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1. Introduction

We are interested in the study of the thermal properties of a composite material
made up of a hosting medium in which a periodic array of thermal conductors is
inserted. Since, usually, in the applications the hosting medium is a plastic material,
we assume that the inclusions are made of perfect heat conductors (i.e. they have
infinite thermal conductivity). This last assumption is in agreement with the fact
that the heat conductivity of the inclusions is much larger than the one of the plastic
hosting medium, as in the application we have in mind, i.e. the packaging of electronic
devices (see [30, 31, 36, 37, 38, 40]). Other possible applications can be found in
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heat diffusion, electric conduction, petroleum exploitation, wave equations or elastic
properties of perforated materials (see, for instance, [2, 16, 17, 19, 26, 27, 32, 33, 34]).
From a mathematical point of view, the problem addressed in this paper reduces to a
heat equation satisfied by the temperature uoutε in the hosting medium, while inside
each inclusion the temperature uintε depends only on time and satisfies an ordinary
differential equation. Such an equation is not standard, since it involves a non-local
condition. As a consequence, uintε is a constant (possibly depending on the inclusion)
with respect to the space variable. The two thermal potentials uintε and uoutε are
coupled through an imperfect contact transmission condition across the interface Γ ε

between the two conductive phases of the medium. More precisely, the jump of the
temperature [uε] = uoutε − uintε satisfies the non-standard boundary condition (see
(2.4))

[uε] = D0ε
ακε ∇uoutε · νε , (1.1)

where νε is the normal vector to the interface Γ ε pointing to the hosting medium,
κε is a matrix taking into account the diffusion properties of the hosting material, ε
represents the characteristic length of the inclusions, D0 > 0 is a factor taking into
account the imperfect contact condition and α ∈ R is a scaling parameter related to
the interfacial heat exchange.
We mention that models like the one considered in the present paper have a wide area
of possible applications, as recalled before, and they are known in the mathematical
literature as “equivalued surface boundary value problems”, this being justified by
the fact that, on the boundary of the inclusions, the interior temperature field is
assumed to be spatially constant (see, for instance, [16, 19, 26, 32, 33, 34] and the
references therein).
In [6, 7], the authors studied a similar problem in which a perfect thermal contact
between the two conductive phases was assumed. This implies that the temperature
uε does not jump across the interface and, therefore, essentially allows one to restrict
the problem to the outer domain.
The main novelty of our paper consists in the fact that we consider a more general
model, in which we assume that the solution is no longer continuous across the
interface between the two phases, but it has a jump, whose size is proportional to
the outer heat flux through the coefficient D0ε

α, as shown in (1.1) above. Indeed,
problems involving composite media with imperfect contacts are widely studied in
various frameworks (see, among others, [5, 11, 12, 13, 14, 15, 18, 20, 21, 28, 29, 35]
and the references therein).
Our goal in this paper is twofold. First of all, we want to determine the overall
conduction properties of the composite medium, by means of a homogenization pro-
cedure based on the periodic unfolding technique. As a second goal, we want to
recover the perfect contact condition and to compare the resulting models with the
perfect transmission case addressed in [6, 7].
Therefore, we have two small parameters (the period ε of the geometry and the
amplitude factor D0) that we want to let tend to zero. For fixed D0 > 0, we perform
the homogenization process for each scaling α ∈ R, obtaining different macroscopic
problems. More precisely, for α > −1 we get three standard parabolic limit equations
depending on different homogenized matrices (see (4.15) for α > 1, (5.13) for α = 1
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and (6.9) for α ∈ (−1, 1)). On the other hand, for α ≤ −1 we get two different
systems: for α = −1 we obtain a kind of standard bidomain problem consisting in
the coupling of a partial differential equation with an ordinary differential one (see
(7.5)), while for α < −1 we obtain a completely decoupled system, consisting of a
parabolic equation and a prescribed time-independent function (see (8.3) and (8.4)).
We point out that, for α ̸= ±1, the homogenized limit problems do not keep memory
ofD0. More precisely, in these cases, for α > 1, we obtain the same parabolic equation
as in [6, 7]; for α ∈ (−1, 1), the homogenized limit problem keeps a similar structure,
but it depends on a different macroscopic diffusion matrix. Finally, for α < −1, the
decoupled system does not keep any memory of the physical properties of the inner
phase; here, the equation for the relevant phase is different from the one obtained in
[6, 7] even in structure and the macroscopic contribution of the other phase is given
only by the limit of the original initial condition. On the contrary, for α = ±1, the
limit problem depends explicitly on the coefficient D0. This justifies the need for
performing our second step, i.e. to let D0 → 0. The consequence of such a procedure
leads to two different situations: for α = 1, we recover the same problem obtained
for α > 1 and, hence, the result in [6, 7] (see (5.31)), while for α = −1, the bidomain
structure disappears and we recover the same problem obtained for α ∈ (−1, 1) (see
(7.10)). For more comments, see Remark 4.4, Remark 5.6, Remark 6.3, Remark 7.4
and Remark 8.3.
We notice that if we let D0 → 0 first, we can easily obtain from the energy estimate
(2.9) that [uε] → 0 in L2(Γ ε × (0, T )), for any fixed α ∈ R. Therefore, passing to the
limit in the weak formulation (2.7), we get the same problem, with perfect contact
transmission conditions, studied in [6, 7], which is homogenized to the problem (4.15),
found in Section 4.
On the contrary, when we take the two limits in the opposite order, the scaling α
is relevant and determines the shape of the final limit problems. We stress that, at
least for α < 1, the two limits do not commute, while for α ≥ 1 they do commute.
Our proofs rely on the time-dependent periodic unfolding technique, which is the
time-depending version of the one described in [25]. In the homogenization procedure,
we need to consider non-standard test functions, inspired from the construction in
[19, 26], for the elliptic case. Up to our knowledge, the problem we are addressing
here is new in the literature, since it involves non-local conditions and imperfect
contact between the hosting medium and the perfect conductive inclusions.
We mention that, in a forthcoming paper ([9]), we shall address the case of different
inclusions with different imperfect contact conditions on the interface; in that paper,
we will analyze all possible limit cases.

The paper is organized as follows: in Section 2, we state our problem and some
preliminary results; in Subsections 2.1 and 2.2, we gather our general assumptions. In
Section 3, we introduce the cell functions appearing in the homogenization procedure.
In the remaining sections, we state and prove the homogenization results for the cases
α > 1 (Section 4), α = 1 (Section 5), −1 < α < 1 (Section 6), α = −1 (Section 7) and
α < −1 (Section 8), respectively, and we compare the resulting models with the one
arising for the perfect contact condition, letting D0 → 0, where this is meaningful.
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2. Statement of the problem

2.1. Geometrical setting. Let Ω be an open smooth connected bounded subset of
RN , with N ≥ 2, and denote the unit cell by Y = (0, 1)N . For a given T > 0, we
define ΩT = Ω × (0, T ) and, for ε ∈ (0, 1),

Ξε =
{
ξ ∈ ZN , ε(ξ + Y ) ⊂ Ω

}
.

Next, we consider an open smooth subset E ⊂ RN , which we assume to be periodic
in the sense that E + z = E for all z ∈ ZN , setting also Eint = E ∩ Y , Eout = Y \E,
Γ = ∂E ∩ Y . We assume Eint to be connected. We also assume Eint ⊂ Y , implying
that ∂Eint = Γ . For ξ ∈ Ξε, we define

Eε,ξ
int := ε(Eint + ξ) , Γ ε

ξ := ∂Eε,ξ
int .

We let
Ωε

int =
⋃
ξ∈Ξε

Eε,ξ
int , Γ ε = ∂Ωε

int , Ωε
out = Ω \Ωε

int .

We remark also that Ωε
out is connected, while Ω

ε
int is disconnected. From the physical

point of view, they represent the hosting medium and the perfect conductive inclu-
sions, respectively. Finally, let ν denote the normal unit vector to Γ pointing into
Eout, extended by periodicity to the whole of RN , so that νε(x) = ν(x/ε) denotes the
normal unit vector to Γ ε pointing into Ωε

out.
In the following, by γ we shall denote a strictly positive constant, independent of ε,
which may vary from line to line.

Let us denote the unknown uε by the piecewise representation

uε =

{
uintε , in Ωε

int × (0, T ),

uoutε , in Ωε
out × (0, T ).

(2.1)

We denote the jump of such a function as

[uε] = uoutε − uintε , on Γ ε × (0, T ).

The same notation will be employed for other functions, namely for test functions φε

which may exhibit jumps across Γ ε × (0, T ). The functions uintε and uoutε represent
the thermal potentials (or the temperatures) of the two phases.
We set

κε(x) = κ
(
x,
x

ε

)
,

where κ = (κij) is a Y -periodic symmetric matrix with κij ∈ L∞(Ω × Y ) and such
that there exists a constant C ≥ 1 satisfying

C−1|ζ|2 ≤ κ(x, y)ζ · ζ ≤ C|ζ|2, for a.e. (x, y) ∈ Ω × Y and all ζ ∈ RN .

In addition, for a given positive constant λ, we set

aε(x) =

{
λ

|Eint| , in Ωε
int,

1 , in Ωε
out.

From the physical point of view, the matrix κε describes the diffusion features of the
outer phase and aε accounts for the capacities of the two phases.
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Then, we state, formally, our problem for uε:

∂uoutε

∂t
− div(κε ∇uoutε ) = f , in Ωε

out × (0, T ); (2.2)

λ
∂uintε

∂t
=

1

εN

∫
Γ ε
ξ

κε ∇uoutε · νε dσ , in Eε,ξ
int × (0, T ), ξ ∈ Ξε; (2.3)

[uε] = D0ε
ακε ∇uoutε · νε , on Γ ε × (0, T ); (2.4)

uε = 0 , on ∂Ω × (0, T ); (2.5)

uε(x, 0) = uε(x) , in Ω. (2.6)

We assume D0 ∈ (0,+∞), f ∈ L2(ΩT ) and uε ∈ L2(Ω). We also require that uε is

constant in each Eε,ξ
int , α ∈ R, and that uε → u, as ε→ 0, strongly in L2(Ω).

Note that, as a consequence of (2.3) and of the choice of the initial datum uε, in each

component Eε,ξ
int of Ω

ε
int the function u

int
ε depends only on (ξ, t), so that it is piecewise

constant in Ωε
int. We mention that one can include in (2.3) a source term independent

of the spatial variable, without additional difficulties.
By the usual process of formal integration by parts, we arrive at the following rigorous
formulation of the problem.

Definition 2.1. Let the function uε be as in (2.1), with (abusing notation) uintε (x, t) =

uintε (ξ, t) in Eε,ξ
int and u

int
ε ∈ L2(Ωε

int×(0, T )), uoutε ∈ L2(0, T ;H1(Ωε
out)), [uε] ∈ L2(Γ ε×

(0, T )), uoutε = 0 on ∂Ω. Then, uε is a weak solution of problem (2.2)–(2.6) if

T∫
0

∫
Ω

{−aεuεφε,t + χΩε
out
κε ∇uoutε · ∇φε} dx dt

+
1

D0εα

T∫
0

∫
Γ ε

[uε][φε] dσ dt =

T∫
0

∫
Ωε

out

fφε dx dt+

∫
Ω

aεuεφε(0) dx , (2.7)

for all test functions φε such that φint
ε is constant in x in each Eε,ξ

int , φ
int
ε ∈ L2(Ωε

int;
H1(0, T )), φout

ε ∈ H1(Ωε
out × (0, T )), [φε] ∈ L2(Γ ε × (0, T )), and φε(·, T ) = 0, φε = 0

on ∂Ω × (0, T ). �

Here, for O ⊆ RN , χO denotes the characteristic function of O. Moreover, by φε,t (or
similar notation, in the following) we denote the time derivative of the function φε.

Existence and uniqueness of solutions to (2.2)–(2.6), for each fixed ε > 0, can be
proven by means of an approximation argument with strictly parabolic equations
in the whole domain, for which a well-posedness result follows from the abstract
parabolic theory as in [39].
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We make use of the following energy inequality, which in turn can be proved by means
of routine approximation procedures:

sup
0<t<T

∫
Ω

u2ε(t) dx+

T∫
0

∫
Ωε

out

|∇uoutε |2 dx dt+ 1

D0εα

T∫
0

∫
Γ ε

[uε]
2 dσ dt

≤ γ(∥f∥2L2(ΩT ) + ∥uε∥2L2(Ω)) . (2.8)

For any α ∈ R, we infer at once

sup
0<t<T

∫
Ω

u2ε(t) dx+

T∫
0

∫
Ωε

out

|∇uoutε |2 dx dt+ ε

εα+1D0

T∫
0

∫
Γ ε

[uε]
2 dσ dt ≤ γ , (2.9)

where γ does not depends on ε, since uε converges strongly.

2.2. Time-depending unfolding operator. In order to deal with our homogeniza-
tion results, we need a space-time version of the unfolding operator studied in [22, 25]
(see also [6, 7, 10, 8, 13] and, for a more general version, in which a time-microscale
is actually present, see [3, 4]).
We recall, here, only the definitions and some of the properties needed in what follows
(for other standard ones, we refer directly to [10, 25, 28]).
For ξ ∈ Ξε, set

Ω̂ε = interior

{ ⋃
ξ∈Ξε

ε(ξ + Y )

}
, Λε

T = Ω̂ε × (0, T ) .

Denoting by [r] the integer part and by {r} the fractional part of r ∈ R, we define
for x ∈ RN[x

ε

]
Y
=

( [x1
ε

]
, . . . ,

[xN
ε

] )
and

{x
ε

}
Y
=

({x1
ε

}
, . . . ,

{xN
ε

})
,

so that

x = ε
([x
ε

]
Y
+
{x
ε

}
Y

)
.

Then, let Yε(x) = ε
( [x

ε

]
Y
+ Y

)
be the space cell containing x.

Definition 2.2. For w Lebesgue-measurable on ΩT , the (time-depending) periodic
unfolding operator Tε is defined as

Tε(w)(x, t, y) =

w
(
ε
[x
ε

]
Y
+ εy, t

)
, (x, t, y) ∈ Λε

T × Y ,

0 , otherwise.

For w Lebesgue-measurable on Γ ε
T , the (time-depending) boundary unfolding opera-

tor T b
ε is defined as

T b
ε (w)(x, t, y) =

w
(
ε
[x
ε

]
Y
+ εy, t

)
, (x, t, y) ∈ Λε

T × Γ ,

0 , otherwise.
6



�

Definition 2.3. Let w be integrable in ΩT . The local (time-depending) space average
operator is defined by

Mε(w)(x, t) =


1

εN

∫
Yε(x)

w(ζ, t) dζ , if (x, t) ∈ Λε
T ,

0 , otherwise.

(2.10)

�

Notice that Mε(w) = MY (Tε(w)), where, for a general set O, MO(·) denotes the
integral average on O.

Proposition 2.4. Let w ∈ L2(0, T ;H1(Ω)). Then,

1

ε
[Tε(w)−Mε(w)] → yc · ∇w , strongly inL2(ΩT × Y ) , (2.11)

where yc = (yc1, . . . , ycN) = y −MY (y).

Proposition 2.5. Let wε = (wint
ε , wout

ε ), with wint
ε ∈ L2(0, T ;H1(Ωε

int)) and wout
ε ∈

L2(0, T ;H1(Ωε
out)). Assume that there exists γ > 0 (independent of ε) such that∫

ΩT

|wε|2 dx dt+
∫
ΩT

|∇wε|2 dx dt ≤ γ , ∀ε > 0. (2.12)

Then, there exist w1 ∈ L2(ΩT ), w
2 ∈ L2((0, T );H1(Ω)), wint ∈ L2(ΩT ;H

1(Eint)) and
ŵ1 ∈ L2(ΩT ;H

1
#(Eout)) such that, up to a subsequence,

Tε(χΩε
int
wε)⇀ w1, weakly in L2(ΩT × Eint) ; (2.13)

Tε(χΩε
out
wε)⇀ w2, weakly in L2(ΩT × Eout) ; (2.14)

Tε(χΩε
int
∇wε)⇀ ∇yw

int, weakly in L2(ΩT × Eint) , (2.15)

Tε(χΩε
out
∇wε)⇀ ∇w2 +∇yŵ

1, weakly in L2(ΩT × Eout) , (2.16)

for ε→ 0. Moreover, due to (2.12), we have

ε

∫
Γ ε
T

[wε]
2 dσ dt ≤ γ , ∀ε > 0 , (2.17)

with γ independent of ε, and then

T b
ε ([wε])⇀ w2 − w1 , weakly in L2(ΩT × Γ ) . (2.18)

Remark 2.6. We recall that, when wε → w, strongly in L2(ΩT ), then Tε(wε) → w
strongly in L2(ΩT × Y ). However, the only classes for which the strong convergence
of the unfolding Tε(wε) is known to hold in L2(ΩT × Y ), without strong convergence
of wε, are sums of the following cases: wε(x, t) = f1(x, t)f2(ε

−1x) with f1, f2 suitable
Lebesgue-measurable functions, wε(x, t) = w(x, ε−1x, t) with w ∈ L2(Y ; C(ΩT )) or
w ∈ L2(ΩT ; C(Y )) (see [1, 23, 24] and [4, Remark 2.9]). �
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In view of the previous remark, we will assume in the following that the matrix

κ ∈
(
L∞(Ω; C#(Y ))

)N×N
, even if this assumption can be weakened, requiring that

there exists a Y -periodic matrix K ∈
(
L∞(Ω × Y )

)N×N
such that Tε(κε) → K,

strongly in L2(Ω × Y ).

2.3. Compactness results. Let uε be the unique solution of problem (2.2)–(2.6).
We collect here some compactness results in all the cases of interest for the scaling
parameter α. The convergences below are intended up to extracting subsequences.
By taking into account estimate (2.9) and Proposition 2.5, applied to our solution
uε, it follows that there exist suitable functions u1 ∈ L2(ΩT ), u2 ∈ L2(0, T ;H1

0 (Ω))
and û1 ∈ L2(ΩT ;H

1
#(Eout)) such that

Tε(χΩε
int
uε)⇀ u1 , weakly in L2(ΩT × Eint); (2.19)

Tε(χΩε
out
uε)⇀ u2 , weakly in L2(ΩT × Eout); (2.20)

Tε(χΩε
out

∇uε)⇀ ∇u2 +∇y û
1 , weakly in L2(ΩT × Eout). (2.21)

In addition, for every α ∈ R,∫
ΩT×Γ

T b
ε ([uε])

2 dx dσy dt ≤ γεα+1 . (2.22)

The last estimate clearly implies, for α > −1,

T b
ε ([uε]) → 0 , strongly in L2(ΩT × Γ ), (2.23)

and therefore, u1 = u2 =: u ∈ L2(0, T ;H1
0 (Ω)) in virtue of (2.18). More precisely, in

this case, we have

uε ⇀ u , weakly in L2(ΩT ). (2.24)

On the other hand, for α = −1, we obtain

T b
ε ([uε]) → u2 − u1 , weakly in L2(ΩT × Γ ). (2.25)

In the cases α > −1 instead, we get:

for − 1 < α < 1 ,
1

εα
T b
ε ([uε]) → 0 , strongly in L2(ΩT × Γ ), (2.26)

for α > 1 , T b
ε

( [uε]
ε

)
→ 0 , strongly in L2(ΩT × Γ ), (2.27)

for α = 1 , T b
ε

( [uε]
ε

)
⇀ û1 + yc · ∇u+ ζ, weakly in L2(ΩT × Γ ), (2.28)

for a suitable function ζ ∈ L2(ΩT ). The convergences in (2.26) and (2.27) are conse-
quences of (2.22), while for (2.28) we refer to [28].

Remark 2.7. We stress the fact that all the above convergences take place as ε → 0
and D0 is fixed. Later, after the homogenization procedure, we will discuss also the
limit for D0 → 0. �
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3. Auxiliary results

We understand here all the general assumptions listed in Section 2. All the problems
below are intended in the distributional sense.

Lemma 3.1. For each j = 1, . . . , N , there exists a unique χj ∈ L∞(Ω;H1
#(Eout))

which satisfies

− divy(κ(x, y)∇y(χ
j(x, y)− yj)) = 0 , in Eout; (3.1)∫

Γ

κ(x, y)∇y(χ
j(x, y)− yj) · ν dσy = 0 , (3.2)

χj(x, y)− yj is independent of y on Γ , (3.3)∫
Eout

χj(x, y) dy = 0 . (3.4)

Proof. The result can be obtained following the same steps as in [7, Lemma 4.7]. �

Lemma 3.2. For j = 1, . . . , N , let us consider the problem

− divy(κ∇y(χ̂
j(x, y)− ycj)) = 0 , in Eout; (3.5)

κ∇y(χ̂
j(x, y)− ycj) · ν= 1

D0

(
χ̂j(x, y)−ycj− 1

|Γ |

∫
Γ

(χ̂j(x, z)− zcj) dσz

)
, on Γ ; (3.6)

∫
Eout

χ̂j(x, y) dy = 0 . (3.7)

Then, problem (3.5)–(3.7) admits a unique solution χ̂j ∈ L∞(Ω;H1
#(Eout)).

Proof. For j = 1, . . . , N , let χ̃j ∈ H1
#(Eout) be the unique solution of the Robin

problem

− divy(κ∇y(χ̃
j − ycj)) = 0 , in Eout; (3.8)

κ∇y(χ̃
j − ycj) · ν − 1

D0

(χ̃j − ycj) = 0 , on Γ . (3.9)

Set

ζ̂j(x) =
1

|Eout|

∫
Eout

χ̃j(x, y) dy (3.10)

and define

χ̂j(x, y) = χ̃j(x, y)− ζ̂j(x) . (3.11)

By means of an integration by parts of the differential equation (3.8) and taking into
account (3.9) and (3.11), it follows that

ζ̂j(x) = − 1

|Γ |

∫
Γ

(χ̂j(x, y)− ycj) dσy . (3.12)
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Moreover, replacing χ̃j with χ̂j + ζ̂j in (3.8) and (3.9), we get

− divy(κ∇y(χ̂
j(x, y)− ycj)) = 0 , in Eout; (3.13)

κ∇y(χ̂
j(x, y)− ycj) · ν =

1

D0

(χ̂j(x, y)− ycj + ζ̂j(x)) , on Γ . (3.14)

Therefore, taking into account (3.12)–(3.14), it is easily seen that χ̂j is the required
unique solution of the problem (3.5)–(3.7). The uniqueness follows by standard en-
ergy estimates. �
Remark 3.3. Notice that (3.12) can be rewritten as∫

Γ

(χ̂j(x, y)− ycj + ζ̂j(x)) dσy = 0 . (3.15)

Finally, we also recall the following well-known result.

Lemma 3.4. For each j = 1, . . . , N , there exists a unique χ̄j ∈ L∞(Ω;H1
#(Eout))

which satisfies

− divy(κ(x, y)∇y(χ̄
j(x, y)− yj)) = 0 , in Eout; (3.16)

κ(x, y)∇y(χ̄
j(x, y)− yj) · ν = 0 , on Γ ; (3.17)∫
Eout

χ̄j(x, y) dy = 0 . (3.18)

4. Homogenization of the case α > 1

In this section, we study the homogenization for the case α > 1 and we find, in
the limit, a standard parabolic problem, in which the effective capacity is given by
a weighted average of the original capacities of the outer and the inner phases, the
effective diffusion matrix depends only on the properties of the outer phase, but no
memory of the contact coefficient D0 is kept (see Remark 4.4).

Theorem 4.1. The limiting function u, appearing in (2.24), is the unique solution
of

− (|Eout|+ λ)

∫
ΩT

uφt dx dt+

∫
ΩT

Ahom∇u · ∇φ dx dt

= |Eout|
∫
ΩT

fφ dx dt+ (|Eout|+ λ)

∫
Ω

uφ(0) dx , (4.1)

for all φ ∈ H1(ΩT ) with φ = 0 on ∂Ω× (0, T ) and for t = T . Here, the homogenized
matrix Ahom is defined by

Aij
hom(x) = −

∫
Eout

κ(x, y)∇y(χ
i − yi) · ∇y y

j dy , (4.2)

for i, j = 1, . . . , N , where χ has been introduced in Lemma 3.1.
10



Proof. Following similar ideas as in [19, 26], we select as a test function

φε(x, t) = εz(t)
[
Mε(w)(x)ψ

(x
ε

)
+ w(x)ϕ

(x
ε

)]
,

where z ∈ C1([0, T ]), z(T ) = 0, w ∈ C∞
0 (Ω), ψ ∈ C∞

0 (Y ), ϕ ∈ C∞
# (Y ); we also assume

that ψ is constant and ϕ = 0 in Eint. By unfolding the integrals appearing in the
weak formulation (2.7), we arrive at

− ε

∫
ΩT×Y

Tε(aεuε)Tε(z
′)[Mε(w)Tε(ψ) + Tε(w)Tε(ϕ)] dx dy dt

+ ε

∫
ΩT×Eout

Tε(z)Tε(κε)Tε(∇uε) · Tε(∇w)Tε(ϕ) dx dy dt

+

∫
ΩT×Eout

Tε(z)Tε(κε)Tε(∇uε) · [Tε(∇y ψ)Mε(w) + Tε(w)Tε(∇y ϕ)] dx dy dt

−
∫

ΩT×Eout

Tε(f)Tε(φε) dx dy dt−
∫

Ω×Y

Tε(aεuε)Tε(φε(0)) dx dy → 0 , ε→ 0 .

However, it is easily seen that all the terms above, excepting the third integral, vanish
in the limit independently of the previous relation, which therefore yields∫

ΩT×Eout

z(t)w(x)κ(x, y)(∇u+∇y û
1) · ∇y(ψ + ϕ) dx dy dt = 0 . (4.3)

By a standard density argument, this implies∫
ΩT×Eout

z(t)κ(x, y)(∇u+∇y û
1) · ∇y Φdx dy dt = 0 , (4.4)

for all Φ ∈ C1(Ω × Eout), periodic in Y , vanishing on ∂Ω and constant on Γ .
Taking into account that, from Proposition 4.2 below, we have that yc · ∇u + û1 is
independent of y on ΩT × Γ , equality (4.4) turns out to be the weak formulation of
problem

− divy(κ(∇u+∇y û
1)) = 0, in ΩT × Eout; (4.5)∫

Γ

κ(∇u+∇y û
1) · ν dσy = 0, (4.6)

yc · ∇u+ û1 is independent of y on ΩT × Γ . (4.7)

Next, we choose as a test function

ϕε(x, t) = z(t)
[
Mε(w)ψ

(x
ε

)
+ w(x)

(
1− ψ

(x
ε

))]
,

11



where ψ is as above with, more specifically, ψ = 1 in Eint. Note that Tε(ϕε) → zw
strongly in L2(Ω × Y ) and that

−
∫

ΩT×Y

Tε(aεuε)Tε(z
′[Mε(w)ψ + w(1− ψ)]) dx dy dt

+

∫
ΩT×Eout

Tε(κε)Tε(∇uε)Tε

(
z(1− ψ)∇w + ε−1z(Mε(w)− w)∇y ψ

)
dx dy dt

−
∫

ΩT×Eout

Tε(f)Tε(ϕε) dx dy dt−
∫

Ω×Y

Tε(aεuε)Tε(ϕε(0)) dx dy → 0 , ε→ 0 .

Then we get, according to [26],

−
∫

ΩT×Eout

uz′w dx dy dt−
∫

ΩT×Eint

λ

|Eint|
uz′w dx dy dt

+

∫
ΩT×Eout

zκ(∇u+∇y û
1) · [∇w −∇y(ψy

c · ∇w)] dx dy dt

=

∫
ΩT×Eout

fwz dx dy dt+ (|Eout|+ λ)

∫
Ω

z(0)wu dx .

(4.8)

We add (4.8) to (4.4) and obtain

− (|Eout|+ λ)

∫
ΩT

z′wu dx dt+

∫
ΩT×Eout

zκ(∇u+∇y û
1) · (∇w +∇y w

1) dx dy dt

= |Eout|
∫
ΩT

zwf dx dt+ (|Eout|+ λ)

∫
Ω

z(0)wu dx , (4.9)

where we set

w1(x, y) = Φ(x, y)− ψ(y)yc · ∇w − c(x) ,

with c such that MEout(w
1) = 0. The choice to fix the mean value of w1 in Eout is

due to the fact that such a function acts only on Eout.
By appealing to (4.5)–(4.7), we expand

û1(x, y, t) = −χ(x, y) · ∇u(x, t) , (x, y, t) ∈ Ω × Eout × (0, T ) , (4.10)

where the vector χ has been introduced in Lemma 3.1. This implies thatMEout(û
1) =

0. Thus, we obtain from (4.9)

− (|Eout|+ λ)

∫
ΩT

z′wu dx dt+

∫
ΩT

zAhom∇u · ∇w dx dy dt

= |Eout|
∫
ΩT

zwf dx dt+ (|Eout|+ λ)

∫
Ω

z(0)wu dx , (4.11)
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which essentially is (4.1), up to a routine density argument. The uniqueness of
the solution u of equation (4.1) is a standard result from the theory of parabolic
equations, taking into account that the homogenized matrix Ahom is symmetric and
positive definite (see Remark 4.3). Hence, all the above convergences hold true for
the whole sequences. �
Proposition 4.2. Let û1 and u be the limiting functions appearing in (2.21) and
(2.24), respectively. Then, we have that

yc · ∇u+ û1 is independent of y on ΩT × Γ . (4.12)

Proof. Let uε = (uintε , uoutε ) be the unique solution of problem (2.2)–(2.6). Following
[28, Theorem 2.17], we have that, up to a subsequence, as ε→ 0,

1

ε

[
Tε(u

out
ε )−MΓ (T b

ε (u
out
ε ))

]
⇀ yc · ∇u+ û1 , weakly inL2(ΩT ;H

1(Eout)) ,

up to an additive function independent of y. Therefore, by the linearity of the trace
operator, as ε→ 0, we also obtain that

1

ε

[
T b
ε (u

out
ε )−MΓ (T b

ε (u
out
ε ))

]
⇀ yc · ∇u+ û1 , weakly inL2(ΩT × Γ ) , (4.13)

where, with abuse of notation, we denote by û1 also the trace of û1 on Γ . Clearly,
the previous convergence is still true up to the same additive function independent
of y, quoted above. Moreover, by (2.27) and (4.13), we have

1

ε

(
T b
ε (u

int
ε )−MΓ (T b

ε (u
int
ε ))

)
= −T b

ε

(
[uε]

ε

)
+MΓ

(
T b
ε ([uε])

ε

)
+

1

ε

(
T b
ε (u

out
ε )−MΓ (T b

ε (u
out
ε ))

)
⇀ yc · ∇u+ û1 , weakly inL2(ΩT × Γ ) , (4.14)

still up to the same additive function independent of y quoted above. However, as
already pointed out, by (2.3) and the choice of the initial datum uε, it follows that u

int
ε ,

in each component Eε,ξ
int of Ω

ε
int, depends only on (ξ, t), i.e. T b

ε (u
int
ε ) is independent of

y on Γ . Hence, also the limit of ε−1
(
T b
ε (u

int
ε )−MΓ (T b

ε (u
int
ε ))

)
is independent of y

on Γ , so that the thesis is achieved. �
Remark 4.3. We emphasize that the distributional formulation of the limit problem
(4.1) is

(|Eout|+ λ)ut − div(Ahom∇u) = |Eout|f , in ΩT ;

u = 0 , on ∂Ω × (0, T );

u(x, 0) = u , in Ω,

(4.15)

which coincides with problem (50) in [6], since Ahom is the same matrix obtained in
[6, formula (49)]. Indeed, from standard results, the matrix Ahom can be rewritten as

Aij
hom(x) =

∫
Eout

κ(x, y)∇y(χ
i − yi) · ∇y(χ

j − yj) dy , (4.16)

which implies that it is symmetric and positive definite, ensuring, in this way, the
uniqueness of the homogenized solution. �
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Remark 4.4. The limiting homogenized problem in the case α > 1 does not bear any
memory of the contact coefficient D0.
Indeed, the fact that we obtain the same result given by problem (50) of [6] (where,
by assumption, [uε] = 0), can be viewed as a consequence of the high degeneracy of
the case of power α > 1, which we are dealing with. �

5. Homogenization in the case α = 1

In this section, we study the homogenization for the case α = 1 and we find, in the
limit, a standard parabolic problem, in which the effective capacity is the same as in
the previous case, while the effective diffusion matrix keeps memory of the contact
coefficient D0 (see Remark 5.3) and the geometrical properties of the interface. Such
an explicit dependence on D0 calls for a second limit procedure, in which we let
D0 → 0, essentially arriving at the same situation discussed in Section 4 (see Remark
5.6).

Theorem 5.1. The limiting function u, appearing in (2.24), is the unique solution
of

− (|Eout|+ λ)

∫
ΩT

uφt dx dt+

∫
ΩT

Bhom ∇u · ∇φ dx dt

= |Eout|
∫
ΩT

fφ dx dt+ (|Eout|+ λ)

∫
Ω

uφ(0) dx , (5.1)

for all φ ∈ H1(ΩT ) with φ = 0 on ∂Ω× (0, T ) and for t = T . Here, the homogenized
matrix Bhom is defined by

Bij
hom(x) =−

∫
Eout

κ(x, y)∇y(χ̂
j − ycj) · ∇y y

ci dy − 1

D0

∫
Γ

(χ̂j − ycj + ζ̂j)yci dσy , (5.2)

for i, j = 1, . . . , N , where χ̂ = (χ̂1, . . . , χ̂N) and ζ̂ = (ζ̂1, . . . , ζ̂N) have been intro-
duced in Lemma 3.2.

Proof. We begin by recalling that [u] = 0, owing to (2.23), and that (2.28) is in force.
Thus, we choose first the test function φε(x, t) = εφ(x, x/ε, t), where

φ(x, y, t) =

{
Ψ(x, y)z(t) , in ΩT × Eout,

0 , in ΩT × Eint.

Here, z ∈ C1([0, T ]), z(T ) = 0, the function Ψ ∈ C∞(Ω × Eout) vanishes near ∂Ω and
is Y -periodic.
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Reasoning as in Section 4, we arrive at∫
ΩT×Eout

Tε(κεz)Tε(∇uoutε ) · Tε(∇y Ψ)dx dy dt

+
1

D0

∫
ΩT×Γ

T b
ε

( [uε]
ε

)
T b
ε (zΨ)dx dσy dt→ 0 , ε→ 0 . (5.3)

Then, by a density argument and recalling (2.28), we get∫
ΩT×Eout

κ(∇u+∇y û
1)·∇y ϕ dx dy dt+

1

D0

∫
ΩT×Γ

(û1+yc·∇u+ζ)ϕ dx dσy dt = 0 , (5.4)

for all ϕ ∈ L∞(ΩT ;H
1
#(Eout)). The distributional formulation of (5.4) is given by

− divy(κ(∇u+∇y û
1)) = 0 , in ΩT × Eout; (5.5)

κ(∇u+∇y û
1) · ν =

1

D0

(û1 + yc · ∇u+ ζ) , on ΩT × Γ . (5.6)

Notice that (5.6) implies∫
ΩT×Γ

(û1 + yc · ∇u+ ζ) dx dσy dt = 0 . (5.7)

Then, we will apply below the factorization

û1(x, y, t) = −χ̂(x, y) · ∇u(x, t)− ζ̂(x) · ∇u(x, t)− ζ(x, t) . (5.8)

Next, we select the test function φ̃ε(x, x/ε, t), where

φ̃ε(x, y, t) =

{
z(t)w(x) , in ΩT × Eout,

z(t)Mε(w)(x) , in ΩT × Eint,

with z ∈ C1([0, T ]), z(T ) = 0, w ∈ C∞
0 (Ω). We get

−
∫

ΩT×Eout

Tε(uε)Tε(z
′w) dx dy dt− λ

|Eint|

∫
ΩT×Eint

Tε(uε)Tε(z
′)Mε(w) dx dy dt

+

∫
ΩT×Eout

Tε(zκε)Tε(∇uε) · Tε(∇w) dx dy dt

+
1

D0

∫
ΩT×Γ

T b
ε (z)T b

ε

( [uε]
ε

)
T b
ε

(w −Mε(w)

ε

)
dx dσy dt

−
∫

ΩT×Eout

Tε(f)Tε(zw) dx dy dt−
∫
Ω

(
χEout +

λ

|Eint|
χEint

)
Tε(uε)Tε(φ̃ε(0)) dx dy → 0 ,
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as ε→ 0. Thus, in the limit, we obtain

− |Eout|
∫
ΩT

uz′w dx dt− λ

∫
ΩT

uz′w dx dt

+

∫
ΩT×Eout

zκ(∇u+∇y û
1) · ∇w dx dy dt

+
1

D0

∫
ΩT×Γ

z(û1 + yc · ∇u+ ζ)yc · ∇w dx dσy dt

= |Eout|
∫
ΩT

fzw dx dt+ (|Eout|+ λ)

∫
Ω

uz(0)w dx .

(5.9)

Equation (5.9) is, up to the usual density argument, the weak formulation of the
limiting problem. Next, we insert into it the factorization for û1 given in (5.8), ob-
taining (5.1). Since the homogenized matrix Bhom is symmetric and positive definite
(see Proposition 5.2 below), by standard theory of parabolic equations, the solu-
tion of (5.1) is unique, and then all the above convergences hold true for the whole
sequences. �

Proposition 5.2. The matrix Bhom can be rewritten as

Bij
hom(x) =

∫
Eout

κ(x, y)∇y(χ̂
i − yci) · ∇y(χ̂

j − ycj) dy

+
1

D0

∫
Γ

(χ̂i − yci + ζ̂ i)(χ̂j − ycj + ζ̂j) dσy , (5.10)

for i, j = 1, . . . , N . It follows that Bhom is symmetric and positive definite.

Proof. On using χ̂i in (3.5) as test function, we find∫
Eout

κ∇y(χ̂
j − ycj) · ∇y χ̂

i dy +
1

D0

∫
Γ

(χ̂j − ycj + ζ̂j)χ̂i dσy = 0 . (5.11)

On the other hand, ∫
Γ

(χ̂j − ycj + ζ̂j)ζ̂ i dσy = 0 , (5.12)

owing to (3.15) and recalling that ζ̂ i is independent of y. By adding (5.11) and (5.12)
to (5.2), we prove (5.10). The positive definiteness of Bhom is then standard. �

Remark 5.3. Notice that the distributional formulation of the problem (5.1) is

(|Eout|+ λ)ut − div(Bhom∇u) = |Eout|f , in ΩT ;

u = 0 , on ∂Ω × (0, T );

u(x, 0) = u , in Ω.

(5.13)
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The homogenized diffusion matrix depends on D0 and this calls for a second limit
D0 → 0. �

The final part of this section is devoted to perform the limit D0 → 0. In what follows,
the dependence on D0 of the involved functions is not denoted explicitly, but it is left
understood.
For later use, let us define the functional space

X Γ
# (Eout) := {ψ ∈ H1

#(Eout) : ψ is independent of y on Γ} . (5.14)

Theorem 5.4. For D0 → 0, we have that there exists uo ∈ L2(0, T ;H1
0 (Ω)) such

that

u ⇀ uo , weakly in L2(0, T ;H1
0 (Ω)),

where uo is the unique solution of the problem

− (|Eout|+ λ)

∫
ΩT

uoφt dx dt+

∫
ΩT

Bo,hom∇uo · ∇φ dx dt

= |Eout|
∫
ΩT

fφ dx dt+ (|Eout|+ λ)

∫
Ω

uφ(0) dx , (5.15)

for any φ ∈ H1(ΩT ) with φ = 0 on ∂Ω and for t = T . Here, Bo,hom is defined by

Bij
o,hom(x) = −

∫
Eout

κik(x, y)∂yk(χ̂
j
o − ycj) dy −

∫
Γ

κ∇y(χ̂
j
o − ycj) · νyci dσy , (5.16)

for i, j = 1, . . . , N , where χ̂0 = (χ̂1
o, . . . , χ̂

N
o ) is given in (5.26)–(5.29), below.

Proof. First, we remark that the weak formulation of problem (3.5)–(3.6) is∫
Eout

κ(x, y)∇y(χ̂
j − ycj) · ∇yφ dy +

1

D0

∫
Γ

(χ̂j − ycj + ζ̂j)φ dσy = 0 , (5.17)

for every φ ∈ H1
#(Eout). However, problem (3.5)–(3.6) can be written in a variational

form. Following the ideas in [26], for j = 1, . . . , N , we can introduce the function
U j(x, y) = χ̂j(x, y)− ycjΨ(y), where Ψ ∈ C∞(Eout) is a function such that Ψ = 0 on
∂Y , Ψ ≡ 1 on Γ and

∫
Eout

ycjΨdy = 0. Clearly, U j = χ̂j−ycj+ycj(1−Ψ). Moreover,
set

gj1 = − divy
(
κ∇y(y

cj(1−Ψ))
)
, in Eout

and

gj2 = κ∇y

(
ycj(1−Ψ)

)
· ν , on Γ .
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By (3.5)–(3.7), we obtain that U j ∈ L∞(Ω;H1
#(Eout)) and it satisfies the following

variational problem

− divy(κ∇yU
j) = gj1 , in Eout; (5.18)

κ∇yU
j · ν =

1

D0

(U j + ζ̂j) + gj2 , on Γ ; (5.19)∫
Eout

U j(x, y) dy = 0 . (5.20)

Multiplying equation (5.18) by U j (which is an admissible test function), integrating
by parts and using (5.19), we arrive at∫

Eout

κ∇yU
j · ∇yU

j dy +
1

D0

∫
Γ

(U j + ζ̂j)U j dσy

=

∫
Eout

gj1U
j dy −

∫
Γ

gj2U
j dσy =

∫
Eout

κ∇y(y
cj(1−Ψ)) · ∇yU

j dy . (5.21)

Taking into account that, by construction, U j = χ̂j − ycj on Γ and that ζ̂j is inde-
pendent of y on Γ , by (5.12), it follows∫

Γ

(U j + ζ̂j)ζ̂j dσy =

∫
Γ

(χ̂j − ycj + ζ̂j)ζ̂j dσy = 0 ,

so that the equality (5.21) can be rewritten in the form∫
Eout

κ∇yU
j ·∇yU

j dy+
1

D0

∫
Γ

(U j + ζ̂j)(U j + ζ̂j) dσy =

∫
Eout

κ∇y(y
cj(1−Ψ)) ·∇yU

j dy .

This leads to the energy estimate

sup
Ω

 ∫
Eout

|∇yU
j|2 dy + 1

D0

∫
Γ

(U j + ζ̂j)2 dσy

 ≤ γ , (5.22)

where γ depends on C and ∥Ψ∥C1(Eout), but it is independent of D0. This implies
that, for j = 1, . . . , N ,

U j + ζ̂j = χ̂j − ycj + ζ̂j → 0 , strongly in L∞(Ω;L2(Γ )), (5.23)

when D0 → 0; moreover, there exists χ̂j
o ∈ L∞(Ω;H1

#(Eout)) such that, up to a
subsequence,

χ̂j ⇀ χ̂j
o , weakly in L∞(Ω;H1

#(Eout)), (5.24)

when D0 → 0. In particular, from (5.23) and (5.24), it follows that χ̂j
o − ycj is

independent of y on Γ .
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In order to pass to the limit in the weak formulation (5.17), let us take a test function
φ ∈ X Γ

# (Eout). Then, for a.e. x ∈ Ω, using again (5.12), we get∫
Eout

κ(x, y)∇y(χ̂
j
o − ycj) · ∇yφ dy = 0 , ∀φ ∈ X Γ

# (Eout) . (5.25)

Taking into account that χ̂j
o − ycj is independent of y on Γ , we can extend χ̂j

o to Eint

in such a way that χ̂j
o − ycj remains independent of y (still denoting this extension

by χ̂j
o). Hence, it is easy to see that such a χ̂j

o belongs to the space L∞(Ω;H1
#(Y ))

and, if we add to it a suitable function of x, it satisfies

− divy
(
κ∇y(χ̂

j
o − ycj)

)
= 0 in Eout; (5.26)∫

Eout

κ(x, y)∇y(χ̂
j
o − ycj) · ν dy = 0 (5.27)

χ̂j
o(x, y)− ycj is independent of y in Eint; (5.28)∫

Y

χ̂j
o(x, y) dy = 0 , (5.29)

for j = 1, . . . , N . Now, we have to pass to the limit in the homogenized matrix

Bij
hom(x) = −

∫
Eout

κik(x, y)∂yk(χ̂
j − ycj) dy − 1

D0

∫
Γ

(χ̂j − ycj + ζ̂j)yci dσy =: −I1 − I2 .

Clearly, when D0 → 0, for a.e. x ∈ Ω, it follows

I1 →
∫

Eout

κik(x, y)∂yk(χ̂
j
o − ycj) dy .

On the other hand, using (3.14), for I2 we have

I2 =
1

D0

∫
Γ

(χ̂j − ycj + ζ̂j)yci dσy =
1

D0

∫
Γ

(χ̂j − ycj + ζ̂j)yciΨdσy

=

∫
Γ

κ∇y(χ̂
j − ycj) · νyciΨdσy

= −
∫

Eout

κ∇y(χ̂
j − ycj) · ∇y(y

ciΨ)dy → −
∫

Eout

κ∇y(χ̂
j
o − ycj) · ∇y(y

ciΨ)dy

=

∫
Γ

κ∇y(χ̂
j
o − ycj) · νyciΨdσy =

∫
Γ

κ∇y(χ̂
j
o − ycj) · νyci dσy .

Thus, for a.e. x ∈ Ω, Bij
hom(x) → Bij

o,hom(x), where the limit matrix Bij
o,hom(x) is

given by (5.16). Moreover, by (5.22), it follows that the entries of the matrix Bhom

are bounded by a constant in Ω and thus Bij
hom → Bij

o,hom, strongly in Lq(Ω), for all
q ≥ 1.
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By taking into account that the matrix Bij
hom is symmetric and positive definite,

independently of D0, we get the standard energy estimate

sup
0<t<T

∫
Ω

u2(t) dx+

∫
ΩT

|∇u|2 dx dt ≤ γ , (5.30)

for a suitable γ > 0, independent of D0. Then, up to a subsequence, we get that
there exists uo ∈ L2(0, T ;H1

0 (Ω)) such that, when D0 → 0,

u ⇀ uo , weakly in L2(0, T ;H1
0 (Ω)).

Thus, passing to the limit for D0 → 0 in the weak formulation (5.1), we arrive at
(5.15). The uniqueness is a consequence of the symmetry and the positive definiteness
of the matrix Bo,hom (see Remark 5.5 below). �

Remark 5.5. The distributional formulation of the limit problem reads like

(|Eout|+ λ)uo,t − div(Bo,hom∇uo) = |Eout|f , in ΩT ;

uo = 0 , on ∂Ω × (0, T );

uo(x, 0) = u , in Ω,

(5.31)

which coincides with problem (50) in [6], once we have proven that the homogenized
limit matrix Bo,hom is the same as the matrix obtained in [6, formula (49)].
To this purpose, let us take φ = χ̂i

o − yciΨ ∈ X Γ
# (Eout), extended independently of y

in Eint, as test function in (5.25) (with Ψ as above). It follows that

∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇yχ̂

i
o dy −

∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(y

ciΨ)dy = 0 . (5.32)

20



Hence,

Bij
o,hom(x) = −

∫
Eout

κik(x, y)∂yk(χ̂
j
o − ycj) dy −

∫
Γ

κ∇y(χ̂
j
o − ycj) · νyci dσy

= −
∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇yy

ci dy −
∫
Γ

κ∇y(χ̂
j
o − ycj) · νyciΨdσy

=

∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(χ̂

i
o − yci) dy

−
∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(y

ciΨ)dy −
∫
Γ

κ∇y(χ̂
j
o − ycj) · νyciΨdσy

=

∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(χ̂

i
o − yci) dy

−
∫

Eout

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(y

ciΨ)dy −
∫
Γ

κ∇y(χ̂
j
o − ycj) · νyciΨdσy

=

∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(χ̂

i
o − yci) dy +

∫
Eout

div
(
κ(x, y)∇y(χ̂

j
o − ycj)

)
yciΨdy

=

∫
Y

κ(x, y)∇y(χ̂
j
o − ycj) · ∇y(χ̂

i
o − yci) dy ,

where, in the third and fourth lines, we added (5.32) and, in the last line, we used
(5.26). Therefore, we get that Bo,hom is the same symmetric and positive definite
matrix appearing in [6, formula (49)], once we notice that (5.26)–(5.29) coincides
with problem (44)–(46) in Lemma 4.4 of [6]. Hence, the previous limit problem
(5.31) is exactly problem (50) in [6] (recall that ycj and yj coincide up to an additive
constant). �
Remark 5.6. Notice that (5.26)–(5.29) are essentially the same problem defining the
cell function χ in Lemma 3.1, which is involved in the homogenization of the case
α > 1; indeed, the two cell functions coincide up to a quantity independent of y. This
implies that Bo,hom = Ahom. Therefore, after the two limit procedures, we arrive at
the same problem given in (4.15), for α > 1. This fact seems to be connected to the
high degeneracy of the ε-problem in this case. �

6. Homogenization of the case −1 < α < 1

In this section, we study the homogenization for the case −1 < α < 1 and we find, in
the limit, a standard parabolic problem, in which the effective capacity is given by
a weighted average of the original capacities of the outer and the inner phases, the
effective diffusion matrix depends only on the properties of the outer phase, but no
memory of the contact coefficient D0 is kept. However, the effective diffusion in this
case is different from the one obtained in Section 4 (see Remark 6.3).
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Theorem 6.1. The limiting function u, appearing in (2.24), is the unique solution
of

− (|Eout|+ λ)

∫
ΩT

uφt dx dt+

∫
ΩT

Chom ∇u · ∇φ dx dt

= |Eout|
∫
ΩT

fφ dx dt+ (|Eout|+ λ)

∫
Ω

uφ(0) dx , (6.1)

for all φ ∈ H1(ΩT ) with φ = 0 on ∂Ω× (0, T ) and for t = T . Here, the homogenized
matrix Chom is defined by

Cij
hom(x) = −

∫
Eout

κ(x, y)∇y(χ̄
j − yj) · ∇y y

i dy , (6.2)

for i, j = 1, . . . , N , where χ̄ has been introduced in Lemma 3.4.

Proof. We proceed as in the proof of Theorem 5.1, with the same test function φε,
arriving at∫

ΩT×Eout

Tε(κεz)Tε(∇uoutε ) · Tε(∇y Ψ)dx dy dt

+
ε

1−α
2

D0

∫
ΩT×Γ

T b
ε

( [uε]

ε
1+α
2

)
T b
ε (zΨ)dx dσy dt→ 0 , ε→ 0 . (6.3)

When we recall (2.22), we get by density∫
ΩT×Eout

κ(∇u+∇y û
1) · ∇y ϕ dx dy dt = 0 , (6.4)

for all ϕ ∈ L∞(ΩT ;H
1
#(Eout)). The distributional formulation of (6.4) is

− divy(κ(∇u+∇y û
1)) = 0 , in ΩT × Eout; (6.5)

κ(∇u+∇y û
1) · ν = 0 , on ΩT × Γ . (6.6)

Then, we will apply below the factorization

û1(x, y, t) = −χ̄(x, y) · ∇u(x, t) , (6.7)

where χ̄ = (χ̄1, . . . , χ̄N) is introduced in Lemma 3.4.
We go on reproducing the argument in the proof of Theorem 5.1, that is we select
the test function φ̃ε(x, x/ε, t), as there. However, owing to the different scaling, we
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obtain here

−
∫

ΩT×Eout

Tε(uε)Tε(z
′w) dx dy dt− λ

|Eint|

∫
ΩT×Eint

Tε(uε)Tε(z
′)Mε(w) dx dy dt

+

∫
ΩT×Eout

Tε(zκε)Tε(∇uε) · Tε(∇w) dx dy dt

+
ε

1−α
2

D0

∫
ΩT×Γ

T b
ε (z)T b

ε

( [uε]

ε
1+α
2

)T b
ε (w −Mε(w))

ε
dx dσy dt

−
∫

ΩT×Eout

Tε(f)Tε(zw) dx dy dt−
∫
Ω

(
χEout +

λ

|Eint|
χEint

)
Tε(uε)Tε(φε(0)) dx dy → 0 ,

as ε→ 0. In the limit, on invoking again (2.22), we obtain

− |Eout|
∫
ΩT

uz′w dx dt− λ

∫
ΩT

uz′w dx dt

+

∫
ΩT×Eout

zκ(∇u+∇y û
1) · ∇w dx dy dt

= |Eout|
∫
ΩT

fzw dx dt+ (|Eout|+ λ)

∫
Ω

uz(0)w dx ,

(6.8)

which, as above, yields the weak formulation of the limiting problem. Next, we insert
into it the factorization for û1 given in (6.7), obtaining (6.1). Due to Remark 6.2
below, we obtain uniqueness of the solution of (6.1) and, therefore, all the above
convergences hold true for the whole sequences. �
Remark 6.2. The distributional formulation of the problem (6.1) reads as follows:

(|Eout|+ λ)ut − div(Chom∇u) = |Eout|f , in ΩT ;

u = 0 , on ∂Ω × (0, T );

u(x, 0) = u , in Ω.

(6.9)

Moreover, by standard results, the matrix Chom can be rewritten as

Cij
hom(x) =

∫
Eout

κ(x, y)∇y(χ̄
i(x, y)− yi) · ∇y(χ̄

j(x, y)− yj) dy , (6.10)

which implies that it is symmetric and positive definite. Therefore, problem (6.1)
is a standard parabolic problem, for which existence and uniqueness are well-known
results.

�
Remark 6.3. Note that the limiting problem (6.9) does not keep any memory of the
contact constant D0. Moreover, we point out that, despite the fact that problem (6.9)
presents the same form as the problem (4.15), it describes a different macroscopic
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material, since the corresponding homogenized matrices are different, as they involve
different cell functions. �

7. Homogenization of the case α = −1

In this section, we study the case α = −1, which leads to a completely different struc-
ture of the macroscopic problem. More precisely, we arrive at a bidomain problem,
where the homogenized solution splits into two components satisfying a system cou-
pled through an exchange term involving D0 (see (7.5)). As D0 → 0, the bidomain
structure is lost and we recover a standard parabolic problem.

Theorem 7.1. The limiting functions u1 and u2, appearing in (2.19)–(2.20), give
the unique solution (u1, u2) of the system

− λ

∫
ΩT

u1φ1,t dx dt− |Eout|
∫
ΩT

u2φ2,t dx dt+

∫
ΩT

Chom ∇u2 · ∇φ2 dx dt

+
|Γ |
D0

∫
ΩT

(u2 − u1)(φ2 − φ1) dx dt

= |Eout|
∫
ΩT

fφ2 dx dt+ λ

∫
Ω

uφ1(0) dx+ |Eout|
∫
Ω

uφ2(0) dx , (7.1)

for all φ1, φ2 ∈ H1(ΩT ) with φ1, φ2 = 0 on ∂Ω× (0, T ) and for t = T . Here, Chom is
the same matrix defined in (6.2).

Proof. We proceed as in the proof of Theorem 5.1, with the same test function φε,
arriving at

∫
ΩT×Eout

Tε(κεz)Tε(∇uoutε ) · Tε(∇y Ψ)dx dy dt

+
ε

D0

∫
ΩT×Γ

T b
ε ([uε])T b

ε (zΨ)dx dσy dt→ 0 , ε→ 0 . (7.2)

Recalling (2.25), we get that (6.4)–(6.7) are still in force.
Next, we select the test function φ̃ε(x, t) = φ̃(x, x/ε, t), with φ̃ given by

φ̃(x, y, t) =

{
z1(t)w1(x) , in ΩT × Eint,

z2(t)w2(x) , in ΩT × Eout,
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with z1, z2 ∈ C1([0, T ]), z1(T ) = 0 = z2(T ), w1, w2 ∈ C∞
0 (Ω). Owing to the present

scaling, we obtain

−
∫

ΩT×Eout

Tε(uε)Tε(z
′
2w2) dx dy dt−

λ

|Eint|

∫
ΩT×Eint

Tε(uε)Tε(z
′
1w1) dx dy dt

+

∫
ΩT×Eout

Tε(z2)Tε(κε)Tε(∇uε) · Tε(∇w2) dx dy dt

+
1

D0

∫
ΩT×Γ

T b
ε ([uε])T b

ε (z2w2 − z1w1) dx dσy dt−
∫

ΩT×Eout

Tε(f)Tε(z2w2) dx dy dt

−
∫

Ω×Eout

Tε(uε)Tε(z2(0)w2) dx dy −
∫

Ω×Eint

λ

|Eint|
Tε(uε)Tε(z1(0)w1) dx dy → 0 , (7.3)

as ε→ 0. In the limit, on invoking again (2.25), we obtain

−|Eout|
∫
ΩT

u2z
′
2w2 dx dt−λ

∫
ΩT

u1z
′
1w1 dx dt+

∫
ΩT×Eout

z2κ(∇u2+∇y û
1)·∇w2 dx dy dt

+
1

D0

∫
ΩT×Γ

(u2 − u1)(z2w2 − z1w1) dx dσ dt

= |Eout|
∫
ΩT

fz2w2 dx dt+ |Eout|
∫
Ω

uz2(0)w2 dx dy + λ

∫
Ω

uz1(0)w1 dx dy , (7.4)

which, as above, by a density argument yields the weak formulation of the limiting
problem. Next, we insert into it the factorization for û1 given in (6.7), obtaining
(7.1). Due to Remark 6.2 above and to the energy estimate (7.8) below, the problem
(7.1) has uniqueness. Therefore, all the above convergences hold true for the whole
sequences. �

Remark 7.2. The distributional formulation of (7.1) leads to the homogenized bido-
main system given by

|Eout|u2,t − div (Chom∇u2) +
|Γ |
D0

(u2 − u1) = |Eout|f , in ΩT ;

λu1,t −
|Γ |
D0

(u2 − u1) = 0 , in ΩT ;

u1(0) = u2(0) = u , in Ω.

(7.5)

We stress the fact that the matrix Chom, which is the same matrix appearing in
Section 6, does not depend on D0. �
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Theorem 7.3. For D0 → 0, we have that there exists uo ∈ L2(0, T ;H1
0 (Ω)) such

that

u1 ⇀ uo , weakly in L2(ΩT );

u2 ⇀ uo , weakly in L2(0, T ;H1
0 (Ω));

u2 − u1 → 0 , strongly in L2(ΩT ),

(7.6)

where uo is the unique solution of the problem

− (|Eout|+ λ)

∫
ΩT

uoφt dx dt+

∫
ΩT

Chom∇uo · ∇φ dx dt

= |Eout|
∫
ΩT

fφ dx dt+ (|Eout|+ λ)

∫
Ω

uφ(0) dx , (7.7)

for any φ ∈ H1(ΩT ) with φ = 0 on ∂Ω × (0, T ) and for t = T . Here, Chom is the
same matrix defined in (6.2).

Proof. Multiplying the first equation in (7.5) by u2 and the second one by u1, summing
and integrating by parts, we get

λ

2

∫
Ω

u21 dx+
|Eout|
2

∫
Ω

u22 dx+

∫
ΩT

Chom∇u2 · ∇u2 dx dt+
|Γ |
D0

∫
ΩT

(u2 − u1)
2 dx dt

= |Eout|
∫
ΩT

fu2 dx dt+

(
λ+ |Eout|

2

)∫
Ω

u2 dx ,

which, by using Poincaré’s inequality on u2, leads to the following energy estimate

sup
0<t<T

∫
Ω

u21 dx+

∫
Ω

u22 dx

+

∫
ΩT

|∇u2|2 dx dt+
1

D0

∫
ΩT

(u2 − u1)
2 dx dt ≤ γ , (7.8)

for a suitable positive constant independent of D0.
The energy estimate (7.8) implies that there exist two functions uo1 ∈ L2(ΩT ) and
uo2 ∈ L2(0, T ;H1

0 (Ω)), such that, up to a subsequence, we have

u1 ⇀ uo1 , weakly in L2(ΩT );

u2 ⇀ uo2 , weakly in L2(0, T ;H1
0 (Ω));

u2 − u1 → 0 , strongly in L2(ΩT ),

(7.9)

for D0 → 0. Since in the limit, u01 = u02 =: uo ∈ L2(0, T ;H1
0 (Ω)), in the weak for-

mulation of problem (7.5) we can take, in both the equations, the same test function
φ ∈ H1(ΩT ), with φ = 0 on ∂Ω × (0, T ) and φ(T ) = 0 in Ω. Then, passing to the
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limit for D0 → 0, we obtain

|Eout|
∫
ΩT

fφ dx dt+ (λ+ |Eout|)
∫
Ω

uφ(0) dx

= −λ
∫
ΩT

u1φt dx dt− |Eout|
∫
ΩT

u2φt dx dt+

∫
ΩT

Chom∇u2 · ∇φ dx dt

→ −λ
∫
ΩT

uoφt dx dt− |Eout|
∫
ΩT

uoφt dx dt+

∫
ΩT

Chom∇uo · ∇φ dx dt .

This proves (7.7). We can conclude that the limit problem has no longer a bido-
main structure; indeed, it is a standard parabolic problem, for which existence and
uniqueness are well-known, proving the statement. �

Remark 7.4. The distributional formulation of the problem (7.7) is given by

(|Eout|+ λ)uo,t − div(Chom∇uo) = |Eout|f , in ΩT ;

uo = 0 , on ∂Ω × (0, T );

uo(x, 0) = u , in Ω.

(7.10)

Notice that (7.10) coincides with problem (50) in [6] only formally, since the present
matrix is different from the one appearing there. On the other hand, the problem
(7.10) coincides with (6.9) and this is still due to the degeneracy of the problem in
this case. �

8. Homogenization of the case α < −1

In this section, we study the case α < −1, which leads to a completely different
problem (see Remarks 8.2 and 8.3), given by a kind of “bidomain” system, in which
the equation governing the outer phase coincides with the homogenized equation of
a standard homogenous Neumann problem in a periodically perforated domain. In
turn, the inner phase coincides with the limit of the initial datum.

Theorem 8.1. The limiting functions u1 and u2, appearing in (2.19)–(2.20), give
the unique solution (u1, u2) of the system

− λ

∫
ΩT

u1φ1,t dx dt− |Eout|
∫
ΩT

u2φ2,t dx dt+

∫
ΩT

Chom ∇u2 · ∇φ2 dx dt

= |Eout|
∫
ΩT

fφ2 dx dt+ λ

∫
Ω

uφ1(0) dx+ |Eout|
∫
Ω

uφ2(0) dx , (8.1)

for all φ1, φ2 ∈ H1(ΩT ) with φ1, φ2 = 0 on ∂Ω× (0, T ) and for t = T . Here, Chom is
the same matrix defined in (6.2).
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Proof. We proceed as in the proof of Theorem 7.1, with the same test functions.
Here, we only highlight the changes with respect to the previous case. More precisely,
concerning the computations for the microscopic part, we still arrive at (7.2) where,
recalling (2.22), the second integral is replaced by

1

D0εα

∫
ΩT×Γ

T b
ε ([uε])T b

ε (zΨ)dx dσy dt

=
ε

D0ε(α+1)/2

∫
ΩT×Γ

T b
ε

(
[uε]

ε(α+1)/2

)
T b
ε (zΨ)dx dσy dt

=
ε(1−α)/2

D0

∫
ΩT×Γ

T b
ε

(
[uε]

ε(α+1)/2

)
T b
ε (zΨ)dx dσy dt ≤ γε(1−α)/2 → 0 ,

since α < −1. So, we have that (6.4)–(6.7) are still in force. On the other hand,
concerning the computations for the macroscopic part, we still arrive at (7.3) where,
similarly as above, the fourth integral is replaced by

1

D0εα+1

∫
ΩT×Γ

T b
ε ([uε])T b

ε (z2w2 − z1w1) dx dσy dt

=
ε−(α+1)/2

D0

∫
ΩT×Γ

T b
ε

(
[uε]

ε(α+1)/2

)
T b
ε (z2w2 − z1w1) dx dσy dt→ 0

as ε → 0, as a consequence of (2.22) and of the fact that α < −1 (which implies
−(α + 1)/2 > 0). Thus, in the limit, we obtain

− |Eout|
∫
ΩT

u2z
′
2w2 dx dt− λ

∫
ΩT

u1z
′
1w1 dx dt

+

∫
ΩT×Eout

z2κ(∇u2 +∇y û
1) · ∇w2 dx dy dt

= |Eout|
∫
ΩT

fz2w2 dx dt+ |Eout|
∫
Ω

uz2(0)w2 dx dy + λ

∫
Ω

uz1(0)w1 dx dy , (8.2)

which coincides with (7.4), apart form the lack of the integral containing D0, appear-
ing there. Therefore, the weak formulation of the limiting problem follows by the
same density argument. Next, we insert into it the factorization for û1 given in (6.7),
obtaining (8.1). Due to Remark 6.2, the problem (8.1) clearly has uniqueness and,
therefore, all the above convergences hold true for the whole sequence. �

28



Remark 8.2. The distributional formulation of the homogenized system (8.1) is given
by

|Eout|u2,t − div (Chom∇u2) = |Eout|f , in ΩT ;

λu1,t = 0 , in ΩT ;

u1(0) = u2(0) = u , in Ω,

(8.3)

where no dependence on D0 appears. Moreover, we easily obtain

u1(x, t) = u(x) , a.e. in ΩT . (8.4)

It is worthwhile to notice that the problem (8.3) can be considered as being a kind of
“bidomain” system, in which the two overlapping phases are completely decoupled.

�

Remark 8.3. We stress that, in the present case, the equation governing the relevant
phase in the “bidomain” limit system (8.3) corresponds neither to the problem (4.15)
in Section 4 (which coincides with [6, problem (50)]) nor to the problem (6.9) in
Section 6 (which recovers, at least formally, [6, problem (50)]). Indeed, here both the
capacity and the diffusion matrix are different from the ones appearing in [6, problem
(50)], leading to a completely new equation which does not keep any memory of the
physical properties of the inner phase. We notice that such a memory is lost also
by u1, which, as it can be seen in (8.4), depends only on the limit of the initial
condition. �
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