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Abstract: Fatigued driving is one of the main causes of traffic accidents. The electroencephalogram
(EEG)-based mental state analysis method is an effective and objective way of detecting fatigue.
However, as EEG shows significant differences across subjects, effectively “transfering” the EEG
analysis model of the existing subjects to the EEG signals of other subjects is still a challenge. Domain-
Adversarial Neural Network (DANN) has excellent performance in transfer learning, especially in the
fields of document analysis and image recognition, but has not been applied directly in EEG-based
cross-subject fatigue detection. In this paper, we present a DANN-based model, Generative-DANN
(GDANN), which combines Generative Adversarial Networks (GAN) to enhance the ability by
addressing the issue of different distribution of EEG across subjects. The comparative results show
that in the analysis of cross-subject tasks, GDANN has a higher average accuracy of 91.63% in fatigue
detection across subjects than those of traditional classification models, which is expected to have
much broader application prospects in practical brain–computer interaction (BCI).

Keywords: cross-subject prediction; Domain-Adversarial Neural Network (DANN); electroen-
cephalogram (EEG); Generative Adversarial Networks (GAN)

1. Introduction

Mental fatigue is a complex physiological and psychological state, which can lead
to a decline in alertness, concentration and cognitive performance [1]. About 1.3 million
people lose their lives in traffic accidents every year in the world [2], and fatigued driving
is a leading factor in it [3]. Thus, performing mental state detection and prediction while
driving is extremely important to reduce losses of lives and property caused by fatigued
driving [4,5].

Numerous fatigued driving detection methods have been proposed. They can be
divided into three categories: psychometric questionnaires (e.g., Karolinska Sleepiness Scale
(KSS) [6] and Checklist Individual Strength questionnaire (CIS) [7]), behavioral methods
(e.g., facial expressions [8], head movement [9], blink rate [10] and eye state [5]) and
physiological measurements (e.g., EEG, electrocardiogram (ECG), electrooculogram (EOG)
and surface electromyography [8,11,12]). Regarding these questionnaires, they are not only
strongly subjective, but they are also unable to monitor the fatigue state in real time, while
behavioral methods are extremely susceptible to interference from the road environment,
resulting in a certain error of judgement. Among physiological measurements, EEG is
regarded as the most effective method for mental state detection, since EEG records electric
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activities of neural cells from the human cerebral cortex, which can directly reflect instant
states of the brain and avoid the effects of human subjectivity [10,13].

Most existing EEG-based methods for fatigued driving detection focus on extracting
suitable features and designing classifiers. Chai et al. used power spectral density (PSD)
as the feature extraction method and Bayesian neural networks (BNN) as the classifier for
classifying alert and fatigue [14]. Rahma et al. extracted the Common Spatial Pattern (CSP)
feature to train extreme learning machine (ELM) for fatigue detection [15]. Huo et al. [16]
combined EEG and forehead EOG to detect fatigue level of drivers by using a discriminative
graph regularized extreme learning machine (GELM). San et al. [17] proposed a hybrid
deep generic model (DGM)-based support vector machine for driver fatigue detection.
Although effective, such methods mainly focus on EEG analysis under the situation of the
same subject, which means the abilities for cross-subject detection are still insufficient.

Nowadays, the domain adaptive-method-based transfer learning models are exten-
sively applied to many fields such as natural language processing and image classification
and achieve very good performance. Domain-Adversarial Neural Network (DANN) [18] is
a typical domain adaptive method, and the most important feature of DANN is to align the
source domain and target domain without the labeled target samples. Although achieving
better performance in these applications, it still has some drawbacks in EEG analysis across
subjects. First, DANN requires the samples between source and target domains to be
balanced, while for cross-subject EEG analysis, the samples in source domain are usually
much larger than those in target domain, which shows severe imbalance. Second, since
significant difference of EEG signals exists across subjects, some source domain samples
may be extremely inconsistent with the distribution of the target domain, which will cause
“negative transfer” [19,20] and make the performance of DANN decrease in cross-subject
EEG analysis.

In view of the shortcomings encountered by DANN in cross-subject EEG analysis,
we propose an improved model, Generative-DANN (GDANN), by combining Generative
Adversarial Networks (GAN) [21] to improve the ability in EEG analysis across subjects
through the following three aspects: (a) the hidden layer, optimizer and loss function of
DANN are improved to meet the requirement of cross-subject EEG analysis; (b) random
noise is selected through GAN to generate sufficient fake data, which are close to the
data distribution in the target domain, to balance the data set in the source and target
domains to assist model training; and (c) when faced with multiple source domain data,
GDANN can select the samples from the subjects with the closest data distribution to
ensure cross-subject analysis performance more effectively and avoid negative transferring
to a certain extent.

The rest of this paper is organized as follows. Section 2 introduces the process of the ex-
periment. Section 3 elaborates the proposed model in detail. In Sections 4 and 5, we present
and discuss the experimental results. Finally, we conclude and give our prospects in the
future in Section 6.

2. Experiments
2.1. Subjects

Informed consent was obtained from 13 healthy volunteers after the explanation of
the study, which was approved by the local institutional ethical committee of University
of Rome, La Sapienza (Rome, Italy). The group was selected with the aim to have a
homogeneous sample in terms of age (26.8 ± 3.2 years old), and driving expertise (all
the participants drove daily and regularly). All of them are asked to avoid alcohol the
day prior to the measurements and caffeine 5 h before the experiment. The experiment
was conducted following the principles outlined in the Declaration of Helsinki of 1975,
as revised in 2008.
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2.2. Experimental Protocol

The experiments were performed within the same hours of the day to avoid bias in
the results due to circadian rhythms or meals. In particular, the participants took part in
the driving simulations between 2 PM and 5 PM. The simulation consisted in driving an
Alfa Romeo—Giulietta QV (1750 TBi, 4 cylinders, 235 HP) on the Spa—Francorchamps
(Belgium) track under different conditions. In order to modulate the difficulty of the driving
simulation (i.e., primary task), the Attentional and Vigilance task (TAV) was employed
as a secondary task [22,23]. When enabled, the TAV lasted for the entire corresponding
experimental condition (i.e., 2 laps), and it worked as follows: the vigilance stimulus,
a white X, was presented on the center of a monitor placed about 60 (cm) from the driver
and below the main screen where the car cockpit was projected, as shown in Figure 1.

 

Figure 1. Experimental settings. (The experiment established five different Attentional and Vigilance
tasks (TAV) to gradually increase the workload of the brain, allowing the subjects to drive a simulated
car on the circuit under the same other conditions. When a white X appeared on the screen, subjects
were asked to press Button#1, which represents “Vigilance Stimuli”. When the sound monitor emitted
a stimulus, subjects were asked to press Button#2, which represents “Alert Stimuli”).

The drivers were asked to press the Button#1 as soon as the X appeared on the
screen regardless of the ongoing driving situation. The vigilance stimuli simulates traffic-
related events like red-turning traffic lights, road crossing pedestrians, other cars or other
uncontrollable traffic agents. The acoustic alert stimulus was presented by two speakers
placed on the left and right sides of the driver. A sequence of frequent (with a 95%
probability rate) and target (5% probability) tones at different acoustic frequencies were
continuously delivered to the drivers. They were asked to press the Button#2 as soon as the
target stimulus occurred. The frequent acoustic tones simulated the car’s radio or engine
noise, while the target ones reproduced unexpected events like a phone call. Five levels of
the TAV were designed by setting different stimulation rates in order to induce different
levels of workload demands and an overall mental fatigue status in the driver [3,24,25].
Before starting the experiment, the participants took part in a training session of half an
hour to get familiar with the simulator commands and interface. Afterward, they initially
drove the car through the selected track without any requests in terms of speed but always
maintaining the car within the path. Such a condition was named “warm up” (WUP)
and was aimed at defining the driver’s baseline. Then, the drivers are asked to repeat the
2 laps by driving as fast as they could but always by ensuring high safety, that, is avoiding
driving off the path; this was the “performance” condition (PERFO). After the PERFO
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condition, the five TAVs (TAV1 to TAV5) were presented in a random order across the
participants, where TAV1 was the easiest condition (i.e., very slow stimulation), whilst
TAV5 was the most difficult one (i.e., very fast stimulation). Finally, the last experimental
condition consisted of monotonous driving, in which the participants had to drive without
exceeding the speed of 70 km/h. The purpose of the consecutive TAVs was to induce
mental fatigue, while the last one aimed to make the drivers hypo-vigilant or drowsy
(DROW). Except for the last stage of the DROW, which took 10 min, the remaining 7 stages
in the experiment only took 2.5 to 4 min, so the total time required for the experiment was
approximately 32–45 min. At the end of each experiment, the participants were asked to
fill in the NASA-TLX questionnaire to provide the subjective workload perception [26].
In addition, errors in terms of keeping the car within the path and missed or wrong TAV
answers were gathered.

2.3. EEG Recording and Preprocessing

EEG was recorded by a digital monitoring system (Brain Products GmbH, Munich,
Germany) with a sampling frequency of 200 Hz. All 61 EEG channels were referred to
both earlobes, grounded to the FCz channel, and their impedances were kept below 10 KΩ.
After that, a band-pass filter was used for keeping EEG data between 1 Hz and 30 Hz,
and Independent Component Analysis (ICA) [27] was adopted to remove the artifacts
caused by eye blinking. After removing artifacts, we applied a 1 s sliding window with
10% overlap to segment EEG signals into 61 channels, and 400 segments of each condition
were acquired for each subject.

Then, power spectral density (PSD), which is more sensitive in the range of frequency
from 0.1 to 30 Hz [28,29], was chosen to transform three-dimensional time-series segments
into two-dimensional sample data. The detailed schematic diagram of PSD is shown in
Figure 2.

{Fp1, Fpz , ..., O2} 61 channels
Time-series Preprocessed Data

800 EEG samples
(each sample has 1830-dim feature)

ꞏꞏ
Each matrix is 200 × 61

800 EEG 
segment matrices

61 channels1.0s × 200 Hz

ꞏꞏ
Each vector’s length is 1830

800 EEG feature vectors

Each matrix is 30 × 61

800 EEG segment matrixes
(Multi-channel EEGs 

energy highlight range)

61 channels

1 – 30 Hz

ꞏꞏ Each matrix is 101 × 61

800 EEG one-sided 
PSD-estimates matrix

0 – 100 Hz

61 channels

ꞏꞏ

Combine data from 61 channels
61 × 30 = 1830

1     2     3    ꞏꞏꞏ

(a) (b)

(c)(d)

1829 1830

800

Figure 2. Schematic Diagram of electroencephalogram (EEG) power spectral density (PSD) extraction.
((a) shows that, we obtained 400 segment matrices for each condition regarding 61 EEG channels,
and due to 200 Hz of sampling frequency and 1 s sliding window, the dimension of each matrix
was 200 × 61; (b) reveals the one-side PSD estimate of the 100 Hz EEG signals, which means the
logarithm of the signal power at an integer frequency between 0 and 100 Hz [29]. Regarding PSD-
related frequency band, we chose the range from 0.1 to 30 Hz of EEG as the input signals (c). Each
segment of the integer frequency between 0 and 30 Hz contained 30 EEG powers and 1830 powers
for 61 channels. Correspondingly, the 400 × 1830 of dimensional feature vectors in each segment
were obtained at the end, as shown in (d)).
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Therefore, for 13 subjects, 400 samples could be obtained for each condition (TAV1-
TAV5, PERFO and DROW), and each sample had 1830 dimensional features. Herein,
the two conditions of TAV3 and DROW were selected as positive and negative examples
for subsequent experiments, which is explained in Section 4.1.

2.4. Domain Adaptation Learning

Domain Adaptation is a representative method in transfer learning, which uses source
domain samples that contain rich information to improve the performance for classifying
other target domain samples. In domain adaptation, the samples in target domain for
testing usually have no or only a few labels, while those in the source domain for training
are rich in supervised information. The source domain and the target domain often belong
to the same type of task, but the sample distribution between them is different.

For the domain adaptation task, if a common feature representation space can be
extracted between the source domain and the target domain, then, in this feature space,
the classifier model learned from the source domain features can also be used on the features
of the target domain. In particular, the domain adaptation task is often converted into the
task of finding the common feature representation space, which is the domain-invariant
feature [30]. If the domain invariant features can be learned by the model, the classifier
can be trained by the obtained invariant features to make it effective for both the source
domain and the target domain.

DANN and GDANN work as described above, which is described in detail in Section 3
later. The data used for training and testing the model comes from the feature samples extracted
in Section 2.3.

2.5. Cross-Subject Cross-Validation and Evaluation Index

For cross-subject cross-validation, unlike the previous intra-subject experiments, we re-
tained the data of one subject from the data set, used them as test data (i.e., target domain
data), and summarized the data of the remaining 12 subjects together as training data (i.e.,
source domain data). Obviously, there is no intersection of data between the two domains.
In addition, it should be noted that in this experiment, our model required some unlabeled
data from the target domain to assist training. After the model was trained, we evaluated
the recognition performance on the retained subject’s data and recorded the results. This
process was repeated until each subject had been used at least once as a testing subject.

A confusion matrix was used to analyze obtained results, which used count values
to summarize the number of correct and incorrect predictions and to subdivide them
by category. The confusion matrix shows which part of the classification model will be
confused when making predictions. It is this decomposition of the results that overcomes
the limitations of using only classification accuracy. The binary classification analysis used
in this experiment is shown in Table 1.

Table 1. Binary confusion matrix indicator.

Predicted = 1 Predicted = 0

Label = 1 TP (True Positive) FP (False Positive)

Label = 0 FN (False Negative) TN (True Negative)

1. Recall = TP/(TP + FN)
2. Precision = TP/(TP + FP)
3. Accuracy = (TP + TN)/(TP + TN + FN + TN)
4. F1Score = (2 × Precision × Recall)/(Precisioon + Recall)

Herein, recall means, in all the samples that are actually 1 (positive samples), the prob-
ability of correct prediction. Precision means the probability of correct prediction in all
samples with a prediction of 1 (positive sample). Accuracy is the proportion of the samples
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that are predicted correctly in all samples. Furthermore, F1Score [31,32] is the harmonic
mean of Precision and Recall.

3. Method
3.1. The Existing DANN

The architecture of DANN consists of three kinds of networks, as shown in Figure 3:
(a) Feature Extractor Network Nf (·; µ f ), which adopts a shallow network model to extract
the potential features with the parameter µ f from both the source and the target domain;
(b) Label Predictor Network Ny(·; µy), which is essentially a binary classifier and in charge of
training the predictor with the labeled source domain data with the parameter µy and loss
value Ly; and (c) Domain Classifier Network Nd(·; µd), which extracts the invariant features
through the parameter µd and loss value Ld and then judges whether the features come from
the source domain or the target domain. During the training period of back-propagation,
DANN implements unsupervised domain adaptation by adding a Gradient Reversal Layer
(GRL) between Nf and Nd [18].

features f

Feature extractor 𝑵𝒇

domain label d

class label y

Label classifier 𝑵𝒚 loss 𝑳𝒚

loss 𝑳𝒅

Domain 
discriminator 
𝑵𝒅

GRLforwardprop
backprop 

(and produced 
derivatives)

GRL

Gradient 
Reversal Layer

Figure 3. The Architecture of Domain-Adversarial Neural Network (DANN). (DANN combines three
networks (N f , Ny, and Nd) to align data from different distributions of source and target domains).

3.2. The Architecture of GDANN

On the basis of DANN, we added GAN networks, which consists of (a) the generator
network Ntg(·; µtg), which is used to generate the fake target domain data with its param-
eter of µtg and loss value Ltg, and (b) the classifier network Ntd(·; µtd), which is used to
identify the real target domain data and the fake target domain data with its parameter
of µtd and loss value Ltd. The parameter µ should contain the weight W and the bias b of
each layer network. Their network structure is shown in Figure 4, which includes the input
layer, output layer, several hidden layers and the bias node.
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Output Layer
∈R1830

Hidden 
Layer 1 
∈R128

a

Input Layer 
∈R100

a
a

a

a

a

a

a

a

a

a

a

a

a

a

X1

X100

Y1

Y2

Y3

Y4

Hidden 
Layer 2 
∈R256

Hidden 
Layer 3 
∈R512

Hidden 
Layer 4 
∈R1024

b1 b2 b3 b4b0
Y1830

(a)

Output Layer
∈R1

Hidden 
Layer 1 
∈R512

Input Layer 
∈R1830

a

a

a

a

a

a

a

Y

X2

X3

X4

X1830

Hidden 
Layer 2 
∈R256

X1

b0 b1 b2

(b)

Figure 4. The network structure of Generative Adversarial Networks (GAN) ((a) Ntg and (b) Ntd).

For the improvement of all layers of GDANN, the LeakyRelu function was employed
as the activation function, as shown in Equation (1), where leak ∈ (0, 1) is a constant. In this
way, some negatives are retained, and the correspondingly effective information will not
be completely lost.

LeakyRelu(α) = max(0, α) + leak×min(0, α) (1)

The final output layer of the Ntg and N f uses the Tanh function to output the result,
which could effectively reduce the probability of saturation compared to the traditional
Sigmoid function used in DANN [33]. In the newly added Ntg and Ntd networks, the adap-
tive time estimation method (Adam function [34]) is used to perform the gradient descent,
to make GDANN have better convergence. Meanwhile, N f , Ny and Nd networks adopt
SGD function [18] for parameter update optimization which is used by DANN.

As for the loss function of Ltg, Ltd, Ld, and Ly, the CrossEntropy is used to predict the
difference between the prediction data and true data. As shown in Equation (2), where
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x represents a sample, p(x) and q(x) are the true sample distribution and the predicted
sample distribution of x, respectively.

CrossEntropy(p, q) = −∑
x

p(x) log q(x). (2)

Thus, the network architecture of GDANN is combined with the three networks of
DANN (N f , Ny, and Nd), and GAN (Ntd and Ntg).

3.3. The Training Process of GDANN

We define X as the input space, Y = 0, 1..., L− 1 as a collection of L labels. Therefore,
data D can be expressed as D = {(xi, yi)}n

i=1 ∈ Rx∗y, where x ∈ X, y ∈ Y. In this case, we
take binary classifications as an example (0 for wakefulness and 1 for fatigue), i.e., L = 2.
Suppose that we have two different distributions on X ∗ Y, which are called the source
domain Ds (consisting of data from 12 subjects) and the target domain Dt (consisting of
data from the remaining subjects). The data distribution of the source domain and target
domain are Ps and Pt, respectively.

The goal is to train GDANN by using (1) the data on suitable Ns (1 ≤ Ns < 13)
subjects in Ds, which is close to the distribution of Ps; (2) a certain proportion (denote λ as
the scaling factor) of randomly selected unlabeled data Xt1 in Dt, which is line with the
distribution Pt; and (3) the parameter µ, wherein we define ns as the number of samples in
source domain data set, nt as the number of Xt (i.e., 800), nt1 as the number of the randomly
selected unlabeled Xt1. Then we can get: nt1 = λnt and ns = Ns× 800. In addition, random
noise Z that conforms to Gaussian distribution Pz is denoted as Equation (3) and is used to
generate equivalent number of fake data compared with those of source data, where r is a
random number.

Z =
1√
2π

e
(
− r2

2

)
∈ Pz (3)

As shown in Figure 5, the training process of GDANN includes two steps: training
GAN and training DANN. The design of this process embodies the idea of a two–two
game and optimization, including Ntd vs. Ntg, and Nd vs. N f and Ny. First, Ntd hopes to
distinguish between real samples and fake samples as much as possible, while Ntg tries
its best to generate fake data conforming to the Pt distribution to deceive Ntd—this is a
zero-sum game. Second, Nd wants to distinguish the samples from the source domain
and the target domain to the greatest extent, while N f extracts the domain features to
fool Nd for not discerning which domain those features come from—this is another zero-
sum game. The optimization and competition of GDANN interplay with each other and
finally reach the performance of global optimum, which will be shown through Ny label
classifier network.

As shown in Figure 5a, the first step is the confrontation between Ntg and Ntd. Their
optimization process is expressed in Equations (4) and (5), which are the evolution of
Equation (2). Here, noise z and the target domain data Xt1 (which are randomly selected
from Xt and the number is nt1) are used to assist training. Z is the random noise (please
see Equation (3)). The E(·) function means the optimization process, here is the process of
maximizing Ltd and minimizing Ltg.

E(Ltg) = min
Ntg

Ltg ←
nt1

∑
i=1

log
1

nt1

√
Ntg
(
Zi; µtg

) (4)

E(Ltd) = max
Ntd

Ltd ←
nt1

∑
i=1

log[
1

2nt1

√(
1− Ntd

(
Ntg
(
Zi; µtg

)
; µtd

)) × 1
2nt1

√
Ntd
(
Xi

t1; µtd
) ] (5)
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Noise Z
(with domain 

label 0) 

Target 
generator 
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λXt
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Ntd

target label t
(fake or real)

(a)

Target 
discriminator 

Ntd

Top Ns XsAll Xs

Target 
generator 
Ntg

λXt
Noise Z

Generated 
Fake data Xt-fake

features 

GRL

Domain 
discriminator

𝑵𝒅

domain label d
(source or target)

Label 
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𝑵𝒚

class label y
(wakefulness 
or fatigue)

Feature extractor
𝑵𝒇

forwardprop

backprop 
(and produced 

derivatives)

GRL

Gradient 
Reversal Layer

Source Ds Target Dt

(b)

Figure 5. The Training Process of Generative-DANN (GDANN). ((a) is the process of training
GAN with minimizing Ntg and maximizing Ntd, and (b) is the process of trainging DANN with
minimizing N f , Ny and maximizing Nd, which contains the process of screening the top Ns source
domain subjects’ data that are most similar to the target domain and use random noise to train the
domain alignment model together).

In an ideal state, the confrontation training between Ntd and Ntg will reach the Nash
equilibrium (i.e., Ltd = 0.5). At this time, Ntg can generate fake data that conform to the Pt
distribution, and Ntd also has a certain ability to discriminate the true and fake data; that is,
Ntd can roughly judge the similarity between the data and the Pt distribution.

Then, the training process enters the second stage which is shown in Figure 5b.
After the training of Ntg and Ntd, each subject’s data are passed through the Ntd network to
obtain their distribution probability. Thus, Ns subjects with the highest probability ranking
are selected by the model from the Xs data, which are closest to the Pt distribution and
good for transfer learning.

The training data on Ny are derived from the domain features, which come from the
top Ns subjects’ data, and are generated through N f . It is just a standard classifier based
on neural network technology. In the process of the global optimization, the loss should
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be minimized, as shown in Equation (6) (the evolution of Equation (2)), where ns is the
total number of Ns subjects’ data, and Ys is the label of target domain’s feature matrix, i.e.,
Ys ∈ {0, 1}.

E(Ly) = min
N f ,Ny

Ly ←
ns

∑
i=1

log[
(

1− Ny

(
N f

(
Xi

s; µ f

)
; µy

)) Yi
s−1
ns ×

(
Ny

(
N f

(
Xi

s; µ f

)
; µy

)) −Yi
s

ns ] (6)

The auxiliary fake data, Xt− f ake, which also obey Pt distribution in the target domain
Xt, is generated by a large number of noise Z through Ntg, whose number is (ns − nt);
thus, it makes the number of sample data in Xt (nt � ns, where ns is the number of data
in Xs) be increased, so that the number of data in both domains is balanced. Then, a total
of approximate 2ns in both domains can be used for training, as shown in Equation (7)
(the evolution of Equation (2)).

E(Ld) = max
Nd

Ld ←
ns

∑
i=1

log
(

1− Nd

(
N f

(
Xi

s; µ f

)
; µd

)) −1
ns +

nt

∑
i=1

log
(

Nd

(
N f

(
Xi

t; µ f

)
; µd

)) −1
nt

+
ns−nt

∑
i=1

log
(

Nd

(
N f

(
Ntg

(
Zi; µ∗tg

)
; µ f

)
; µd

)) 1
nt−ns

(7)

4. Results

This section presents the performance of the proposed approach on samples from the
industry and neural science laboratory in University of Rome, La Sapienza’, which include
the EEG recordings of 13 subjects. The work was executed on a computer with 16 GB RAM,
NVIDIA GeForce GTX 1660 graphic memory with 6 GB, and Intel Core i5-9400F @ 2.9 GHz
processor. Python 3.6.8 tools were adopted to verify GDANN algorithm under Linux
environment with Ubuntu 5.4 operating system.

We usd four models, DANN, GDANN, Support Vector Machine (SVM) [35] and
Easy Transfer Learning (EasyTL) [36], to perform the cross-subject cross-validation process,
which was mentioned in Section 2.5. In addition, the obtained EEG data were pre-processed
by the method of Section 2.3. The above process was repeated 5 times to get the average
result and analyzed.

4.1. Selection of Regression Labels

The subjective (i.e., NASA-TLX) and performance (i.e., Driving Performance) data
were used to identify the experimental conditions by which our deep-learning model was
trained. In particular, the results reported in Figure 6 show that the TAV3 and DROW
required, respectively, the lowest and highest cognitive demand; therefore, they were used
as calibration data set. Our previous work [37,38] also proved that TAV3 and DROW are
the two most different states, which are suitable for regression labels for fatigue state classi-
fication. This means that each subject (13 subjects in total) will get a total of 800 samples,
of which 400 are from TAV3 with a label of 0, and the rest are from DROW with a label of 1.
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TAV4 0,001048 0,110498 0,109654 0,803242 0,099538 0,456158 0,000004
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Figure 6. Reasons for the choice of TAV3 and DROW as the regressor labels. ((a) is the process of
NASA-TLX (subjective) with p < 1× 10−5, and (b) is the process of Behavioural (Performance) with
p < 1× 10−5).

4.2. Parameter Sensitivity

In order to obtain a more stable performance, we then studied the sensitivity of the
parameters of λ (scaling factor, which was used to choose the samples of unlabeled λXt
from Xt to assist training), Ns (source subject number, which was used to select the best
Ns subjects from 13 to assist training) in GDANN. We then adopted a kind of grid search
method to observe their sensitivity. That is, when optimizing one parameter, the other
parameter remained unchanged, thus we could observe the optimal training performance.
These two parameter values are determined from the following two ranges, which are:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for λ, and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} for Ns.
The results are shown in Figure 7.

The “Acc” values in Figure 7 indicate that the average accuracy obtained by using
the GDANN model for experiments under these parameter values (namely λ in Figure 7a,
Ns in Figure 7b), which can exclude the differences in model performance among different
subjects. Choosing different values of λ, and Ns has the following effects:
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(a) In Figure 7a, as λ increases, the average accuracy of GDANN tends to increase slowly.
To better reflect the robustness of the model, λ = 0.5 was selected.

(b) In Figure 7b, as the number of source subjects increases from 1 to 9, the accuracy increases
sharply. When the number reaches 9, the accuracy remains stable, and the accuracy curve
may fluctuate slightly. Thus, we set Ns = 9 in the following experiments.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.50

0.55

0.60
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0.70

0.75

0.80
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1.00
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(a)
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1.00

A
cc

Ns

(b)

Figure 7. Parameter sensitivity of GDANN ((a) shows the parameter influence of λ with Ns = 12,
and (b) shows the parameter influence of Ns with λ = 0.5).

In addition, the model also includes the following parameter settings: Epoch = 50,
Batch_Size = 64, Adam_Learning_Rate = 0.00001, Adam_b1 = 0.5, Adam_b2 = 0.999,
SGD_Learning_Rate = 0.005 and SGD_Momentum = 0.9.

4.3. High-Dimensional Feature Visualization

Since the training of the model relies on the auxiliary fake data from Ntg, we used the
t-SNE method [39] to measure the quality of the data generated by GAN. For example,
we took Subject#1 as the target domain data and used the default parameters of t-SNE;
after 1000 iterations, the high-dimensional feature visualization results shown in Figure 8
were obtained. Here, tag 0 represents the unlabeled target domain data (Figure 8a), tag
1 represents the target domain data generated in GAN (Figure 8b), and tag 2 represents
the source domain data (Figure 8c). It can be seen that the compact and dense generated
fake data are roughly centered on the center of the unlabeled target domain data, while the
distribution of the source domain data is relatively scattered and extensive.
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Figure 8. High-dimensional feature visualization results (t-SNE) on EEG DataSet Others_Subject#1.
((a) shows unlabeled target domain data with tag 0, (b) shows generated target domain data with tag
1, (c) shows source domain data with tag 2, and (d) is the collective display of data).

4.4. Performance Comparison between GDANN and DANN

In order to reflect the improvement of the proposed model, we first compared the
performance between GDANN and DANN, then using the optimal parameters obtained
above, we analyzed the performance of the related indexes of Accuracy, Precision, F1Score
and Recall for it. In our experiment, PSD (Power Spectral Density) was extracted as the
input to train GDANN and DANN. The same Training Set and Testing Set were used
for the purposes of training and testing, respectively. Table 2 shows the average results
obtained after five times of repeated experiments.
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Table 2. Comparison results of the confusion matrix indicators between DANN and GDANN.

Others_Target
Subject ID

Accuracy Precision F1Score Recall

DANN GDANN DANN GDANN DANN GDANN DANN GDANN

Others_Subject #1 0.6238 0.8294 0.6650 0.8800 0.6387 0.8376 0.6143 0.7991

Others_Subject #2 0.8838 0.9531 0.8900 0.9413 0.8845 0.9525 0.8790 0.9643

Others_Subject #3 0.6638 0.8831 0.6750 0.8425 0.6675 0.8782 0.6601 0.9171

Others_Subject #4 0.9363 0.9988 0.9550 0.9988 0.9374 0.9988 0.9205 0.9988

Others_Subject #5 0.8113 0.9019 0.7875 0.9150 0.8067 0.9032 0.8268 0.8916

Others_Subject #6 0.9313 0.9625 0.9325 0.9688 0.9313 0.9627 0.9302 0.9568

Others_Subject #7 0.6825 0.8831 0.7225 0.9038 0.6947 0.8840 0.6690 0.8695

Others_Subject #8 0.6663 0.8288 0.6600 0.8100 0.6642 0.8255 0.6684 0.8416

Others_Subject #9 0.9438 0.9719 0.9550 0.9725 0.9444 0.9719 0.9340 0.9713

Others_Subject #10 0.9375 0.9863 0.9150 0.9763 0.9361 0.9861 0.9581 0.9962

Others_Subject #11 0.7963 0.8556 0.7900 0.8200 0.7950 0.8503 0.8000 0.8831

Others_Subject #12 0.8488 0.9225 0.8225 0.9300 0.8447 0.9231 0.8681 0.9163

Others_Subject #13 0.9113 0.9356 0.9250 0.9500 0.9125 0.9365 0.9002 0.9235

Average 0.8182 0.9163 0.8227 0.9161 0.8198 0.9162 0.8176 0.9176
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4.4.1. Statistical Analysis

For statistical validation of the results, a two-tailed Wilcoxon Signed Ranks Test [40]
analysis was adopted to compare the performance of significant difference of Recall, Pre-
cision, Accuracy, and F1Score between DANN and GDANN using the data displayed in
Table 2. The results of the two-tailed Wilcoxon Signed-Ranks Test are shown in Figure 9.
The p-values of the four indicators are all less than 0.01, which means significant difference,
validating the claim of better performance of GDANN.

Accuracy Precision F1Score Recall
0.50

0.60

0.70

0.80

0.90

1.00

GDANN  DANN

p < 0.01 p < 0.01 p < 0.01 p < 0.01

Figure 9. Paired Difference Analysis between four indicators of DANN and GDANN by Wilcoxon
Signed Ranks.

4.4.2. Convergency Analysis

Additionally, the change in loss rate and convergence were analyzed between DANN
and GDANN, as shown in Figure 10. When regarding the loss rate, we also take the
Subject#1 as the target domain data and then observed the loss rate with the increase of
the training epoch of the DANN and GDANN. Here, the X-axis represents the training
epoch, and the Y-axis represents the total loss, which is the sum of the loss Ld of the
domain discriminator Nd and the loss Ly of the label classifier Ny. The Baseline here is
1, because this is the process of maximizing Ld and minimizing Ly, and the ideal state
of optimization is close to 1. Figure 10 shows that the total loss of GDANN and DANN
changed significantly at the beginning, and then GDANN started to reach the baseline
before DANN in the 15th epoch and fluctuated around the baseline; DANN reached
balance in the 50th epoch, and the total loss stayed near 1.05; it was hard to continue
training downwards.
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Figure 10. Loss of DANN and GDANN on EEG DataSet Others_Subject#1. (The Baseline refers to
the saddle point where the training converged and reached the global optimal value, i.e., 1).
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4.5. Performance Comparison between GDANN and Other Existing Models

In order to verify the efficacy of the proposed method, we also compared its perfor-
mance with SVM and EasyTL. These methods were used as recommended in the referenced
papers, and these were chosen for comparison for the following reasons. (a) SVM is the
most common and efficient supervised machine learning method, and it can be used to
highlight the powerful performance of transfer learning. (b) EasyTL is another useful
transfer learning method which can be used to compare performance with GDANN.

Herein, it should be noted that in the process of comparison, EasyTL had the same
training set and testing set as GDANN, while SVM did not need auxiliary training by
unlabeled data but the training set from Xs and testing set from Xt. We can get the corre-
sponding box plots of the confusion matrix, as well as their paired t-test’s results, as shown
in Figure 11. By comparing these four indicators, it can be seen that our model GDANN
has a better performance than other three models. For example, in terms of accuracy,
the improved model GDANN has an average accuracy of 91.63% and a performance im-
provement of 11.9% compared to the original model DANN, while EasyTL has an average
accuracy of 72.95%, and SVM is 67.77%, reflecting the good performance of GDANN.

***

**

*

Accuracy (a)

***

***

*

Precision

(b)

***

*

*

Recall
(c)

***

**

*

F1Score
(d)

Figure 11. Box plots of confusion matrix ((a) Accuracy, (b) Precision, (c) Recall, and (d) F1Score)
between SVM, EasyTL, DANN and GDANN. (∗ indicates p < 0.05; ∗∗ indicates p < 0.01; ∗∗∗ indicates
p < 0.001).

Furthermore, we compared the testing time of the four models in Figure 12. The figure
compares the average testing time required by the corresponding model, with positive and
negative deviation error lines. It can be seen that GDANN (122.80 s) takes more time than
SVM (102.3 s), EasyTL (27.44 s) and DANN (85.24 s).
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Figure 12. Testing time comparison between SVM, EasyTL, DANN and GDANN. (The testing time
is the total time for one target subject to train the model and test results with the trained classifier,
∗∗∗ indicates p < 0.001).

5. Discussion

In the previous section, the proposed transfer learning model was been applied to
data from the Industrial and NeuroScience Laboratory, University of Rome La Sapienza.
Its performance was observed and compared with other standard classification techniques
and transfer learning methods. The main observations of the results reported in Section 4
are as follows:

(a) Analysis of the number of subjects in the source domain: As analyzed in Section 4.2,
in multi-source transfer learning, the source number Ns is an important factor. More
sources mean that we will integrate more data to predict fatigued driving. However,
in view of the weak correlation between certain subjects, blindly increasing the number of
sources may not improve accuracy and result in negative transfer and a calculation burden.

(b) Analysis of the generated target domain data: As analyzed in Section 4.3, the generated
fake data roughly conform to the distribution of the target domain data, effectively
making up for the shortcomings of insufficient training data.

(c) Comparison of the classification performance with the original model DANN: Due
to the differences in the subjects, the classification performance of GDANN is also
different. For those subjects who have good classification results in DANN, GDANN
can give a slight improvement, while for those who do not perform well using the
DANN method, GDANN will give a significant improvement. Since these accuracy
values are not accidental (statistically verified), it can be said that a method for
effectively performing EEG classification across subjects with multi-source training
has been successfully proposed.

(d) Swiftly approaching convergence of baseline: In the convergence comparison, GDANN
quickly reaches the baseline of loss training (i.e., 1) before DANN, and fluctuates on
this line. Furthermore, DANN can only converge to 1.05 and cannot go down, which
is also a manifestation of its insufficient performance.

(e) Comparison of classification accuracy with the state-of-the-art approaches: When compar-
ing with some excellent related methods, such as supervised machine learning method
SVM and transfer learning method EasyTL, as analyzed by Section 4.5, GDANN is
seen to have better performance in terms of cross-subject EEG data prediction.
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(f) Comparison of the testing time: In terms of testing time, the proposed work takes
more time than other methods. It should be noted that compared to DANN, it
has an additional process to adapt to generate auxiliary fake data. In practical use,
the training epoch can be appropriately reduced to reduce the time. Most of the
time is spent on training the model, and when the model training is completed, its
high-efficiency performance can always be used.

6. Conclusions

In this paper, we propose an improved DANN-based transfer learning model, GDANN,
and apply it for EEG-based cross-subject fatigue mental state prediction. Our GDANN
model combines GAN with transfer model to make appropriate improvements and opti-
mizations by balancing the difference in the number of samples between the source domain
and the target domain, selecting the best Top N source domain subjects to experiment and
extracting the invariant features of the target domain as much as possible. The transfer
learning model can be conducted across different domain and data tasks. The experi-
mental results show that the performance of GDANN is better than that of DANN, SVM
and EasyTL. GDANN improves the EEG classification accuracy by about 11.9% with the
original model DANN, which proposes a potentially powerful solution for fatigue state
detection during driving.

In the future, we intend to enhance the simulation capabilities (by trying to cover all
the edge data of the target domain) of GAN (Ntg and Ntd) to improve the performance of
our model. Moreover, the size of the experimental group was not very big; therefore, one
of the next steps could be to enlarge it to further validate the proposed method.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalogram
DANN Domain-Adversarial Neural Network
GDANN Generative-DANN
GAN Generative Adversarial Networks
SVM Support Vector Machine
EasyTL Easy Transfer Learning
BCI Brain-computer Interaction
PSD Power Spectral Density
TAV the Attentional and Vigilance task
WUP warm up
DROW drowsy
ICA Independent Component Analysis
NASA-TLX National Aeronautics and Space Administration–Task Load Index
t-SNE t-distributed Stochastic Neighbor Embedding
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