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Aberrant regulation of developmental pathways plays a key role in tumorigenesis.
Tumor cells differ from normal cells in their sustained proliferation, replicative immortality,
resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior.
Often they acquire these features as a consequence of dysregulated Hedgehog, Notch,
or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by
encoding oncogenic proteins, and/or by modifying the microenvironment, as well as
by conveying genomic instability to accelerate cancer development. In addition, viral
immune evasion mechanisms may compromise developmental pathways to accelerate
tumor growth. Viruses achieve this by influencing both coding and non-coding gene
regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate
developmental pathways is crucial to understanding viral tumorigenesis. Many currently
available antiviral therapies target viral lytic cycle replication but with low efficacy and
severe side effects. A greater understanding of the cross-signaling between oncogenic
viruses and developmental pathways will improve the efficacy of next-generation
inhibitors and pave the way to more targeted antiviral therapies.
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INTRODUCTION

About 15% of all human tumors have infectious etiology and yet only a handful of viruses are
known to promote tumor development (White et al., 2014). Clearly, tumor development is neither
the aim of the virus nor it is required for virus transmission. The evolutionary mechanisms
of viral replication, establishment of latency and immune evasion are often the underlying
causes that make the infected cell emancipate from normal proliferation dictated by homeostasis.
Discovering oncogenic virus-targeted genes and developmental signaling pathways is imperative
to understanding viral tumorigenesis. Viruses hijack different cellular programs with the aim to
survive and replicate within its host. By interacting with host proteins, they perturb and interfere
with host signaling pathways to modify critical cellular functions. Integration of the viral genome
into the host DNA may be a critical factor in carcinogenesis, particularly for some Human
Papilloma virus (HPV) serotypes (Oyervides-Muñoz et al., 2018). Herpesviruses on the other hand,
mainly remain as extra-chromosomal DNA in the host cell nucleus. In both cases, viruses alter
expression and function of genes primarily associated with cell proliferation, differentiation, and
survival, and induce chromosomal instability chromosomal instability.

In recent years, computational reconstruction of proteome-wide protein–protein interaction
(PPI) networks between viruses and developmental pathways have enhanced our understanding
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of virus-induced carcinogenesis. Mei and Zhang studied
PPI networks to highlight important relationships between
Epstein-Barr virus (EBV) proteins and developmental pathways,
including Hedgehog (HH) and Notch signaling (Mei and
Zhang, 2016). By exploiting components of the HH pathway,
viruses promote tumor growth, survival, and stemness-associated
programs in order to transform infected cells. Therefore, HH-
targeted therapies could represent a promising strategy to
combat virus-induced tumors. Another study demonstrated that
Hepatitis B Virus (HBV) DNA integration preferentially targets
cancer related pathways such as MAPK, extracellular matrix
(ECM)-receptor interactions, and the HH signaling pathways
(Yang et al., 2018).

The Notch pathway is evolutionarily conserved and
participates in a plethora of physiological intercellular and
intracellular signaling processes during differentiation and
development of an organism. Evidence shows that virally
perturbed Notch signaling may lead to cancer (Meisel et al.,
2020). Oncogenic viruses also exploit Notch pathway to escape
immune recognition and facilitate their own survival in the host
to enhance infectivity and transmission. Remarkably, several
viral oncoproteins, such as Epstein-Barr nuclear antigen 2
(EBNA2), Hepatitis Bx (HBx), latency-associated nuclear antigen
(LANA) of Kaposi’s sarcoma-associated herpes virus (KSHV, also
known as HHV-8) and others, interact with several members of
the Notch pathway (Hayward, 2004).

The WNT signaling developmental program is also frequently
targeted by oncogenic viruses to transform the target cells.
HBV, Hepatitis C virus (HCV), EBV and Human T Lymphocyte
Virus-1 (HTLV-1) co-opt or modulate components of the WNT
pathway to effectively subvert normal cellular processes including
cell proliferation, differentiation, and survival.

Thus, as our understanding of the mechanisms that regulate
oncogenic transformation grows, the extent and complexity of
cellular processes targeted by oncoviruses is better appreciated.
The recognition that multiple developmental pathways are
frequently targeted, either individually or collectively, may
represent unexplored opportunities for developing unique
or synergistic therapeutic strategies to treat or prevent
viral tumorigenesis.

In this review, we present an overview of the three
developmental pathways, namely, HH, Notch, and WNT and
how some oncogenic viruses interact with them. We will review
immune system interactions with these viruses, and how they
regulate these pathways through viral miRNAs to survive and
contribute to carcinogenesis and tumor progression. We will
also provide perspectives for the development of therapies
that target important and common regulators of these three
developmental pathways.

HH SIGNALING IN VIRAL ONCOGENESIS

Overview of HH Signaling
Tissue patterning, cell differentiation and proliferation require
HH signaling but aberrant HH signaling is an important cause
of cancer. In humans, the HH pathway is activated by three

ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and
Desert Hedgehog (DHH) (Qi and Li, 2020). These ligands share
a high degree of sequence and functional homology and act to
initiate this paracrine signaling cascade. The two Patched genes,
PTCH1 and PTCH2 in humans, code for the primary receptors
of HH ligands, consisting of 12 transmembrane helices (TMs),
three extracellular domains (ECDs), and one C-terminal domain
(CTD). The two receptors share a conserved TM domain and two
of three ECDs. In contrast, PTCH2 lacks the CTD domain. After
binding HH, PTCH1 is inhibited and forms oligomers, which are
further moved out of the cilia and degraded in the endosome
(Tukachinsky et al., 2016). In so doing, Smoothened (SMO) is no
longer inhibited and this Frizzle-class G protein-coupled receptor
(GPCR) can relocate to the cilia, a small organelle extending
from the plasma membrane, which provides a localized hub
in which transmembrane receptors can concentrate (Figure 1).
SMO signals through at least two effector routes. The first is a
G protein-independent, canonical pathway that signals to three
members of the glioma-associated (GLI) oncogene family, with
the aim to upregulate target genes (Figure 1). One of them,
Hip (Figure 1), a HH interacting protein attenuates ligand
diffusion (Arensdorf et al., 2016). In vertebrates, suppressor
of Fused (SUFU) represses GLI transcription factor activation
and the active SMO releases this inhibition. GLI1 functions
as a feed-forward activator to sustain or amplify target gene
expression (Pandit and Ogden, 2017). GLI2 and GLI3 are
bifunctional and can be processed to act either as transcriptional
activators or repressors (Crompton et al., 2007). Ciliary SMO
signaling halts GLI processing, further stabilizing GLI2 and
GLI3 as transcriptional activators of SHH target genes, such as
GLI1. The second route, referred to as the non-canonical SMO
signaling pathway, triggers transcription-independent responses
that are fundamental to establishing and maintaining distinct
cell behaviors during development (Pandit and Ogden, 2017).
Involvement of the non-canonical SMO signaling in viral
carcinogenesis is yet to be fully explored (Palle et al., 2015).

HH Signaling Targeted by Oncogenic
Viruses Promotes Tumor Development
In addition to its indispensable role in developmental processes,
more than 25% of all cancers require autocrine or paracrine
HH signaling as a fundamental supporter of tumor cell growth
and survival (Figure 1) (Lum and Beachy, 2004; Iriana et al.,
2021). In EBV-positive nasopharyngeal carcinomas (NPC) and
EBV-infected epithelial cell lines, the virus can activate the
HH signaling pathway through autocrine induction of SHH
(Port et al., 2013). This is corroborated by the expression of
HH pathway effectors (GLI1 and GLI2) and HH target genes,
such as PTCH1, FOXM1, and WNT5A, a highly evolutionarily
conserved non-canonical WNT ligand. Altered HH signaling
is common in NPC and specifically a reduced expression of
SUFU has been detected in a large number of NPC specimens
(Port et al., 2013). An HH autocrine signaling loop has also
been associated with HPV infection, a ‘primary hit’ in cervical
cancer (CC) development. Tumor cells express HH pathway
components, and HH signaling promotes proliferation, survival,
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FIGURE 1 | Overview of the Hedgehog (HH) signaling pathway and modulation by oncoviruses. On the left, in the absence of HH ligands (SHH, IHH, and DHH), the
HH receptor Patched (PTCH) keeps the pathway off (OFF) by inhibiting Smoothened (SMO), and keeping the glioma-associated oncogene (GLI) transcription factors
in an inactive form (GLI-R). In the middle, binding of HH ligand to HH receptor, PTCH, turns the pathway on (ON), and inhibits its activity, relieving the repression of
SMO, which converts full-length GLI (GLI-FL) into a transcriptional activator (GLI-A). In vertebrates, cilia are required for production of GLI-repressor (GLI-R) and/or
GLI-activator (GLI-A). On the left, viruses hyperactivate HH signaling with multiple mechanisms (VIRUS MEDIATED). EBV, Epstein Barr Virus; HBV, Hepatitis B Virus;
HCV, Hepatitis C Virus; HPV, Human Papilloma Virus, KSHV, Kaposi’s Sarcoma-associated Herpes Virus; MCPyV, Merkel Cell Polyoma Virus.

and migration of CC cells. These pro-survival and protective
roles are prevented by a small molecule inhibitor that blocks
binding of Gli to DNA, GANT-61, which induces caspase 3
cleavage indicating an increased apoptosis in human CC cell lines
(Samarzija and Beard, 2012).

Viruses can also epigenetically affect factors involved in
cellular HH activation, which implies that they may participate
directly in configuring chromatin architecture. This is the case
of a malignant T cell disorder caused by infection with the
human retrovirus, HTLV-1. Indeed, in adult T cell leukemia
(ATL), the HTLV-1 TAX transcription factor epigenetically
upregulates Ellis Van Creveld (EVC) family members, EVC1
and EVC2, both of which have been associated with the cellular
HH activity and thus provides the pro-survival attributes of
ATL cells (Takahashi et al., 2014). Additionally, TAX can also
induce SHH transcription in an NF-κB-dependent manner to
sustain HH autocrine stimulation in malignant cells (Figure 1).
Besides directly activating HH signaling, oncogenic viruses
may exploit the connection between the transcription factor,

ZIC2, and the microRNA (miRNA), miR-129-5p, as recently
reported in lymphangiogenesis and lymph node metastasis
during NPC progression (Yu et al., 2020). Importantly, it has
been demonstrated that EBV, a virus closely associated with
NPC, may down-regulate miR-129 expression (Forte and Luftig,
2011). This leads to ZIC2 activation, a zinc-finger transcription
factor that upregulates HH related signaling molecules, SMO,
GLI1, and SHH. Additionally, Yu et al. (2020) demonstrate that
miR-129-5p overexpression silences ZIC2 and decreases NPC
cell proliferation, migration, and invasiveness, suggesting that
miR-129-5p may serve as a novel therapeutic tool for NPC.

Infection with oncogenic viruses may be silent for years
and HH pathway reactivation later in life has been associated
with tumor development (Kuromi et al., 2017). Merkel cell
polyomavirus (MCPyV) is detected in approximately 80% of
Merkel cell carcinoma (MCC) (Harms et al., 2018). It is an
aggressive neuroendocrine skin cancer that mainly affects the
elderly. In this case, higher expression of SHH and GLI1 were
significantly associated with a favorable prognosis and represent
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useful markers of MCC (Kuromi et al., 2017). Intriguingly, the
interaction between MCPyV and developmental pathways has
remained hitherto unexplored.

In EBV-associated tumors, the virus persists in one of the
three distinct latent phases, each characterized by expression
of a set of viral genes. In NPC, EBV latent gene expression is
restricted to EBNA1, EBV-encoded RNA1/2 (EBER1/2), BARF1,
the BamHIA transcripts (BARTs), as well as variable expression of
genes encoding oncogenic membrane proteins LMP1 and LMP2.
In these tumors, EBNA1, LMP1 and LMP2 all stimulate HH
signaling, but only the latter two are capable of reprogramming
cells toward stemness. This would suggest that each viral protein
can trigger different molecular pathways involved either in tumor
cell growth and survival, or in stemness-associated programs.
Just like normal stem cells, cancer cells have the ability to self-
renew, differentiate in different cell types and under specific
tumor microenvironmental condition, dedifferentiate backward
a primitive state. This feature provides tumor cells the ability
to grow, metastasize and home to specific tissues. Given its
ability to activate the WNT and Notch pathways, Port et al.
(2013) suggested LMP2A may impose stem-like characteristics
on EBV-infected epithelial cells by recruiting additional onco-
developmental pathways. Indeed, the HH pathway, together with
WNT and Notch signaling, maintain a population of normal
stem cells and transforms cancer stem cells by inducing stemness-
associated gene expression (Katoh, 2007). Overall, EBV and other
oncogenic viruses trigger the HH autocrine signaling loop, a
fundamental mechanism in cell survival and proliferation.

HH Pathway Mediates Virus-Induced
Epithelial to Mesenchymal Cell Transition
(EMT)
Co-expression of cancer stem/initiating and mesenchymal cell
markers have been observed in peritumoral stromal tissues within
nodules of Hepatocellular Carcinoma (HCC) from livers of
patients with chronic hepatitis. Both HBV and HCV clearance
rates are high in infected individuals, often depending on the
age (Chou et al., 2015). Only about 5–10% infected individuals
become chronic carriers. In case of HBV, integration of the viral
genome plays an important role in both chronic carrier state and
subsequent diseases (Chou et al., 2015). Indeed, the chronically
infected individuals have higher risk of developing HCCs. Other
genetic events like mutation and/or inactivation of p53 are also
frequent (Feitelson et al., 1993). HBx protein of HBV directly
binds p53 and sequesters it in the cytoplasm thus compromising
its ability to induce apoptosis (Elmore et al., 1997).

The HH signaling pathway is maintained in an inactive state
in a healthy adult liver due to high levels of Hip, which disrupts
engagement between the HH ligand and the receptor (Hyun
and Jung, 2016). Gene profiling studies of human liver cancers
provide evidence that chronic infection by HBV and HCV
significantly increases hepatic mRNA expression of HH-ligands,
SHH and IHH, and target genes, PTCH and GLI2, possibly during
more advanced stages of liver disease (Pereira Tde et al., 2010).
Indeed, Pereira Tde et al. (2010) reported that the fibrosis stage
and HCC development are predicted to increase in parallel with

the level of HH pathway activity. As the level of HH ligands
increases, hepatic accumulation of HH-reactive progenitors also
increases, concurrent with a decreased Hip expression (Hyun and
Jung, 2016). The EMT transition is characterized by epithelial
cells losing their polarity, the ability of cell-cell contact and
acquiring features which make them resemble mesenchymal cells.
While EMT occurs physiologically during embryogenesis, this
transition is also a characteristic of many neoplastic diseases.
The loss of E-cadherin by epithelial cells is considered the
cornerstone of EMT (Kalluri and Weinberg, 2009). As such,
Pereira Tde et al. (2010) reported that an increased activity of HH
signaling in chronic viral hepatitis correlates to the enriched sub-
population of HH-responsive progenitors that are undergoing
EMT in hepatic nodules. Cellular migration is an integral step in
EMT that results in liver remodeling in chronic liver disease and
promotes metastasis during cancer progression (Arzumanyan
et al., 2012). This event is largely dependent on activation of HH
signaling (SHH and GLI2) by the HBV transcription factor, HBx,
in HCC pathogenesis. The mechanism by which HBx upregulates
the expression of HH components, either through transcriptional
control (Arzumanyan et al., 2012) or through post-translational
stabilization and nuclear localization (Kim et al., 2011), remains
to be fully elucidated. Moreover, HBx also promotes stemness
in the liver (Arzumanyan et al., 2011). Perhaps, the discovery
that HBx activates HH signaling in the pathogenesis of HCC
may lead to therapies that are better targeted to prevent
tumor initiation and/or that block the growth and relapse of
established tumors. Interestingly, in hepatic carcinogenesis EMT
and enhanced HH signaling activation have been suggested to
promote chemoresistance and invasion of poorly differentiated
hepatoma cells often negative for CD133 and EpCAM. These
observations may provide a new basis for reclassifying HCC
specimens and may represent promising targets in eradicating
chemoresistant subpopulations in HCC (Chen et al., 2011).

Developmental Pathways Are Not the
Only Downstream Targets of Oncogenic
Viruses
Although the role of viral oncoproteins E6 and E7 in HPV-
mediated cervical carcinogenesis is well-established, still to be
studied is the interaction of GLI signaling with HPV encoded
oncogenes. Recently, active GLI signaling has been demonstrated
in CC cells irrespective of the presence of HPV and was associated
with cell viability. Inhibiting GLI signaling in HPV-positive CC
cells is associated with reduced HPV E6 oncogene expression
and loss of stemness (Vishnoi et al., 2016). Conversely, silencing
the HPV-16 E6 oncogene reduced GLI1 transcription. This
reciprocal interference suggests a cooperation between viral and
HH proteins. Indeed, inhibiting both E6 and GLI signaling
produces an additive effect on cell viability, leading to the
hypothesis that they synergize to promote stemness in CC cells.
Loss of p53, triggered by HPV E6, is a probable connecting
link with constitutively active GLI signaling observed during
persistent high risk HPV infection. Additionally, GLI-HPV E6
cooperation sustains cancer cell stemness possibly leading to
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tumor progression and chemoresistance, as observed in clinically
advanced CC (Vishnoi et al., 2016).

According to Piirsoo et al. (2019) full-length GLI has a
role in regulating HPV transcription and, surprisingly, it acts
as a repressor. Human GLI1 has at least three alternatively
spliced isoforms, including GLI11N that lacks the conserved
phosphorylation cluster and the SUFU binding motif. Shuttling
of GLI1 between the cytoplasmic and nuclear compartments
depends on several factors, including interaction with SUFU
and Protein Kinase A-mediated phosphorylation. These authors
further demonstrate that, in contrast to GLI11N, full-length
GLI1 suppresses replication of multiple HPV genomes, including
HPV-5, -11, and -18. Non-productive infections often terminate
the viral life cycle and may be crucial for HPV-DNA persistence
and tumorigenesis (Gaglia and Munger, 2018). According to the
bioinformatic analysis, the predicted GLI1 binding site mostly
overlaps with the viral E2 binding site, suggesting a direct impact
on the initiation of HPV5 replication. Overall, this observation
suggests there may be differing contributions of GLI1 isoforms to
the HPV lifecycle and, interestingly, highlights the regulatory role
of Gli1 on HPV transcription.

Viral carcinogenesis may also rely on the ability of oncogenic
viruses to select a suitable genetic cell environment without
directly targeting HH signaling. Cervical carcinogenesis is a
multistep process. HPV infection is not sufficient per se, but
provides a ‘second hit,’ most likely through moderate levels
of Notch1 and the cooperation of HH and WNT signals to
transform keratinocytes (Lathion et al., 2003). In this context, HH
signaling is not triggered directly by HPV E6 and E7 proteins
but, rather, that HH-activating mutations are selected in cells
initially immortalized by HPV (Samarzija and Beard, 2012).
Therefore, the dual role of HH signaling, serving either as a
collaborator of HPV-induced carcinogenesis or as a regulator
of viral oncogene expression stresses the critical role of HH
inhibitors as a therapeutic option in CC.

Virus-Induced Tumor Progression and
Immune Evasion Strategies Point to GLI1
Activity
Recently, Asha et al. (2020) reported on the unexplored
function of HH signaling in regulating the biology of latent
and lytic states of sarcoma KSHV. This virus, also known
as human herpesvirus 8 (HHV8) hijacks pro-inflammatory
pathways and concurrently reduces anti-inflammatory Lipoxin
A4 (LXA4) secretion to maintain the virus in a latent state.
In KS skin tissue, GLI1 is significantly increased and is
distributed both in the cytoplasm and nucleus (Figure 1).
This is in contrast to healthy tissue in which GLI1 is
expressed exclusively in the nuclei. LXA4-treated KSHV-infected
cells showed decreased GLI1 expression, independent of SHH
modulation, and mainly through GLI1 destabilization, which
may also decrease the angiogenic processes. In fact, GLI1 can
transcriptionally upregulate vascular endothelial growth factor
C (VEGF-C) expression to promote angiogenesis (Carpenter
and Lo, 2012). To this end, the GLI1 antagonist, GANT-61,
can reduce tumor formation by a KS-derived cell line. The

sphere-forming efficiency, as well as the average volume of the
formed spheres, were significantly decreased in GANT-61-treated
cells, suggesting GLI1 inhibitors may act to attenuate tumor
formation during KS initiation or progression. Immune evasion
strategies, such as HLA class I downregulation is frequent during
the progression of human tumors. In EBV-associated gastric
cancer, latency I viral genes are often expressed (Deb Pal and
Banerjee, 2015). Among the latency I viral genes, EBERs and
LMP2A are frequently detected in most gastric cancer samples,
suggesting the virus expresses only cell context-adapted genes.
It has been reported that LMP2A exploits the HH pathway by
activating SHH signaling to induce HLA class Ia downregulation
in gastric cancer cells (Deb Pal and Banerjee, 2015). LMP2A-
induced downmodulation or complete loss of HLA class Ia
expression was specifically mediated by elevated GLI1 protein
expression. Furthermore, inhibition of other important self-
renewal pathways such as Notch, WNT, or PI3K, in LMP2A-
expressing gastric cancer cells could not prevent HLA class I
down-regulation, providing evidence in support of the hypothesis
of cell-context and signaling-specific requirements by the virus
(Deb Pal and Banerjee, 2015).

Overall, viruses can impinge on HH signaling in several ways.
For example, EBV, HPV, HTLV, MCPyV, HBV, and HCV can
trigger an autocrine SHH signaling loop to promote tumor
development and stemness-associated programs. Instead, KSHV
triggers Gli-mediated angiogenesis (VEGF) without involving
SHH. The hepatotropic HCV and HBV can cause chronic
inflammation and turn on an inactive HH signaling in the healthy
liver to promote fibrosis and HCC development. Another mode
of action to perturb HH signaling is through alteration of Gli
transcription as highlighted by HPV encoded E6 protein.

Autocrine stimulation plays an indispensable role in HH-
mediated viral carcinogenesis, but its effect in the tumor
microenvironment is still uncovered. Future studies are required
to investigate how viruses utilize and relocate HH family
members in infected cells to drive host cell machinery
to carcinogenesis.

NOTCH SIGNALING IN VIRAL
ONCOGENESIS

Overview of the Notch Pathway
Morgan (1917) observed a “notch” in the wings of a mutant
Drosophila. It was subsequently found to be linked to a
heterozygous deletion of a gene located on the chromosome
X, hence named Notch. The Notch signaling cascade is highly
conserved from Drosophila to humans (Artavanis-Tsakonas
et al., 1999), and consists of receptors, ligands, and intracellular
proteins that transmit the signals to the nucleus. The four
mammalian Notch receptors (Notch1-4) are large Type I
transmembrane proteins. A furin-like convertase catalyzes the
proteolytic maturation of Notch receptor pro-proteins in the
Golgi apparatus (Logeat et al., 1998). The proteolysis generates
two subunits connected by Ca2+-dependent ionic bonds: the
Notch extracellular domain (NECD), consisting of multiple
epidermal growth factor-like (EGF) repeats which mediate ligand
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binding, and the Notch intracellular domain (NICD), which is
the transcriptionally active part of the molecule (Gordon et al.,
2008; Yavropoulou and Yovos, 2014). NICD translocates to the
nucleus where it binds Recombination signal binding protein for
immunoglobulin kappa J region (RBP−Jκ) and, in cooperation
with Mastermind-like 1 (MAML1), regulates the transcription
of Notch target genes (Borggrefe and Oswald, 2009; Borggrefe
et al., 2016; Roo and Staal, 2020). Interestingly, MAML1 is a
versatile coactivator in other signaling pathways too. Indeed,
it can serve as a Notch-independent transcriptional activator
in the HH, Wnt/β-catenin and Hippo signaling pathways
(Quaranta et al., 2017; Zema et al., 2020). The Notch pathway
signaling can be “canonical” or “non-canonical,” based on
whether NICD interacts with RBP−Jκ or not (Ayaz and Osborne,
2014). Canonical Notch ligands are also Type I transmembrane
proteins and belong to the Delta/Serrate/LAG-2 (DSL) family
of proteins. Considered to be the structural homologs to the
Delta and Serrate ligands of Drosophila, mammalian Notch
ligands are Delta-like proteins, named Dll1, Dll3, and Dll4,
and Serrate homologs known as Jagged1 and Jagged2 (JAG1
and JAG2) (D’Souza et al., 2008; Kopan and Ilagan, 2009).
Independently of Notch, Jagged1 can induce intrinsic reverse
signaling within the ligand-expressing cell as demonstrated in CC
cells (Pelullo et al., 2019). One non-canonical Notch signaling
example is the regulation of Wnt/β-catenin signaling, which uses
β-catenin as a transcriptional mediator (Sanders et al., 2009;
Andersen et al., 2012).

Ligand-receptor interactions and transcription factor activity
in Notch signaling play pivotal roles in a wide variety
of differentiation processes, including regulation of cell-fate
determination during tissue and cell development (Wang et al.,
2015; Chandiran et al., 2018; Ferrandino et al., 2018b). Notch
signaling affects proliferation, apoptosis, and cell differentiation
(Grazioli et al., 2017). Moreover, active Notch signaling allows
cells to maintain stem-cell-like features (Kopan, 2012; Kessler
et al., 2015; Moriyama et al., 2018).

Notch Signaling in Viral Oncogenesis
Perturbing the Notch pathway can lead to the onset of
various diseases, including cancer (Sjölund et al., 2005; Penton
et al., 2012; Takebe et al., 2015; Krump and You, 2018). Co-
opting and dysregulating developmental pathways by oncogenic
viruses also involve targeting Notch signaling components
(Figure 2) (Krump and You, 2018). HBV proteins activate
Notch signaling to stimulate uncontrolled cell proliferation,
which then may lead to HCC (Mesri et al., 2014). The HBV
encoded protein, HBx, is one of the key viral factors capable of
malignantly transforming infected cells. It upregulates Notch1
receptor, either through a direct interaction or through the
p38 MAPK pathway, to promote HCC proliferation (Kong
et al., 2016). This viral protein also stimulates Notch1-4
expression. The cytoplasmic Notch1 and the nuclear Notch4
correlate with HBx expression in HCC tissues (Gao et al.,
2016). HBx-Dll4-Notch1 axis seems to have a critical role in
regulating cell survival in HCC. Indeed, HBx mediates Dll4
upregulation, which increases Notch1 cleavage, thus activating
Notch signaling (Kongkavitoon et al., 2016). Crosstalk between

HBx and JAG1 in HCC has also been documented. JAG1 is
highly expressed in HCC tissues and is regulated by HBx,
further confirming an oncogenic role of the latter in activating
Notch signaling (Gao et al., 2007). HBx involvement in
HCC pathogenesis was further demonstrated by the discovery
of a regulatory axis between this viral protein and miR-
3188. This oncogenic miRNA is overexpressed in HCC tissue
and knocking-out miR-3188 using CRISPR/Cas9 de-repressed
expression of its target (zinc fingers and homeoboxes 2)
(ZHX2), a transcriptional repressor of Notch1. Thus, at least
one way by which miR-3188 acts to induce Notch signaling and
promote HCC pathogenesis is by negatively regulating ZHX2
(Zhou et al., 2017).

The EBV encoded nuclear protein EBNA2 is a biological
equivalent of Notch1 (Zimber-Strobl and Strobl, 2001).
Interestingly, this viral protein interacts with the same cellular
repressor RBP-Jk as does NICD. EBNA2 and NICD, both have
activating domains that interact with RBP-Jk transcriptional
repressor, causing HDAC replacement leading to viral and
cellular gene transcription (Strobl et al., 1997). Histone
acetyltransferases (HATs), such as P300/CBP-associated factor
(PCAF), also interact with EBNA2 and NICD in the context
of gene transactivation. Constitutive activation of Notch1-4
in different cell types can lead to tumorigenesis (Aster et al.,
2017; Tottone et al., 2019). Since Notch1 signaling is associated
with cancer, it is significant that EBNA2 can hijack components
of this pathway to immortalize and transform B cells into
lymphoblastoid cell lines (LCLs) (Tierney et al., 2015). In a
reciprocal experiment, Strobl et al. (2000) have shown that
activated Notch1 (N1ICD) can substitute for some EBNA2
functions. Specifically, they observed that in stably transfected
Burkitt lymphoma (BL) cell lines carrying EBNA2-deletion,
N1ICD was able to induce expression of some but not all
EBNA2-inducible genes, such as c-myc, CD21, and LMP2A, but
not LMP1 or CD23 (Strobl et al., 2000). These observations have
led to the hypothesis that in those EBV associated cancers where
EBNA2 is not expressed, NICD signaling can play a very critical
role in transformation (Höfelmayr et al., 2001; Zimber-Strobl
and Strobl, 2001; Chiara et al., 2016). A previous study showed
that EBV-immortalized LCLs are characterized by high levels
of telomere-specific reverse transcriptase (TERT), a catalytic
component of telomerase, which prevented the switch from
latency to lytic cycle activation of EBV (Giunco et al., 2015). The
underlying mechanism involved activation of Notch2, which
in turn, induced the Basic Leucine Zipper ATF-like (BATF)
transcription factor. BATF negatively regulated BZLF1, the
master regulator of the EBV lytic cycle, thereby preserving
the latent state of the virus and survival of the infected B cells
(Giunco et al., 2015).

KSHV can also subvert Notch signaling to promote survival
of KSHV-infected primary B cells (Lan et al., 2006). One of
its latent proteins, LANA, interacts with the tumor suppressor
Sel10-mediated ubiquitin-proteasome pathway, which negatively
regulates NICD. A study showed that LANA sequesters Sel10
by forming a complex in primary effusion lymphoma (PEL)
cells (Lan et al., 2007). This complex prevents Sel10-NICD
interactions, resulting in stabilized NICD, increased cell
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FIGURE 2 | Oncogenic viruses exploit the Notch signaling pathway. Notch ligands (Delta-like or Jagged) on the signaling cell bind to Notch 1–4 receptors on the
receiving cell, generating the Notch extracellular domain (NECD) and the Notch intracellular domain (NICD). Subsequently, the proteolytic cleavage of NECD by
γ-secretase, generates NICD translocation into the nucleus where it binds with the transcription factors (TFs): recombining binding protein Jk (RBP–Jκ), cAMP
response element-binding protein (CREB), forming an active complex that regulates the transcription of Notch target genes. On the (Left side): EBNA2, HBx and
Tax proteins encoded by EBV, HBV, and HTLV, respectively, promote cell proliferation or epithelial-mesenchymal transition (EMT) through a direct interaction with the
transcription complex, leading to tumorigenesis. On the (Right side): LANA protein, encoded by KSHV, prevents the activation of the transcription complex,
resulting in an accumulation of NICD and increased cancer cells proliferation. EBV, Epstein Barr Virus; HBV, Hepatitis B Virus; HTLV-1, Human T Lymphocyte Virus-1;
KSHV, Kaposi’s Sarcoma-associated Herpesvirus.

proliferation and angiogenesis. Moreover, KSHV-encoded
replication and transcription activator (RTA) induced
JAG1 expression, thereby activating Notch signaling. This
leads to inhibition of lytic reactivation in a pro-lytic tumor
microenvironment, maintaining the balance between lytic and

latent state in KSHV infected cells, and ultimately resulting in
virus-immune escape and persistence in the host (Li et al., 2016).

A recent study showed that in HPV-related CC, the Notch
pathway is indeed affected by aberrant mutations, amplifications,
and deletions (Yang et al., 2020). A copy number variation
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analysis (CNV) was performed in 282 CC patients and among
the affected genes, they found amplifications of 4q34.1 F-Box
And WD Repeat Domain Containing 7 (FBXW7) and of 1p36.11
hairy and enhancer of split-1 (HES)2/3/4/5 tumor suppressor
genes belonging to the Notch pathway. Interestingly, this was
associated with significantly improved overall survival (OS) of
these patients. In spite of several important limitations, such
as the lack of information about HPV-type associated with the
aberrant amplification of the two tumor suppressor genes of the
Notch pathway, this study provides new insights for the prognosis
of CC patients, based on tumor cell methylation signatures.

Notch signaling is exploited by the HTLV-1 encoded Tax1.
This viral transcription factor activates Notch1 and prolongs
the half-life of NICD, in ATL cells (Cheng et al., 2019).
Tax1 formed a ternary complex with NICD, and RBP-Jκ, thus
promoting cell proliferation and tumor progression. Another
study showed that HTLV-1-encoded Tax induced JAG1 in most
ATL cell lines, through the transcription factor NF-kB (Bellon
et al., 2018). The ATL cell lines which did not express high
levels of JAG1 were investigated for the presence of post-
transcriptional inhibitory mechanisms mediated by miRNAs.
The lack of JAG1 protein expression in these cell lines was due
to high expression of miR-124a, which directly binds to the
3′UTR of JAG1 mRNA. Furthermore, in most ATL patients with
high JAG1 expression, miR-124a levels were low. Interestingly,
STAT3, and NFATc1 were also highly expressed. Remarkably, they
are both miR-124a targets. The absence of miR-124a in ATL
might enhance JAG1 and Notch1 signaling pathway sustained
by constitutive expression of STAT3 and NFATc1. Therefore,
inhibiting JAG1 could be a promising therapeutic strategy in ATL
(Bellon et al., 2018).

Another virus that perturbs the Notch pathway is HCV.
The virus encoded non-structural protein 3 (NS3) is essential
for its replication and contributes to viral induced HCC
(Iwai et al., 2011). The Yeast two-hybrid screening and co-
immunoprecipitation assays in mammalian cells, showed that
Snf2-related CBP activator protein (SRCAP) interacted with NS3
and both proteins activated the Hes1 promoter, a downstream
target of the Notch pathway. Thus, HCV NS3 together with
SRCAP and a SRCAP-resembling protein, p400, activated the
Notch signaling pathway. A more recent article has demonstrated
report showed that Notch signaling and CD4 T helper 22 (Th22)
cells are involved in chronic HCV pathogenesis (Jiang B.C. et al.,
2017). Specifically, the Notch interaction with aryl hydrocarbon
receptor (AhR) induced IL-22 production by Th22 cells, thus
favoring persistent HCV infection. Another study reported that
Notch1 and -2 enhanced regulatory T cells (Tregs) and Th17
cell functions thus facilitating HCV infection (Qin et al., 2017).
These studies suggest that inhibiting γ-secretase and thus Notch
activation, might enhance immune surveillance against chronic
HCV infection by down-regulating the production of IL-22,
IL-17, as well as Treg-mediated immune tolerance in patients
with chronic HCV.

Since oncogenic viruses co-opt Notch pathway components
to sustain their survival leading to tumor progression, the
development of inhibitors to block virus-Notch interactions
could become a valuable therapeutic approach. To this end,

utilizing monoclonal antibodies, drugs targeting Notch receptors,
γ-secretase inhibitors (GSI), or small molecules that disrupt
the interaction between Notch and RBP-Jk, RBPJ INhibitor-
1 (RIN1), provide novel therapeutic avenues to pursue. For
instance, monoclonal antibodies (mAbs) specifically targeting
Notch1 reduced stemness of breast cancer cells (Sharma et al.,
2012), whilst blocking antibodies against JAG1 in colorectal
cancer (CRC) patients provided therapeutic benefits with low
intestinal toxicity (López-Arribillaga et al., 2018). Enoticumab,
an anti-Dll4 mAb, administered to patients with advanced solid
tumors, inhibited the growth of these tumors and in ovarian
cancer (OC), in a dose-dependent manner (Chiorean et al.,
2015). RIN1 inhibited RBP-Jk transcription and interaction with
NICD, thereby reducing proliferation in T-ALL and mantle cell
lymphoma (MCL) cell lines (Hurtado et al., 2019). Focusing on
viral-Notch interactions, it has been shown that H1N1 influenza
virus challenge in mice increased Notch ligand Dll1 expression on
macrophages, dependent on retinoic acid-inducible gene-I (RIG-
I), which in turn induced the type I IFN pathway. Inhibiting
γ-secretase during viral infection resulted in decreased IFNγ

production, increased H1N1 load and acute inflammation in
mouse lungs (Ito et al., 2011). Treating primary and immortalized
KSHV cells with the GSI, LY-411,575 induced apoptosis in these
cells, revealing a therapeutic alternative for patients with KSHV
related diseases (Curry et al., 2005). Additionally, given that
Notch 2 plays an important role in maintaining EBV latency, the
use of GSIs has been proposed as a therapeutic strategy for EBV
associated lymphomas (Giunco et al., 2015).

With some exceptions mentioned above, such as in the case
of H1N1, in which inhibiting the Notch pathway with GSI led to
adverse effects in mice, the Notch inhibitors have the potential
to be therapeutically implemented with necessary precautions to
interrupt the Notch pathway activation by viral proteins.

Viruses Exploit Notch Signaling to
Escape Immune Responses
Immune escape by tumor cells is a fascinating phenomenon.
Indeed, tumor development is, quintessentially, a failure
of the immune system to recognize and eliminate the cells
that have emancipated themselves from cell cycle control
and have gone awry (Prendergast, 2008). The immune
evasion is achieved in several different ways. For instance,
downregulation of HLA molecules on the tumor cell surface,
upregulation of inhibitory immune checkpoint proteins,
alteration of tumor cell death pathways, or an increase in
immunoregulatory and immunosuppressive cytokines within the
tumor microenvironment (TME) are some examples how tumor
cells become invisible to the immune control.

A paradigmatic example of how Notch pathway activation
could be central to immune suppression is provided by
EBV associated Hodgkin’s lymphoma (HL). This tumor is
characterized by increased infiltration of regulatory T (Treg) cells.
The characteristic Reed Sternberg (RS) cells, which represent
the HL tumor component, highly express Notch1 and Notch2
(Jundt et al., 2002). Interestingly, the same cells also produce
high levels of CCL22 (Ishida et al., 2006) and this chemokine is
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important for recruiting Tregs into the TME. It has also been
shown that another chemokine, CCL20, is upregulated in HL
by the EBV-encoded nuclear protein, EBNA1. Just as CCL22,
CCL20 is also critical for the increased numbers of Tregs see
in HL. Given that Notch signaling can significantly influence
cytokine and chemokine profiles in tumor cells to alter the
tumor landscape (Colombo et al., 2018), it will be important to
investigate if increased Notch1 and 2 expression in RS cells might
affect CCL22 and CCL20 expression to augment regulatory T cell
recruitment in HL.

Non-coding RNAs, especially miRNAs, play a significant
role in helping tumors escape immune control by negatively
regulating critical immunomodulatory genes (Li et al., 2021;
Mondal et al., 2021). MiR-346 targets transport associated protein
1 (TAP1) and reduces transport of peptides into the endoplasmic
reticulum for binding to HLA class I molecules (Bartoszewski
et al., 2011). MiRNAs are also involved in immune checkpoint
regulation. Recently, we have shown that EBV-encoded EBNA2
can induce PD-L1 expression in lymphoma cells (Trivedi et al.,
2018; Anastasiadou et al., 2019). The increase in PD-L1 was
due to a decrease in miR-34a. Interestingly, miR-34a also targets
Notch (Kang et al., 2013). Thus, it seems that EBNA2, in addition
to acting as a functional homolog of NICD, may also keep
Notch expression and activity high by downregulating miR-34a.
It will also be important to examine whether Notch and PD-L1
expression are positively correlated.

In HBV associated HCC, the metastatic event characterized
by the portal vein tumor thrombus (PVTT), is common in
over a third of patients. The positive correlation between the
presence of HBV and PVTT has been established (Yang et al.,
2012). These PVTT symptoms of HCC were also positively
correlated with TGFb, where an increase in TGFb led to
downregulation of miR-34a. Strikingly, CCL22 was shown to
be an authentic target of miR-34a. Thus, TGFb-mediated miR-
34a downregulation in HCC led to an increase in CCL22 and,
consequently, to regulatory T cell recruitment to create an
immunosuppressive tumor environment (Figure 3). The role of
HBV in PVTT development is clear because over 82% of HBV
positive HCC patients developed PVTT, compared with only 14%
HBV negative HCC patients (Yang et al., 2012). As mentioned
above, since miR-34a downregulates Notch, it will be critical to
establish the link between high CCL22 and Notch expression
and how Notch signaling may play an immunosuppressive role
in HBV associated HCC. Furthermore, several studies have
shown that aberrant activation of NICD in T cells may lead
to T-cell acute lymphoblastic leukemia (T-ALL) confirming the
importance of the Notch pathway in the progression of immune
system-related malignancies (Ferrando, 2009; Bernasconi-Elias
et al., 2016; Ferrandino et al., 2018a).

It is remarkable how diverse viral proteins, such as EBNA2,
LANA and Tax1, are all able to deregulate the same effector of
the Notch pathway, NICD, leading to cell transformation, latency
maintenance, proliferation, angiogenesis and tumor progression.
HBx and NS3 viral proteins interact with other activators of the
Notch pathway, such as JAG1, Dll4, and SRCAP, respectively,
to favor HCC progression. Continued investigation will enable
a deeper understanding of how viral proteins interact with the

Notch signaling to take advantage of host cells and escape
immune surveillance. The knowledge of these interactions is
an important step for the development of targeted therapies in
virus-associated cancer patients.

WNT SIGNALING IN VIRAL
ONCOGENESIS

Overview of WNT Signaling
WNT signaling is involved in cell proliferation, cell polarity,
and cell fate determination during embryonic development and
tissue homeostasis. Evolutionarily, the WNT signaling pathway
is highly conserved. Under normal or homeostatic conditions, in
the absence of WNT ligands, the signaling is maintained in an
“off” state (Figure 4A). Under this condition, b-catenin that is
not membrane-associated is sequestered in a cytosolic complex
together with Auxin, adenomatous polyposis coli (APC), casein
kinase I (CKI), and glycogen synthase kinase (GSK) 3b. Within
this complex, b-catenin is sequentially phosphorylated by CKI
and GSK3b, which primes b-catenin for ubiquitination and
proteasomal degradation (Stamos and Weis, 2013). This process
of active degradation prevents b-catenin from translocating to the
nucleus. In the absence of nuclear b-catenin, WNT target gene
transcription is repressed when Transcription Factor (TCF) binds
to WNT gene promoters in association with transcriptional co-
repressors, such as TLE1 (Transducin-Like Enhancer of Split1).

WNT signaling is activated when secreted WNT proteins
bind to the seven-pass transmembrane receptor, Frizzled (FZD),
together with its co-receptor, low-density lipoprotein receptor
related protein (LRP) 6, or to the closely related, LRP5. Following
WNT binding, the FZD-LRP6 receptor complex associates
with the Disheveled segment polarity protein (Dvl), a scaffold
protein that facilitates LRP6 phosphorylation and subsequent
recruitment of Axin way from APC and GSK3b to form the
FZD-WNT-LRP6-Dvl-Axin multiprotein complex (Komiya and
Habas, 2008). As the interactions of Axin with APC and GSK3b
are diminished, the complex loses its ability to bind to b-catenin
and mediate its degradation. As a result, b-catenin accumulates
in the cytosol and, ultimately, translocates to the nucleus, where
it successfully out-competes TLE for binding to TCF and activates
WNT target gene transcription (Figure 4B).

WNT signaling regulation is complex. Many components of
this pathway are, themselves, positively or negatively regulated
through the WNT pathway. Through their co-evolution with
the human immune system, oncogenic viruses have devised
means either to down-regulate inhibitory WNT proteins, such
as Dickkopf WNT signaling pathway inhibitor1 (DKK1) (Niida
et al., 2004) (Figure 4C) or reinforce positive WNT signaling
networks (Figure 4D) to promote cellular transformation
and tumorigenesis.

Oncogenic Hepatitis Viruses Modulate
WNT Signaling
Oncogenic HBV and HCV infect cells of the liver causing hepatic
inflammation, fibrosis, cirrhosis, and, ultimately, HCC. The
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FIGURE 3 | Oncoviruses exploit Notch signaling to escape immune responses. Reed Sternberg cells, which represent the Hodgkin’s Lymphoma tumor component
are high expressers of Notch 1 and 2 and produce high levels of CCL22. This chemokine is important for recruiting regulatory T (Treg) cells to the tumor
microenvironment. In HBV associated HCC, PVTT symptoms are positively correlated with TGFβ. The increase in TGFβ led to downregulation of miR-34a, which
targets CCL22. Downregulation of miR-34a induced by TGFβ in HCC led to an increase in CCL22 and consequently in regulatory T cell recruitment to create an
immunosuppressive tumor environment. HBV, Hepatitis B virusVirus; EBV, Epstein Barr Virus; HCC, Hepatocellular Carcinoma.

progression from initial infection to HCC is a lengthy, complex,
multi-step process. HBV and HCV are vastly different – HBV
is a partially double-stranded DNA virus (Liang, 2009), while
HCV is a positive-sense, single-strand RNA virus (Dubuisson
and Cosset, 2014)– making it unsurprising that the molecular
mechanisms by which they induce tumorigenesis also differ.
However, evidence suggesting that both HBV and HCV hijack
components of the WNT signaling pathway underscores the
importance of subverting WNT signaling in HCC.

Oncogenic Viruses Subvert WNT
Signaling Through Multiple Mechanisms
Mutations in CTNNB1, the b-catenin encoding gene, is associated
with HCC (Javanmard et al., 2020). However, genomic instability
caused by HBV infection is more commonly associated with
inactivating mutations in AXIN1 leading to HCC (Li et al.,
2013). The HBV genome consists of four overlapping genes
encoding surface antigens (S gene), core proteins (C gene),
HBV polymerase (P gene), and the HBx protein (X gene). The
polymerase lacks proofreading activity, so HBV mutations occur
with greater frequency than other DNA viruses. Frequently,
these mutations are associated with activation of WNT signaling.
Mutations in the core promoter, overlapping with the X gene,
have also been described. The resulting single or combination
point mutations in HBx, which is thought to act as a promiscuous
transcription factor, also upregulated WNT signaling (Chen
et al., 2016). Overexpressing HBx mutants in human hepatocyte
cell lines increased phosphorylated GSK3b, in the absence of
increased total GSK3b. This suggests HBx mutants may be
acting upstream of GSK3b to regulate its phosphorylation and
subsequent inactivation, although whether this occurs as a result
of Srk or Erk kinase activation or through its interaction with
APC, remains to be fully elucidated. Functionally, cells expressing

HBx mutants showed greater proliferation and migration, which
could be abrogated by co-expressing siRNA to b-catenin. HBx
mutant cells showed increased expression of cytoplasmic and
nuclear b-catenin and, importantly, HCC patient samples with
combination mutations also showed high levels of cytoplasmic
b-catenin as well as evidence of nuclear accumulation. Well-
documented WNT pathway proteins were also upregulated,
including c-Myc, Connective Tissue Growth Factor (CTGF),
Cyclin D1, and WISP2, in mutant HBx-expressing cells,
suggesting these mutations act at multiple levels to increase WNT
signaling (Figures 4C,D).

Hepatitis B Virus has been shown to increase WNT signaling
by upregulating its activating ligand Frizzled7 (FZD7) (Merle
et al., 2004). Additional HBV proteins are also thought to
participate in this activating pathway. The pre-core protein 22
(p22) is further processed to p17, also known as HBeAg, before
being secreted by infected cells (Tran et al., 2020). A human
HCC cell line, Huh7, when transfected with p22 upregulated
FZD7 to a greater extent than HBx (Tran et al., 2020). Expressing
p22 in cell lines without or with known mutations in APC or
b-catenin resulted in a synergistic increase in TCF/CTNNB1
transcription that could be reversed with co-expression of DN-
TCF4. FZD7 is not the only HBx-induced ligand implicated in
activating WNT signaling. Expressing HBx in a normal liver
cell line upregulated N1ICD and increased expression of FZD10,
but not FZD7 (Sun et al., 2014). Cyclin D1 and b-catenin
levels were also upregulated, along with increased cytosolic and
nuclear b-catenin. WNT signaling was diminished in cells treated
with a Notch inhibitor, or in which NOTCH1 was knocked
down using siRNA approaches. However, delivering siFZD10 to
cells had no effect on NOTCH1 expression, placing NOTCH1
upstream of WNT pathway activation in these cells. Thus,
WNT signaling is likely activated by HBx through different
mechanisms to promote HCC.
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FIGURE 4 | WNT signaling is targeted by oncogenic viruses during tumorigenesis. (A) WNT signaling is maintained in an “OFF” state by active processes that result
in proteosomal degradation of cytosolic β-catenin and prevent transcription of WNT target genes. (B) Secretion of WNT ligands activate signaling though FZD and
LRP5/6 to recruit the AxinAXIN-APC-GSK3αGSK3b complex away from β-catenin, resulting in its cytosolic stabilization and eventual translocation to the nucleus
where it activates the TCF/LEF transcriptional complex to induce expression of WNT target genes. The oncogenic viruses, HBV, HCV, HPV, EBV, HTLV-1, and KSHV
target various aspects of WNT signaling either to (C) repress inhibitors of or (D) enhance positive regulators of WNT signaling. (red) Negative regulation; (green)
positive regulation. See text for details.

In addition to HBV, HCV can also promote HCC by instilling
extended, sequential changes to the liver that occur over time.
The HCV genome encodes structural proteins like core, E1,
E2, p70 and non-structural proteins namely NS1, NS2, NS3,
NS4A, NS4B, NS5A, and NS5B (Mahmoudvand et al., 2019).
The HCV core, NS3, NS5A, and NS5B proteins contribute

to HCC by interacting with and modulating key host cellular
functions, such as cell cycle, proliferation, and apoptosis. When
core protein Type 1B or NS4B was expressed in Huh7 cells, or
in the normal liver L02 cell line, increased nuclear b-catenin
was observed upon activation of WNT3a (Jiang X.H. et al.,
2017). This was accompanied by increased expression of MYC,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 August 2021 | Volume 9 | Article 691644

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-691644 July 31, 2021 Time: 12:45 # 12

Trivedi et al. Viruses Co-opt Developmental Pathways

WNT1, and CCND1 in Huh7, but not in L02 cells, suggesting
these HCV proteins increase WNT signaling to directly affect
WNT-mediated cellular processes (Jiang X.H. et al., 2017). The
HCV core protein has been shown to inactivate GSK3b, further
promoting WNT/b-catenin activity. In the nucleus, b-catenin
complexes with TCF to activate downstream targets such as MYC,
CCND1, and WISP2, to enhance cell-cycle progression and cell
proliferation (Mahmoudvand et al., 2019). HCV core protein
can also act positively to increase WNT/b-catenin signaling
by upregulating expression of LRP5/6 and FZD receptors.
Increased signaling through these receptors releases b-catenin
from E-cadherin complexes, facilitating its translocation to the
nucleus, and subsequent transcriptional activity (Figures 4C,D)
(Mahmoudvand et al., 2019). To further complicate the predicted
effects of core proteins on patient disease progression, Aicher
et al. (2018) used HEK293 and Huh7.5 cells to demonstrate core
protein sequence-specific effects on the expression of b-catenin
and its transcriptional targets, based on the differences in HCV
substrains obtained from clinical isolates. Thus, although it is
clear that HCV co-opts WNT signaling pathways to promote
HCC, it is possible this occurs in a substrain-specific manner, at
least with regard to core protein effects.

Hepatitis C virus infection is also associated with promoter
hypermethylation of the WNT pathway inhibitors, Secreted
Frizzled-related Protein 2 gene (SFRP2) and DKK1, leading to
WNT/b-catenin activation. Studies by Umer et al. (2014) suggest
SFRP2 and DKK1 hypermethylation may occur early following
HCV infection and may lead to HCC via a multi-step process.
In this study, the authors utilized bisulfite sequencing to analyze
liver biopsies from patients with chronic hepatitis, liver cirrhosis,
and HCC. Compared to normal liver samples, SRFP2 and DKK1
showed significant hypermethylation in HCV-infected patients.
Although no differences in DKK1 methylation was noted between
the different conditions, there was a progressive increase in
SFRP2 promoter methylation with normal liver < chronic
hepatitis < liver cirrhosis < HCC (Umer et al., 2014). These
findings are consistent with those of Eldeeb et al. (2020) which
showed that in HCV-infected patients with liver cirrhosis,
with or without corresponding HCC, DKK1 expression was
significantly decreased. Thus, evaluating promoter methylation
status, especially for SFRP2, or DKK1 protein levels may prove
to be useful for monitoring disease progression following HCV
infection (Figure 4C).

In an interesting study, Zhang et al. (2012) examined how
HCV infection intersects with miRNA expression. HCV-infected
Huh7 cells expressed higher levels of the pro-inflammatory
miRNA, miR-155, via an NF-kB-mediated pathway. This
resulted in greater accumulation of nuclear b-catenin, along
with increased expression of cMYC, Cyclin D1, and survivin.
Increased miR-155 did not appear to affect GSK3b or AXIN1
signaling. Functionally, high miR-155 expression led to a block
in apoptosis and increased cellular proliferatio in vitro and
increased tumorigenesis in nude mice. HCV core protein
can also act positively to increase WNT/b-catenin signaling
by upregulating expression of LRP5/6 and FZD receptors.
Increased signaling through these receptors releases b-catenin
from E-cadherin complexes, facilitating its translocation to the

nucleus and subsequent transcriptional activity. Taken together,
these data point to additional direct and indirect means by which
HCV promotes HCC through dysregulated WNT signaling.

WNT Signaling Is Dysregulated Following
Infection With HPV or EBV
HPV codes for multiple viral proteins with critical functions
in viral infection, integration and replication. Its capacity
to transform human epithelial cells are ascribed to its E6
and E7 proteins, and this includes promoting b-catenin
translocation to the nucleus where it acts transcriptionally,
to facilitate tumorigenesis. Unlike the actions of HCV and
HBV, HPV infection rarely causes mutations in CTNNB1
or AXIN1. However, HPV can activate components of the
WNT signaling pathway to facilitate cellular transformation.
Microarray gene analysis shows HPV infection induces multiple
genes, including upregulation of WNT related proteins (Fragoso-
Ontiveros et al., 2012). It has also been shown that in
some cervical and oropharyngeal squamous cell cancers, HPV
infection reduces the amount of membrane-associated b-catenin
while, at the same time, it increases its cytosolic and nuclear
accumulation (Rodríguez-Sastre et al., 2005). HPV can further
act to increase GSK3b phosphorylation, which can further
attenuate its inhibitory action on WNT signaling (Figures 4C,D)
(Rath et al., 2015).

Akin to HCV, HPV can also modulate miRNAs expression
to affect WNT signaling. Mo et al. (2015) showed HPV can
increase expression of miRNAs, the targets of which may repress
WNT signaling only during early stages of CC development. The
authors suggest that the differential regulation of AXIN2, DVL3,
and LEF1 by miR-622, miR-920, and miR-507, respectively, may
act to stabilize or increase WNT signaling at later stages of cancer
progression (Mo et al., 2015). However, additional functional
studies are needed to confirm how differences in miRNA
expression contribute to cellular transformation caused by HPV.

Epigenetic changes that modulate the WNT pathway have
been observed as a result of HPV infection and, frequently, the
WNT inhibitory genes are targeted. For instance, in some HPV
associated OC, increased APC and SFRP3 promoter methylation
have been observed (Al-Shabanah et al., 2014). In HPV positive
CC, hypermethylated SFRP2 and DKK3 promoters have also been
reported (van der Meide et al., 2011).

Studies suggest HPV can also affect other proteins that
crosstalk with the WNT pathway. LRG5 is a G-protein
coupled receptor. Chen Q. et al. (2014) demonstrated that,
as HPV-induced CC progressed, increased LGR5 expression
could be detected via immunohistochemistry. Furthermore,
in vitro reporter assays indicated that LGR5 activates WNT
signaling by upregulating c-myc, cyclin D1, and b-catenin to
increase cell cycle progression and drive proliferation (Chen Q.
et al., 2014). HPV can also modulate less well-known WNT
signaling partners like, FOXM1, a novel component of WNT
signaling (Chen P.M. et al., 2014). Patients diagnosed with
lung or oral cancer showed worse overall and relapse-free
survival compared to patients who lacked a demonstrated
interaction between b-catenin and FOXM1 (Chen P.M.
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et al., 2014). Finally, Lichtig et al. (2010) provide evidence
that HPV infection may even alter b-catenin proteasomal
degradation and this may require E6/E6AP. Thus, HPV
infection can successfully promote WNT-mediated epithelial
cell transformation through multiple mechanisms to directly or
indirectly activate the WNT pathway.

EBV is yet another oncovirus that targets the WNT signaling
pathway to transform epithelial cells. Studies using telomerase-
immortalized normal oral keratinocytes (NOKs) showed
that EBV infection led to epigenetic reprogramming, CpG
hypermethylation, and delayed responsiveness to differentiation
cues (Birdwell et al., 2014). Using the same system, Birdwell
et al. (2018) further investigated the effects of EBV infection
on cellular transformation and discovered that the invasive
phenotype acquired by NOKs persisted, even after the viral
loss. LEF and WNT5a, both of which are elevated in NPC, were
increased in EBV-infected NOKs. LEF and WNT5a expression
remained high for more than 20 passages, after EBV viral
expression was no longer detected. Forced expression of LEF and
WNT5a enhanced the invasive capacity of NOKs, while knocking
down LEF1 reduced their invasiveness, even in the presence of
WNT5a expression. The data suggest that EBV may provide a
selective advantage to infected cells, with LEF1 contributing to
their metastatic potential (Birdwell et al., 2018).

The tumor suppressor, DACT2, is expressed in various healthy
tissues and is a methylation target in some cancers (Zhang
et al., 2018). Zhang et al. (2018) demonstrated this WNT
regulator was also the target of hypermethylation in EBV-
related NPC. Treating NPC cells with the DNA methyltransferase
inhibitor, 5-aza-2′-deoxycytidine, restored DACT2 expression
to normal levels. Ectopic expression of DACT2 in NPCs also
reduced proliferation, migration, and invasion, and induced
G2/M arrest by blocking b-catenin/Cdc25 activity (Zhang et al.,
2018). Restoring DACT2 expression sensitized NPC cells to the
cytotoxic actions of paclitaxel and 5FU, but not to cisplatin,
suggesting DACT2 may be an additional means of modulating the
WNT pathway in NPC.

EBV also affects miRNAs to regulate WNT signaling in NPC.
The EBV encoded miR-BART22 can induce the cellular miR-
4721 through a PI3K/AKT/cMYC/cJUN/Sp1 mediated pathway.
GSK3b is a direct target of miR-4721 and in clinical samples,
low GSK3b expression correlates with high miR-4721 levels
(Tang et al., 2020). Increased miR-4721 further correlates with
increased nuclear b-catenin accumulation and greater CCND1
and MYC expression (Tang et al., 2020). Thus, as with other
oncogenic viruses, EBV promotes tumorigenesis by subverting
WNT signaling through direct and indirect mechanisms.

Immune Cells as Targets of Oncogenic
Viral Transformation
HTLV-1 infection is the underlying cause of ATL in a significant
proportion of infected individuals. The virus expresses several
proteins known to facilitate leukemic transformation, including
the basic leucine zipper (bZIP) factor, HBZ, and the Tax protein;
however, they can have opposing effects on WNT signaling. For
instance, HBZ and Tax, both can interact with the WNT pathway

through a related protein, DAPLE (disheveled-associated protein
with a high frequency of leucine residues) (Ma et al., 2013). In the
presence of DAPLE, Tax can activate canonical WNT signaling
while HBZ suppresses this activation. One way by which HBZ
inhibits canonical WNT signaling is by impairing LEF DNA-
binding. HBZ can also enhance TGFb-mediated transcription
of WNT5A to antagonize the canonical WNT pathway (Ma
et al., 2013). Knocking down WNT5A in HTLV-1-infected cells
repressed cellular proliferation and migration, confirming the
contribution of WNT signaling to the leukemic process. These
contradictory findings suggest that it may be the balance of Tax
and HBZ expression following HTLV-1 infection that ultimately
tips the scale in favor of leukemogenesis (Figures 4C,D).

To highlight the complex interactions between HTLV-1 and
the WNT pathway, it is interesting to note that while Tax
functions to promote HTLV-1 viral replication, TCF1 and
LEF1 both interact with Tax to attenuate Tax-dependent viral
expression and activation of NF-kB and AP-1 (Ma et al., 2015).
In contrast, both TCF and LEF are downregulated in activated
T cells. Ma et al. (2015) provide in vivo data supporting this
yin and yang between TCF/LEF expression and viral load using
Japanese macaques as a model system. In animals infected with
the closely related, Simian T Lymphocyte Virus-1 (STLV-1),
a negative correlation between the STLV-1 proviral load and
TCF/LEF1 expression was observed in T cells (Ma et al., 2015).

Among its symptoms, patients with severe cases of ATL
may exhibit hypercalcemia, bone loss, and bone lesions that
are associated with osteoclast-mediated bone resorption (Xiang
et al., 2019). One key mediator of these processes is the WNT
inhibitor, DKK1, which has been identified as a key regulator of
hypercalcemia and bone loss (Colditz et al., 2019). In keeping
with the role of Tax protein in modulating WNT signaling,
it represses DKK1 in HTLV-1 infected cells (Polakowski
et al., 2010). However, DKK1 has also been associated with
bone lesions in Multiple Myeloma (Fujita and Janz, 2007).
Polakowski et al. (2010) found that HBZ nuclear localization can
modulate transcription by binding to p300/CBP transcriptional
co-activators. Microarray analysis of cells expressing wild-
type or mutant HBZ revealed transcriptional upregulation of
DKK1, which was attenuated following siRNA knock-down of
p300/CBP. Forced HBZ expression in T cells uninfected with
HTLV-1 caused de novo expression of DKK1, while expressing
HBZ in HTLV-1-infected T cells increased its expression
(Polakowski et al., 2010). These data are consistent with another
study that examined mechanisms of osteolytic bone lesions.
Elevated serum levels of DKK1 has also been reported in a mouse
model of ATL that expresses HBZ from a granzyme promoter
(Esser et al., 2017).

Finally, the γ-herpesvirus KSHV, can target components of
the WNT signaling pathway in B cells to promote tumorigenesis
(Fujimuro et al., 2003). The LANA protein in KSHV shares
homology with AXIN and has been shown to bind GSK3b
(Fujimuro and Hayward, 2003). Furthermore, it was shown
that interaction with LANA could draw GSK3b away from
the inhibitory complex that keeps b-catenin inactive in the
cytosol and allows for its nuclear translocation and subsequent
transcription of WNT target genes.
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FIGURE 5 | Developmental pathways co-opted during viral oncogenesis. Viruses deregulate developmental signaling to support malignant transformation and
disease progression, via a variety of mechanisms, including (but not limited) to, increased proliferation and cell survival, induced stemness to improve fitness of the
cancer cells, accrued neo-vascularization, activation of the epithelial-to-mesenchymal transition (EMT), evasion of tumor-targeting immune response. Inhibitors of
developmental pathways may prevent the acquisition of new properties by the cancer cells, such as virus-induced transcriptional, metabolic, and functional
reprogramming. Each color is associated with a specific virus and the cell processes controlled the developmental pathway.

TABLE 1 | Inhibitors of developmental pathways as therapeutic strategies in viral carcinogenesis.

Developmental
pathway

Inhibitors Virus Disease Effects References

Hedgehog GANT-61 KSHV Kaposi’s sarcoma Reduces tumor-sphere
formation

Asha et al., 2020

HPV Cervical cancer Decreases proliferation survival and
migration

Samarzija and Beard, 2012

Vismodegib HBV, HCV Chronic hepatitis, liver cirrhosis Decreases liver fibrosis in murine
models

Kumar et al., 2019

Notch GSI X H1N1 Influenza Decreases IFNγ production, increases
viral load

Ito et al., 2011

LY-411575 KSHV Kaposi’s sarcoma Induces apoptosis of KSHV-infected
cells

Curry et al., 2005

CompE and DBZ EBV EBV-associated lymphomas Induce EBV-lytic cycle, leading to cell
death

Giunco et al., 2015

DAPT HCV Chronic hepatitis C Increases immunosurveillance by
down-regulating
IL-22, IL-17, Tregs

Jiang B.C. et al., 2017; Qin
et al., 2017

Wnt ICG-001 EBV NPC Down-regulates CD44 via β-catenin
in vitro

Chan et al., 2019

PRI-724 HCV HCV-associated fibrosis Decreases liver fibrosis in humans liver
cirrhosis

Kimura et al., 2017; Tokunaga
et al., 2017

NPC, nasopharyngeal carcinoma; EBV, Epstein-Barr Virus; HPV, human papilloma virus; HBV, hepatitis B virus; HCV, hepatitis C virus; KSHV, Kaposi’s Sarcoma
associated Herpes Virus; 2,2′-[[Dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethyl-benzenamine (GANT-61), 2-chloro-N-[4-chloro-3-(2-
pyridinyl)phenyl]-4-(methylsulfonyl)benzamide (Vismodegib); γ-secretase inhibitors, GSI X, hydroxyethylene dipeptide isostere LY-411575; Compound E (CompE),
dibenzazepine (DBZ) and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine t-butyl ester (DAPT). cAMP-responsive element binding (CREB)-binding protein (CBP)
inhibitor (ICG-001) and Potent, specific Wnt pathway inhibitor (PRI-724).

Collectively, the data suggest that dysregulating WNT
signaling is an effective mechanism by which oncogenic viruses
target and manipulate multiple normal cellular processes to
facilitate tumorigenesis. Furthermore, these viruses often employ

multiple means of circumventing normal WNT signaling. HBV,
HCV, EBV, HPV, and KSHV can all inhibit various components
of the WNT pathway that normally keep it in its “OFF” state.
These same viruses can also enhance positive regulators of WNT
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signaling, resulting in increased expression of WNT target genes.
Thus, by “releasing the brakes and stepping on the gas” of
the WNT signaling pathway, oncogenic viruses have evolved
to be very efficient at driving cell proliferation, survival, and
ultimately, transformation.

HH, NOTCH AND WNT PATHWAYS:
INTERSECTION FOR COMMON
THERAPEUTIC TARGETS

Given the complexity of the crosstalk between viruses and
the multiple members of the developmental pathways, it is
of paramount importance to better understand the molecular
mechanisms involved in host-pathogen interactions to develop
novel therapies. Notwithstanding the multitude of signaling
proteins participating in each developmental pathway, the
biological outcome is the same, thus leading to proliferation,
cell survival, angiogenesis, stemness, EMT, immune evasion, and
maintenance of latent viral state. The ability of the same viral
protein to connect cellular proteins of the different pathways,
such as HPV E6 or E7 with members of the Notch, HH,
and WNT pathways raises the question whether simultaneous
or ordered interactions occur in enhanced cell proliferation
or tumor progression. Conversely, different viral proteins can
interact with signaling proteins of the same pathway. For
instance, HBx and NS3/5A/5B encoded by HBV and HCV,
respectively, interact with the same HH signaling proteins,
leading to cell proliferation and survival. GLI1/2 is activated
by HBV, HPV, HCV, KSHV, and EBV proteins bringing to cell
proliferation and survival, as well as virus immune evasion
(Figure 5). Oncogenic JAG1 signaling is induced by HBx, Tax
and LANA. The commonly targeted β-catenin by HPV and
HCV induces stemness, proliferation and survival in the host
cell (Figure 5). Therefore, viral proteins such as HBx, E6-
E7, Tax, NS3/5A/5B, LANA, EBNA1/2, and LMP1 could be
targeted to block viral communication with the components of
each developmental pathway (Figure 5). On the other hand,
already available inhibitors of each pathway might be used as
therapeutic strategies for virus-associated diseases (Table 1). For
instance, GANT-61 inhibited HH pathway members, GLI1 and
GLI2 in HPV and KSHV associated tumors (Samarzija and
Beard, 2012; Asha et al., 2020). Vismodegib, a SMO inhibitor
that effectively terminates HH signaling, decreased liver fibrosis
induced by HBV and HCV infection (Kumar et al., 2019). GSI
repressed Notch signaling induced by KSHV, EBV, and HCV in
associated diseases (Ito et al., 2011; Giunco et al., 2015; Jiang B.C.
et al., 2017; Qin et al., 2017). Inhibitors of the WNT pathway
decreased oncogenic signaling in EBV and HCV associated
diseases (Kimura et al., 2017; Tokunaga et al., 2017; Chan et al.,
2019). RIN1 could be used to inhibit RBP-Jk, a Notch pathway
molecule exploited by HTLV-1-encoding Tax and EBV-encoding
EBNA2, or antibodies against JAG1 might be used to inhibit
the oncogenic action of HBV-encoding HBx, HTLV-1-encoding
Tax and KSHV-encoding LANA. Similarly, inhibitors against
GLI1 and -2 could be used against HBV, HPV, HCV and KSHV
associated malignancies and the β-catenin inhibitor (ICG-001),

might be used to target HPV and HCV proteins (Table 1 and
Figure 5).

In addition, developmental pathways may interact with
each other to form a complex intertwined network connected
by common molecules. Thus, understanding the crosstalk
between developmental pathways might help to reveal common,
druggable targets. This could be the case with β-catenin, a
transcriptional activator of the WNT pathway, which also
regulates the Notch-regulated transcriptional repressor, Hes1
(Borggrefe et al., 2016). Furthermore, there is a direct
interaction between Notch1 and β-catenin, the latter having a
protective role on Notch1 by reducing its ubiquitination and
ultimately activating Hes1 expression. In addition, during in vitro
angiogenesis, the protein complex, NICD/RBP-Jk/β-catenin, was
formed and directed the differentiation of vascular progenitor
cells toward arterial endothelial cells (Yamamizu et al., 2010).
In carcinogenesis, WNT signaling activates Notch1 and Notch3
through its ligand, JAG1, in colorectal and OC, respectively
(Borggrefe et al., 2016). Crosstalk exists also between HH
and Notch pathways. For instance, GLI2 and JAG1 induced
expression of each other in OC cells (Steg et al., 2011).
Although most studies showed a positive feedback loop between
components of the developmental pathways, we cannot exclude
cases of negative feedback, especially when designing drugs that
target specific common molecules.

Considering the complexity of signaling cascades in each
developmental pathway and the existing crosstalk between them,
there is a need to carefully design appropriate targeted therapies
to avoid adverse, toxic, or off-target drug effects in patients. It
will be mandatory to test these drugs in appropriate cellular
models in vitro, including combined with three-dimensional
cell models, which better recapitulate the TME, as well as
in vivo experiments using robust animal models to fully evaluate
how these drugs might influence anti-viral/anti-tumor immune
responses in the host.

FUTURE PERSPECTIVES

Developmental pathways are important mediators of the
transformation potential of different oncogenic viruses. They
can turn normal physiologic pathways into potent carcinogenic
routes, either to promote aberrant proliferation and acquisition
of stemness, and/or to evade immune surveillance. Future
efforts focused on better dissecting the cross-signaling between
cellular developmental pathways and viruses will further our
understanding of the evolution of viral carcinogenesis, including
host-pathogen communications that can also shape the cells
in the tumor microenvironment and modulate anti-tumoral
immune responses. Given the ability of viruses to behave
as forced activators of developmental pathways, we should
consider targeting their members in future experimental studies.
Viruses can repress signaling pathways at early stages of
carcinogenesis, as HPV does with TGFβ and Notch, but can
promote later activation, as seen in malignant progression
(Meyers et al., 2018). Moreover, as suggested by experimental
works in HTLV-1-infected cells and human ATL, inhibitors
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of developmental pathways may represent drug candidates for
intractable human diseases (Takahashi et al., 2014). Taken
together, we propose that developmental pathway inhibitors
have the potential to attenuate tumor development and
further research would underpin their role in combined
cancer immunotherapy.
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