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Abstract
Word Sense Disambiguation (WSD) aims at mak-
ing explicit the semantics of a word in context by
identifying the most suitable meaning from a pre-
defined sense inventory. Recent breakthroughs in
representation learning have fueled intensive WSD
research, resulting in considerable performance im-
provements, breaching the 80% glass ceiling set by
the inter-annotator agreement. In this survey, we
provide an extensive overview of current advances
in WSD, describing the state of the art in terms of
i) resources for the task, i.e., sense inventories and
reference datasets for training and testing, as well as
ii) automatic disambiguation approaches, detailing
their peculiarities, strengths and weaknesses. Fi-
nally, we highlight the current limitations of the task
itself, but also point out recent trends that could help
expand the scope and applicability of WSD, setting
up new promising directions for the future.

1 Introduction
Word Sense Disambiguation (WSD) is a historical task in
Natural Language Processing (NLP) and Artificial Intelli-
gence (AI) which, in its essence, dates back toWeaver [1949],
who recognized the problem of polysemous words in the con-
text of Machine Translation. Even today, word polysemy re-
mains one of the most challenging and pervasive linguistic
phenomena in NLP. For example, the ambiguous word bass
refers to two completely disjoint classes of objects in the fol-
lowing sentences: i) “I can hear bass sounds”, ii) “They like
grilled bass”. NLP research has long sought ways to tackle
this phenomenon, with the task of WSD being at the forefront
of the automatic resolution of polysemy. In WSD, ambiguity
is addressed by mapping a target expression to one (or poten-
tially more) of its possible senses, depending on the surround-
ing context. Indeed, a model should map the word bass to the
meanings of low-frequency tones and type of fish, in the re-
spective sentences above. WSD systems use the senses that
are enumerated by a static, predefined, machine-readable dic-
tionary, i.e., a sense inventory. Sense inventories are mostly
concerned with open-class words (nouns, verbs, adjectives

and adverbs), as these are the words carrying most of a sen-
tence’s meaning. In WSD, the sense inventory for a language
can be very large, i.e., in the order of hundreds of thousands
of concepts, but also very sparse, in that each lexeme1 is as-
sociated with only a small subset of the sense inventory.

Predefined inventories define the output space for most
varieties of past and modern approaches. These exist in
many flavors, ranging from purely supervised [Hadiwinoto
et al., 2019; Bevilacqua and Navigli, 2019] to knowledge-
based [Moro et al., 2014; Agirre et al., 2014; Scozzafava
et al., 2020], to hybrid supervised and knowledge-based ap-
proaches [Kumar et al., 2019; Bevilacqua and Navigli, 2020;
Blevins and Zettlemoyer, 2020; Conia and Navigli, 2021;
Barba et al., 2021]. Supervised models, today based on neu-
ral architectures, frame the task as a classification problem
and take advantage of annotated data to learn the association
between words2 in context and senses. Knowledge-based ap-
proaches, instead, often employ graph algorithms on a seman-
tic network, in which senses are connected through semantic
relations and are described with definitions and usage exam-
ples. Their independence from labeled training data, however,
comes at the expense of performing worse than supervised
models [Pilehvar and Navigli, 2014; Raganato et al., 2017a;
Pasini et al., 2021]which, benefiting from pretrained language
models, can now also nimbly scale across different languages.
Nonetheless, information in semantic networks, be it unstruc-
tured (e.g., definitions) or structured (e.g., relational informa-
tion), still remains highly relevant. This is demonstrated by
hybrid approaches, which, reporting the highest results in lit-
erature, are currently attested as the best solution [Barba et al.,
2021].
Considering the fast pace at which the field is moving, to-

gether with the fact that reference WSD surveys [Nancy and
Jean, 1998; Agirre and Edmonds, 2007; Navigli, 2009] are
nowmore than 10 years old, it is hard to have a clear picture as
to which themost successful innovations introduced in the last
few years may be. In this survey paper we thus provide a com-
prehensive overview of the literature, summarizing the most
effective contributions proposed so far. Specifically, we focus

1
⟨ lemma, part of speech ⟩ pair.

2For ease of reading, we use word to refer to both words and mul-
tiword expressions.
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on the most recent and significant models for the task, high-
lighting their strengths and weaknesses, while, at the same
time, outlining possible fruitful directions that lie ahead.

2 Resources for WSD
WSD is a knowledge-intensive task, which needs data of two
different kinds: i) sense inventories, i.e., reference compu-
tational lexicons which enumerate possible meanings; and
ii) annotated corpora, in which a subset of words are tagged
with one or more possible meanings drawn from the given
inventory. In the following subsections, we review the most
popular sense inventories (§2.1) and annotated corpora (§2.2)
used for training and testing WSD systems.
2.1 Sense Inventories
Sense inventories enumerate the set of possible senses for a
given lexeme. The most popular ones are:

• Princeton WordNet [Miller et al., 1990], a large,
manually-curated lexicographic database of English and
the de facto standard inventory for WSD. It is organized
into a graph, where nodes are synsets, i.e., groups of con-
textual synonyms. Each synonym in a synset represents
a sense of a word. Synsets and senses are linked to each
other through edges representing lexical-semantic rela-
tions, such as hypernymy (is-a), and meronymy (part-
of), among others. For each synset, WordNet also pro-
vides other forms of lexical knowledge, such as defini-
tions (glosses) and usage examples. Most recent works
in English WSD use the 3.0 version (released in 2006),
containing 117,659 synsets. Recently, English WordNet
2020 [McCrae et al., 2020] extended the original Prince-
ton WordNet by introducing approximately 3,000 new
synsets, including slang and neologisms.

• BabelNet [Navigli and Ponzetto, 2012], a multilingual
dictionary with coverage of both lexicographic and en-
cyclopedic terms obtained by semi-automatically map-
ping various resources, such as WordNet, multilingual
versions of WordNet and Wikipedia, among others. Ba-
belNet is structured as a semantic network where nodes
are multilingual synsets, i.e., groups of synonyms lexi-
calized in several languages, and edges are semantic re-
lations between them. The latest 2021 release, i.e., ver-
sion 5.0, covers 500 languages and contains more than
20M synsets [Navigli et al., 2021].

Another inventory that has recently been gaining interest
[Blevins et al., 2021] is Wiktionary:3 a collaborative project
designed to create a dictionary for each language separately.
Each of these inventories suffers from the so-called fine-
granularity problem, that is, different meanings of the same
lexeme are, sometimes, hard to discriminate between even for
humans. For example, WordNet enumerates 29 senses for the
noun line, two ofwhich distinguish between a set of things laid
out horizontally and one laid out vertically. To cope with the
excessive granularity of word senses and simplify the WSD
task, different coarser-grained inventories have been proposed

3https://en.wiktionary.org/wiki/Wiktionary:Statistics

[Hovy et al., 2006; Lacerra et al., 2020], but their use has not
yet become mainstream, also due to limited coverage.

Another significant issue is the fact that sense inventories
assume that, at least for practical purposes, word meaning can
be enumerated in a finite list. However, this also implicitly as-
sumes that language is static and does not change much over
time. Unfortunately, this is not the real-case scenario, espe-
cially considering how fast new words and senses are intro-
duced online. Alternative approaches like the generative lexi-
con [Pustejovsky, 1998], which provides a general framework
in which word meaning can be produced online, have been
proposed in the past, but no large-scale experiments have yet
been carried out on them.
2.2 Sense-Annotated Data
As new annotated data are continuously created, in this Sec-
tion we only describe the standard benchmarks used in WSD,
and refer the reader to a recent survey on corpora tagged with
sense annotations [Pasini, 2020].
Data for Training
SemCor [Miller et al., 1993] is the largest manually anno-
tated dataset, comprising 200,000 sense annotations using the
WordNet sense inventory. Despite the remarkable effort, it
only covers 22% of the almost 118,000WordNet synsets, and,
being a subset of the English Brown Corpus from the 1960s,
it features a different distribution of senses compared to that
of contemporary texts, with numerous meanings that are now
commonplace, such as computer mouse, being completely ab-
sent. To increase the annotation coverage, several works [Vial
et al., 2019; Bevilacqua and Navigli, 2020] have recently
started using the English Princeton WordNet Gloss Corpus
(WNG)4 as additional data. WNGcomprises sense definitions
and examples inWordNet, annotated both manually and semi-
automatically, covering more than 59,000WordNet senses.

While English training data is widely available, unfortu-
nately the same does not hold for other languages. Although
hand-labeled data are notoriously difficult to obtain on a large
scale for many languages, some efforts in the past were di-
rected towards creating manually-translated versions of Sem-
Cor [Petrolito and Bond, 2014], but many of these are no
longer available. Therefore, several subsequent works pro-
posed automatic methods for producing high-quality sense-
annotated data both in English [Taghipour and Ng, 2015;
Loureiro and Camacho-Collados, 2020] and other languages
by leveraging: information from Wikipedia [Scarlini et al.,
2019], the Personalized PageRank algorithm [Pasini and Nav-
igli, 2020], label propagation over comparable texts [Barba et
al., 2020] or automatic translations [Pasini et al., 2021].
Data for Testing
Evaluation in WSD is usually carried out using the manually
annotated datasets from the Senseval and SemEval evaluation
campaigns. English WSD benefits from the evaluation suite
of Raganato et al. [2017a] which combines together five all-
words gold-standard datasets: Senseval-2 [Edmonds and Cot-
ton, 2001, S2], Senseval-3 [Snyder and Palmer, 2004, S3],

4https://wordnetcode.princeton.edu/glosstag.shtml
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SemEval-2007 Task 17 [Pradhan et al., 2007, S7], SemEval-
2013 Task 12 [Navigli et al., 2013, S13] and SemEval-2015
Task 13 [Moro and Navigli, 2015, S15]. This framework stan-
dardized the evaluation in English WSD with the WordNet
sense inventory, making it easier to compare systems in a gen-
eral domain, helping the field to develop increasingly better-
performingmodels. In an attempt to investigate themost com-
mon weaknesses among WSD approaches, i.e., poor perfor-
mance on infrequent senses, Blevins et al. [2021] introduced
FEWS, an English benchmark where Wiktionary examples
are annotated with Wiktionary definitions.

For non-English languages, instead, WSD evaluation
datasets have received less attention, as they are often anno-
tated with diverse and outdated inventories. Only very re-
cently, a comprehensive benchmark has been put forward to
standardize the evaluation in this setting too [Pasini et al.,
2021, XL-WSD].5 XL-WSD extends the English evaluation
framework of Raganato et al. [2017a] and introduces test data
for 18 languages: Basque, Bulgarian, Catalan, Chinese, Croa-
tian, Danish, Dutch, English, Estonian, French, Galician, Ger-
man, Hungarian, Italian, Japanese, Korean, Slovenian, and
Spanish, resulting in more than 99K gold annotations. This
benchmark includes training and testing data annotated with
BabelNet 4.0 senses, enabling, for the first time, a large-scale
monolingual and multilingual evaluation of WSD models, in-
cluding the cross-lingual zero-shot setting, e.g., training on
English and testing on other languages.

3 Main Approaches to WSD
In the next two subsections we overview different kinds of
system, ranging from those which do not require training data
(§3.1), to models which are data-driven (§3.2).
3.1 Knowledge-Based WSD
Knowledge-based approaches leverage computational lexi-
cons, such as WordNet or BabelNet, especially their graph
structure, in which synsets act as nodes and the relations be-
tween them as edges. Successful approaches of this kind
employ graph algorithms such as random walks [Agirre et
al., 2014, UKB], clique approximation [Moro et al., 2014,
Babelfy], or game theory [Tripodi and Navigli, 2019]. The
richness and quality of the information encoded within their
underlying knowledge bases crucially determine the perfor-
mance of such approaches [Pilehvar and Navigli, 2014; Maru
et al., 2019].

The highest-scoringmethods are two very different models:
SyntagRank [Scozzafava et al., 2020] and SREFKB [Wang
and Wang, 2020]. SyntagRank is purely graph-based and ap-
plies the Personalized PageRank algorithm [Page et al., 1999]
on both the WordNet portion of BabelNet augmented with re-
lations from the WNG corpus, and SyntagNet [Maru et al.,
2019], a resource providing manually curated relations be-
tween synsets whose senses form a collocation. SREFKB ,instead, is a vector-based approach leveraging contextualized
word representations and sense embeddings to perform dis-
ambiguation. Sense vectors are computed by applying BERT

5https://sapienzanlp.github.io/xl-wsd/

[Devlin et al., 2019] on examples and definitions from Word-
Net, as well as on automatically retrieved contexts from the
Web. Thanks to BabelNet, SyntagRank showed itself to be
able to scale across many different languages, while SREFKBhas so far been tested on English only. In addition, SREFKBdoes also make use of manually-created usage examples from
WordNet, which arguably amounts to a form of stronger su-
pervision.
3.2 Supervised WSD
The most successful approaches to WSD are the so-called su-
pervised methods. In abstract terms, these aim to learn a pa-
rameterized function fΘ mapping a word w in a context c to
a sense s ∈ V (the vocabulary of senses) using the supervi-
sion of a dataset of word-context-sense triplets ⟨w, c, s⟩. In
what follows, we focus mainly on neural supervised systems,
which over recent years have consistently obtained the best
overall results. Most of the methods we discuss exploit trans-
fer learning, with the use of pretrained Transformers being
required for state-of-the-art performance.

As the most meaningful classification of the approaches
concerns not so much the architecture, but what kind of addi-
tional information the model is able to exploit, we group them
into (i) purely data-driven models, (ii) supervised models ex-
ploiting glosses, (iii) supervised models exploiting relations
in a knowledge graph, and (iv) supervised approaches using
other sources of knowledge. In what follows we highlight dif-
ferent families of supervised approaches in boldface.
Purely Data-Driven WSD
Most supervised WSD models are trained with gradient de-
scent tominimize a cost function(w, c, s) over all ⟨w, c, s⟩ ∈
with respect to the parametersΘ. A popular baselinemodel,
in this case, would be a token tagger, which for each word w
in a context c produces a probability distribution Pw over all
s′ ∈ V , i.e., over all senses in the vocabulary. Token tagger
models for WSDmake use of a pretrained embedder, which is
usually kept frozen, feed the contextualized representations to
either a feedforward network [Hadiwinoto et al., 2019] (Eq. 1
below) or a stack of Transformer layers [Bevilacqua and Nav-
igli, 2019; Vial et al., 2019] (Eq. 2), and then multiply the
output by a classification layer O:

Ec = Embed(c)
Hc,w = FFN(Ec,w)
Pc,w = Softmax(Hc,wO)(1)

Ec = Embed(c)
Hc,w = Transformer(Ec)w
Pc,w = Softmax(Hc,wO) (2)

where⬚c,w selects the component that corresponds to the tar-
get word w in c. At inference time, rather than predicting the
most likely sense across the whole vocabulary, one predicts
the highest among those possible for the given word:

ŝ = argmax
s′∈V (w)

Pc,w,s′ (3)

where V (w) ⊂ V is the set of possible meanings that w can
take according to the reference sense inventory.
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These simple approaches already produce a large improve-
ment over previous mostly randomly-initialized models [Ra-
ganato et al., 2017b]. Nevertheless, performances are – at
least partially – limited by the categorical cross-entropy that
is often used for training. In fact, the binary cross-entropy
loss has been shown to be more effective [Conia and Navigli,
2021], as it allows multiple annotations for a single instance
that are available in the training set to be taken into account,
rather than having to use a single ground-truth sense only.

A simpler approach compared to token taggers is that of
the 1-nn vector-basedmethods [Peters et al., 2018]. This ap-
proach creates sense embeddings by averaging the contextual
vectors of instances within the training set that were tagged
with the same sense:

v(c,w) = Embed(c)w
v(s) = 1

|(w,s)
|

∑

c′∈(w,s)

Embed(c′)w (4)

where v(c,w) and v(s) are the representations for, respectively,
a word in context and a sense, and(w,s) is the set of contexts
where w appears associated with a sense s in the dataset .
The predicted sense ŝ is selected as the one with the highest
cosine similarity:

ŝ = argmax
s′∈V (w)

simcos(v(c,w), v(s
′)) (5)

The approaches presented so far assume that each sense is
an opaque class, and the classification architecture cannot ex-
ploit any knowledge beyond what can be inferred through the
supervision from the training corpus. This issue is not only
theoretical but also practical, as many senses do not actually
occur in training corpora (§2.2) owing to the extreme class
imbalance.
Supervised WSD Exploiting Glosses
One conspicuous source of information in sense inventories
consists of textual definitions (also known as glosses). Defi-
nitions, mirroring the format of traditional dictionaries, pro-
vide a simple human-readable way of clarifying sense dis-
tinctions. For example, the concept of nostalgia is defined
in WordNet as longing for something past. Glosses have
proven themselves quite useful for increasing WSD perfor-
mances, with multiple ways to exploit them being explored
in the literature. Glosses can be encoded as vectors by aver-
aging their tokens’ contextualized representations and easily
incorporated into both 1-nn approaches and token tagging ar-
chitectures. Specifically, 1-nn approaches have been shown
to benefit greatly from concatenating gloss vectors to the “su-
pervised” representations (see Eq. 4) [Loureiro and Jorge,
2019, LMMS]. Indeed, glosses are also used in the sameman-
ner by more sophisticated 1-nn approaches, such as SensEm-
BERT [Scarlini et al., 2020a], ARES [Scarlini et al., 2020b]
and SREF [Wang and Wang, 2020]. They differ substantially
in their approach to automatically retrieving additional con-
texts in order to build the supervised part of the sense embed-
ding, with ARES attaining the highest performance by lever-
aging collocational relations between senses to retrieve new
example sentences fromWikipedia. Berend [2020] has shown

that existing sense embeddings can also be made sparse by ap-
plying sparse coding.

Another use of sense embeddings (including gloss infor-
mation) is in providing the weights for the classification
layer (the matrix O in Eq. 1) of token-tagging architectures.
EWISE [Kumar et al., 2019] creates sense representations
training a gloss encoder by means of a triplet loss on Word-
Net (§3.2); EWISER [Bevilacqua and Navigli, 2020], instead,
finetunes off-the-shelf sense embeddings based on pretrained
language models, i.e., SensEmBERT and LMMS, attaining
results close to the state of the art. Finally, BEM [Blevins and
Zettlemoyer, 2020] fully embraces the idea of jointly train-
ing text and sense representations, and puts it into practice
by leveraging two separate Transformer models to encode the
target word context and its candidate definitions.

Glosses have also been exploited in sequence-tagging ap-
proaches [Huang et al., 2019; Yap et al., 2020]. These re-
frame the WSD task as a sequence classification problem
where, given a word w in a context c, they score the triplet
⟨w, c,(s′)⟩ for each s′ ∈ V (w), and select the sense ŝ with
the highest score:

ŝ = argmax
s′∈V (w)

Γ(c, w,(s′)) (6)
where Γ is a scoring function typically implemented as a fine-
tuned Transformer. While attaining competitive performance
(§4.2), models of this kind are less efficient than token clas-
sifiers since they need to process the same sentence for each
content word and for each of its possible definitions.

Barba et al. [2021, ESCHER] mitigate this issue by fram-
ing the WSD problem as a span extraction problem, where,
given a target word in a sentence concatenated with all its pos-
sible definitions, a model has to find the span that best fits the
target word use within the sentence. This approach allows a
BART-based model [Lewis et al., 2020] to attain state-of-the-
art results on the standard English benchmarks while also be-
ing able to scale over vocabularies with different granularities.
However, the model is still less efficient than regular token-
tagging alternatives, since it needs to run as many forward
passes as there are targets to classify in the input sequence.

Finally, a generative variant of the sequence classification
approach has been introduced by Bevilacqua et al. [2020] to
tackle WSD as a Natural Language Generation (NLG) prob-
lemwhere, given c andw, the model has to generate (s), thus
reducing WSD to the task of definition modeling (§5). While
not using the definition as part of the input, this approach has
obtained results in the same ballpark of sequence classifiers,
e.g., GlossBERT, disposing of the need for predefined sense
inventories and with the added flexibility of handling neolo-
gisms, compound words and slang terms, which are virtually
absent from standard inventories for WSD.
Supervised WSD Exploiting Relations
WordNet offers another rich source of knowledge in the edges
that interweave its senses and synsets. Traditionally, this in-
formation is exploited by graph knowledge-based systems, for
example, those based on Personalized PageRank [Scozzafava
et al., 2020]. Nevertheless, many recent supervised systems
– either 1-nn or token taggers – also draw benefit from using
WordNet as a graph. For example [Loureiro and Jorge, 2019,
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LMMS] create representations for those senses not appearing
in SemCor by averaging the embeddings of their neighbours
in WordNet; Wang and Wang [2020, SREF] employ Word-
Net hypernymy and hyponymy relations to devise a try-again
mechanism that refines the prediction of the WSDmodel, and
Vial et al. [2019] reduce the number of output classes by
mapping each sense to an ancestor in the WordNet taxonomy.
Among the token-tagger models, EWISE [Kumar et al., 2019]
uses the WordNet graph structure to train the gloss embedder
offline, while EWISER [Bevilacqua and Navigli, 2020] shows
that with a simplemodification to Eq. 1 the full graph ofWord-
Net can be directly incorporated into the architecture:

Pc,w = Softmax(Hc,wOA) (7)
where A is a sparse adjacency matrix. A different way to
use the same information is proposed by Conia and Navigli
[2021], who replace the whole adjacency matrix multiplica-
tion with a binary cross-entropy loss where all senses related
to the gold one are also considered as relevant.

In general, using relational knowledge is becoming com-
monplace in supervised WSD, with a gradual hybridization
with knowledge-based methods. However, relational knowl-
edge is easily exploited only by token classification and 1-nn
approaches, while its integration into sequence classification
methods has not yet been investigated.
Supervised WSD Exploiting Other Knowledge
WSD models also prove to benefit from using additional
sources of knowledge, both internal and external to the knowl-
edge base itself. Luan et al. [2020] leverage translations in
BabelNet to refine the output of any arbitrary WSD system by
comparing the translation of the output senses with the target’s
translations provided by an NMT system.

In a different direction, Calabrese et al. [2020a] leverage
images from the BabelPic dataset [Calabrese et al., 2020b]
to build multimodal gloss vectors, which are shown to be
stronger than text-only vectors when used to initialize the
weights of the classification matrix (O in Eq. 1). Wikipedia
and Web search contexts are also used as additional data to
create sense embeddings [Scarlini et al., 2020a; Scarlini et al.,
2020b; Wang and Wang, 2020] and as an alternative source
in order to propagate vectors through the WordNet network,
showing higher performance and better representations for
rare senses.

4 Taking Stock of WSD
In this Section, we review the performance figures of recent
WSD models, with details reported in §4.1. In §4.2, we put
forward a few high-level guidelines that are meant to help the
community to navigate current trends in the field.
4.1 Evaluation Setting
The performance of WSD systems is usually assessed in
terms of F1 score over held-out test sets. As a performance
comparison in WSD, a typical upper bound is given by the
inter-annotator agreement (IAA), i.e., the percentage of words
tagged with the same sense by two or more human annotators.
The IAA over a fine-grained sense inventory is estimated to be

around 67-80% accuracy [Navigli, 2009]; these figures, how-
ever, call for further studies so as to obtain more centered esti-
mates of human performance, e.g., on up-to-date benchmarks.
We report results (collected from the literature) on the English
WSD benchmark of Raganato et al. [2017a] in Table 1. All
supervised models therein are trained on SemCor (§2.2). Ad-
ditionally, we report in Table 2 results on the recent XL-WSD
multilingual benchmark [Pasini et al., 2021] including i) a
crosslingual 0-shot token-classification baselines (exploiting
XLM-R) trained on (English) SemCor, ii) the same baselines
trained on the automatically translated silver corpora provided
as part of XL-WSD, iii) the best knowledge-based multilin-
gual system, i.e., SyntagRank [Scozzafava et al., 2020].
4.2 Discussion
Pretrained language models. The use of pretrained lan-
guage models plays a crucial role in achieving high perfor-
mance, for both knowledge-based and supervised approaches
[Wang andWang, 2020; Blevins and Zettlemoyer, 2020]. The
simple model of Hadiwinoto et al. [2019] results in a 2-point
improvement over the best model without pretrained contex-
tualized embeddings, i.e., EWISE [Kumar et al., 2019].
Are knowledge-based methods still relevant? Pure
knowledge-based methods are completely outperformed
on English WSD, with a gap of 7.2 points between the
best knowledge-based method, i.e., SREFKB, and the best
supervised system, i.e., ESCHER. The same trend appears
in a recent multilingual benchmark as well [Pasini et al.,
2021]. Nevertheless, information within knowledge bases
remains valuable and many successful supervised methods
are effectively hybridized with knowledge-based methods
(§3.2).
Is it worth it to include other kinds of knowledge? Ad-
ditional information is beneficial to boosting the results,
with most token classification and 1-nn approaches exploit-
ing knowledge graph information in order to reach compet-
itive performances. We note that different kinds of knowl-
edge are orthogonal to each other and can be exploited in
conjunction. For example, token classification models benefit
from the logits-adjacency matrix multiplication [Bevilacqua
et al., 2020], binary cross-entropy training [Conia and Nav-
igli, 2021], translation-based refinement [Luan et al., 2020]
and visual information [Calabrese et al., 2020a].
Training data. The addition of more training data, e.g.,
the WNG corpus (§2.2), increases performance significantly,
even though this corpus contains a significant amount of noisy
silver annotations. Indeed, multiple works [Bevilacqua and
Navigli, 2020; Conia and Navigli, 2021] report that concate-
nating WNG to SemCor increases the performance of their
systems from 1.8 to 2.6 F1 points. This makes it worthwhile
investigating whether more advanced techniques for the auto-
matic creation of training corpora can be exploited for further
gains.
What is the best model? In the standard configuration, i.e.,
trained on SemCor only and tested in terms of F1 over the
Raganato et al. [2017a] English benchmark, the best result is
achieved by ESCHER [Barba et al., 2021]. As we recall, ES-
CHER performs WSD by concatenating all glosses and the
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Kind System ALL S2 S3 S7 S13 S15

KB ( ) [Scozzafava et al., 2020, SyntagRank] 71.7 71.6 72.0 59.3 72.2 75.8
( ) [Wang and Wang, 2020, SREFKB] 73.5 72.7 71.5 61.5 76.4 79.5

Ve
cto

r-b
ase

d
1-n

n
( ) [Loureiro and Jorge, 2019, LMMS] 75.4 76.3 75.6 68.1 75.1 77.0
( ) [Berend, 2020] 76.8 77.9 77.8 68.8 76.1 77.5
( ) [Scarlini et al., 2020b, ARES] 77.9 78.0 77.1 71.0 77.3 83.2
( ) [Conia and Navigli, 2020, Conception] 76.4 77.1 76.4 70.3 76.2 77.2
( ) [Luan et al., 2020] 76.4 77.2 77.1 69.2 76.1 77.2
( ) [Scarlini et al., 2020a, SensEmBERT] - - - - 78.7 -
( ) [Wang and Wang, 2020, SREF] 77.8 78.6 76.6 72.1 78.0 80.5

To
ken

Cla
ssi

fie
r

[Hadiwinoto et al., 2019, GLU] 74.1 75.5 73.6 68.1 71.1 76.2
( ) [Vial et al., 2019, SVC] 76.7 76.5 77.4 69.5 76.0 78.3
( ) [Kumar et al., 2019, EWISE] 71.8 73.8 71.1 67.3 69.4 74.5
( ) [Blevins and Zettlemoyer, 2020, BEM] 79.0 79.4 77.4 74.5 79.7 81.7
( ) [Calabrese et al., 2020a, EViLBERT] 75.1 - - - - -
( ) [Bevilacqua and Navigli, 2020, EWISER] 78.3 78.9 78.4 71.0 78.9 79.3
( ) [Conia and Navigli, 2021] 77.6 78.4 77.8 72.2 76.7 78.2

Se
q.

Cla
ssi

f. ( ) [Huang et al., 2019, GlossBERT] 77.0 77.7 75.2 72.5 76.1 80.4
( ) [Bevilacqua et al., 2020, Generationary] 76.7 78.0 75.4 71.9 77.0 77.6
( ) [Yap et al., 2020] 78.7 79.9 77.4 73.0 78.2 81.8
( ) [Barba et al., 2021, ESCHER] 80.7 81.7 77.8 76.3 82.2 83.2

Table 1: F1 performance figures of recent WSD systems in the literature. We consider results on the evaluation sets (S)enseval-
(2)/(3), (S)emEval 200(7)/20(13)/20(15), and on the concatenation of all of them (ALL). All supervised systems (bottom three
blocks) use SemCor only as training corpus. The leftmost column indicates the kind of system, i.e., knowledge-based,
vector-based 1-nn classifier, token tagger, sequence tagger and, in parentheses, the additional resources leveraged by each
model: WordNet glosses ( ), relational information ( ), text fromWeb ( ), automatic translations ( ), or visual information
( ).

input context together, extracting the indices corresponding
to the predicted definition. Like ESCHER, most of the best
performing approaches not only utilize gloss information to
represent word senses [Bevilacqua et al., 2020], but do so by
encoding it as a sequence rather than directly as a vector [Yap
et al., 2020; Blevins and Zettlemoyer, 2020], which appears to
be most beneficial for the WSD task. Other models also prove
to achieve somewhat lower performances than ESCHER,
while bringing distinct advantages. Sequence classification
models, especially generative ones, offer zero-shot capabili-
ties over a changing sense inventory [Bevilacqua et al., 2020;
Blevins et al., 2021], while 1-nn and token classification ap-
proaches are more flexible in terms of integrating task-specific
biases, and also more efficient, being able to classify many
contexts at once with a single forward pass.
Multilingual WSD. In the past, one of the main arguments
in favor of knowledge-based WSD was that of scalability.
However, as Table 2 shows, this seems no longer to be the
case. Overall, thanks to the availability of pretrained mul-
tilingual contextualised embeddings, one can train a simple
supervised model on just English and get much higher perfor-
mances compared to a knowledge-based system, even on lan-
guages that are very different, such as Basque, Chinese, Hun-
garian and Korean. In fact, the crosslingual setting works so
well that it outperforms language-specific models trained on
silver data, which are probably hampered by noise and distri-
bution skewing effects related to the data creation procedure.
However, performance figures are still mostly underwhelming

compared to those for EnglishWSD, where supervised results
on the concatenation of all datasets start from around 74 F1
points (see Table 1).
5 Beyond Word Sense Disambiguation
While the WSD task has benefited from recent breakthroughs
in transfer learning, even surpassing its expected upper bound,
there are certain limits intrinsic to the task itself. The choice
of using a discrete sense inventory, while it is computationally
convenient, prevents scaling to newer and more creative uses
of words, and constrains systems to a given sense granularity,
which may be suboptimal for the chosen application.

For these reasons, Pilehvar and Camacho-Collados [2019]
chose to eschew discrete meanings altogether by putting for-
ward the Word-in-Context (WiC) task, a tool for evaluat-
ing the semantic competence of models without the need
for predefined inventories. WiC requires a model to take as
input two contexts featuring the same target words, and to
predict whether those words are used with the same mean-
ing. Building WiC datasets is easier than building ones for
WSD, and indeed large-scale benchmarks are also available
for non-English languages [Raganato et al., 2020; Martelli et
al., 2021].
In a different direction, but with the same purpose of

dropping the need for predefined inventories, the task of
lexical substitution [McCarthy and Navigli, 2009] requires
models to disambiguate a word in context by searching for
meaning-preserving substitutes. For example, given the con-
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Language XLMR-L
(zero-shot)

XLMR-L
(T-SC+WNG) SyntagRank

Basque 47.15 41.96 42.91
Bulgarian 72.00 58.18 61.10
Catalan 49.97 36.00 43.98
Chinese 51.62 - 41.23
Croatian 72.29 63.15 68.35
Danish 80.61 78.67 72.93
Dutch 59.20 57.27 56.00
Estonian 66.13 50.78 56.31
French 83.88 71.38 69.57
Galician 66.28 56.18 67.56
German 83.18 73.78 75.99
Hungarian 67.64 52.60 57.98
Italian 77.66 77.70 69.57
Japanese 61.87 50.55 57.46
Korean 64.20 - 50.29
Slovenian 68.36 51.13 52.25
Spanish 75.85 77.26 68.58
Micro F1 65.66 - 57.68

Table 2: F1 scores of supervised and knowledge-based ap-
proaches on XL-WSD test sets. XLMR-L (zero-shot) has
been trained and tuned on the English SemCor only. XLMR-
L (T-SC+WNG) has been trained and tuned on automatically-
translated versions of SemCor and WNG corpora.

text “Would you give me a lift?”, lift would be disambiguated
by proposing ride as candidate for substitution. Lexical sub-
stitution can deal with an evolving lexicon, and has straight-
forward application in, e.g., data augmentation [Kobayashi,
2018], but it suffers from circularity, and a lack of explicit-
ness; also, sometimes non-convoluted substitutes are simply
lacking, as for, e.g., gear in “my car doesn’t have a sixth gear”.
More recently, the task of definition modeling [Noraset et

al., 2017] has reframed the disambiguation task from Natural
Language Understanding (NLU) to NLG: instead of selecting
the most relevant sense class, a system generates a description
of its meaning. This approach is not limited by sense invento-
ries, as one can generate a definition for basically anything, be
it a word in its ordinary meaning, a novel word, a metaphor,
or an arbitrarily-sized expression, with obvious applications
for language learners. Interestingly, definition modeling can
be used to perform WSD by using its beam search output to
select the most suitable definitions among those of a prede-
fined inventory [Bevilacqua et al., 2020]. We think definition
modeling is a promising way forward for the task, expanding
the scope of WSD without big sacrifices as a trade-off.
6 Conclusion (and What’s Next)
In this paper we surveyed recent research on WSD, provid-
ing an overview over sense inventories and sense-annotated
data, and categorizing and describing current automatic ap-
proaches. We discussed different methodologies, pointing out
the best practices for reaching competitive performance. The
best models for English WSD attain results that are close to
or superior to the human upper bound, posing the question of
how to interpret such performance. While on some datasets

models reach top performance, theWSD task is still not solved
[Navigli, 2018; Blevins et al., 2021] and this opens up new ex-
citing directions.

With the breaching of this glass ceiling, current bench-
marks are really starting to show their inadequacy. This calls
for the construction of new challenging test sets (possibly
through adversarial techniques) to shed light on what remains
problematic for WSD. Indeed, the behavior of current mod-
els in out-of-domain sense distributions should be studied fur-
ther in the near future, in order to build WSD approaches that
are more robust to domain shift and reliable with Web text,
e.g., from social media. Moreover, multilingual WSD lacks
a comprehensive investigation to assess model capabilities in
non-English languages. While the recent cross-lingual evalu-
ation suite, i.e. XL-WSD [Pasini et al., 2021], is a first step
towards a large-scale multilingual WSD benchmark, more ef-
fort is needed to create training or testing data for as many
languages as possible in the coming years.

An additional avenue for research is the integration ofWSD
with the related task of Entity Linking [Sevgili et al., 2021], in
which themodel is required to associatementionswith entities
in a knowledge base such asWikipedia. While the existence of
BabelNet provides a unified repository that allows one to per-
form both tasks [Moro et al., 2014], the recent literature has
not taken up this path. It is worth exploring whether recent ap-
proaches which efficiently classify over the huge output space
of Entity Linking [Cao et al., 2021] can be combined with the
techniques for the exploitation of glosses and relations devel-
oped within the WSD community.

Since WSD systems now work fairly well, it is time to em-
ploy them in other applications too, e.g., boosting semantic-
intensive downstream tasks such as Machine Translation, Se-
mantic Role Labeling, and Question Answering. Finally,
WSD could help pretrained language models to ground word
representations onto a knowledge base [Pappas et al., 2020],
providing the semantics they seem to lack [Bender and Koller,
2020], and a gateway to other information sources and per-
ceptive domains, such as vision: a whole new realm that NLP,
with approaches such as Vokenizer [Tan and Bansal, 2020], is
just now starting to exploit, and in doing so may finally break
out of its sandbox!
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