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Abstract— As a result of the increasing charging rate im-
plemented by car manufacturers in the new generation of
plug-in electric vehicles (PEVs), charging point operators are
continuously adjusting the charging infrastructure accordingly.
In order to maximize the charging operator’s return of invest-
ment and minimize the impact on the electricity grid, a key
aspect is finding technical solutions which allow to downsize
the nominal power flow at the point of connection between the
charging station/charging area and the electricity grid, as the
operating expenses are significantly affected by this parameter.
In this regard, this study discusses the optimal control of
an energy storage system (ESS) and PEVs fast charging for
reducing the impact on the grid of the charging load in a
charging area. A trade-off is achieved between the objectives
of keeping limited the charging power withdrawal from the
grid and the one of keeping limited the fluctuation of the state
of charge of the ESS around a given reference, while keeping
the charging power near to the nominal one. We present a
deterministic solution, under the realistic assumption that the
charging operator knows a piece-wise constant estimate of the
aggregated charging power demand over the control period.
Numeric simulations are provided to validate the proposed
approach.

I. INTRODUCTION

Among the main barriers to the large scale adoption of
electromobility, the time needed for charging represents a
key aspect for many drivers planning to buy a new vehicle
without having the availability of a private parking for
slow charging during the night or a charging station (CS)
available at the workplace [1][2]. This is the reason why
car manufacturers and charging infrastructure operators are
working in the direction of technically enabling diversified
charging services, and offering increasing level of charging
power [3][4]. In the context of an electricity system subject
to unbundling, a charging infrastructure operator may be a
different player than the distribution system operator, so that
the connection of its CSs to the grid is subject to installation
and operational costs which depend on the nominal power
flow at the point of connection (POC). Consequently, finding
technical solutions which allow to downsize the power flow
at the POC is a key aspect to maximize the charging
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operator’s return of investment (and indirectly minimize the
impact on the electricity grid).

This paper deals with the problem of controlling a grid-
connected microgrid equipped with a set of CSs providing
the fast charging service to plug-in electric vehicles (PEVs),
an electric energy storage system (ESS) and potentially
a source of power generation. We call such microgrid a
“service area”. The service area concept is relevant both for
fast charging in urban scenarios and for fast charging during
long-range trips. Since, in a fast charging scenario, there
is limited possibility to modulate the single PEV charging
sessions (as the priority is to serve customers as close as
possible to the maximum power and in the minimum possible
time), in this paper we take into account the ESS as an
additional degree of freedom providing the flexibility needed
to control the aggregated service area power exchange with
the grid. More specifically, the control objectives for this
work are:

1) To keep as low and smooth as possible the power flow
at the point of connection of the service area with the
grid. This lowers the operation cost of the service area,
which is nowadays one of the main barriers for the
deployment of the service area concept (the higher the
power flow is, the higher the grid connection fees that
the service area operator pays);

2) To keep the evolution of the state of charge (SOC)
of the ESS as close as possible to a desired reference
value (usually, 50% of charge), to make sure the ESS
has always a reserve of energy to charge or discharge;
indeed, there is limited flexibility in the control actions
if the ESS is operated close to the 0 or 100% SOC
levels;

3) To keep the aggregated PEVs charging power in the
service area as close as possible to a reference power
curve, typically representing the nominal power, so as
to minimize the PEVs dwelling time at the CS.

The above mentioned requirements work in opposition
each other, giving raise to the need of formalizing an
optimal control problem. Optimal control has been success-
fully applied in many applications dealing with resource
management problems, see, e.g., [5], [6]. Control problems
related to PEVs and microgrids equipped with several forms
of controllable loads, storage devices and local generation
are the subject of a wide literature. The contributions mainly
differ for the application requirements, the control methodol-
ogy and specific mathematical issues arising when modeling
the control problem. Among the application scenario, [7]



studied the problem of minimizing the voltage deviation in
the microgrid in presence of distributed generation units,
while [8] tackles the problem of reconfigurable microgrids to
enhance security and reduce operation costs. Moreover, [9]
faced the problem of energy management of smart homes in a
microgrid environment. Several control methodologies, such
as model predictive control (MPC) [10], [11], [12], [13],w
sliding mode control [14], machine learning [15] have been
investigated in several application contexts. Also the calculus
of variations and the Pontryagin minimum principle (PMP)
have found numerous applications in energy management,
especially in the optimal control of hybrid vehicles (see, e.g.,
[16], [17], [18]) and microgrids (see, e.g., [19], [20]). One
of the main obstacles in the adoption of these techniques in
such problems is that it is not always possible to derive a
causal or a closed loop solution. To address this, in literature
some simplifications on the calculation of the costate from
the necessary optimality conditions are discussed. In [16],
the authors show that for the given hybrid vehicle control
problem, the costate of the system can be assumed constant,
simplifying the derivation of the optimal solution. In [18],
in the context of the energy management of a plug-in hybrid
electric bus, the authors combine PMP and MPC. In [19], a
similar approach is used to optimize the energy flows in a
microgrid hosting ESSs and renewables, with the objective
of minimizing the ESS control effort and the deviation of
the SOC from a reference value; also in [19], the costate is
constant. However in many applications it is not possible to
assume a constant costate.

The distinctive features of this work are as follows. First,
we consider a deterministic formulation of the service area
fast charging optimal control problem, which assumes the
knowledge of the charging power demand in the service area
over the control window. In this regard, charging infrastruc-
ture operators offering a booking service for charging are
typically able to build a prediction of the near future value
of the charging demand, which takes the form of a piece-wise
constant signal and here represents a time-varying reference
to be tracked by the actual aggregated charging power.
Though quite realistic, the limitations resulting from this
assumption are discussed in view of a future stochastic for-
mulation of the proposed optimal control problem. Second,
we model the above mentioned power tracking requirement
through a cost term whose weight is dependent on the power
demand, in order to mitigate the difference in the tracking
performances resulting from different level of congestion (i.e.
power demand) in the service area. Such a modeling choice
gives raise to a two-point boundary value problem referred
to a non-stationary dynamic system, for which an iterative
procedure is proposed with the aim of explicitly calculating
the initial costate. Third, we design an optimal control for
a system subject to an exogeneous non-controllable signal -
the short term prediction of locally generated power - which
we assume to be known to the controller. Finally, to the
best of the authors’ knowledge, this work presents one of
the first applications of the theory of calculus of variation to
the problem of ESS and PEVs charging control in a smart

Fig. 1. Reference service area architecture.

charging area subject to the above mentioned requirements.
The reminder of the paper is organized as follows. Sec-

tion II presents the reference service area architecture and the
proposed optimal control problem. Section III discusses the
calculation of the optimal control. Section IV presents and
discusses simulations in a simplified but still realistic charg-
ing scenario. Section V concludes the work and discusses
future directions of the work.

II. PROBLEM FORMALIZATION

The reference service area architecture considered in this
paper is presented in Fig. 1. In this setup, the ESS, the CSs
and the power generation are both directly connected to the
POC. Let p(t) denote the power flowing at time t at the
POC, uess(t) the ESS charging/discharging power, x(t) the
deviation of the ESS SOC from a reference value (typically,
half of the full charge), uev(t) the actual cumulative power
absorbed by the PEVs, ûev(t) the nominal cumulative PEVs
power demand, wpv(t) the power generation in the area. The
ESS dynamics is modeled as ẋ(t) = f(x(t), uess(t), t) =
uess(t). The service area is subject to the balance equation
p(t) = uess(t)+uev(t)−wpv(t). In order to keep simpler the
analysis of the problem, the obvious box constraints on p(t),
uess(t) and x(t) are neglected. Several works in literature
(see e.g., [21], [22]) show how they can be handled, by
including additional auxiliary state variables and accordingly
expanding the Hamiltonian of the system.

Based on the control objectives introduced in Section I,
the following optimal control problem is defined.

Problem 1. (Service area fast charging optimal control
problem). Given an initial and a final time of problem
definition (respectively, ti and tf ), given {ûev(t), t ∈ [ti, tf ]}
and {wpv(t), t ∈ [ti, tf ]} find

min
u

{
J(u) = S(x(tf )) +

∫ tf

ti

L
(
x(t), uess(t), t

)
dt

}
, (1)

with

S(x(tf )) =
1

2
sx(tf )2 (2)

L
(
x(t), uess(t), t

)
=

1

2

[
qx(t)2 + rp(t)2+

+ c(ûev(t))
(
uev(t)− ûev(t)

)2] (3)



subject to
x(ti) = xi, (4)

ẋ(t) = uess(t), ∀t ∈ [ti, tf ], (5)

p(t) = uess(t) + uev(t)− wpv(t), ∀t ∈ [ti, tf ], (6)

with s, q, r > 0. The weight c(ûev(t)) depends on the
charging power currently requested. The idea is that it should
be very high (ideally infinite) when the requested charging
power is low (since there is not difficulty in this case to
serve immediately the charging requests, at the requested
power level), while it should progressively decrease as the
requested charging power approaches the nominal maximum
power available at the charging area (which denotes a state
of congestion). In the following, for brevity, we write c(t)
in place of c(ûev(t)).

III. THE OPTIMAL CONTROL

Problem 1 can be solved via standard techniques from
calculus of variations. The Hamiltonian of the system is

H := L
(
x(t), uess(t), t

)
+ λ(t)f

(
x(t), uess(t), t

)
=

=
1

2
qx(t)2 +

1

2
ruess(t)2 +

1

2
ruev(t)2 +

1

2
rwpv(t)2+

+ ruess(t)uev(t)− ruess(t)wpv(t)− ruev(t)wpv(t)+

+
1

2
c(t)uev(t)2 +

1

2
c(t)ûev(t)2 − c(t)uev(t)ûev(t)+

+ λ(t)uess(t)
(7)

Problem 1 is convex, and the resulting sufficient optimality
conditions are

λ̇(t) = − ∂H
∂x(t)

= −qx(t), (8)

∂H
∂uess(t)

= 0 −→ ruess(t) + ruev(t)− rwpv(t) + λ(t) = 0

−→ uess(t) = −1

r
λ(t)− uev(t) + wpv(t),

(9)

∂H
∂uev(t)

= 0 −→ ruev(t) + ruess(t)− rwpv(t)+

+ c(t)uev(t)− c(t)ûev(t) = 0

−→ uev(t) =
1

c(t)
λ(t) + ûev(t),

(10)

λ(tf ) =
∂S

∂x(tf )
= sx(tf ). (11)

where the last step in (10) is achieved by noticing from (9)
that ruess(t) + ruev(t)− rwpv(t) = −λ(t). Equation (8) is
the costate equation, (9) and (10) the equations of the control,
and (11) the transversality condition.

By plugging (10) into (9), we rewrite (9) as:

uess(t) = − 1

r′(t)
λ(t)− ûev(t) + wpv(t), (12)

where

r′(t) :=

(
1

r
+

1

c(t)

)−1

(13)

After plugging (9) into the state dynamics, the state and the
costate dynamics define the following two-point boundary
value problem[

ẋ(t)

λ̇(t)

]
=

[
0 − 1

r′(t)

−q 0

]
︸ ︷︷ ︸

:=A(t)

[
x(t)
λ(t)

]
+

[
−1
0

]
︸ ︷︷ ︸
:=B

w(t) (14)

with boundary conditions x(ti) = xi and λ(tf ) = sx(tf ),
and where we have defined w(t) := ûev(t)− wpv(t).

Notice that (14) is a time varying system, because r′

depends on ûev(t). Its explicit solution can be however
computed easily in the present case, by exploiting the fact
that the reference ûev(t) in practice is piece-wise constant.

First of all, partition [ti, tf ] into sub intervals over which
the reference is constant, i.e., consider the time instants ti =
t1 < t2 < ... < tN = tf , with N ≥ 2, such that, for any
n ∈ {1, ..., N − 1}, ûev(t) is constant over the time interval
[tn, tn+1).

Consider a time instant in the n-th time interval of the
above-defined partition, i.e., t ∈ [tn, tn+1), with n ∈
{1, ..., N − 1}. Then we have[
x(t)
λ(t)

]
= eAn(t−tn)

[
x(tn)
λ(tn)

]
+

∫ t

tn

eAn(t−τ)Bw(τ)dτ, (15)

where we write An to remind that it is the matrix A
computed based on the value which the aggregate charg-
ing reference takes on the n-th interval (i.e., ûev(t), t ∈
[tn, tn+1)). In turn, [x(tn), λ(tn)]T can be computed based
on the same formula, and starting from [x(tn−1), λ(tn−1)]T .
The process can be iterated backward up to the initial state
[x(t1), λ(t1)]T . Based on this consideration, it is not too
difficult to see that [x(tn), λ(tn)]T , with n ∈ {2, ..., N}
(being n = 1 a trivial case), can be written as1[

x(tn)
λ(tn)

]
=

( n−1∏
k=1

eAn−k∆tn−k

)[
x(t1)
λ(t1)

]
+

+

n−1∑
h=1

[ n−1−h∏
j=1

eAn−j∆tn−j

]
[ ∫ th+1

th

eAh(th+1−τ)Bw(τ)dτ

]
,

(16)

where we have defined for simplicity ∆tj := tj+1 − tj .
Equation (16), substituted back into (15) provides the explicit
solution for the optimal state and costate trajectories, as
a function of λ(t1), which in turn is found by evaluating
(16) for tn = tf and substituting x(tf ) and λ(tf ) into the
transversality condition (11), and finally solving for λ(ti).
These calculations, though conceptually simple, are quite
involved, and can be executed with a computer, through
symbolic computation routines.

An alternative approach allowing to explicitly calculate
the initial costate, which is a key information to determine
the optimal control and trajectories of the system, is as

1Notice that, for h = n− 1, the product
∏n−1−h

j=1 in (16) becomes the
empty product

∏0
i=1, which is equal to one by convention.



follows. Consider the transition matrix characterizing the
free evolution of system (14) in the generic time interval
[tn, tn+1). After simple calculations, it takes the form

eAn(t−tn) :=

[
Φn,11(t− tn) Φn,12(t− tn)
Φn,21(t− tn) Φn,22(t− tn)

]
=

=

 cosh

(√
q
r′n

(t− tn)

)
− 1√

qr′n
sinh

(√
q
r′n

(t− tn)

)
−
√
qr′nsinh

(√
q
r′n

(t− tn)

)
cosh

(√
q
r′n

(t− tn)

)
.

(17)

Evaluating (15) for t = tf = tN and tn = tN−1, substituting
x(tf ) and λ(tf ) into the transversality condition (11) and
finally solving for λ(tN−1) gives

λ(tN−1) = sN−1x(tN−1) +

∫ tN

tN−1

HN−1(tN − τ)w(τ)dτ,

(18)
where

sN−1 = −ΦN−1,21(∆tN−1)− sΦN−1,11(∆tN−1)

ΦN−1,22(∆tN−1)− sΦN−1,12(∆tN−1)

HN−1(tN − τ) =
ΦN−1,21(tN − τ)− sΦN−1,11(tN − τ)

ΦN−1,22(∆tN−1)− sΦN−1,12(∆tN−1)
(19)

Equations (18)(19) establish, with little abuse of nomencla-
ture, a new ”transversality” constraint linking λ and x at time
tN−1. In turn, [x(tN−1), λ(tN−1)]T can be computed using
(15) and starting from [x(tN−2), λ(tN−2)]T , which allows
to establish a new constraint between λ and x at time tN−2.
Iterating the procedure backward up to the initial time t1,
the initial costate can be written as

λ(ti) = six(ti)+

+

N−1∑
k=1

[N−1−k∏
j=1

dj

]∫ tN+1−k

tN−k

HN−k(tN+1−k−τ)w(τ)dτ,

(20)

or equivalently, posing h = N − k, in the more compact
form

λ(ti) = s1x(ti) +

N−1∑
h=1

[ h−1∏
j=1

dj

]∫ th+1

th

Hh(th+1−τ)w(τ)dτ,

(21)
in which

Hh(th+1 − τ) =
Φh,21(th+1 − τ)− sh+1Φh,11(th+1 − τ)

Φh,22(∆th)− sh+1Φh,12(∆th)

dj =
1

Φj,22(∆tj)− sj+1Φj,12(∆tj)

sh = −Φh,21(∆th)− sh+1Φh,11(∆th)

Φh,22(∆th)− sh+1Φh,12(∆th)

sN = s h = 1, ..., N − 1 j = 1, ..., N − 2.
(22)

The above procedure completely determines the optimal so-
lution. In particular, the optimal state and costate trajectories
are determined by (15) (as said, after embedding (16) and the
initial costate (21)); the optimal control of charging power
wev is found from (10); the optimal ESS control from (9);

Fig. 2. Shape of weight c(ûev(t)) used in the simulations.

and the optimal trajectory of the power at the point of
connection with the grid from (6).

IV. NUMERICAL SIMULATIONS

Simulations were performed in Matlab 2018b and span
12 hours of operation of the service area. We empirically
selected q = 1, r = 2 and s = 10, resulting in good
performance of the control system. The weight c(ûev(t))
of the charging power error term in (3) was selected as
in Fig. 2. It remains close to the maximum value for low
charging power demands, then it drops to a minimum value
as the charging demand approaches the maximum allowed
in the service area (a congested state of the service area,
in which curtailment of the power delivered to the charging
stations is admissible). The simulation was performed con-
sidering fast-charging at a maximum supply rate of 50kW .
Problem 1 and the associated optimal control handle the
presence of renewable generation in the service area. In this
simulation we consider the presence of photovoltaic (PV)
power production at the service area; the forecasted PV
power output is here assumed to have the form reported
in Fig. 3, which is representative of an almost clear sky
day, with two small perturbations approximately around
10:00 and 14:00. Figure 4 displays the charging reference
considered in the simulation (dashed line), and the resulting
aggregated controlled charging curve uev (solid line). The
charging reference reflects a test scenario, with different
peaks of charging requests during the day. This simulation is
aimed to study the behaviour of the system under high and

Fig. 3. PV forecast profile.



Fig. 4. uev (continuous line), ûev (dashed line)

Fig. 5. ESS charging/discharging power.

Fig. 6. ESS SOC.

low load conditions (the proposed control system naturally
also works in conditions with no/reduced renewable energy,
a scenario not discussed in this paper; in that case, the
charging energy will be provided only by the ESS and
the POC). The reference is tracked with high fidelity when
there are only 3 charging sessions active (see Fig. 4). As
the number of simultaneous charging sessions increases, the
tracking requirement is progressively relaxed, accordingly to
the weight c(ûev(t)), allowing for an incremental mismatch
between the reference charging profile and the controlled
one. The zoom in Figure 4 highlights this behavior. Figures
5 and 6 report the ESS charging/discharging power and the
ESS SOC evolution, respectively. The piece-wise nature of
the charging sessions reference signal is reflected on the
power contribution of the storage. The ESS SOC evolution
well reflects the strategy adopted by the storage, to smooth
the power flow at the POC. The ESS recharges in advance, in

Fig. 7. Power flow at the connection with the grid.

prevision of the large peaks of demand, and later discharges
to contribute during the peaks-periods, thus reducing the
overall SOC error. Between the two charging peaks, the ESS
recharges and balances the charging requests, thus smoothing
their effect on the POC. Figure 7 reports the power flow at
the point of connection with the grid. The resultant power
flow is smooth, in line with the desired requirement. The
charging peaks in particular are significantly reduced, thus
contributing to keeping low the power flow at the POC, as
desired.

The results presented above show the effectiveness of the
proposed control under the assumptions reported in Section I,
in particular on the knowledge of the charging demand in the
service area. Though quite realistic in a scenario where the
charging point operator offers the charging service through
a booking system, some practical remarks and limitations
have to be considered. For example, from Figures 4 and 5
it can be seen that the ESS power profile has fast changes
at the times in which a charging session starts or stops; as a
consequence, in order to avoid undesired perturbations of the
power flow at the POC, it is fundamental in practice to start
and stop the delivery of charging power at the scheduled
times, instead of synchronizing it with the actual times of
connection and disconnection of the PEV at the CS. Further,
the performances of the proposed control are clearly affected
by PEVs connecting at the CSs after the time indicated in the
booking system, as well as by drivers booking the charging
service when the control window is already active. In order
to properly take into account these limitations, and more in
general to solve the same control problem in a more general
scenario, where PEVs connect to the CSs without booking
the service, it appears natural to formalize the same control
problem under milder assumptions on the charging demand.
In this regard, this work can be considered instrumental
to the formalization of a future stochastic version of the
proposed optimal control problem, in which the knowledge
of the power demand is replaced by that of parameters
characterizing the corresponding stochastic process (e.g. ex-
pected value, variance, etc). Also, re-optimization and the
adoption of a receding horizon approach can be considered,
in order to take into account the progressive update of the
information available to the controller (not only the forecast
of the charging demand, but also of the renewable power



output, to which similar considerations apply). Finally the
simulation results previously presented may be used as a
benchmark for the evaluation of the performances achieved
by the controller under the mentioned milder assumptions.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented an optimal control strategy for
controlling the recharging of plug-in electric vehicles (PEVs)
in a service area equipped with an energy storage system
(ESS). The objective is to control the ESS and the PEV
recharging process in order to serve the PEV users as fast
as possible, while flattening the power profile at the point of
connection with the grid (which results in lower operation
costs of the charging area).

Future works will focus on the detailed modelling of
the charging demand as a stochastic process, and conse-
quently on the extension of the problem to stochastic optimal
control [23], also considering a probabilistic formulation
of constraints. Another line of research will address the
inclusion into the problem of all the applicable constraints
(on ESS charging power, POC, ESS SOC, etc.), as well
as of the PEVs’ charging dynamics, for better capturing
the recharging process. Also, re-optimization schemes to
address uncertainties in the start and the duration of the PEV
charging sessions will be analysed. Finally, in future works,
an assessment of the economical benefits arising from the
flattening of the power profile at the POC will be carried
out.
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