
	References


