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Summary

Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–
Planck diffusion equations. Here, we study amixed Fick and Fokker–Planck diffusion
problem with coefficients rapidly oscillating both in space and time. We obtain
macroscopic models performing the homogenization limit by means of the unfolding
technique.
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1 INTRODUCTION

The study of the motion of particles diffusing in a confined region is relevant in many different fields (see, for instance, the
recent papers [1,2,3,4,5,6] and the references therein). In several studies, it has been shown that the interaction of particles with
the walls results into a diffusive coefficient depending on the space coordinates [7,8,9]. A rather natural microscopic counterpart
is represented by the random walk models, with hopping probabilities depending on the site coordinates. Such kind of models
have been, for instance, introduced in the study of wetting phenomena, in which the effect of competition between long range
attraction and reflection at the wall is modeled [10]. We also mention that space dependent diffusion is also considered in some
biological ionic channel models, to justify the selection of ionic species [11,12].
In the context of diffusion motion in inhomogeneous materials, due to the space dependence of the diffusion coefficient, the

derivation of the macroscopic equation is not straightforward. Indeed, assuming that the flux is given either by−B∇u or−∇(cu),
where B and c represent the diffusion coefficient and u the density field, gives rise to two different diffusion equations, known
in the literature as the Fick and the Fokker–Planck diffusion laws [13,14,15,16,17], respectively. In the recent paper [18], relying on a
hydrodynamic limit computation, it has been proved that the two different choices mentioned above for the flux are connected to
the microscopic structure of the inhomogeneity. Indeed, for local isotropic space inhomogeneities, the Fokker–Planck version of
the flux is found, whereas when the space inhomogeneity is exclusively due to local anisotropy, the Fick expression is recovered.
In mixed situations, the general flux structure −B∇(cu) is found and the corresponding general diffusion law ut = ∇ ⋅ [B∇(cu)]
is obtained.
Here, we study such a mixed Fick and Fokker–Planck diffusion problem for inhomogeneous materials, whose diffusion prop-

erties are described by means of rapidly oscillating coefficients with respect to both space and time (see the initial–boundary
value problem (4)–(6) below). We assume that such a material has an underlying periodic microstructure, whose characteristic
length is of order "� (" and � being strictly positive real parameters), while its time oscillation has a period of order "� , � being
another strictly positive parameter.
As usual in this kind of very fast oscillating problems, the main purpose is to obtain a macroscopic model, overcoming the

difficulties due to the intricate original geometry and appearing, for instance, in the numerical approach. To this purpose, we are
led to let " → 0, thus performing a homogenization limit. The resulting equation models the effective behavior of the medium
in the macroscopic setting, keeping memory, in general, of the underlying periodic structure. However, the homogenization of
the problem (4)–(6) seems to be a too ambitious goal, without some further structural assumptions on the coefficients. For this
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reason, we shall confine our investigation to a particular case introduced in Section 2.2, where the capacitive coefficient in front
of the time-derivative and the Fokker coefficient inside the spatial gradient are assumed to have a separate dependence on the
time and space oscillating variables (similarly to the classical Fick case, treated in [19]), but admitting that the Fokker coefficient
can be perturbed by a non–product additional coefficient of amplitude ". We refer to this case as the weakly non–product case.
However, as we will see in the sequel, when we consider the pure Fokker–Planck model (i.e., the diffusion matrix in front of
the gradient term is the identity), with unit capacity, the perturbation does not play any role in the limit equation and disappears
from the expression of the effective coefficients (see Subsections 2.2.2 and 2.2.3).
More precisely, in Subsection 2.2.2, by using the well–known two–scale expansion technique, introduced in [20], we formally

show that the non–product perturbation does not affect the upscaled equation, when its amplitude " is of the same order of the
spatial oscillation period "� (i.e. � = 1), as long as we assume the diffusion matrixB = I . This result is also rigorously proven in
Section 4. It is rather natural to ask what would happen if such a perturbation were more intense with respect to the microscopic
oscillation scale. This case will be considered in Subsection 2.2.3. However, since in the formal expansions we are obliged to deal
only with integer powers, we cannot consider an exponent smaller than one for the " amplitude of the non–product perturbation.
Hence, we accelerate the microscopic spatial oscillations choosing the smaller oscillation period "2. We will show that also in
this case the small non–product perturbation does not affect the upscaled equation. However, we do not propose this as a general
conclusion, since it could depend on the special choice of the diffusion matrix and the capacity coefficients.
In Section 4, we will rigorously prove that the same property holds also in the general mixed Fick and Fokker-Planck case, if

the amplitude of the non–product perturbation in the Fokker coefficient is strictly smaller than the spatial oscillation period, i.e.
� < 1.
At our knowledge, diffusion problems governed by Fick and/or Fokker–Planck laws depending on capacitive, diffusive and

Fokker coefficients, highly oscillating with respect to time and space simultaneously are not considered in an extensive body of
mathematical literature. Among the few results, we recall [19,11,21,22,23,24,25,26].
In particular, in [19] the authors have considered a homogenization problem in the framework of the standard heat equation,

which is very close to the case analyzed in the present research. The main novelty of that paper, with respect to former literature,
is not only the presence of a capacitive term, oscillating both in space and time, but also the fact that the homogenization problem
has been solved under completely general assumptions on the space and time microscopic oscillation periods, i.e. the oscillation
periods � and ", respectively, for time and space variables, are completely independent.
In this respect, those authors had to distinguish between two cases, namely, when the space period is smaller than or larger

than the square of the time period. These cases were called fast and slow oscillations, respectively.
In the present paper, we shall have to distinguish between these two situations, as well; however, we will confine our investi-

gation only to the case where time and space oscillation periods are powers of the common small parameter " which, as recalled
above, represents the perturbation size.
The approach we follow here is essentially the same as the one adopted in [19] and it is based on the periodic unfolding

homogenization technique, first introduced in [27,28]. Part of our results are consequences of some properties already proven in [19],
but the novelty of the present research relies on the new structure of the equation under consideration, which cannot be reduced
to the classical Fick case considered in [19]. Moreover, the presence of the non–product perturbation in the Fokker coefficient
represents a further non trivial feature of the problem.
It is worthwhile also to point out that the resulting homogenized equation has a non–standard structure, since it remains in an

integral form with respect to the microvariables and, moreover, the capacity, the diffusivity and the Fokker coefficients mix in
the limit (see Subsection 4.4), similarly as in the pure Fick case studied in [19], where the capacity and the diffusion coefficients
appear in a mixed form in the upscaled equation (see (22)).
Only when the diffusion matrix is the identity (i.e., in the pure Fokker–Planck case) and the capacity is constant, the limit

equations assume the standard form analogous to the starting one (see equation (45)), and in this case the memory of the periodic
microstructure remains in the limit only as an average of the coefficients.

The paper is organized as follows: in Section 2.1, we present the general problem. In Section 2.2 we introduce the weaker
version that we shall be able to treat rigorously, state our main results, and discuss some heuristics based on formal expansions.
Some preliminary statements are proven in Section 3 and, finally, in Section 4 we state and prove our rigorous results.
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2 THE PROBLEM

Let Ω be an open connected bounded set in ℝn with Lipschitz boundary, T > 0, and set ΩT = Ω × (0, T ). Let  = (0, 1)n,
 = (0, 1), and call  =  ×  the microscopic cell or, simply, the cell.
Given a function w ∈ L2(Ω) (or w ∈ L2(ΩT )), we will denote by ‖w‖2 its L2(Ω)-norm (or L2(ΩT )-norm, respectively).

Finally,  will denote a strictly positive constant, which may vary from line to line.

2.1 The general problem
Consider the real functions a(x, t, y, �), c(x, t, y, �), and the n × n–matrix function B(x, t, y, �) with (x, t) ∈ ΩT and –periodic
in (y, �). We assume that B ∈ L∞(ΩT ×;ℝn×n) is symmetric and satisfies the bounds

C−1|�|2 ≤ Bij(x, t, y, �)�i�j ≤ C|�|2, (1)

for every � ∈ ℝn and almost every (x, t, y, �) ∈ ΩT ×. We assume, also, that a, c ∈ L∞(ΩT ×) satisfy the bounds

C−1 ≤ a(x, t, y, �), c(x, t, y, �) ≤ C , (2)

for almost every (x, t, y, �) ∈ ΩT ×. Moreover, we assume that a, c, Bij are Lipschitz–continuous on ΩT ×.
Let �, � > 0 and set

a"(x, t) = a
(

x, t, x
"�
, t
"�
)

, c"(x, t) = c
(

x, t, x
"�
, t
"�
)

, B"(x, t) = B
(

x, t, x
"�
, t
"�
)

. (3)

Given f ∈ L2(ΩT ) and ū ∈ H1
0 (Ω), we are interested in studying the family of mixed Fick and Fokker–Planck problems with

oscillating coefficients

a"
)u"
)t

− div(B"∇(c"u")) = f, in ΩT = Ω × (0, T ); (4)

u"(x, t) = 0, on )Ω × (0, T ); (5)
u"(x, 0) = ū(x), in Ω. (6)

Note that, in the case c = 1, the pure Fick problem is recovered, while in the case B = I , we obtain the pure Fokker-Planck
problem. The terms a,B, c, and f will be respectively called capacity coefficient, diffusion matrix, Fokker coefficient, and source
term.
If we let v" = c"u", the above problem can be rewritten as the following Fick problem with linear lower order terms

)v"
)t

− div
( c"

a"
B"∇v"

)

+ B"∇
( c"

a"
)

⋅ ∇v" −
1
c"
)c"

)t
v" =

c"

a"
f, in ΩT = Ω × (0, T ); (7)

v"(x, t) = 0, on )Ω × (0, T ); (8)
u"(x, 0) = c"(x, 0)ū(x), in Ω. (9)

We remark that, by [29] Chapter 4, Theorem 9.1, for every " > 0 fixed, the problem (7)–(9) admits a unique solution v" ∈
L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)). Clearly this implies existence and uniqueness of the solution u" ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω)) of the problem (4)–(6).
As we pointed out above, the homogenization of the previous problem in its full generality provides some very hard technical

difficulties. For this reason, we shall treat only the special weakly non–product case described in the following Section 2.2.

2.2 The weakly non–product problem
Here we consider a special case in which the coefficients a and c of the problem (4)–(6) are factored in one term depending
on (x, t, y) and another on (x, t, �); namely, the dependence on the micro–variables is separated. However, for the coefficient c,
typical of the Fokker–Planck equation, we can admit a small general perturbation of the product part.
Consider the real functions a1(x, t, y), a2(x, t, �), b1(x, t, y), b2(x, t, �), and b(x, t, y, �), with (x, t) ∈ ΩT and –periodic in

(y, �). We assume, also, that a1, b1 ∈ L∞(ΩT × ), a2, b2 ∈ L∞(ΩT × ), and b ∈ L∞(ΩT ×) satisfy the bounds

C−1 ≤ a1(x, t, y), a2(x, t, �), b1(x, t, y), b2(x, t, �), b(x, t, y, �) ≤ C , (10)
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for almost every (x, t, y, �) ∈ ΩT × . Moreover, we assume that a1, b1 are Lipschitz–continuous in ΩT ×  , a2, b2 in ΩT ×  ,
and b in ΩT ×. We keep the same assumptions as in Subsection 2.1 for B, f , and ū.
Similarly as above, for (x, t) ∈ ΩT , we set

a"1(x, t) = a1
(

x, t, x
"�

)

, a"2(x, t) = a2
(

x, t, t
"�
)

, (11)

b"1(x, t) = b1
(

x, t, x
"�

)

, b"2(x, t) = b2
(

x, t, t
"�
)

, (12)

and
b"(x, t) = b

(

x, t, x
"�
, t
"�
)

. (13)

For " > 0, we will study the family of problems

a"1a
"
2
)u"
)t

− div(B"∇((b"1b
"
2 + "b

")u")) = f, in ΩT ; (14)

u"(x, t) = 0, on )Ω × (0, T ); (15)
u"(x, 0) = ū(x), in Ω, (16)

where " > 0. Note that in the case b = 0 and b1 = b2 = 1, we recover the pure Fick problem discussed in [19] Section 3.2. We
shall also consider the following auxiliary problem for the function v"(x, t) = b"1(x, t)u"(x, t):

a"1a
"
2
)
)t

(v"
b"1

)

− div
(

B"∇
((

b"2 + "
b"

b"1

)

v"
))

= f, in ΩT ; (17)

v"(x, t) = 0, on )Ω × (0, T ); (18)
v"(x, 0) = v̄"(x), in Ω, (19)

where v̄"(x) = b"1(x, 0)ū(x). Note that, since b1(⋅, 0, ⋅) ∈ L
∞(Ω × ), it follows

‖v̄"‖2 ≤ C . (20)

On the other hand ‖∇v̄"‖2 = O("−�).
Note that the weak formulation of problem (17)–(19) can be written as follows:

−

T

∫
0

∫
Ω

v"
b"1

)
)t
(a"1a

"
2�) dx dt +

T

∫
0

∫
Ω

B"∇
((

b"2 + "
b"

b"1

)

v"
)

⋅ ∇� dx dt

=

T

∫
0

∫
Ω

f� dx dt + ∫
Ω

v̄"(x)
b"1(x, 0)

a"1(x, 0)a
"
2(x, 0)�(x, 0) dx , (21)

for any � ∈ H1(ΩT ) such that � = 0 on )Ω × (0, T ) and �(x, T ) = 0 a.e. in Ω.
For later use, we set

!�,1 =

{

1 , � = 1 ,
0 , 0 < � < 1 .

The main result of the paper is the following homogenization theorem, whose proof can be found in Subsection 4.3.

Theorem 1. Assume 0 < � ≤ 1 and � > 0. For any " > 0, let u" be the unique solution of problem (14)–(16). Then, when
"→ 0, u" ⇀ u weakly in L2(
T ), where u ∈ L2(0, T ;H1

0 (Ω)) is the unique weak solution of the homogenized problem

∫


[ a1
∫ a

−1
2 d�

)
)t

( u
b1 ∫ b

−1
1 dy

)

− 1
a2 ∫ a

−1
2 d�

div
(

Beff∇
(

b2
u

∫ b
−1
1 dy

))

− 1
a2 ∫ a

−1
2 d�

div
(

B∇y
(

!�,1
b
b1
− b2� + � ⋅ ∇b2

) u
∫ b

−1
1 dy

)]

dy d� = f , in ΩT ; (22)

and
u(x, 0)

∫ b
−1
1 dy

= ū(x)
⎛

⎜

⎜

⎝

∫


a1(x, 0, y) dy
⎞

⎟

⎟

⎠

(

∫


a1(x, 0, y)
b1(x, 0, y)

dy
)−1

, in Ω . (23)
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Here, the matrix Beff is given by
Beff = B∇y(y − �) (24)

and
1) if � = 2�, � and � are the solutions of (123) and (124), respectively;
2) if � > 2�, � and � are the solutions of (135) and (136), respectively;
3) if � < 2�, � and � are the solutions of (144) and (145), respectively.

2.2.1 Formal expansions for the weakly non–product problem
In Section 4, we will prove rigorously the macroscopic equations for problem (14)–(16) in the case 0 < � ≤ 1 and � > 0.
Namely, we will be able to homogenize the system in the case in which the spatial oscillations are not too fast with respect to
the amplitude of the non–product perturbation in the Fokker coefficient appearing in the Fokker–Planck equation (14).
However, before the rigorous approach, we first set up some formal expansions. More precisely, in Subsection 2.2.2, we con-

sider, as an example, the case � = 1 and � = 2, which is indeed rigorously covered by Theorem 1. Moreover, in Subsection 2.2.3
we formally approach also some cases (with integer exponents) not covered by the theory developed in Section 4, that is to say,
when the spatial oscillations are faster than the amplitude of the non–product perturbation in the Fokker coefficient (i.e., � > 1).
In details, we consider the case � = 2 and � = 1, 2, 4, in which time oscillations are respectively slower, as fast as, and faster
than spatial ones. Note that the case � = 2 and � = 4 corresponds to the natural parabolic scaling. In our formal expansions
arguments, we assume that the diffusion matrix is B = Id, the capacity coefficients are a1 = a2 = 1, and the source term is
f = 0. Note that this last assumption could be easily removed.

2.2.2 Space oscillations as fast as the perturbation amplitude
As mentioned above in this section, we formally study the case � = 1 and � = 2, which is covered by Theorem 1.
We let y = x∕" and � = t∕"2 and, by abusing the notation, we write the differential rules

)
)t
= )
)t
+ 1
"2

)
)�
, ∇x = ∇x +

1
"
∇y, and Δx = Δx +

1
"
(∇y ⋅ ∇x + ∇x ⋅ ∇y) +

1
"2
Δy. (25)

We then look for a solution of (14), using the formal expansion

u"(x, t) = u0(x, t, y, �) + "u1(x, t, y, �) + "2u2(x, t, y, �) +⋯ , (26)

with uk a -periodic function with respect to (y, �). By replacing (26) in (14), we get
)u"
)t

=
)u0
)t

+ 1
"2
)u0
)�

+ "
)u1
)t

+ 1
"
)u1
)�

+ "2
)u2
)t

+
)u2
)�

+ "
)u3
)�

+ "2
)u4
)�

+ o("2) (27)

and

Δ[(b"1b
"
2 + "b

")u"] = Δx[(b1b2 + "b)u0] +
1
"
∇y ⋅ ∇x[(b1b2 + "b)u0]

+ 1
"
∇x ⋅ ∇y[(b1b2 + "b)u0] +

1
"2
Δy[(b1b2 + "b)u0]

+ "Δx[(b1b2 + "b)u1] + ∇y ⋅ ∇x[(b1b2 + "b)u1]

+ ∇x ⋅ ∇y[(b1b2 + "b)u1] +
1
"
Δy[(b1b2 + "b)u1]

+ "2Δx[(b1b2 + "b)u2] + "∇y ⋅ ∇x[(b1b2 + "b)u2]
+ "∇x ⋅ ∇y[(b1b2 + "b)u2] + Δy[(b1b2 + "b)u2]
+ "2∇y ⋅ ∇x[b1b2u3] + "2∇x ⋅ ∇y[b1b2u3]
+ "Δy[(b1b2 + "b)u3] + "2Δy[b1b2u4] + o("2) . (28)

Thus, at order 1∕"2, we find the equation
)u0
)�

− Δy(b1b2u0) = 0 . (29)

Recalling that b1 does not depend on �, see (12), we let v0(x, t, y, �) = b1(x, t, y)u0(x, t, y, �) and find for v0 the equation
1
b1

)v0
)�

− Δy(b2v0) = 0 , (30)
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which must be solved assuming that v0 is -periodic in (y, �). We prove, indeed, that v0 does not depend on the microscopic
variables: we first multiply (30) times v0 and integrate on the microscopic cell

0 = ∫


1
b1

)v0
)�

v0 dy d� − ∫


[Δy(b2v0)]v0 dy d�

= ∫


1
2b1

⎛

⎜

⎜

⎝

∫


)v20
)�

d�
⎞

⎟

⎟

⎠

dy + ∫


b2∇yv0 ⋅ ∇yv0 dy d� −∫


b2
⎛

⎜

⎜

⎝

∫
)

v0∇yv0 ⋅ � d�
⎞

⎟

⎟

⎠

d� . (31)

By periodicity, the first and the third integral vanish, hence

0 = ∫


b2|∇yv0|2 dy d� ≥ C−1 ∫


|∇yv0|2 dy d� , (32)

where we used (10). This implies that v0 is constant with respect to y.
On the other hand, since both b2 and v0 do not depend on y, from (30) we immediately get that v0 does not depend on � as

well. Note that, since v0(x, t) = b1(x, t, y)u0(x, t, y, �), we have that u0 does not depend on �.
We now consider the 1∕" order equation. From (14), (27), and (28), we have

)u1
)�

− ∇y ⋅ ∇x(b1b2u0) − ∇x ⋅ ∇y(b1b2u0) − Δy(bu0) − Δy(b1b2u1) = 0. (33)

Since b2 and v0 = b1u0 do not depend on y, (33) simplifies to
)u1
)�

− Δy(bu0) − Δy(b1b2u1) = 0. (34)

We now let v1(x, t, y, �) = b1(x, t, y)u1(x, t, y, �) and, from (34), we get
1
b1

)v1
)�

− b2Δyv1 = Δy
( b
b1

)

v0. (35)

We now look for a solution of the above equation in the factored form

v1(x, t, y, �) = −� (x, t, y, �)v0(x, t) , (36)

with � a -periodic function with respect to (y, �). By plugging (36) into (35), we get that � has to solve the equation
1
b1
)�
)�
− b2Δy� = −Δy

( b
b1

)

. (37)

We, finally, consider the "0 order equation, which will yield a compatibility condition providing an equation for u0. From (14),
(27), and (28), we have

)u0
)t

+
)u2
)�

− Δx(b1b2u0) − ∇y ⋅ ∇x(bu0) − ∇x ⋅ ∇y(bu0) − ∇y ⋅ ∇x(b1b2u1)

− ∇x ⋅ ∇y(b1b2u1) − Δy(bu1) − Δy(b1b2u2) = 0, (38)

which can be seen as an equation for u2. Hence, as usual, we introduce the function v2(x, t, y, �) = b1(x, t, y)u2(x, t, y, �) and
rewrite (38) as

1
b1

)v2
)�

− b2Δyv2 =Δx(b2v0) + ∇y ⋅ ∇x(bu0) + ∇x ⋅ ∇y(bu0) + ∇y ⋅ ∇x(b2v1)

+ ∇x ⋅ ∇y(b2v1) + Δy(bu1) −
)u0
)t

, (39)

for v2 a -periodic function with respect to (y, �).
Now, if we integrate (39) on, since b1 does not depend on � and b2 does not depend on y, on the left hand side we find zero.

Hence, we have the compatibility condition

∫


[)u0
)t

−
(

Δx(b2v0) + ∇y ⋅ ∇x(bu0) + ∇x ⋅ ∇y(bu0) + ∇y ⋅ ∇x(b2v1)

+ ∇x ⋅ ∇y(b2v1) + Δy(bu1)
)]

dy d� = 0 . (40)
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By the periodicity on  and Gauss-Green formulas, we also have

∫


[)u0
)t

−
(

Δx(b2v0) + ∇x ⋅ ∇y(bu0) + ∇x ⋅ ∇y(b2v1)
)]

dy d� = 0 . (41)

Since, again by periodicity,

∫


[

∇x ⋅ ∇y(bu0) + ∇x ⋅ ∇y(b2v1)
]

dy d� = ∫


[

∇x ⋅ ∫


∇y(bu0) dy + ∇x ⋅ ∫


∇y(b2v1) dy
]

d� = 0, (42)

we have
)
)t

[(

∫


1
b1

dy
)

v0
]

− Δx
[(

∫


b2 d�
)

v0
]

= 0, (43)

where we have used that v0 does not depend on y and �.
We have, finally, found an equation for v0. Indeed, we can deduce the equation that must be satisfied by the mean value of u0

on the microscopic cell. If we let

u(x, t) = ∫


u0(x, t, y, �) dy d� = ∫


v0(x, t)
b1(x, t, y)

dy d� = v0(x, t)∫


dy
b1(x, t, y)

, (44)

we can rewrite (43) as an equation for u, finding
)u
)t
− Δx

[(

∫


b2 d�
)(

∫


dy
b1

)−1
u
]

= 0 . (45)

It is interesting to note that the non–product small correction "b" in (14) does not play any role in the upscaled equation.
Note that equation (43) (resp. (45)) coincides with the rigorous equations obtained in (125) (resp. (22)), once we have taken

into account that, under the present assumptions, we have: i) the cell functions � j in Theorem 3 are identically equal to zero; ii)
the cell function � in Theorem 3, which is equal to the function � introduced in the equation (37) above, and the term ∇y(b∕b1)
disappear from the expressions of Peff in (128) and zeff in (129), due to the periodicity.

2.2.3 Space oscillations faster than the perturbation amplitude
In this section, we formally study the homogenization for the equation (14) in some cases not covered by the rigorous theory
developed in Section 4. As mentioned above, we shall consider situations in which the spatial oscillation is faster than the
amplitude of the non–product perturbation present in the Fokker coefficient.
We remark that, as we shall prove in Section 4 (for � < 1 or � = 1 and B = I) and as we found in Subsection 2.2.2 (for

� = 1), the non–product perturbation "b" appearing in (14) does not affect the upscaled equation. In the three cases discussed
below, we shall see that this property is preserved in the case � = 2, namely, even when the spatial oscillation is fast, which is
expected to reinforce the effect of the perturbation. We cannot conclude that this is a general result for the scaling � > 1; indeed,
it might depend on our peculiar choice of the diffusion matrix and the capacity coefficients in the formal computation.
We first consider the problem (14)–(16) for � = � = 2. Indeed, from the point of view of computations, such a case seems to

be the most delicate among those discussed in this section. We then let y = x∕"2 and � = t∕"2 and, by abusing the notation, we
write the differential rules

)
)t
= )
)t
+ 1
"2

)
)�
, ∇x = ∇x +

1
"2
∇y, and Δx = Δx +

1
"2
(∇y ⋅ ∇x + ∇x ⋅ ∇y) +

1
"4
Δy (46)



8

and look for a solution of (14), using the formal expansion (26). Differentiating in time, we are led again to (27), while
differentiation in space yields

∇ ⋅ ∇[(b"1b
"
2 + "b

")u"] = Δx[b1b2u0] +
1
"2
∇y ⋅ ∇x[(b1b2 + "b)u0]

+ 1
"2
∇x ⋅ ∇y[(b1b2 + "b)u0] +

1
"4
Δy[(b1b2 + "b)u0]

+ 1
"
∇y ⋅ ∇x[(b1b2 + "b)u1] +

1
"
∇x ⋅ ∇y[(b1b2 + "b)u1]

+ 1
"3
Δy[(b1b2 + "b)u1] + ∇y ⋅ ∇x[b1b2u2]

+ ∇x ⋅ ∇y[b1b2u2] +
1
"2
Δy[(b1b2 + "b)u2]

+ 1
"
Δy[(b1b2 + "b)u3] + Δy[b1b2u4] + o(1), (47)

where we took into account the powers of " up to the order "0.
Thus, at order 1∕"4, we find the equation

Δy(b1b2u0) = 0 . (48)
Recalling that b2 does not depend on y (see (12)), from (48) we have that b1(x, t, y)u0(x, t, y, �) does not depend on y, thus we
set v0(x, t, �) = b1(x, t, y)u0(x, t, y, �).
We now consider the 1∕"3 order equation. From (14), (27), and (47), we have

Δy(bu0) + Δy(b1b2u1) = 0 , (49)

which, provided we let v1(x, t, y, �) = b1(x, t, y)u1(x, t, y, �), can be rewritten as

b2Δy(v1) = −v0Δy
( b
b1

)

, (50)

where we have used that b2 and v0 do not depend on y. We now look for a solution of the above equation in the factored form

v1(x, t, y, �) = �1(x, t, y, �)v0(x, t, �). (51)

By plugging (51) into (50) and using again that v0 does not depend on y, we get that �1 has to solve the equation

b2Δy(�1) = −Δy
( b
b1

)

. (52)

We now consider the 1∕"2 order equation. From (14), (27), and (47), we have
)u0
)�

− [∇y ⋅ ∇x(b1b2u0) + ∇x ⋅ ∇y(b1b2u0) + Δy(bu1) + Δy(b1b2u2)] = 0. (53)

Since b2 and v0 = b1u0 do not depend on y, we get
1
b1

)v0
)�

− [Δy
( b
b1
v1
)

+ Δy(b2v2)] = 0, (54)

where we set v2(x, t, y, �) = b1(x, t, y)u2(x, t, y, �). Since the last two terms above integrate to zero on  and v0 does not depend
on y, we have the compatibility condition

(

∫


dy
b1

))v0
)�

= 0, (55)

which implies that v0 does not depend on �. Hence, v0 = v0(x, t) and, since v0 = b1u0, also u0 does not depend on �, namely
u0 = u0(x, t, y). Inserting, now, (51) in (54), we get the following equation for v2:

Δy(b2v2) = −v0Δy
( b
b1
�1
)

. (56)

We will look for a solution of the above equation in the factored form

v2(x, t, y, �) = �2(x, t, y, �)v0(x, t). (57)

This leads to the equation
Δy(b2�2) = −Δy

( b
b1
�1
)

(58)
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for the unknown function �2.
Next we consider the 1∕" order equation. From (14), (27), and (47) we have

)u1
)�

− [(∇x ⋅ ∇y + ∇y ⋅ ∇x)(bu0 + b1b2u1) + Δy(bu2) + Δy(b1b2u3)] = 0. (59)

Since all the terms above but the first one integrate to zero on  , we have the compatibility condition

∫


)u1
)�

dy = 0, (60)

that, recalling the definition of v1 given below (49) and (51), yields the condition

∫


)
)�

(�1
b1

)

dy = 0, (61)

which completes the definition of �1 as solution of the equation (52). Setting, now, v3(x, t, y, �) = b1(x, t, y)u3(x, t, y, �), we can
rewrite (59) as an equation for v3; indeed, we find

Δy(b2v3) =
v0
b1

)�1
)�

−
[

(∇x ⋅ ∇y + ∇y ⋅ ∇x)
( b
b1
v0 + b2�1v0

)

+ v0Δy
( b
b1
�2
)]

. (62)

Then, we turn to the "0 order equation. From (14), (27), and (47), we have
)u0
)t

+
)u2
)�

−
[

Δx(b1b2u0) + (∇y ⋅ ∇x + ∇x ⋅ ∇y)(bu1 + b1b2u2) + Δy(bu3) + Δy(b1b2u4)
]

= 0 . (63)

Since all the terms above but the first three on the left integrate to zero on  , we have the compatibility condition
)
)t

(

v0 ∫


dy
b1

)

+ ∫


)u2
)�

dy − Δx(b2v0) = 0 , (64)

where we have used that v0 = b1u0 and that v0 and b2 do not depend on y. Finally, by integrating over  , using the-periodicity
of u2 in (y, �) and the fact that both b1 and v0 do not depend on �, we get for v0 the equation

)
)t

[(

∫


dy
b1

)

v0
]

− Δx
[(

∫


b2 d�
)

v0
]

= 0, (65)

which coincides with the equation (43), found in Section 2.2.2. Hence, also in this case, equation (45) is still in force.
The second case we consider here is the problem (14)–(16) for � = 2 and � = 4. We then let y = x∕"2 and � = t∕"4 and, by

abusing the notation, we write the differential rules
)
)t
= )
)t
+ 1
"4

)
)�
, ∇x = ∇x +

1
"2
∇y, and Δx = Δx +

1
"2
(∇y ⋅ ∇x + ∇x ⋅ ∇y) +

1
"4
Δy (66)

and look for a solution of (14), using the formal expansion (26). By substituting (26) in (14), we get
)u"
)t

=
)u0
)t

+ 1
"4
)u0
)�

+ "
)u1
)t

+ 1
"3
)u1
)�

+ "2
)u2
)t

+ 1
"2
)u2
)�

+ 1
"
)u3
)�

+
)u4
)�

+ "
)u5
)�

+ "2
)u6
)�

+ o("2) (67)

and (47). Thus, at order 1∕"4, we find the equation
)u0
)�

− Δy(b1b2u0) = 0 . (68)

Recalling that b2 does not depend on y, from (68) we have that b1(x, t, y)u0(x, t, y, �) does not depend on y and �, thus we set
v0(x, t) = b1(x, t, y)u0(x, t, y, �). Indeed, we write (68) as an equation for v0 (which, clearly, has uniqueness) and note that v0,
constant with respect to � and y, solves such an equation.
Now, we pass directly to the "0 order equation. From (14), (67), and (47), we have

)u0
)t

+
)u4
)�

−
[

Δx(b1b2u0) + (∇y ⋅ ∇x + ∇x ⋅ ∇y)(bu1 + b1b2u2) + Δy(bu3) + Δy(b1b2u4)
]

= 0 . (69)

Integrating on , we find again (65) and, with the same arguments as those used above, we derive (45).
The last situation we discuss in this subsection is the problem (14)–(16) for � = 2 and � = 1. We, then, let y = x∕"2 and

� = t∕" and, by abusing the notation, we write the differential rules
)
)t
= )
)t
+ 1
"
)
)�
, ∇x = ∇x +

1
"2
∇y, and Δx = Δx +

1
"2
(∇y ⋅ ∇x + ∇x ⋅ ∇y) +

1
"4
Δy , (70)
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and we look for a solution of (14), using the formal expansion (26). By substituting (26) in (14), we get
)u"
)t

=
)u0
)t

+ 1
"
)u0
)�

+ "
)u1
)t

+
)u1
)�

+ "2
)u2
)t

+ "
)u2
)�

+ "2
)u3
)�

+ o("2) (71)

and (47).
Thus, at order 1∕"4, we find again the equation (48), which leads, as above, to v0(x, t, �) = b1(x, t, y)u0(x, t, y, �).
We now consider the 1∕" order equation. From (14), (71), and (47), we have

)u0
)�

− [(∇x ⋅ ∇y + ∇y ⋅ ∇x)(bu0 + b1b2u1) + Δy(bu2) + Δy(b1b2u3)] = 0. (72)

By integrating on  and using that v0 does not depend on y and b1 does not depend on �, we arrive again to the compatibility
condition (55), which implies that v0 = v0(x, t).
We finally consider the "0 order equation. From (14), (71), and (47), we have

)u0
)t

+
)u1
)�

−
[

Δx(b1b2u0) + (∇y ⋅ ∇x + ∇x ⋅ ∇y)(bu1 + b1b2u2) + Δy(bu3) + Δy(b1b2u4)
]

= 0. (73)

Integrating on , we get once again (65) and, with the same arguments as those used above, we derive (45).

3 PRELIMINARY RESULTS

In this Section, we always assume that � ≤ 1 and v" is the solution to (21), under the assumptions listed in Subsection 2.2.

3.1 Estimates
We collect here some estimates that will be used in the sequel.

Lemma 1. There exists  > 0, depending on T , ‖f‖2, ‖v̄"‖2 and the structural constants of the problem, but independent
of ", such that

sup
t∈[0,T ]∫

Ω

v2" dx +

T

∫
0

∫
Ω

|∇v"|2 dx dt ≤  . (74)

Proof.Multiplying (17) by v"∕a"2 and integrating by parts, we obtain

1
2 ∫
Ω

v2"
a"1
b"1
dx +

t

∫
0

∫
Ω

1
a2"

(

b"2 + "
b"

b"1

)

B"∇v" ⋅ ∇v" dx ds

=

t

∫
0

∫
Ω

[

f
v"
a"2
+ 1
2
v2"
{ 1
b"1

)a"1
)s

− a"1
)
)s
1
b"1

}]

dx ds

−

t

∫
0

∫
Ω

v"
[(

b"2 + "
b"

b"1

)

B"∇v" ⋅ ∇
1
a"2
+ 1
a"2
B"∇v" ⋅ ∇

(

b"2 + "
b"

b"1

)]

dx ds

−

t

∫
0

∫
Ω

v2"B
"∇ 1
a"2
⋅ ∇

(

b"2 + "
b"

b"1

)

dx ds + 1
2 ∫
Ω

[

v2"
a"1
b"1

]

s=0
dx .

(75)

Under our assumptions on the sign of the coefficients, the left hand side of (75) can be bounded from below by the left hand side
of (74). Again appealing to our assumptions and, in particular, to � ≤ 1, we see that all the functions appearing in the integrals
on the right hand side of (75) are bounded by an absolute constant, with the exception of f , v", and ∇v".
Then, by Young inequality, the right hand side of (75) can be bounded from above by


⎛

⎜

⎜

⎝

‖f‖22 + �

t

∫
0

∫
Ω

|∇v"|2 dx ds +
1
�

t

∫
0

∫
Ω

v2" dx ds + ‖v̄"‖
2
2

⎞

⎟

⎟

⎠

, (76)
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where  is independent of " and � > 0 can be chosen so that the gradient term can be absorbed into the left hand side. Finally,
the result follows from the application of Gronwall lemma.
Taking into account that the initial datum ū" (and, therefore, v̄") belongs not only to the spaceL2(Ω) (as needed in the previous

estimate), but it is, indeed, inH1
0 (ΩT ), we can obtain also some estimates for the time-derivative of the solution v", as stated in

the next two lemmas.

Lemma 2. There exists  > 0, depending on T , ‖f‖2, ‖v̄"‖2 and the structural constants of the problem, but independent
of ", such that

T

∫
0

∫
Ω

()v"
)t

)2
dx dt + sup

t∈[0,T ]∫
Ω

|∇v"|2 dx ≤ 
"�
+  ∫

Ω

|∇v̄"|2 dx . (77)

Proof. Let us multiply (17) times )v"∕)t and integrate by parts to obtain
t

∫
0

∫
Ω

a"1a
"
2

b"1

()v"
)s

)2
dx ds + 1

2 ∫
Ω

(

b"2 + "
b"

b"1

)

B"∇v" ⋅ ∇v" dx

= −

t

∫
0

∫
Ω

a"1a
"
2v"

()v"
)s

) )
)s
1
b"1
dx ds + 1

2

t

∫
0

∫
Ω

)
)s

[(

b"2 + "
b"

b"1

)

B"
]

∇v" ⋅ ∇v" dx ds

−

t

∫
0

∫
Ω

v"B
"∇

(

b"2 + "
b"

b"1

)

⋅ ∇
)v"
)s

dx ds +

t

∫
0

∫
Ω

f
)v"
)s

dx ds

+ 1
2 ∫
Ω

[(

b"2 + "
b"

b"1

)

B"∇v" ⋅ ∇v"
]

s=0
dx

= I1 + I2 + I3 + I4 + I5 .

(78)

Under our assumptions on the sign of the coefficients, the left hand side of (78) can be bounded from below by the left hand
side of (77). Next, we give estimates for each term Ii. By Young inequality, we get

|I1| ≤ �

T

∫
0

∫
Ω

()v"
)t

)2
dx dt +


�

T

∫
0

∫
Ω

v2" dx dt (79)

|I2| ≤

"�

T

∫
0

∫
Ω

|∇v"|2 dx dt (80)

|I4| ≤ �

T

∫
0

∫
Ω

()v"
)t

)2
dx dt +


�

T

∫
0

∫
Ω

f 2 dx dt (81)

|I5| ≤  ∫
Ω

|∇v̄"|2 dx. (82)

Moreover, we calculate

I3 = −∫
Ω

[

v"B
"∇

(

b"2 + "
b"

b"1

)

⋅ ∇v"
]t

0
dx +

t

∫
0

∫
Ω

)
)s

[

v"B
"∇

(

b"2 + "
b"

b"1

)]

⋅ ∇v" dx ds (83)

and thus, recalling that � ≤ 1, we obtain

|I3| ≤  ∫
Ω

|∇v"||v"| dx +  ∫
Ω

|∇v̄"||v̄"| dx +

"�

T

∫
0

∫
Ω

|∇v"||v"| dx dt + 

T

∫
0

∫
Ω

|

|

|

∇v"
|

|

|

|

|

|

)v"
)t

|

|

|

dx dt . (84)
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Again, an application of Young inequality gives

|I3| ≤ � ∫
Ω

|∇v"|2 dx +

� ∫
Ω

v2" dx +  ∫
Ω

(v̄2" + |∇v̄"|2) dx

+

"�

T

∫
0

∫
Ω

(v2" + |∇v"|2) dx dt + �

T

∫
0

∫
Ω

()v"
)t

)2
dx dt +


�

T

∫
0

∫
Ω

|∇v"|2 dx dt .

(85)

For � suitably small, we can absorb the terms in (85) multiplied by � into the left hand side of (78). Then, the claim follows by
applying Lemma 1.

Lemma 3. Let T1 ∈ (0, T ). Then, there exists  > 0, depending on T1, T , ‖f‖2, ‖v̄"‖2 and the structural constants of the
problem, but independent of ", such that

T

∫
T1

∫
Ω

()v"
)t

)2
dx dt + sup

t∈[T1,T ]∫
Ω

|∇v"|2 dx ≤ 
"�
. (86)

Proof. Let us multiply (17) times �(t))v"∕)t, where �(t) ∈ C∞(ℝ) such that �(t) = 0 for t ≤ T1∕2, �(t) = 1 for t > T1, and
0 ≤ �′(t) ≤ 4∕T1, and integrate by parts to obtain

t

∫
0

∫
Ω

�
a"1a

"
2

b"1

()v"
)s

)2
dx ds + 1

2 ∫
Ω

�
(

b"2 + "
b"

b"1

)

B"∇v" ⋅ ∇v" dx

= −

t

∫
0

∫
Ω

�a"1a
"
2v"

()v"
)s

) )
)s
1
b"1
dx ds + 1

2

t

∫
0

∫
Ω

)
)s

[

�
(

b"2 + "
b"

b"1

)

B"
]

∇v" ⋅ ∇v" dx ds

−

t

∫
0

∫
Ω

�v"B
"∇

(

b"2 + "
b"

b"1

)

⋅ ∇
)v"
)s

dx ds +

t

∫
0

∫
Ω

�f
)v"
)s

dx ds

= I1 + I2 + I3 + I4 .
Now, the terms I1 and I4 are treated as in the proof of Lemma 2. For I2, we write

|I2| ≤
(1 + T −11 )

"�

T

∫
0

∫
Ω

|∇v"|2 dx dt . (87)

Moreover, we calculate

I3 = −∫
Ω

[

�v"B
"∇

(

b"2 + "
b"

b"1

)

⋅ ∇v"
]t

0
dx +

t

∫
0

∫
Ω

)
)s

[

�v"B
"∇

(

b"2 + "
b"

b"1

)]

⋅ ∇v" dx ds (88)

and thus, recalling that � ≤ 1, we obtain

|I3| ≤  ∫
Ω

|∇v"||v"| dx +
(1 + T −11 )

"�

T

∫
0

∫
Ω

|∇v"||v"| dx dt + 

T

∫
0

∫
Ω

�||
|

∇v"
|

|

|

|

|

|

)v"
)t

|

|

|

dx dt . (89)

As in the proof of Lemma 2, a final application of the Young inequality yields (86).

Proposition 1. For any 0 < � < T ∕2, there exists  > 0 (depending on T , ‖f‖2, ‖v̄"‖2, the structural constants of the
problem and �), such that

T−�

∫
�

∫



|

|

v"(x, t + ℎ) − v"(x, t)||
2 dx dt ≤ 

√

ℎ , (90)

for any 0 < ℎ < �∕2.
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Proof. We select, as a test function in the integral formulation (21), the function

�(x, t) =
'(x, t)
a"2(x, t)

, with ' ∈ H1
0 (ΩT ) .

We obtain

∫ ∫

T

{

−
v"
b"1

)
)t
(a"1') + B

"∇
[(

b"2 + "
b"

b"1

)

v"
]

⋅ ∇
( '
a"2

)}

dx dt = ∫ ∫

T

f
'
a"2

dx dt . (91)

Here, for any F = F (x, t), we denote by F̃ (x, t) = F (x, t + ℎ) its time shift. Let � ∈ (0, T ∕2), 0 < ℎ < �∕2, and assume
that '(x, t) = 0 for t < �∕2 and for t > T − �∕2. Using the formula (91) with '(x, t) replaced with '(x, t − ℎ), and then
changing variables to (x, t + ℎ), but still keeping the old variable names, we obtain

∫ ∫

T

{

−
ṽ"
b̃"1

)
)t
(ã"1') + B̃

"∇
[(

b̃"2 + "
b̃"

b̃"1

)

ṽ"
]

⋅ ∇
( '
ã"2

)}

dx dt = ∫ ∫

T

f̃
'
ã"2

dx dt . (92)

Next, in (91)–(92), we select ' = 'ℎ where

'ℎ(x, t) = −� (t)

t+ℎ

∫
t

v"(x, s) ds ,

where � ∈ 10 (�∕2, T − �∕2) is a nonnegative function such that � = 1 in (�, T − �) and |� ′| ≤ ∕�.
On subtracting the two integral formulations (91) and (92), we obtain

∫ ∫

T

{

−
[ ṽ"
b̃"1
ã"1 −

v"
b"1
a"1
]})'ℎ

)t
dx dt + ∫ ∫


T

{

−
[ ṽ"
b̃"1

)ã"1
)t

−
v"
b"1

)a"1
)t

]}

'ℎ dx dt

+ ∫ ∫

T

{ 1
ã"2
B̃"∇

[(

b̃"2 + "
b̃"

b̃"1

)

ṽ"
]

− 1
a"2
B"∇

[(

b"2 + "
b"

b"1

)

v"
]}

⋅ ∇'ℎ dx dt

+ ∫ ∫

T

{

B̃"∇
[(

b̃"2 + "
b̃"

b̃"1

)

ṽ"
]

⋅ ∇ 1
ã"2
− B"∇

[(

b"2 + "
b"

b"1

)

v"
]

⋅ ∇ 1
a"2

}

'ℎ dx dt

= ∫ ∫

T

{ f̃
ã"2
−
f
a"2

}

'ℎ dx dt .

(93)

For the sake of notational simplicity, we denote each integral with a different symbol, thereby rewriting (93) as

I1 + I2 + I3 + I4 = I5 ,

where, actually, only the estimation of I1 requires a detailed calculation. Indeed,

I1 = ∫ ∫

T

[ ṽ"
b̃"1
ã"1 −

v"
b"1
a"1
]

⎧

⎪

⎨

⎪

⎩

� [ṽ" − v"] + � ′
t+ℎ

∫
t

v"(x, s) ds
⎫

⎪

⎬

⎪

⎭

dx dt

= ∫ ∫

T

[ṽ" − v"]2
�a"1
b"1

dx dt + ∫ ∫

T

ṽ"[ṽ" − v"]

[

ã"1
b̃"1
−
a"1
b"1

]

� dx dt

+ ∫ ∫

T

⎡

⎢

⎢

⎣

(

ṽ"
b̃"1
ã"1 −

v"
b"1
a"1

)

� ′
t+ℎ

∫
t

v"(x, s) ds
⎤

⎥

⎥

⎦

dx dt = I11 + I12 + I13 . (94)

The term I11 essentially equals the one estimated in the statement. The term I12 is estimated, invoking the time regularity of
a1, b1, by

|I12| ≤  ∫



T−�∕2

∫
�∕2

|

|

ṽ"||
(

|

|

ṽ"|| + |

|

v"||
)[

|

|

|

ã"1 − a
"
1
|

|

|

+ |

|

|

b̃"1 − b
"
1
|

|

|

]

dx dt ≤  ‖
‖

v"‖‖
2
2 ℎ . (95)
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The integral I13 can be bounded by means of the Hölder inequality as follows

|I13| ≤  ‖
‖

� ′‖
‖∞

⎛

⎜

⎜

⎝

∫



T−�∕2

∫
�∕2

|

|

ṽ"||
2 + |

|

v"||
2 dx dt

⎞

⎟

⎟

⎠

1
2 ⎛

⎜

⎜

⎜

⎝

∫



T−�∕2

∫
�∕2

|

|

|

|

|

|

|

t+ℎ

∫
t

v"(x, s) ds
|

|

|

|

|

|

|

2

dx dt
⎞

⎟

⎟

⎟

⎠

1
2

≤ 
�
‖

‖

v"‖‖
2
2

√

ℎ . (96)

Clearly, the integrals I2, I3, I4 and I5 can be estimated by means of a similar device, once we remark that, owing to the
assumed regularity in space of b2, b1, b, we get

|

|

|

|

|

∇
(

b"2 + "
b"

b"1

)|

|

|

|

|

≤ |∇ b"2| + "
|

|

|

|

|

∇ b"

b"1

|

|

|

|

|

≤  . (97)

For example, the integral I3 can be estimated by

|I3| ≤  ∫



T−�∕2

∫
�∕2

(

|

|

v"|| + |

|

∇ v"|| + |

|

ṽ"|| + |

|

∇ ṽ"||
)

|

|

|

|

|

|

|

t+ℎ

∫
t

∇ v"(x, s) ds
|

|

|

|

|

|

|

dx dt ≤ 
(

‖v"‖
2
2 + ‖∇ v"‖22

)

√

ℎ . (98)

Finally, on collecting all the estimates above, we get (90).

3.2 Unfolding
In the sequel, we denote by [r] the integer part of r ∈ ℝ and, for x ∈ ℝn, we define the vector with integer components
[x] = ([x1],… , [xn]).
Let us consider the tiling of ℝn given by the boxes "�(� + ), with � ∈ ℤn. Following [19], we set

Ξ" = {� ∈ ℤn ∶ "�(� + ) ⊂ Ω}, Ω̂" = interior
{

⋃

�∈Ξ"

"�(� + )
}

, (99)

and
T̂" =

{

t ∈ (0, T ) ∶ "�
([ t
"�
]

+ 1
)

≤ T
}

, Λ" = Ω̂" × T̂" . (100)

We introduce also the space-time cell containing the point (x, t) as

"(x, t) = "�
([ x
"�

]

+ 
)

× "�
([ t
"�
]

+ 
)

.

Definition 1. The time–periodic unfolding operator " of a Lebesgue measurable function w defined on ΩT is given by

"(w)(x, t, y, �) =
⎧

⎪

⎨

⎪

⎩

w
(

"�
[ x
"�

]

+ "�y, "�
[ t
"�
]

+ "��
)

, (x, t, y, �) ∈ Λ" ×,

0, otherwise.
(101)

Note that, by definition, it easily follows that

"(w1w2) = "(w1)"(w2) . (102)

Definition 2. The space–time average operator" of a Lebesgue integrable function w defined on ΩT is given by

"(w)(x, t) =

⎧

⎪

⎨

⎪

⎩

1
"N�+� ∫

"(x,t)

w(�, s) d� ds, (x, t) ∈ Λ",

0, otherwise.

(103)

Moreover, the space–time oscillation operator is defined as

"(w)(x, t, y, �) = "(w)(x, t, y, �) −"(w)(x, t) . (104)

Notice that, by a simple change of variables, it easily follows that

"(w)(x, t) = ∫


"(w)(x, t, y, �) dy d� . (105)
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Finally, we denote by the microscopic time average of an integrable function �(x, t, y, �), i.e.

 (�)(x, t, y) = ∫


�(x, t, y, �) d� . (106)

We conclude this section, recalling the following result (see [19] Remark 2.9).

Proposition 2. For � ∈ L2(;(ΩT )) or � ∈ L2(ΩT ;()), denote again by � its extension by–periodicity toΩT ×ℝn+1

and set �"(x, t) = �(x, t, "−�x, "−� t). Then, "(�")→ � strongly in L2(ΩT ×).

For later use, we define the functional spaces
H1
# () = {v ∈ H

1
loc(ℝ

n) ∶ v is -periodic},
H1
# () = {v ∈ H

1
loc(ℝ

n+1) ∶ v is -periodic}.
(107)

4 HOMOGENIZATION

In this section, u" and v" are the solutions of problem (14)–(16) and (17)–(19) in Subsection 2.2, andwe assume all the hypotheses
listed there. As in Section 3, we always assume � ≤ 1.
We remark that, in all the cases we deal with, the final structure of the macroscopic homogenized equation will be the same,

though the coefficients in it have to be defined case–by–case. Results are presented in two subsections: Section 4.1 is devoted to
the case � ≥ 2� (fast oscillations), while in Section 4.2 the case � < 2� (slow oscillations) is studied.
In each case we prove two theorems, the first states the homogenization result and gives the limit two–scale system, while the

second one introduces the corrector factorization and the resulting single scale equation. For technical reasons, the uniqueness
of the solutions of the two limit problems is dealt in the corollaries following the theorems.

4.1 Fast oscillations
Here, we treat the cases where � ≥ 2�, distinguishing between � = 2� and � > 2�.

Theorem 2. Let � = 2�. Then, there exist v ∈ L2(0, T ;H1
0 (Ω)) and v1 ∈ L

2(ΩT ;H1
# ()), with ∫ v1 dy d� = 0, such that

v" ⇀ v , weakly in L2(ΩT ); (108)
v" ⇀ v , weakly in L2(0, T ;H1

0 (Ω)); (109)
"(v")⇀ v , weakly in L2(ΩT ;H1()); (110)
"(∇v")⇀ ∇v + ∇yv1 , weakly in L2(ΩT ×); (111)

"�"
()v"
)t

)

⇀
)v1
)�

, weakly in L2(ΩT ×). (112)

Moreover, the pair (v, v1) is a weak solution of the two–scale problem

∫


[

a1
)
)t

( v
b1

)

− 1
a2

div
(

B
(

b2(∇v + ∇yv1) + v∇b2 + !�,1v∇y
( b
b1

)))]

dy d� = f∫


d�
a2
, in ΩT ; (113)

a1
b1

)v1
)�

− 1
a2

divy
[

B
(

b2(∇v + ∇yv1) + v∇b2 + !�,1v∇y
( b
b1

))]

= 0 , in ΩT × ; (114)

v = 0 , on )Ω × (0, T ) ; (115)

v(x, 0) = ū(x)
⎛

⎜

⎜

⎝

∫


a1(x, 0, y) dy
⎞

⎟

⎟

⎠

(

∫


a1(x, 0, y)
b1(x, 0, y)

dy
)−1

, in Ω . (116)
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Proof The convergence results in (108) and (109) follow from the energy estimate (74); (110) follows from (77) and [19]

Proposition 2.12 with m = 1∕2 and by replacing � with "2� . Finally, (111) and (112) follow from (77) and [19] Theorem 2.18
with m = 1∕2 by replacing � with "2� and " with "� .
Now, we choose, as test function in (21), �"(x, t) = '(x, t)∕a2(x, t, t∕"2�), where ' ∈ ∞(ΩT )with '(x, T ) = inΩ and ' = 0

on )Ω × [0, T ], and we unfold the resulting equation. We obtain

−

T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)

"
(

a"1
)'
)t
+ '

)a"1
)t

)

dy d� dx dt

+

T

∫
0

∫
Ω

∫


"(B")"
(

∇
((

b"2 + "
b"

b"1

)

v"
))

⋅ "
(

∇
( '
a"2

))

dy d� dx dt

=

T

∫
0

∫
Ω

f
'
a"2

dx dt + ∫
Ω

ūa"1(x, 0)'(x, 0) dx + R" , (117)

where R" → 0 for "→ 0.
We first note that

"
(

∇
((

b"2 + "
b"

b"1

)

v"
))

= "
((

b"2 + "
b"

b"1

)

∇v"
)

+ "
(

v"
(

∇b"2 + "∇x
(b"

b"1

)

+ "1−�∇y
(b"

b"1

)))

. (118)

Therefore, passing to the limit "→ 0 in (117), and taking into account (110) and (111), we get

−

T

∫
0

∫
Ω

∫


v
b1
)
)t
(a1') dy d� dx dt +

T

∫
0

∫
Ω

∫


B
(

b2(∇v + ∇yv1) + v
(

∇b2 + !�,1∇y
( b
b1

)))

⋅ ∇
( '
a2

)

dy d� dx dt

=

T

∫
0

∫
Ω

f'
(

∫


d�
a2(x, t, �)

)

dx dt + ∫
Ω

∫


ūa1(x, 0, y)'(x, 0) dy dx , (119)

i.e., the weak formulation of (113) and (116).
Next, we choose �"(x, t) = "�('(x, t)∕a2(x, t, t∕"2�)) (x∕"� , t∕"2�), where ' ∈ ∞(ΩT ) with ' = 0 on )Ω × [0, T ], and

 ∈ H1
# (), as test function in (21) (where we do not integrate by parts in time) and we unfold the resulting equation. We obtain

"�
T

∫
0

∫
Ω

∫


"(a"1)
(

"
()v"
)t

)

"
( 1
b"1

)

+ "(v")"
( )
)t
1
b"1

))

"(' ) dy d� dx dt

+ "�
T

∫
0

∫
Ω

∫


"(B")
(

"(v")"
(

∇xb"2 + "∇x
(b"

b"1

)

+ "1−�∇y
(b"

b"1

))

+ "
(

b"2 + "
b"

b"1

)

"(∇v")
)

⋅
(

"
(

∇
( '
a2

))

"( ) + "
( '
a2

)

"(∇x ) +
1
"�

"
( '
a2

)

"(∇y )
)

dy d� dx dt

= "�
T

∫
0

∫
Ω

f
'
a2
 dx dt + R" , (120)

where R" → 0 for "→ 0. Now, passing to the limit "→ 0 and taking into account (111) and (112), we get
T

∫
0

∫
Ω

∫


a1
b1

)v1
)�

' dy d� dx dt +
T

∫
0

∫
Ω

∫


1
a2
B
(

v
(

∇b2 + !�,1∇y
( b
b1

))

+ b2(∇v + ∇yv1)
)

⋅ '∇y dy d� dx dt = 0 , (121)

which is the weak formulation of (114).

Corollary 1. Given v ∈ L2(0, T ;H1
0 (Ω)), the equation (114) admits a unique solution v1 ∈ L2(ΩT ;H1

# ()) with
∫ v1 dyd� = 0.
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Proof. The proof of the uniqueness follows by standard energy estimates and Young inequality, taking into account the
linearity of the problem and the periodicity of v1.

Theorem 3. In the same hypotheses of Theorem 2, the corrector v1 can be written in the factored form

v1(x, t, y, �) = −� j(x, t, y, �)
)v
)xj

(x, t) − � (x, t, y, �)v(x, t) , (122)

where the cell functions � j , j = 1,… , n, and � are–periodic, with null mean average over, and are the unique solutions
of

a1
b1

)� j

)�
− 1
a2

divy
(

b2B∇y(� j − yj)
)

= 0 (123)

and a1
b1
)�
)�
− 1
a2

divy
(

b2B∇y�
)

+ 1
a2

divy
(

B
(

∇b2 + !�,1∇y
b
b1

))

= 0 . (124)

Moreover, the system (113) and (114) can be written as the single scale equation

qeff
)v
)t
− div(Bhom∇v) + Peff ⋅ ∇v + zeffv = f ∫



d�
a2
, (125)

where

qeff = ∫


a1
b1
dy , (126)

Bijhom = ∫


b2
a2
Bik)k(yj − � j) dy d� = ∫



b2
a2
Blk)k(yj − � j))l(yi − � i) dy d� + ∫



a1
b1

)� j

)�
� i dy d� , (127)

Peff =∫


[b2
a2
B∇y� + b2(B∇y(y − �))†∇

1
a2
− 1
a2
B∇b2 − !�,1B∇y

( b
a2b1

)]

dy d�, (128)

zeff = ∫


a1
)
)t
1
b1
dy + ∫



[

div
(Bb2
a2
∇y�

)

− 1
a2

div
(

B
(

∇b2 + !�,1∇y
b
b1

))

− b2B∇y� ⋅ ∇
1
a2

]

dy d� . (129)

Proof We first note that, by classical results (see, i.e., [20] Chapter 1, Section 2.2), equations (123) and (124) admit a unique –
periodic solution with null mean average. Then, a standard computation shows that v1 defined in (122) satisfies (114). Finally,
inserting (122) into (113) and performing some algebraic computations we get equation (125).
In particular, the second equality in (127) can be obtained as follows. We first note that

Bijhom = −∫


b2
a2
Blk)k(� j − yj))lyi dy d� .

Moreover, from (123), we have that

∫


b2
a2
Blk)k(� j − yj))l� i dy d� + ∫



a1
b1

)� j

)�
� i dy d� = 0 .

By summing the two equations above we get (127).

Corollary 2. In the same hypotheses of Theorem 2, equation (125), complemented with the boundary and initial conditions
(115) and (116), and the two–scale problem (113)–(116) admit a unique solution.

Proof. First we note that the matrixBhom in (127) is made of two parts, the first one is symmetric and by standard calculations
it is also positive definite. On the other hand, the second part, which is due to the presence of the derivative with respect to
the microscopic time � in the parabolic equation (123) for the cell functions � j , is antisymmetric.
However, the uniqueness for equation (125), complemented with (115) and (116), still follows by standard energy esti-

mates, Gronwall and Young inequalities, taking into account that the antisymmetric part of the homogenized matrix Bhom
disappears in the energy estimate. Indeed, it is multiplied by the symmetric matrix (v− ṽ)xi(v− ṽ)xj , where v and ṽ are two
different solutions of (125). Thus, the estimation can be performed as usual.
To prove uniqueness for the problem (113)–(116), we assume that there exist two solutions (v, v1) and (ṽ, ṽ1). >From

Corollary 1 and Theorem 3 it follows that v1 and ṽ1 are given as in (122) for v and ṽ, respectively. By substituting these two
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representations of v1 and ṽ1 in (113), it follows that both v and ṽ satisfy (125). Thus, by uniqueness of the solution of (125),
we have that v = ṽ and, therefore, we also have v1 = ṽ1.

Remark 1. Notice that the antisymmetric term disappears in the homogenized matrix (127) under some additional assump-
tions. For instance, when the matrixB and the coefficients a1, a2, b1, and b2 do not depend on the macroscopic space variable
x [20].

Theorem 4. Let � > 2�. Then, there exist v ∈ L2(0, T ;H1
0 (Ω)) and v1 ∈ L

2(ΩT ;H1
# ()), with ∫ v1 dy d� = 0, such that

(108)–(111) hold and
)v1
)�

= 0. (130)

Moreover, the pair (v, v1) is a weak solution of the two–scale problem (113), (115), (116), complemented with the microscale
equation

divy
[



(Bb2
a2

)

(∇v + ∇yv1) + v

(B∇b2
a2

)

+ !�,1v

(B
a2
∇y

( b
b1

))]

= 0 , in ΩT ×  . (131)

Proof The convergence results in (108) and (109) still follow from (74); (110) follows from (77) and [19] Proposition 2.12, with
m = 1∕2 and by replacing � with "� . Finally, (111) and (130) follow from (77) and [19] Theorem 2.16, withm = 1∕2, by replacing
� with "� , " with "� and taking into account that � > 2�.
The proof of (113) and (116) is exactly the same as in the case � = 2�.
In order to prove (131), we take into account (130) and choose the test function �"(x, t) = "�('(x, t)∕a2(x, t, t∕"�)) (x∕"�),

where ' ∈ ∞(ΩT ) with ' = 0 on )Ω × [0, T ], and  ∈ H1
# (), as test function in (21). We unfold the resulting equation and

obtain

− "�
T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)(

"
()a"1
)t

)

"(' ) + "(a"1)"( )"
()'
)t

))

dy d� dx dt

+ "�
T

∫
0

∫
Ω

∫


"(B")
(

"(v")"
(

∇xb"2 + "∇x
(b"

b"1

)

+ "1−�∇y
(b"

b"1

))

+ "
(

b"2 + "
b"

b"1

)

"(∇v")
)

⋅
(

"
(

∇
( '
a2

))

"( ) + "
( '
a2

)

"(∇x ) +
1
"�

"
( '
a2

)

"(∇y )
)

dy d� dx dt

= "�
T

∫
0

∫
Ω

f
'
a2
 dx dt + "� ∫

Ω

v̄"(x)
b"1(x, 0)

a"1(x, 0)'(x, 0) 
( x
"�

)

dx + R" , (132)

where R" → 0 for "→ 0. Now, passing to the limit "→ 0 and taking into account (111), we get
T

∫
0

∫
Ω

∫


1
a2
B
(

v
(

∇b2 + !�,1∇y
( b
b1

))

+ b2(∇v + ∇yv1)
)

⋅ '∇y dy d� dx dt = 0 , (133)

which is the weak formulation of (131).
Notice that, by (130), actually v1 ∈ H1

# () with ∫ v1 dy = 0. Moreover, similarly to the case � = 2� discussed above, we
have the following corollary.

Corollary 3. Given v ∈ L2(0, T ;H1
0 (Ω)), equation (131) admits a unique solution v1 ∈ L

2(ΩT ;H1
# ()) with ∫ v1 dy = 0.

Theorem 5. In the same hypotheses of Theorem 4, the corrector v1 can be written in the factored form

v1(x, t, y) = −� j(x, t, y)
)v
)xj

(x, t) − � (x, t, y)v(x, t) (134)

where the cell functions � j , j = 1,… , n, and � are–periodic, with null mean average over , and are the unique solutions
of

divy
(



(b2B
a2

)

∇y(� j − yj)
)

= 0 (135)
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and
−divy

(



(b2B
a2

)

∇y�
)

+ divy

(B
a2

(

∇b2 + !�,1∇y
b
b1

))

= 0 . (136)

Moreover, the system (113) and (131) can be written as the single scale equation (125), where qeff, Peff, and zeff are formally
defined as in Theorem 3, and

Bijhom = ∫


b2
a2
Bik)k(yj − � j) dy d� = ∫



b2
a2
Blk)k(yj − � j))l(yi − � i) dy d� , (137)

with � and � being the solutions of (135) and (136).

Proof We first note that, by classical results (see, i.e., [20] Chapter 1, Section 2.2), equations (135) and (136) admit a unique –
periodic solution with null mean average. Then, a standard computation shows that v1 defined in (134) satisfies (131). Finally,
inserting (134) into (113) and performing some algebraic computations, we get equation (125). In particular, the second equality
(137) is obtained as done for (127) in Theorem 3, by using, now, (135).

Corollary 4. In the same hypotheses of Theorem 4, equation (125), with the homogenized matrix Bhom given in (137) and
complemented with the boundary and initial conditions (115) and (116), admits a unique solution. Moreover, the two–scale
problem (113), (131), (115), and (116) admits a unique solution.

Proof. First we note that the matrix Bhom in (137) is symmetric and, by standard calculations, it is also positive definite.
Thus, the uniqueness for equation (125), complemented with (115) and (116), as usual follows by standard energy estimates,
Gronwall and Young inequalities.
The second part of the corollary can be proven as we did for Corollary 2.

4.2 Slow oscillations
In this section, we consider the remaining case � < 2�.

Theorem 6. Let � < 2�. Then, there exist v ∈ L2(0, T ;H1
0 (Ω)) and v1 ∈ L

2(ΩT ×;H1
# ()), with ∫ v1 dy = 0, such that

(108), (109) and (111) hold, as well as

"(v")⇀ v , weakly in L2(ΩT ×). (138)

Moreover, the pair (v, v1) is a weak solution of the two–scale problem (113), (115), (116), complemented with the microscale
equation

1
a2

divy
[

B
(

b2(∇v + ∇yv1) + v∇b2 + !�,1v∇y
( b
b1

))]

= 0 , in ΩT × . (139)

Proof The convergence results in (108) and (109) follow from (74); (111) follows from (109) and [19] Theorem 2.11. In order to
prove (138), we proceed as follows. As, for instance, in [19] Proposition 2.8, for a suitable ṽ(x, t, y, �), we have

"(v")⇀ ṽ , weakly in L2(ΩT ×),

as a consequence of (109). On the other hand, by (86) and [19] Proposition 2.12, with m = 1∕2 and � = "� , we get that

"(v")⇀ v , weakly in L2(Ω × (T1, T );H1()).

By testing with compactly supported functions in ΩT × we conclude that ṽ = v.
The proof of (113) and (116) is the same as in the case � = 2�. In order to prove (139), we choose �"(x, t) =

"�('(x, t)∕a2(x, t, t∕"�)) (x∕"� , t∕"�), where ' ∈ ∞(ΩT ) with '(x, T ) = 0 in Ω and ' = 0 on )Ω × [0, T ], and  ∈ H1
# ()



20

with  (y, 0) =  (y, 1) = 0 in  , as test function in (21). We unfold the resulting equation and obtain

− "�
T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)(

"
()a"1
)t

)

"(' ) + "(a"1)"( )"
()'
)t

))

dy d� dx dt

− "�−�
T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)

"(a"1)"(')"
() 
)�

)

dy d� dx dt

+ "�
T

∫
0

∫
Ω

∫


"(B")
(

"(v")"
(

∇xb"2 + "∇x
(b"

b"1

)

+ "1−�∇y
(b"

b"1

))

+ "
(

b"2 + "
b"

b"1

)

"(∇v")
)

⋅
(

"
(

∇
( '
a2

))

"( ) + "
( '
a2

)

"(∇x ) +
1
"�

"
( '
a2

)

"(∇y )
)

dy d� dx dt

= "�
T

∫
0

∫
Ω

f
'
a2
 dx dt + R" , (140)

where R" → 0 for "→ 0.
Using that, as we show below, the second term in (140) tends to zero in the limit "→ 0, we get the weak formulation of (139),

similarly as we did for (133) in the proof of Theorem 4.
Indeed, the second term in (140) can be written as

"2�−�
T

∫
0

∫
Ω

∫


1
"�

"(v")"
( 1
b"1

)

"(a"1)"(')"
() 
)�

)

dy d� dx dt

+ "�−�
T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)

"(a"1)"(')"
() 
)�

)

dy d� dx dt = J "1 + J
"
2 . (141)

Recalling [19] Proposition 2.22 (with, in the notation there, m = r = 1∕2, � = 1, " replaced by "� , and � replaced by "�), it
follows that J "1 → 0, for "→ 0. Moreover, we write

J "2 = "
2�−�

T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)

"(a"1)
1
"�

"(')"
() 
)�

)

dy d� dx dt

+ "�−�
T

∫
0

∫
Ω

∫


"(v")"
( 1
b"1

)

"(a"1)"(')"
() 
)�

)

dy d� dx dt (142)

and note that, using [19] Remark 2.23 (with, in the notation there, m = r = 1∕2, � = 1, " replaced by "� , and � replaced by "�),
the first term tends to zero, in the limit "→ 0.
Now, we integrate the second term in (142) with respect to � taking into account that

"
() 
)�

)

= )
)�

"( )

and we get that it is equal to

− "�
T

∫
0

∫
Ω

∫


"(v")
1
"�

)
)�

(

"
(a"1
b"1

))

"(')"( ) dy d� dx dt

= −"�
T

∫
0

∫
Ω

∫


"(v")"
( )
)t

(a"1
b"1

))

"(')"( ) dy d� dx dt→ 0 , (143)
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where we used that
1
"�

)
)�

(

"
(a"1
b"1

))

= "
( )
)t

(a"1
b"1

))

.

Similarly to the cases � ≥ 2� discussed above, we have the following corollary.

Corollary 5. Given v ∈ L2(0, T ;H1
0 (Ω)), equation (139) admits a unique solution v1 ∈ L

2(ΩT×;H1
# ())with ∫ v1 dy =

0.

Theorem 7. In the same hypotheses of Theorem 6, the corrector v1 can be written in the factored form (122), where the cell
functions � j , j = 1,… , n and � are –periodic, with null mean average over  , and are the unique solutions of

1
a2

divy
(

b2B∇y(� j − yj)
)

= 0 (144)

and
1
a2

divy
(

b2B∇y�
)

+ 1
a2

divy
(

B
(

∇b2 + !�,1∇y
b
b1

))

= 0 . (145)

Moreover, the system (113) and (139) can be written as the single scale equation (125), where qeff, Peff, and zeff are formally
defined as in Theorem 3, and Bhom is defined as in (137), with � and � being the solutions of (144) and (145).

Proof As above, by classical results [20] Chapter 1, Section 2.2, equations (144) and (145) admit a unique –periodic solution,
with null mean average. Then, a standard computation shows that v1 defined in (122) satisfies (131). Finally, inserting (122) into
(113) and performing some algebraic computations, we get equation (125).

Similarly to the case � > 2� discussed above, we have the following corollary.

Corollary 6. In the same hypotheses of Theorem 6, equation (125), with the homogenized matrixBhom given in (137), where
� and � are the solutions of (144) and (145), and complemented with the boundary and initial conditions (115) and (116),
admits a unique solution. Moreover, the two–scale problem (113), (139), (115), and (116) admits a unique solution.

Notice that, in the present case, i.e. � < 2�, the dependence of the cell functions � and � on the microtime � is only parametric
(as well as on (x, t)), via the coefficients of the corresponding equations.

4.3 Proof of Theorem 1.
In the case � = 2�, by Theorems 2 and 3, we obtain that v" ⇀ v weakly in L2(ΩT ), where v is the solution of (125). By using

(74) and (90), it follows that the convergence is, indeed, strong in L2(ΩT ). Moreover, by the assumptions on b1, it follows that
1∕b"1 ⇀ ∫ dy∕b1 weakly∗ in L∞(
T ). Therefore,

u" =
v"
b"1

⇀ v∫


dy
b1
=∶ u . (146)

By replacing v = u
(

∫ dy∕b1
)−1 in (125), we eventually get (22) and (23).

The uniqueness of the solution u of (22)–(23) follows by the uniqueness for equation (125), complemented with the boundary
and the initial conditions (115) and (116).
The cases � ≠ 2� are treated in the same way, of course by appealing to Theorems 4 and 3, for � > 2� and Theorems 6 and

7, for � < 2�, respectively.

4.4 Some particular cases
Here we discuss some very special cases in which the upscaled equations take specific forms.

4.4.1 Pure product case
In the case b = 0, we can fix � = 1 without loss of generality, since no other scaling, excepted x∕"� and t∕"� , is present in the
equation.
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The homogenized equations for the limit function u, appearing in Theorem 1, take the form

∫


[ a1
∫ a

−1
2 d�

)
)t

( u
b1 ∫ b

−1
1 dy

)

− 1
a2 ∫ a

−1
2 d�

div
(

Beff∇
(

b2
u

∫ b
−1
1 dy

))

− 1
a2 ∫ a

−1
2 d�

div
(

B∇y
(

− b2� + � ⋅ ∇b2
) u
∫ b

−1
1 dy

)]

dy d� = f , in ΩT , (147)

where Beff = B∇y(y − �) and the cell functions � and � satisfy (123) and (124) with b = 0 for � = 2, (135) and (136) with
b = 0 for � > 2, (144) and (145) with b = 0 for � < 2.
Incidentally, this is also the case when � < 1 even if b ≠ 0, which means that the space oscillation is greater than the

non–product perturbation.

4.4.2 Pure Fick case
In the case b1 = b2 = 1 and b = 0, as above we can fix � = 1 without loss of generality, In such a case, our problem is a
particular case of the one studied in [19], with the time oscillation being a power of the space oscillation.
Indeed, it is easy to prove that the cell function � is equal to zero for any � and the cell function � satisfies [19] equation (7.1)

for � = 2, [19] equation (7.2) for � > 2, and [19] equation (7.3) for � < 2, respectively.
Moreover, the homogenized equation (22) reduces to [19] equation (7.4), for any choice of �. In particular, when the capacity

is independent of the macrovariables, the resulting equation turns to be the pure Fick equation
∫ a1 dy

∫ a
−1
2 d�

ut − div
(∫(Beff∕a2) dy d�

∫ a
−1
2 d�

∇u
)

= f, (148)

where the capacity and the diffusion matrix appear mixed in the upscaled diffusion coefficient.

4.4.3 Pure Fokker–Planck case
If B is the identity matrix, it follows that � is always identically zero, so that Beff = B, and by periodicity

∫


∇y
(

!�,1
b
b1
− b2�

)

dy = 0 . (149)

Thus, the limit equation reduces to

∫


[ a1
∫ a

−1
2 d�

)
)t

( u
b1 ∫ b

−1
1 dy

)

− 1
a2 ∫ a

−1
2 d�

Δ
(

b2
u

∫ b
−1
1 dy

)]

dy d� = f , in ΩT , (150)

which does not depend on the non–product perturbation b. We remark that this is also valid under the milder hypothesis that B
does not depend on y.
If in addition � < 1 or b = 0, then also the cell function � = 0 and therefore (149) is trivially satisfied.
The limit equation in the pure Fokker–Planck case has been written in the from (150) to make it as close as possible to the

starting Fokker–Planck problem. However, it is possible to formally reduce it to a standard parabolic equation with lower order
terms, in which the coefficients are expressed in terms of the mean value on  of the coefficients of the original equation, i.e.,
a1, a2, b1, and b2.
Finally, we remark that in the very particular case in which the coefficients a1, a2, b1, and b2, do not depend on the macroscopic

variables, the equation (150) becomes
∫ (a1∕b1) dy

∫ a
−1
2 d� ∫ b

−1
1 dy

ut − Δ
( ∫ (b2∕a2) d�
∫ b

−1
1 dy ∫ a

−1
2 d�

u
)

= f , in ΩT , (151)

which shows that, even in such a special case, the capacity and the Fokker coefficient are mixed in the upscaled equation.
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Text for the TABLE OF CONTENTS:

Diffusion in an inhomogeneous environment may lead to Fick or to Fokker-Planck models. We investigate the upscaling of
problems where both types of variability coexist in a finely mixed and periodic microstructure. We show that for equations with a
factored structure, allowing for a general perturbation, the two kinds of inhomogeneity behave differently in the homogenization
limit.
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