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A B S T R A C T

The overall behavior of an articulated beam structure constituted by elements arranged according to a specific
chirality is studied. The structure as a whole, due to its slenderness and geometry, is called duoskelion beam.
The name duoskelion is a neologism which is inspired by the Greek word δύοσκέλιον (two-legged). A discrete
model for shearable beams, formulated recently, is exploited to investigate its mechanics. A purposely designed
numerical scheme, adapting the Riks rationale, is used to calculate large displacement and deformation
equilibria of duoskelion beams. Aimed at computing the current step correction, the Riks arc-length method
is modified and made more efficient by applying a specific orthogonality condition, defined via the stiffness
matrix, to an adapted extrapolation step. The robustness of the resulting scheme and its capability to follow
equilibrium branches allows, in principle, for the exploration of the whole set of local energy minima in the
introduced space of configurations, by using suitably modulated perturbative external loads. The developed
numerical tool can be used to understand the mechanics of duoskelion beams. It is proved that there exists
a stable principal equilibrium branch in which only compression is observed for any compression load.
Additional stable equilibrium branches are found in compression such that the clamped–clamped compressed
beam assumes a characteristic 𝑆 shape which, upon reaching a critical load, is significantly amplified. A
mechanically relevant stable equilibrium is also found in extension, being observed the 𝑆-shaped configuration
experimentally found in Misra et al. (2020).
1. Introduction

Metamaterials theory [1,2] looks for microstructures synthesizing
complex and exotic macroscopic behaviors [3,4]. A relevant exam
ple of methodologies and results in metamaterials theory is given,
as an instance, by so called pantographic metamaterials [5 7]: de
sign and manufacturing [8 10], modeling [11 17] and experimental
techniques [18,19] are all concurring to the conception of optimal
engineering materials with specific target behaviors. Indeed, meta
materials science is extremely interdisciplinary combining different
fields in mechanics and data analysis like strain gradient [20,21] and
generalized [22 24] continuum theories, digital image and volume
correlation [25,26], innovative manufacturing processes, mathematical
theories of elastic and dissipative media [27 30] and computational
methods for elasticity and plasticity [31 34].

Aimed at finding a class of slender metamaterials [35,36] mi
crostructures behaving chirally at macroscopic level [37], a specific
articulated structure is introduced, which is constituted by a set of dis
crete beam elements with graded extensional and bending stiffnesses.
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The microstructure is conceived in order to obtain chirality effects
analogous to those already measured experimentally in [38], where
the observation of an interesting and exotic stable equilibrium path is
reported. Indeed, in extension tests performed by [38], a characteristic
stable 𝑆 shaped deformed equilibrium configuration is found when
clamping clamping conditions are applied.

The conceived microstructure consists conceptually of two struc
tural elements: rigid two legged bodies and purely extensible springs.
These two kinds of elements are hinged together and interact through
an elastic rotational spring opposing to their relative rotation (see
Fig. 1). Because of its slenderness and cell geometry, the complex
structure obtained by periodically repeating along the horizontal axis
the duoskelion motif is referred to, as a whole, as duoskelion beam.

Aimed at fully investigating the mechanical behavior of duoskelion
beams and at understanding its properties when regarded as a unique
macroscopic non standard beam, a microscopic discrete model is intro
duced. Such a model consists of a set of interconnected shearable, flex
ible and extensible Timoshenko like elements. The employed discrete
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