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Abstract

Our first main result is that correlations between monomers in the dimer model
in Zd do not decay to 0 when d > 2. This is the first rigorous result about corre-
lations in the dimer model in dimensions greater than 2 and shows that the model
behaves drastically differently than in two dimensions, in which case it is inte-
grable and correlations are known to decay to zero polynomially. Such a result
is implied by our more general, second main result, which states the occurrence
of a phase transition in the model of lattice permutations, which is related to the
quantum Bose gas. More precisely, we consider a self-avoiding walk interact-
ing with lattice permutations and we prove that, in the regime of fully packed
loops, such a walk is ‘long’ and the distance between its endpoints grows lin-
early with the diameter of the box. These results follow from the derivation of
a version of the infrared bound from a new general probabilistic settings, with
coloured loops and walks interacting at sites and walks entering into the system
from some ‘virtual’ vertices. © 2021 The Authors. Communications on Pure
and Applied Mathematics published by Wiley Periodicals LLC.

1 Introduction
This paper considers two models related to each other, the dimer model and

lattice permutations.
The dimer model is a classical statistical mechanics model whose configura-

tions are perfect matchings of a graph, namely subsets of edges which cover ev-
ery vertex precisely once. The model attracts interest from a wide range of per-
spectives, which include combinatorics, statistical mechanics, and algorithm com-
plexity studies. Its rigorous mathematical study achieved a breakthrough with the
works of Kasteleyn, Temperley and Fisher, [24, 38, 49] in 1961, who showed that
on planar graphs the dimer problem is exactly solvable. By then, various aspects
of the dimer model have been explored: For example its close relation to the Ising
model [2, 38], a characterisation of the model’s correlations [25], the arctic circle
phenomenon [15], their continuous limits and the emergence of conformal sym-
metry [32, 39, 40].
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FIGURE 0.1. Lattice permutation with a self-avoiding walk.

Despite much progress on planar graphs, the rigorous mathematical understand-
ing of the dimer model in higher dimensional graphs is still very poor. Indeed, as
it was formalised by Hammersley et al. [35], the method of Kasteleyn, Temperley
and Fisher, which consists of reducing the problem of enumerating the number of
dimer covers to the problem of computing the Pfaffian of the so-called Kasteleyn
matrix, cannot be naturally extended toZd , d > 2, in which case it was shown [37]
that the dimer model is computationally intractable.

This paper presents the first result about correlations in the dimer model in Zd ,
when d > 2. More precisely, we consider the monomer-monomer correlation, i.e.,
the ratio between the number of dimer covers with two monomers and the number
of dimer covers with no monomers, which is a central quantity in the study of this
model. In dimensions d D 2, it was shown that it decays to zero polynomially with
the distance between the two monomers [16, 25]. Our first main result, Theorem
2.1 below, states that such a function does not decay to zero with the distance when
d > 2. This is in agreement with physicists predictions [36] based on heuristic
arguments. As a by-product of our technique we also deduce that, in the infinite
volume limit, the correlation between monomers along the Cartesian axis equals
1
2d

up to nonpositive corrections term of order O. 1
d2
/, which are uniform with

respect to the distance between such monomers.
Our first main result is implied by our more general main result about the model

of lattice permutations, which, in the form as we define it, can be viewed as a gener-
alisation of the double dimer model [17,41]. The configuration space of the model
can be viewed as the set of directed multigraphs whose vertex set are the vertices
of a box in Zd and such that any connected component is either a ‘monomer’ (a
single vertex with no edges which are incident to it), a ‘double edge’ (a connected
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component consisting of two vertices and two parallel edges pointing opposite di-
rections), or a directed self-avoiding loop. A measure which assigns to each such
graph a weight which depends on two parameters, � 2 �0;1/, the monomer ac-
tivity, and N 2 �0;1/, the number of colours, is introduced. The parameter �
rewards the number of monomers, while the parameter N rewards the number of
loops and double edges.

The study of lattice permutations has been proposed in [4, 11, 31, 34] in view
of their connections to Bose-Einstein condensation [23], which is an important
unsolved statistical mechanics problem. Contrary to these papers, where jumps of
arbitrary length are allowed and penalised according to a Gaussian weight (and no
multiplicity factor for the number of loops and double edges is considered), here
we only allow jumps of length 1 or 0; this feature gives the model a combinatorial
flavour and allows the connection with the dimer model. The relevance of lattice
permutations for the study of Bose-Einstein condensation is that, contrary to other
spatial random permutation models that were studied before (for example, [1,5,7–
9, 12, 21]) and similarly to the interacting quantum Bose gas, a spatial interaction
that depends on the mutual distance of the loops takes place (loops interact by
mutual exclusion). This feature makes the techniques that have been employed in
such previous works ineffective for the rigorous analysis of lattice permutations
and the model interesting and challenging. The central question for the quantum
Bose gas is whether Bose-Einstein condensation takes place. In [51] it is shown
that, in a random loop model which is related to lattice permutations, the two-
point function, namely the ratio of the partition functions of a system with a forced
‘open’ cycle and one without, can be used to detect Bose-Einstein condensation: If
this ratio stays positive uniformly in the volume and in the spatial separation of the
two endpoints of the forced cycle, this is equivalent to the presence of off-diagonal
long-range order [47], which itself is equivalent to Bose-Einstein condensation.
This paper (our Theorem 2.3 below) provides a rigorous proof of this fact in the
model of lattice permutations.

The relevance of lattice permutations goes even beyond their connection to the
dimer model and Bose-Einstein condensation, which holds when N D 2. Indeed,
they are an intriguing mathematical object for any value of N 2 �0;1/ and can be
viewed as a version of the loop O.N/ model, which is in turn related to spin sys-
tems with continuous symmetry for integer values of N (see [46] for an overview).
The difference between our setting and the model considered in [46] is that we
also allow double edges and that the loop containing the origin is ‘open’, namely
it is a self-avoiding walk that starts from the origin and ends at an arbitrary vertex
of the box. One of the most important questions for this class of models is the
identification of regions of the phase diagram where the loop length does not admit
exponential decay. This was recently accomplished for the loop O.N/ model on
the hexagonal lattice using various techniques, for example parafermionic observ-
ables, planar spin representations, and Russo-Welsh estimates [19, 33]; see also
further references in [46]. Although very powerful, these techniques are specific
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for planar graphs and cannot be naturally extended to Zd , d > 2, in which case
only results stating exponential decay have been derived [14, 48] and techniques
are missing. Our Theorem 2.2 below states that, in any dimension d > 2, in the
regime of fully packed loops, the length of the self-avoiding walk in lattice per-
mutations grows unboundedly with the size of the box, and the distance between
its two endpoints is of the same order of magnitude as the diameter of the box.
Hence, not only do we rule out exponential decay in any dimension d > 2, but
we also identify the correct scaling of the distance between the endpoints of the
self-avoiding walk.

Our proof technique is of independent interest and is a reformulation of the fa-
mous approach of Fröhlich, Simon, and Spencer [30] in the space of paths. In [30],
the property of reflection positivity of a system of spins with continuous symmetry,
the spin O.N/ model, was employed for the derivation of the so-called infrared
bound, which implies that correlations do not decay in such a spin system. Such
an approach was further developed in [27, 28] and implemented in several other
research works in the framework of quantum and classical spin systems. Here we
implement such an approach in a completely different setting that does not involve
spins, but a general probabilistic model of interacting coloured loops and walks.
Our approach generalises [30]; indeed, our general framework includes not only
lattice permutations and the dimer model, for which no spin representation exists
or is easy to derive in dimension d > 2, but also the (loop representation of) the
spin O.N/ model (see also Remark 3.2 below).

2 Definitions and Main Results
We now provide a precise definition of the dimer model and of lattice permuta-

tions, and we state our main results formally. This section is divided into three sub-
sections with each subsection stating a main theorem. Our third theorem, Theorem
2.3 below, involves lattice permutations, and it can be viewed as a reformulation of
our Theorem 2.2 and as a generalisation of Theorem 2.1, which involves the dimer
model.

2.1 The Dimer model
A dimer cover of the graph G D .V; E/ is a subgraph of G whose vertex set is

V and such that every vertex has degree 1. Let .TL;EL/ be a graph with vertex
set TL WD

�
.x1; : : : ; xd / 2 Z

d W xi 2 .�L
2
; L
2
�
	

and edges connecting nearest-
neighbour vertices and boundary vertices so that .TL;EL/ can be identified with
the torus Zd=LZd , where L 2 N>0. For any set of sites M � TL, let D.M/

be the (possibly empty) set of dimer covers of the graph which is obtained from
.TL;EL/ by removing all the sites that are in M , and from EL all the edges which
are incident to at least one vertex in M . The monomer-monomer correlation is a
fundamental quantity for the analysis of the dimer model, and it corresponds to the
ratio between the number of dimer covers with two monomers and the number of
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FIGURE 2.1. Left: A dimer cover in D.¿/. Centre: A dimer cover in
D.fo; ´g/. Right: superposition of the dimer cover on the left and the
dimer cover in the centre.

dimer comers with no monomer,

(2.1) 8x 2 TL �L.x/ WD
jD.fo; xg/j
jD.¿/j

;

where o is used to denote the origin, o D .0; : : : ; 0/ 2 TL. See also Figure 2.1.
This function equals 0 if L 2 2N and x belongs to the even sublattice of T e

L � TL,
which is now defined together with the odd sublattice,

T
e
L WD fx 2 TL W d.o; x/ 2 2Ng;

T
o
L WD fx 2 TL W d.o; x/ 2 2NC 1g;

(2.2)

where d.o; x/ is the graph distance in .TL;EL/. Let NC D
P

n>0 1fSn D og
be the number of returns to the origin of a simple random walk starting from the
origin, Sn, in Zd , whose probability measure and expectation are denoted by P d

and Ed , respectively, define rd WD Ed .NC/, the expected number of returns to
the origin. We use ei 2 Rd to denote the Cartesian vectors, where i 2 f1; : : : ; dg.

THEOREM 2.1. Suppose that d > 2. Then,

(2.3) lim inf
L!1
L even

1

jTo
Lj

X
x2To

L

�L.x/ �
1

2d

�
1 �

rd

2

�
:

Moreover, for any ' 2 .0; 1
2d
.1 � rd

2
//; there exists an (explicit) constant c1 D

c1.'; d/ 2 .0; 1
2
/ such that for any large enough L 2 2N and any odd integer

n 2 .0; c1L/,

(2.4) �L.n e1/ � ':

Note that the monomer-monomer correlation equals 0 at even sites, that is,
�L.´/ D 0 for any L 2 2N and ´ 2 Te

L (as we prove in Lemma 5.4 below);
hence the restriction of (2.4) to odd integers is necessary. An exact computation
made by Watson [53] shows that 0:51 < rd < 0:52 when d D 3, and from the
Rayleigh monotonicity principle [45] we deduce that rd is nonincreasing with d .
Thus, the Cesáro sum in (2.3) is bounded away from 0 uniformly for large L for
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any d > 2. Contrary to this, when d D 2 such a sum converges to 0 with the sys-
tem size L [16]. From the general site-monotonicity properties that were derived
in [43, remark 2.5] we deduce that

(2.5) 8L 2 2N; 8x 2 TL; �L.x/ �
1

2d
:

Since rd D O. 1
d
/, our lower bound in (2.3) gets closer to the pointwise upper

bound (2.5) as the dimension increases. Hence, the larger the dimension, the more
uniform is the correlation between monomers across the odd sites of the torus.

For x 2 Zd , define now�.x/ WD lim infL!1�2L.x/. Our bound (2.4) and the
pointwise upper bound (2.5) imply that, when d > 2, for any integer n 2 2ZC 1,

(2.6)
1

2d

�
1 �

rd

2

�
� �.nei / �

1

2d
;

where ei is any Cartesian vector. Contrary to (2.6), �.nei / was conjectured by
Fisher and Stephenson [25] and proved by [16] to decay like n�1=2 when d D 2.
From (2.6) we deduce the asymptotic behaviour of the monomer-monomer corre-
lation in the limit of large dimensions, i.e., for any odd integer n,

�.nei / D
1

2d
CO

�
1

d2

�
;

where the error term in the right-hand side is uniform in n.

2.2 Lattice permutations
We now introduce the model of lattice permutations. Recall that .TL;EL/ de-

notes the torus, with edges connecting nearest-neighbour vertices. To begin, for
any pair of sites x; y 2 TL such that x ¤ y, let �x;y be the set of directed multi-
graphs � D .TL; E�/ such that: (i) the edges of E� connect nearest-neighbour
vertices in the torus; (ii) the in- and the out-degree of every vertex in TL n fx; yg
are equal and their value is either 0 or 1; (iii) the out-degree of x is 1 and its in-
degree is 0, the out-degree of y is 0 and its in-degree is 1. This implies that the
connected component of the graph .TL; E�/ that contains x is a walk which starts
at x and ends at y and that any other connected component is either a monomer, a
double edge, or a loop, which we now define: a walk is a subgraph that is isomor-
phic to a simple open curve in Rd and is directed (and self-avoiding); a monomer
is a connected component consisting of a single vertex with no edges incident to
it; a double edge is a connected component corresponding to a pair of nearest-
neighbour vertices, ´;w 2 TL, with an edge directed from ´ to w and an edge
directed from w to ´; and a loop is a subgraph that is isomorphic to a simple closed
curve inRd and is directed (and self-avoiding). See also Figure 0.1 for an example.

When x D y, we define �x;y as the set of directed multigraphs � D .TL; E�/

such that: (i) the edges of E� connect nearest-neighbour vertices in the torus;
(ii) the in- and the out-degree of every vertex in TL n fxg are equal and their value
is either 0 or 1; (iii) the vertex x D y is a monomer (i.e., the walk is ‘degenerate’,
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namely, it consists of just one vertex and no edges). We define the configura-
tion space � WD

S
x2TL

�o;x . Each such � 2 � can be viewed as a system of
monomers, loops, and double edges with a walk that starts from the origin and ends
at one unspecified vertex of the torus, and all these objects are mutually disjoint.
For any � 2 �, let M.�/ be the number of monomers of � . Furthermore, for any
� 2 �, let L.�/ be the number of loops and double edges in � . We introduce the
probability measure PL;N;� in �, which depends on two parameters � 2 �0;1/,
the monomer activity, and N 2 �0;1/, the number of colours, as follows:

(2.7) 8� 2 � PL;N;�

�
�
�
WD

�M.�/ .N
2
/L.�/

ZL;N;�
;

where ZL;N;� is a normalisation constant. Let X W � ! TL be the endpoint
of the walk, which we call the target point. More precisely, for any � 2 �, we
define X.�/ 2 TL as the unique vertex such that � 2 �o;X.�/. It is known that,
if the monomer activity is large enough, the length of the walk admits uniformly
bounded exponential moments [6, 48]. This implies that the distance between the
target point and the origin does not grow unboundedly with the size of the system.
Our Theorem 2.2 below states that, contrary to the case of high monomer activity,
when the monomer activity is zero, the distance between the target point and the
origin grows with the size of the system and scales linearly with the diameter of the
box. In other words, a phase transition takes place at a finite, possibly 0 value of
the monomer activity. Recall that rd is the expected number of returns of a simple
random walk in Zd , and recall also the properties of rd , which were stated above.

THEOREM 2.2. Suppose that d > 2 and that N is an integer in .0; 4
rd
/. There

exists an (explicit) constant c2 D c2.N; d/ 2 .0;1/ such that for any large enough
L 2 2N,

(2.8) 8A � TL PL;N;0.X 2 A/ � c2
jAj

Ld
:

For example, by choosing A D Tb�Lc for a small enough �, we see that with
uniformly positive probability the target point is at a distance at least �L from the
origin. The restriction of our result to not-too-large values of N is not a limitation
of our technique: It was shown by Chayes, Pryadko, and Shtengel [14] that, in any
dimension d � 2, if N is a large enough integer, the loop length admits uniformly
bounded exponential moments for any value � 2 �0;1/.1 Hence, not only do we
prove the occurrence of a phase transition with respect to the variation of � for
integer values N 2 .0; 4

rd
/, but we also prove the occurrence of a phase transition

with respect to the variation of N when we fix � D 0.

1 In [14] a different setting than ours is considered, with only loops, which are allowed to overlap
a bounded number of times, and no walk; the proof of [14] can be adapted to our setting implying
that the length of the self-avoiding walk does not grow unboundedly with the size of the system and
admits uniformly bounded exponential moments.
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2.3 Uniform positivity
Our third main theorem, Theorem 2.3 below, can be viewed as a generalisa-

tion of Theorem 2.1 and states that the two-point function of lattice permutations
is bounded away from 0 pointwise when the points lie along the same Cartesian
axis and ‘on average’ across all points, uniformly with respect to the system size.
To define the two-point function we need to introduce the set of multigraphs �`,
whose connected components are loops, double edges, or monomers and no walk
is present. Thus, let �` be the set of directed multigraphs � D .TL; E�/ such
that: (i) the edges connect nearest-neighbour vertices in the torus and, (ii) the in-
and the out-degree of every vertex in TL are equal and their value is either 0 or 1. It
follows from this definition that every connected component of the graph � 2 �`

is either a monomer, a loop or a double edge, which we defined before. We extend
the definition of the number of monomers, M.�/, and of the number or loops and
double edges, L.�/, which were provided before, to the graphs � 2 �`. For any
L 2 N, �;N 2 �0;1/, we define the loop partition function,

(2.9) Z
`
L;N;� WD

X
�2�`

�M.�/

�
N

2

�L.�/
;

and, for any x; y 2 TL, we define the directed partition function,

(2.10) ZL;N;�.x; y/ WD
X

�2�x;y

�M.�/

�
N

2

�L.�/
;

Finally, we define the two-point function,

(2.11) GL;N;�.x; y/ WD
ZL;N;�.x; y/

Z
`
L;N;�

;

and we define GL;N;�.x/ WD GL;N;�.o; x/. In the special case of N D 2 and
� D 0, the two-point function of lattice permutations corresponds to the monomer-
monomer correlation function of the dimer model,

(2.12) 8x 2 TL GL;2;0.x/ D �L.x/:

Indeed, as we prove in (3.11) below, the set of configurations that are obtained by
superimposing two independent dimer covers, as in Figure 2.1, are in a one-to-one
correspondence with the set of fully packed lattice permutations and this leads to
(2.12). In light of (2.12), our Theorem 2.3 below, which holds for arbitrary (not
necessarily equal to 2) integers N , can be viewed as a generalisation of Theorem
2.1.

THEOREM 2.3. Suppose that d > 2 and that N is an integer in .0; 4
rd
/. Then

(2.13) lim inf
L!1
L even

1

jTo
Lj

X
x2To

L

GL;N;0.x/ �
1

2d

�
2

N
�
rd

2

�
:
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Moreover, for any ' 2 .0; 1
2d
. 2
N
� rd

2
//; there exists an (explicit) constant c3 D

c3.'; d;N / 2 .0; 1
2
/ such that for any large enough L 2 2N and any odd integer

n 2 . 0; c3L /,

(2.14) GL;N;0. n e1 / � ':

Similarly to the case of the dimer model, from the site-monotonicity properties
that were derived in [43], we deduce that, for any integer N 2 N>0 and any
� 2 �0;1/,

(2.15) 8x 2 TL GL;N;�.x/ �
1

dN
:

Since rd D O. 1
d
/, our uniform lower bound on the average (2.13) and the uniform

pointwise upper bound (2.15) on the two-point function get closer to each other as
d gets larger. From this we deduce that the larger the dimension, the more uniform
is the distribution of the target point across the sites of the torus.

3 Proof Description
Most of the paper is devoted to the proof of (2.13), from which all our main

results follow. The proof of (2.13) is divided into two main parts. The first part
is devoted to the derivation of the key inequality, Theorem 3.1 below, from the
analysis of a general soup of loops and walks, to which we refer as random path
model. The random path model was introduced in [43], and it is a generalisation of
the random wire model [3], which in turn can be viewed as a reformulation of the
random walk representation of the spin O.N/ model [13]. In [43] it was shown
that the random path model satisfies the important property of reflection positivity
(which will be stated later). The property of reflection positivity for random loop
models was also used in [14, 44, 52].

However, in such works the additional structures that allow the derivation of the
key inequality directly from the space of loops and walks (i.e., without employing
any spin representation) have not been introduced. The most important technical
novelty of this paper is the introduction of such structures. This allows the ex-
tension of the method of [28, 28, 30] to random loop models for which no spin
representation exists or is easy to derive, for example, lattice permutations (and,
consequently, the dimer model). More precisely, our analysis involves the study of
the random path model with appropriate weights in an ‘extended’ graph, which is
obtained from the original torus by adding ‘virtual’ vertices ‘on the top’ of each
vertex of the original torus; such virtual vertices serve as a source for the walks,
and the walks get a different weight depending on where they start from; the whole
setting is designed in such a way that the reflection positivity property, which was
proved to hold true in the torus [43], is preserved. Such virtual vertices play the
same role of the external magnetic field in spin systems (see [42] for a recent fur-
ther application of this setting). More precisely, the presence of multiple virtual
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vertices, with one virtual vertex on the top of each original vertex, represents the
action of an external field that might have a different intensity on each vertex.

The second part is devoted to the derivation of a version of the so-called infrared
bound from the key inequality. Here we use Fourier transforms similarly to the case
of spin systems with continuous symmetry [27,28,30], in which case the two-point
function corresponds to the correlation between two spins. Our analysis differs
from the classical case for some nontrivial aspects. The most important difference
is that, in our case, the two-point function vanishes at any even site as � ! 0. In
other words, the model exhibits a sort of antiferromagnetic ordering, similarly to
[22]. This introduces some difficulties that are overcome by exploiting the different
symmetry properties of the odd and even Fourier two-point functions (which will
be introduced later) with respect to appropriate translations in the (Fourier) dual
torus.

We now describe the two parts of the proof in greater detail and state Theorem
3.1 and Lemma 3.3. In the third and last subsection, we present the (short) proof
of Theorem 2.1 given Theorem 2.3.

3.1 Description of part I: Derivation of the key inequality
The first part of the proof, which is presented in Section 4, is devoted to the

derivation of Theorem 3.1, which is stated below. For an arbitrary vector of real
numbers, v D .v´/´2TL , define the discrete Laplacian of v,

(3.1) 8x 2 TL .4v/x WD
X
y2TLW
x�y

.vy � vx/:

THEOREM 3.1 (Key Inequality). For any N 2 N>0, � 2 R�0, L 2 2N>0, and
any real-valued vector v D .vx/x2TL , we have that

(3.2)
X

x;y2TL

GL;N;�.x; y/.4v/x.4v/y �
X

fx;yg2EL

.vy � vx/
2:

The proof of Theorem 3.1 uses several ingredients that we now describe in-
formally. We deal with the random path model, namely a probabilistic model of
coloured closed and open paths, which interact at sites through a weight function,
which will be denoted by U . The model depends on an edge-parameter � 2 �0;1/

that, informally, has the effect of increasing the typical length of the paths as � gets
larger.

We introduce a new setting that is reminiscent of the random current representa-
tion of the Ising model [18]. It involves the random path model on a graph .TL; EL/,
which is obtained from the torus .TL;EL/ by adding a new vertex (which will be
referred to as virtual) on the top of each vertex in TL and by connecting this new
vertex to the one that is below it by an edge, as in Figure 3.1. We refer to such a
new graph .TL; EL/ as an extended torus and to the graph .TL;EL/ � .TL; EL/,
which was defined previously, as the original torus. Virtual vertices play the role
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of sources for open paths, and closed paths are not allowed to ‘touch’ any virtual
vertex.

This setting is designed in such a way that the measure associated to the random
path model on the extended graph satisfies two fundamental properties at the same
time. The first fundamental property is reflection positivity. The second fundamen-
tal property involves a central quantity, ZL;N;�;U .v/, where v D .v´/´2TL is a
vector of real numbers indexed by the vertices of the original torus. The quantity
ZL;N;�;H .v/ is defined as the average of a function which assigns a multiplicative
weight v´ every time that a walk starts (or ends) at a vertex of the original torus
´ 2 TL, and a multiplicative weight �2dv´ every time that a walk starts (or ends)
at the virtual vertex which is ‘on the top’ of ´ 2 TL. This fundamental prop-
erty is stated in (3.3) below and involves the infinitesimal variation of the function
ZL;N;�;U .v/ around the point v D 0 when a specific choice of the weight func-
tion, U D H , is made. When v D 0, ZL;N;�;U .v/ equals the partition function
of the model with all loops and no walk. More precisely, for an arbitrary choice of
v 2 RTL and ' 2 R, in the limit as ' ! 0

ZL;N;�;H .'v/

D �jTLjZ`
L;N; 1

�

� '2
�N

2
�jTLjZ`

L;N; 1
�

X
fx;yg2EL

�
vy � vx

�2

C '2
�N

2
�jTLj

X
x;y2TL

ZL;N; 1
�
.x; y/.4v/x.4v/y C o.'2/:

(3.3)

To derive (3.3) we introduce a map that maps configurations of the random path
model to configurations of lattice permutations and compare their weights. Here
we use in an essential way the structure of the extended torus: the walks that en-
ter into the original torus from a virtual vertex are weighted differently than the
walks that start from a vertex of the original torus, and the weights are chosen ap-
propriately so that we get the discrete Laplacians and the sum involving factors
.vy � vx/

2 in (3.3). Also, the properties of the random path model and of the
weight function H , which forces the walk to be vertex-self-avoiding at every ver-
tex except for its endpoints, are used in an essential way. We refer to this central
step of the proof as polynomial expansion. The reason why the expansion (3.3) is
so important is that it is possible to deduce the key inequality by showing that, for
any vector v 2 RTL , the term of order O.'2/ in (3.3) is nonpositive. Indeed, the
reader can verify that, from the nonpositivity of the term of order O.'2/ and from
the definition of the two-point function, (2.11), Theorem 3.1 follows immediately
after dividing the whole expression by �N

2
�jTLjZ`

L;N;1=�
.

It is for the proof of such a concavity property of the function ZL;N;�;H .v/
that we use reflection positivity. More precisely, such a concavity property fol-
lows from an iterative use of reflections, which leads by reflection positivity to the
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R

x
Θ
(x)

FIGURE 3.1. An extended torus when d D 1 and L D 6. The leftmost
and the rightmost horizontal edges are identified. The leftmost vertical
dashed line represents a reflection plane, R, which, for example, maps
the vertex x to �.x/. In the figure x is a virtual vertex, while the one
that is ‘below it’ is original.

chessboard estimate,

(3.4) ZL;N;�;U .v/ �
� Y
x2TL

ZL;N;�;U .vx/
� 1
jTLj ;

where vx D .vx´ /´2TL is a vector that is obtained from v WD .v´/´2TL by copying
the value vx at each original vertex. Since for each x 2 TL, the term of order
O.'2/ is 0 when we look at the vectors vx , i.e.,

(3.5) ZL;N;�;H .'vx/ D �jTLjZ`
L;N; 1

�

C o.'2/;

we deduce from (3.3), (3.4), and (3.5) and from a Taylor expansion of the root
in (3.4) that the term of order O.'2/ in (3.3) is nonpositive. This is the desired
concavity property.

Remark 3.2. The random path model, which depends on an arbitrary weight func-
tion U , is related by the expansion (3.3) to lattice permutations when a specific
choice for U is made. Our method can be adapted to any weight function U satis-
fying the general assumptions in Definitions 4.1 and 4.2 below. For example, there
exists a special choice of the weight function U such that the random path model is
a representation of the spin O.N/ model [3], and our method can be used to derive
the famous result of Fröhlich, Simon, and Spencer [30] on the spin O.N/ model
directly from its representation as a random loop model. Since our method applies
to the random path models with weight function U for which no spin representa-
tion exists or is known, for example, lattice permutations and the dimer model, it
can be viewed as a generalisation of [30].

3.2 Description of Part II: Derivation of a version of the infrared bound
We now give a brief overview to the second part of the proof, which is presented

in Section 5 and uses Fourier transforms. To begin, we define the dual torus,

T
�
L WD

�
2�

L
.n1; : : : ; nd / 2 R

d W ni 2
�
�L
2
; L
2

�
\ Z

�
:
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We denote the elements of T�
L by k D .k1; : : : ; kd /, and we keep using the nota-

tion o for .0; : : : ; 0/ 2 TL or .0; : : : ; 0/ 2 T�
L . Given a function f 2 `2.TL/, we

define its Fourier transform

(3.6) 8k 2 T�
L

yf .k/ WD
X
x2TL

e�ik�xf .x/:

It follows from this definition that

(3.7) 8x 2 TL f .x/ D
1

jTLj

X
k2T�

L

eik�x yf .k/:

The next lemma, which will be proved in the appendix and which is an immedi-
ate consequence of (3.6) and (3.7), allows us to explain the strategy of the proof.

LEMMA 3.3. Define the Fourier mode p WD .�; �; : : : ; �/ 2 T
�
L . We have that,

for any L 2 N>0, �;N 2 �0;1/,
(3.8)

2

jTLj

X
x2To

L

GL;N;�.x/ D GL;N;�.e1/ �
1

jTLj

X
k2T�

L
nfo;pg

eik�e1 yGL;N;�.k/:

The goal is to bound away from 0 uniformly in L the quantity on the left-hand
side of (3.8), obtaining (2.13). This quantity corresponds to the difference between
the .0; : : : ; 0/ and the .�; : : : ; �/ Fourier mode of the two-point function (note that
the sum involves only odd vertices). When � D 0, the first term on the right-hand
side of (3.8) satisfies

(3.9) GL;N;0.e1/ D
1

dN

for any even L, as we prove in Section 7 (and it is easy to show). Section 5 is
devoted to showing that uniformly in L,

(3.10) lim sup
L!1

1

jTLj

X
k2T�

L
nfo;pg

eik�e1 yGL;N;0.k/ �
rd

4d
:

This is the point where we use the key inequality under specific choices of the
vector v, and the symmetry properties of the even and odd Fourier two-point func-
tions (which will be defined below), and we make use of the assumption � D 0 in
a crucial way. By replacing (3.9) and (3.10) in (3.8), we obtain the desired uniform
lower bound for the Cesàro sum, (2.13). Fortunately for us the value of rd , which
was computed exactly and rigorously by Watson [53] when d D 3, is small enough
to imply, by monotonicity, nontrivial results for any d � 3. Indeed, contrary to the
spin systems case, where a factor 1

�
on the right-hand side of ‘the analogue of’

(3.10) makes the bound better and better as one takes the inverse temperature pa-
rameter � larger, in our case the bound does not improve arbitrarily by taking �

arbitrarily close to 0 (and there is no reason to expect this should be the case).
Hence there is no way to ensure a priori that the method will lead to nontrivial
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results until one derives the optimal constant rd
4d

and proves that it is strictly less
than (3.9) for a nonempty range of strictly positive integers N in any dimension
d � 3. We refer to Remark 5.2 for further general comments on this part of the
proof and for a comparison with the classical case of spin systems with continuous
symmetry.

3.3 From lattice permutations to dimers: proof of Theorem 2.1 given Theo-
rem 2.3

We now prove (2.12) formally. This will be the last time the dimer model ap-
pears in this paper, since our main result on the dimer model follows from its
representation as a ‘fully packed’ lattice permutation model in the special case
N D 2, and the next sections are devoted to the study of lattice permutations. In
this special case, lattice permutations can be viewed as a different formulation of
the double dimer model [17,41]. Here, by ‘fully packed’ � we mean that � is such
that M.�/ D 0.

PROOF OF (2.12). We claim that there exist two bijections,

�1 W D.¿/ �D.fo; ´g/ 7! f� 2 �o;´ WM.�/ D 0g;

�2 W D.¿/ �D.¿/ 7! f� 2 �` WM.�/ D 0g:

Indeed, note the following: If we superimpose two dimer covers, �1 2 D.¿/ and
�2 2 D.fo; ´g/, which we call blue and red, respectively, we obtain a system
of mutually disjoint, self-avoiding loops, double dimers, and a self-avoiding walk
from o to ´, as in Figure 2.1, where the double dimer corresponds to the superpo-
sition of a blue and a red dimer on the same edge, while the loops and walk consist
of alternating blue and red dimers. Note also that any loop might appear with two
different colourings. Indeed, given a pair .�1; �2/ and some arbitrary loops of such
a pair, one might obtain a new pair .�01; �

0
2/ that is identical to .�1; �2/ except for

the fact that the selected loops appear with the opposite colours. Thus, we can
associate to .�1; �2/ an element � 2 �o;´ that is such that � has a double edge
at fx; yg if both �1 and �2 have a dimer at fx; yg, every loop of � corresponds to
a loop of .�1; �2/ (each loop of � has two possible orientations, similarly every
loop of .�1; �2/ has two possible alternations of red and blue dimers; hence one
can define a convention to associate loops of � with a given orientation to loops of
.�1; �2/ with a given alternation of blue and red dimers). This defines the bijection
�1. The bijection �2 is defined analogously (the only difference is that we have
no walk starting at o and ending at ´). Since we have two bijections, we deduce
that

8´ 2 TL GL;2;0.o; ´/ D
jf� 2 �o;´ WM.�/ D 0gj

jf� 2 �` WM.�/ D 0gj

D
jD.fo; ´g/jjD.¿/j

jD.¿/j2
D �L.´/:

(3.11)
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This leads to our claim. �

PROOF OF THEOREM 2.1 GIVEN THEOREM 2.3. By Theorem 2.3 and (2.12),
we deduce Theorem 2.1. �

Notation
ei Cartesian vector, with i 2 f1; : : : dg or i 2 f1; : : : dg
G D .V; E/ an undirected, simple, finite graph
e 2 E or fx; yg 2 E undirected edges
.x; y/ 2 E edge directed from x to y
.TL;EL/ graph corresponding to the torus Zd=LZd

.TL; EL/ extended torus, with original and virtual vertices
T

.2/
L � TL set of virtual vertices
T
�
L Fourier dual torus

o 2 TL, o 2 TL, or o 2 T�L origin
x � y pair of neighbouring vertices in .TL;EL/
N 2 N>0 number of colours
�; � 2 R�0 edge-parameter and monomer activity, respectively
U D .Ux/x2V weight function
m D .me/e2E link cardinalities
me number of links on the edge e
c D .ce/e2E link colourings, with ce W f1; : : : ; meg 7! f1; : : : ; N g

 D .x/x2V pairings, with x pairing the links touching the vertex x
WG the set of configurations in G, with w D .m; c; / 2 WG

nx number of pairings at x
ux number of links touching x that are unpaired at x
Z`
L;N;� loop partition function
Y`

L;N;�
loop partition function times a constant

ZL;N;�.x; y/ directed partition function
YL;N;�.x; y/ directed partition function times a constant
GL;N;�.x; y/ two-point function
GL;N;�.x/ equivalent toGL;N;�.o; x/
yGL;N;�.k/ Fourier transform ofGL;N;�.x/

v D .vx/x2TL vector with coordinates corresponding to TL
h D .hx/x2TL vector with coordinates corresponding to TL
ZL;N;�;U .h/ the central quantity
Z.2/

L;N;�;U
.h/ second term of the polynomial expansion

4 Derivation of the Key Inequality
This section is devoted to the proof of Theorem 3.1. Before starting, it will be

convenient to introduce a different parametrisation of the partition functions. More
precisely, let x; y 2 TL be arbitrary vertices for any � 2 �` or � 2 �x;y , and
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define H.�/ WD jE� j, the number of directed edges in the graph � D .TL; E�/.
Define the edge-parameter � � 0 and define the partition functions parametrised
by �,

Y
`
L;N;� WD

X
�2�`

�H.�/
�
N

2

�L.�/
;

YL;N;�.x; y/ WD
X

�2�x;y

�H.�/
�
N

2

�L.�/
;

(4.1)

which for any � 2 .0;1/ and L 2 2N are related to the partition functions (2.9)
and (2.10) by

Y
`
L;N;� D �jTLjZ`

L;N; 1
�

; YL;N;�.x; y/ D �jTLj�1ZL;N; 1
�
.x; y/;

(for this, we use that H.�/CM.�/ D jTLj if � 2 �` and that H.�/CM.�/ D
jTLj � 1 if � 2 �) and thus satisfy for any � 2 .0;1/

(4.2) GL;N; 1
�
.x; y/ D

�YL;N;�.x; y/

Y
`
L;N;�

:

The edge-parameter � will play a similar role to the inverse temperature in spin
systems.

4.1 The random path model
In this section we introduce the random path model on an arbitrary graph (this

section is similar to section 2.1 in [43]). Let G D .V; E/ be an undirected, simple,
finite graph, and assume that N 2 N>0. We refer to N as the number of colours.
A realisation of the random path model can be viewed as a collection of undirected
paths (which might be closed or open).

Links, colourings, pairings. To define a realisation we need to introduce links,
colourings, and pairings. We represent a link configuration by m 2 MG WD NE .
More specifically,

m D .me/e2E ;

where me 2 N represents the number of links on the edge e. Intuitively, a link
represents a ‘visit’ at the edge from a path. The links are ordered and receive a
label between 1 and me. See also Figure 4.1. No constraint concerning the parity
of me is introduced. If a link is on the edge e D fx; yg, then we say that it touches
x and y.

Given a link configuration m 2MG , a colouring c 2 CG.m/ WD f1; : : : ; N gm is
a realisation that assigns an integer in f1; : : : ; N g to each link, which will be called
its colour. More precisely,

c D .ce/e2E
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1b

1b

1b 1b

1r

2b

3r

1b

2b

1r

1r1b

1r

2r 3r

FIGURE 4.1. A configuration w D .m; c; / 2 WG , where G corre-
sponds to the graph f1; 2; 3g � f1; 2; 3g with edges connecting nearest
neighbours and the lowest leftmost vertex corresponds to .1; 1/. On ev-
ery edge e, the links are ordered and receive a label from 1 to me . In the
figure, the numbers 1; 2; : : : are used for the identification of the links,
and the letters b and r are used for the colours that are assigned to the
links by c (we assume that N D 2 and that each link might be either blue
or red). Paired links are connected by a dotted line. For example, the first
link on the edge connecting the vertices .1; 1/ and .2; 1/ is coloured by
red; it is paired at .1; 1/ with the third link on the same edge and it is un-
paired at .2; 1/. Moreover, both links touching the vertex .3; 3/ are red
and are unpaired at .3; 3/. Finally, no link is on the edge that connects
the vertices .1; 2/ and .2; 2/.

is such that ce 2 f1; : : : ; N gme , where ce.p/ 2 f1; : : : ; N g is the colour of the
pth link which is on the edge e 2 E , with p 2 f1; : : : ; meg. See Figure 4.1 for an
example, where N D 2 and the colors are represented by a label in fr; bg.

Given a link configuration, m 2 MG , and a colouring c 2 CG.m/, a pairing
 D .x/x2V for m and c pairs links touching x in such a way that, if two links are
paired, then they have the same colour. A link touching x can be paired to at most
another link touching x, and it is not necessarily the case that all links touching x
are paired to another link at x. If a link touching x is paired at x to no other link
touching x, then we say that the link is unpaired at x. Given two links, if there
exists a vertex x such that such links are paired at x, then we say that such links
are paired. It follows from these definitions that a link can be paired to at most
two other links. We remark that, by definition, a link cannot be paired to itself. We
denote by PG.m; c/ the set of all such pairings for m 2MG , c 2 CG.m/.

A configuration of the random path model is an element w D .m; c; / such that
m 2MG , c 2 CG.m/,  2 PG.m; c/. We let WG be the set of such configurations.



18 L. TAGGI

It follows from these definitions that any w 2WG can be viewed as a collection of
closed and open paths. These will be defined in Section 4.4 formally, and will be
divided into four classes: `-loops, double links, `-walks, and segments.

For any w D .m; c; / 2 WG , we denote (with a slight abuse of notation) by
me.w/ the random variable corresponding to the number of links on the edge e,
i.e., the element of the vector m D .mze/ze2E such that ze D e. For any x 2 V , let
ux WWG 7! N be the number of links touching x that are unpaired at x. Moreover,
let nx WWG 7! N be the number of pairings at x, namely

(4.3) nx.w/ WD
1

2

X
.x;´/2E

mfx;´g.w/ �
ux.w/

2
;

which corresponds to the number of pairings at x (i.e., the number of links touching
x and paired at x to another link divided by 2).

Domains, restrictions, measure. We now introduce the notions of domain and
restriction and, after that, we introduce reflections. Intuitively, a function with
domain D � V is a function that depends only on how w 2WG looks in D. More
precisely, the function might only depend on how many links emanate from the
vertices of D, on the direction in which they emanate, on which colour they have,
and on the pairings on vertices in D. A function f WWG 7! R has domain D � V
if, for any pair of configurations w D .m; c; /; w0 D .m0; c0;  0/ 2WG such that

8e 2 E W e \D ¤ ¿; 8´ 2 D; me D m0
e; ce D c0e; ´ D  0´;

one has that f .w/ D f .w0/. Moreover, for any w D .m; c; / 2 WG , define
the restriction of w to D � V , wD D .mD; cD; D/ with cD 2 CG.mD/, D 2
PG.mD; cD/, by

(i) .mD/
i
e D mi

e for any edge e 2 E that has at least one endpoint in D and
.mD/

i
e D 0 otherwise;

(ii) .cD/e D ce for any edge e that has at least one endpoint in D and .cD/e D
¿ otherwise;

(iii) .D/x D x for any x 2 D, and for x 2 V nD we set .D/x as the pairing
that leaves all links touching x unpaired (if any).

We now introduce a measure on WG .

DEFINITION 4.1. Let N 2 N>0, let U D
�
Ux
�
x2V be a vector of real-valued

functions such that, for any x 2 TL, Ux has domain fxg. We refer to U as the
weight function. We introduce the (unnormalized, possibly signed) measure of the
random path model on WG , which depends on the parameter � 2 �0;1/ and on
the weight function U ,

(4.4) 8w D .m; c; / 2WG �G;N;�;U .w/ WD

�Y
e2E

�me

me�

�� Y
x2V

Ux.w/

�
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Given a function f WWG ! R, we represent its unnormalized average by

�G;N;�;U
�
f
�
D

X
w2WG

�G;N;�;U .w/f .w/:

We always assume that the choice of the weight function U is such that the
measure �N;�;U has finite mass. The role played by the normalisation factor 1

me�
in (4.4) will be explained at the beginning of Section 8.

4.2 Reflection positivity and virtual vertices
In this section we introduce the extended torus, a graph that contains the torus

.TL;EL/, and the important notion of reflection positivity. From now on we con-
sider the random path model on such a graph.

Extended torus, virtual and original vertices. Recall that .TL;EL/ was defined
as the graph corresponding to a d -dimensional torus with edges connecting nearest-
neighbour vertices. We will now view .TL;EL/ as the subgraph of a larger graph
that will be denoted by .TL; EL/ and will be referred to as extended torus. The
extended torus is obtained from the d -dimensional torus by duplicating the vertex
set and by adding an edge between every vertex in TL and its copy.

More precisely, we define the vertex set of the extended torus as

TL WD TL [ T
.2/
L ;

where T .2/
L is disjoint from TL and is such that there exists a bijection g W TL 7!

T
.2/
L . The vertex g.x/ 2 T

.2/
L will be referred to as the ghost of x. Recall that

EL is defined as the set of edges connecting pairs of nearest-neighbour vertices
and boundary vertices in TL so that the .TL;EL/ can be identified with the d -
dimensional torus and define the edge set,

EL WD EL [
�
fx; yg 2 TL [T

.2/
L W x 2 TL; y D g.x/

	
:

This defines the extended torus .TL; EL/. We will refer to the vertices in TL � TL
as original and to the vertices in T .2/

L � TL as virtual. From now on, we take
G D .TL; EL/ for L 2 N>0, and we omit the subscript G in all the quantities that
were defined above or replace it by L when appropriate. In this setting we will
keep referring to o, corresponding to the vertex .0; : : : ; 0/ 2 TL, as the origin.
From now on the current section is an adaptation of [43][sec. 3] to the extended
torus.

Reflection through edges. We say that the plane R is through the edges of
.TL; EL/ if it is orthogonal to one of the Cartesian vectors ei for i 2 f1; : : : ; dg,
and it intersects the midpoint of Ld�1 edges of the graph .TL; EL/, i.e., R D f´ 2

Rd W ´ � ei D ug for some u such that u � 1
2
2 Z \ .�L

2
; L
2
� and i 2 f1; : : : ; dg.

See Figure 3.1 for an example.
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Given such a plane R, we denote by � W TL ! TL the reflection operator that
reflects the vertices of TL with respect to R; i.e., for any x D .x1; x2; : : : ; xd / 2
TL,

(4.5) �.x/k WD

(
xk if k ¤ i;

2u � xk mod L if k D i:

Let T C
L ; T �

L � TL be the corresponding partition of the extended torus into two
disjoint halves such that �.T �

L / D T �
L , as in Figure 3.1. Let ECL ; E

�
L � EL be the

set of edges fx; yg with at least one of x; y in T C
L , respectively T �

L . Moreover, let
ERL WD ECL \E�L . Note that this set contains 2Ld�1 edges, half of them intersecting
the plane R, and all of them belonging to EL. Further, let � WW !W denote the
reflection operator reflecting the configurationw D .m; c; /with respect toR (we
commit an abuse of notation by using the same letter). More precisely, we define
�w D .�m;�c;�/ where .�m/fx;yg D mf�x;�yg, .�c/fx;yg D cf�x;�yg,
.�/x D �x . Given a function f W W ! R, we also use the letter � to denote
the reflection operator � that acts on f as �f .w/ WD f .�w/. We denote by A�

the set of functions with domain T �
L and denote by W� the set of configurations

w 2W that are obtained as a restriction of some w0 2W to T �
L .

DEFINITION 4.2. The weight function U D .Ux/x2TL , which was defined in Defi-
nition 4.1, is invariant under reflections if for any reflection plane R through edges
(which is orthogonal to one of the Cartesian vectors ei for i 2 f1; : : : dg), it holds
that

8x 2 TL �.Ux/ D U�.x/;

where � is the reflection operator associated to the reflection plane R.

The next proposition introduces an important tool. The proposition states that
the random path model with weight function U satisfying the assumptions in Def-
inition 4.1 and which is invariant under reflections, as defined in Definition 4.2, is
reflection positive.

THEOREM 4.3 (Reflection positivity). Consider the torus .TL; EL/ for L 2 2N.
Let R be a reflection plane through edges, which is orthogonal to one of the Carte-
sian vectors ei , i 2 f1; : : : ; dg, and let � be the corresponding reflection operator.
Consider the random path model with N 2 N>0, � 2 R>0, and weight function
U invariant under reflections. For any pair of functions f; g 2 AC, we have that

(1) �L;N;�;U .f �g/ D �L;N;�;U .g�f /,
(2) �L;N;�;U .f �f / � 0.

From this we obtain that

(4.6) �L;N;�;U .f �g/ � �L;N;�;U .f �f /
1
2�L;N;�;U .g �g/

1
2 :

PROOF OF THEOREM 4.3. This proof is similar to the proof of proposition 3.2
in [43]; the difference is that here we deal with an extended torus in place of the
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graph .TL;EL/. The main step of the proof is as follows: we condition on the
link cardinalities on edges that are crossed by the reflection plane. Under this
conditioning, the rest factorizes over the two halves by the spatial Markov property
and both contributions are identical by reflection symmetry of the model. This
leads to a ‘square’ and cannot be negative.

To begin, we introduce the notion of projection. We denote by WR the set of
configurations w D .m; c; / such that me D 0 whenever e � ERL and, for all x 2
TL, x leaves all links touching x unpaired. We also denote by PR W W ! WR

the projection such that, for any w D .m; c; / 2 W , PR.w/ D .mR; cR; R/ is
defined as the configuration such that mR

e D 1fe2ER
L
gme and cRe D ce if e 2 ERL

and cRe D ¿ otherwise, and all links are unpaired at every vertex. The following
remark will be useful.

Remark 4.4. Recall the definition of restriction from Section 4.1. Given a triplet
of configurations w0 2WR, w1 2WC, w2 2W� such that

PR.w1/ D PR.w2/ D w0;

there exists a unique configuration w 2W such that

wT C
L

D w1; wT �
L
D w2; PR.w/ D w0:

This configuration is formed by concatenating w1 and w2 (concatenation includes
the pairing structures of each wj ).

Throughout the proof we write � D �L;N;�;U . To begin, we note that (4.6)
follows in the standard way as properties (1) and (2) show that we have a positive
semidefinite, symmetric bilinear form. To prove (1) we note that, by Definition
4.1 and due to the symmetries of the torus and the fact that U is invariant under
reflections, �.w/ D �.�w/ for any w 2W . Hence

(4.7)

�.f �g/ D
X
w2W

f .w/�g.w/�.w/ D
X

�w2W

f .�w/�g.�w/�.w/

D
X

�w2W

g.w/�f .w/�.w/ D
X
w2W

g.w/�f .w/�.w/ D �.g�f /:

For (2) we condition on the number of links in w crossing the reflection plane and
on their colours. We write

(4.8) �.f �f / D
X

w2WR

�.f I w/;
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where, for any w0 2WR,

(4.9)

�.f Iw0/ WD
X
w2W

PR.w/Dw
0

f .w/�f .w/�.w/

D
Y
e2ER

L

me.w
0/�

�me.w 0/

X
w2W

PR.w/Dw
0

f .w/
Y
e2EC

L

�me.w/

me.w/�

Y
x2T C

L

Ux.w/

�f .w/
Y
e2E�

L

�me.w/

me.w/�

Y
x2T �

L

Ux.w/:

Now, any w 2 W such that PR.w/ D w0 uniquely defines wT �
L

, the restriction of

w to T �
L . Thus, from Remark 4.4 we deduce that we can split the sum over w 2W

with PR.w/ D w0 as the product of two independent sums and continue:

(4.10)

�.f Iw0/ D

� Y
e2ER

L

me.w
0/�

�me.w 0/

�

�

� X
w12WC

PR.w1/Dw
0

f .w1/
Y
e2EC

L

�me.w1/

me.w1/�

Y
x2T C

L

Ux.w1/

�

�

� X
w22W�

PR.w2/Dw
0

�f .w2/
Y
e2E�

L

�me.w2/

me.w2/�

Y
x2T �

L

Ux.w2/

�

D
Y
e2ER

L

me.w
0/�

�me.w 0/

�

� X
w12WC

PR.w1/Dw
0

f .w1/
Y
e2EC

L

�me.w1/

me.w1/�

Y
x2T C

L

Ux.w1/

�2
:

The last equality holds true by the symmetry of the extended torus. Since the last
expression is nonnegative, from (4.8) we conclude the proof of (2) and, thus, the
proof of the proposition. �

4.3 Chessboard estimate
We now introduce the notion of support. Contrary to the notion of domain,

which was introduced in Section 4.2, the notion of support is defined only for
subsets of the original torus. We say that the function f W W 7! R has support in
D � TL if it has domain in D[D.2/, where D.2/ is defined as the set of sites that
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FIGURE 4.2. The function f �t� WD �k ��k�1 � � � � ��1 � � � � � .f / does
not depend on the chosen path.

are ‘on the top’ of those in D,

D.2/ WD
�
´ 2 T

.2/
L W ´ D g.x/ for some x 2 Dg:

Fix an arbitrary site t 2 TL and let t0 D o, t1, : : : , tk D t be a self-avoiding
nearest-neighbour path from o to t , and for any i 2 f1; : : : ; kg, let �i be the
reflection with respect to the plane going through the edge fti�1; tig. Let f be a
function having support in fog and define

f �t� WD �k ��k�1 � � � � ��1 .f /:

Observe that the function f �t� does not depend on the chosen path (a glance at
Figure 4.2 might be useful).

PROPOSITION 4.5 (Chessboard estimate). Let f D .ft /t2TL be real-valued func-
tions with support fog and that are either all bounded or all nonnegative. Under
the same assumptions as in Theorem 4.3, we have that

�L;N;�;U

� Y
t2TL

f
�t�
t

�
�

� Y
t2TL

�L;N;�;U

� Y
s2TL

f
�s�
t

�� 1
jTLj

:

The proof of Proposition 4.5 for a measure � satisfying (4.6) is classical and
was first presented in [29]. Since we only use reflections with respect to the reflec-
tion planes that are orthogonal to the Cartesian vectors ei , i 2 f1; : : : ; dg, virtual
vertices play no role in the proof and thus the same proof for [29] applies to our
case directly. For the proof of Proposition 4.5 we refer to the original paper [29] or
to the overviews [10, theorem 5.8] or [26, theorem 10.11].

We now introduce the central quantity. Recall that, for any vertex x 2 TL and
any configuration w 2 W , ux.w/ denotes the number of links touching x 2 TL
that are unpaired at x.
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DEFINITION 4.6 (Central quantity). For any L 2 N, � 2 R�0, N 2 N>0, any U
as in Definition 4.1, and any vector of real numbers h D .hx/x2TL , we define

(4.11) ZL;N;�;U .h/ WD �L;N;�;U

� Y
x2TL

huxx

�
:

In other words, the function huxx in Definition 4.6 assigns a multiplicative factor
hx to each link touching x that is unpaired at x. We assume that the weight function
U is such that the quantity (4.11) is finite for any vector h as in Definition 4.6 and
for any L 2 2N. The next proposition is an immediate consequence of Proposition
4.5.

PROPOSITION 4.7. Fix arbitrary L 2 2N, � � 0, N 2 N>0. Suppose that the
weight function U is invariant under reflections. Let h D .h´/´2TL be a real-
valued vector such that jh´j � 1 for every ´ 2 TL. For any x 2 TL define the new
real-valued vector hx D .hx´/´2TL that is obtained from h by copying the value hx
at each original vertex and the value hg.x/ at each virtual vertex, namely,

8´ 2 TL hx´ WD

(
hx if ´ 2 TL;
hg.x/ if ´ 2 T .2/

L :

We have that

ZL;N;�;U .h/ �
� Y
x2TL

ZL;N;�;U
�
h
x
�� 1

jTLj

:

PROOF. The proof follows from an immediate application of Proposition 4.5.
Define

8x 2 TL fh;x WD .hx/
uo.hg.x//

ug.o/ I

note that this function has support fog. Moreover, note that for any x 2 TL,

(4.12) f
�x�
h;x

D .hx/
ux .hg.x//

ug.x/ ;

which has support fxg. From this we deduce that

ZL;N;�;U .h/ D �L;N;�;U

� Y
x2TL

f
�x�
h;x

�

and that, for any x 2 TL,

ZL;N;�;U .hx/ D �L;N;�;U

� Y
´2TL

f
�´�
h;x

�
:

The claim now follows from a direct application of Proposition 4.5. �
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4.4 Polynomial expansion
This subsection presents an important step in the proof of the key inequality,

namely Proposition 4.9 below, which states a relation between the values of any
vector h, the partition function Z.'h/ in the limit ' ! 0, where ' 2 R, and the
partition functions that were defined in (4.1). To make this connection we choose
an appropriate weight function, which is denoted by H and is introduced in the
next definition, and expand ZL;N;�;H .'h/ as a polynomial in '. Recall that nx
denotes the number of pairings at x (i.e., one half the number of links touching x
that are paired at x to another link touching x).

DEFINITION 4.8. We define the weight functions H D .Hx/x2TL as follows:

8x 2 TL Hx WD

8������<
������:

1 if nx � 1, ux � 2, and no link on fx; g.x/g
is unpaired at x,

1
2

if nx � 1, ux � 2, and precisely one link on
fx; g.x/g is unpaired at x,

0 otherwise.

(4.13)

8x 2 T
.2/
L Hx WD 1fnxD0g(4.14)

Moreover, we define W1 to be the set of configurations w 2W such thatY
x2TL

Hx.w/ > 0:

Each configuration w 62 W1 has weight 0 under �L;N;�;H , and thus ignoring
it costs nothing. See Figure 4.3 for an example of two realisations w that are not
in W1. The upper bound ux � 2 in Definition 4.8 is only necessary to guarantee
that jW1j < 1 and 2 might be replaced by any other integer greater than 2; this
replacement would only affect the terms of smaller order thanO.'2/ in the polyno-
mial expansion. From the boundedness of jW1jwe deduce that ZL;N;�;H .h/ <1

for any L 2 N, N; � 2 �0;1/, and h 2 RTL . Note also that Hx has domain fxg
and that H D .Hx/x2TL is invariant under reflections; thus all the results stated in
Sections 4.2 and 4.3 apply to �L;N;�;U under the choice of U D H . As we will
explain in Section 8, the choice of H is such that any closed path in w lies entirely
in the original torus and is vertex-self-avoiding; moreover, closed paths are mutu-
ally vertex disjoint (paths will be defined later, but the reader might already have
an intuition of what they are). Contrary to closed paths, open paths are not entirely
vertex self-avoiding, since they are allowed to touch themselves or other paths at
their endpoints. The open paths might start (or end) at virtual vertices or at original
vertices, and they are allowed to touch the virtual vertices only at their endpoints.
These details and further technical aspects are fundamental for the validity of the
next proposition and will be discussed in Section 8. For the statement of the next
proposition recall the definition of the partition functions (4.1).
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1,r
2,r
3,r

1,r
2,r

1,b
2,b

1,r

1,r 2,r 1,r

FIGURE 4.3. Two examples of realisationsw 2 WnW1 on the extended
torus .TL; EL/ in dimension d D 1, where L D 6, with the upper row
representing the virtual vertices. The realisation on the left is not in W1,
since there exists a vertex x with nx D 2; the realisation on the right is
not in W1, since there exists a virtual vertex y with ny D 1.

PROPOSITION 4.9 (Polynomial expansion). For any fixed L 2 2N, N 2 N>0,
� 2 R>0, any vector of real numbers h D .hx/x2TL , and ' 2 R, we have that

(4.15) ZL;N;�;H .'h/ D Y`
L;N;� C '2Z.2/

L;N;�;H
.h/C o.'2/;

in the limit as ' ! 0, where

Z.2/

L;N;�;H
.h/ WD N�Y`

L;N;�

� X
fx;yg2EL

hxhy C
1

2

X
x2TL

hxhg.x/

�

CN
�2

2

X
x;y2TL

YL;N;�.x; y/

� X
q2TL

fx;qg2EL

hq

�� X
r2TL

fy;rg2EL

hr

�

The key inequality will follow from a concavity property of the central quantity
at h D 0; namely, the term of order O.'2/ in the polynomial expansion is nonpos-
itive for a large class of choices of h. Such a concavity property will follow from
reflection positivity. Note that the terms in the expansion are slightly different than
in (3.3), since here we use the partition functions parametrised by �, which were
defined in (4.1), and the entries of the vector h are associated to the vertices of
the extended torus (later we will relate the vector h to a vector v, whose entries
are associated to the vertices of the original torus, obtaining an expression that is
similar to (3.3)).

The remainder of the current subsection is devoted to the proof of Proposition
4.9. Before presenting the proof, we will provide some definitions and state a
preparatory lemma. All the definitions below are functional to the proof of Propo-
sition 4.9. Section 4.5, which contains the proof of Theorem 3.1, can be read
independently from what follows in the rest of the current subsection.

Paths. Given w 2 W , we use .fx; yg; p/ to denote the pth link of w, which is
on the edge fx; yg, with p 2 f1; : : : ; mfx;yg.w/g. We say that a set of links S in w,

S D
�
.fx1; y1g; p1/; .fx2; y2g; p2/; : : : ; .fx`; y`g; p`/

	
;
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is pairing-connected in w if, for any pair of links, .fx; yg; p/, .fx0; y0g; p0/ 2 S ,
there exists an ordered sequence of links in S ,�

.fx01; y
0
1g; p

0
1/; .fx

0
2; y

0
2g; p

0
2/; : : : .fx

0
k; y

0
kg; p

0
k/
�
� S;

such that the following two conditions hold at the same time:

(i) .fx; yg; p/ D .fx01; y
0
1g; p

0
1/ and .fx0; y0g; p0/ D .fx0

k
; y0

k
g; p0

k
/,

(ii) for any i 2 f1; : : : ; k � 1g, y0i D x0iC1, and .fx0i ; y
0
ig; p

0
i / is paired to

.fx0iC1; y
0
iC1g; p

0
iC1/ at y0i D x0iC1.

Paths are maximal pairing-connected sets. More precisely, a set of links S of w
is a path in w if it is pairing-connected and there exists no pairing-connected set
of links in w, S 0, which is such that S 0 � S and S 0 ¤ S . It is necessarily the
case that all links belonging to the same path have the same colour. For example,
the configuration represented in Figure 4.1 contains seven paths, two of them are
coloured by blue and five by red.

`-loops, double links, `-walks, segments, extremal links. We will now distin-
guish between different types of paths. A path S of w is called a loop of links, or
just `-loop, if any link .fx; yg; p/ 2 S is paired to another link at both its endpoints
and jS j > 2. A path S of w is called a double link if any link .fx; yg; p/ 2 S is
paired at both its endpoints and jS j D 2. It is necessarily the case that both links
belonging to the double link are on the same edge. A path S of w is called a walk
of links, or just `-walk, if jS j > 1 and there exist precisely two distinct links in S
such that each of them is unpaired at one endpoint and paired at the other endpoint.
Such two links will be called extremal links for the `-walk or extremal links for w.
A path S of w is called a segment if jS j D 1. If S is a segment, then the unique
link that belongs to S is unpaired at both of its endpoints. From these definitions
it follows that any path is either an `-loop, a double link, an `-walk, or a segment.
There are no other possibilities. For example, the configuration w in Figure 4.1 is
composed of one `-loop, two double links, three segments, and one `-walk that is
composed of two links. The two links belonging to such an `-walk are the only
two extremal links of the configuration in Figure 4.1.

Subsets of W1. We now define several subsets of W1 � W , where the set W1

was defined in Definition 4.8.

� Let A` be the set of realisations w 2 W1 such that no path of w is an
`-walk or a segment. In other words, each link of w is paired at both of its
endpoints. This also means that each path of w 2 A` is either an `-loop
or a double link and, by definition of H , that no link of w 2 A` touches a
virtual vertex.

� For any fx; yg 2 EL, let As.fx; yg/ be the set of realisations w 2W1 such
that exactly one path of w is a segment, and this segment is composed of
a link that is on the edge fx; yg, and no connected component of w is an
`-walk. In other words, each link of w except for the one that belongs to
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the segment is paired at both its endpoints. A realisation w 2 As.fx; yg/
is represented in Figure 8.1-left.

� For any pair of (directed, not necessarily distinct) edges .x; q/, .y; r/ 2
EL, let Aw..x; q/; .y; r// be the set of realisations w 2 W1 such that the
following three conditions hold true at the same time: (1) there exists a
unique `-walk in w; (2) the two extremal links of this walk are on the
edges fx; qg, fy; rg, respectively, one of them unpaired at q and the other
one unpaired at r ; (3) no path of w is a segment. These three conditions
and the definition of H imply that the following properties hold for any
w 2 Aw..x; q/; .y; r//:

(i) The unique `-walk in w has endpoints q and r , where q and r might
coincide (see some examples in Figure 8.1-right, Figure 8.2, and Fig-
ure 8.3, where x is taken to be the origin and d D 1),

(ii) There are precisely two extremal links, which are on the edges fx; qg
and fy; rg, respectively (it is possible that fx; qg D fy; rg), and all the
remaining links are paired at both their endpoints.

(iii) Any link of w that is not extremal is on an edge in EL.
(iv) Both x and y belong to the original torus; q and r may be original or

virtual.

In the statement of the next lemma, recall that .x; y/ represents an edge directed
from x to y, while fx; yg represents a undirected edge.

LEMMA 4.10. Under the same assumptions as in Proposition 4.9, for any .x; q/,
.y; r/, fu; bg 2 EL, we have that

�L;N;�;H .A`/ D Y`
L;N;�;(4.16)

�L;N;�;H .As.fu; bg// D

(
�NY`

L;N;�
if fu; bg 2 EL,

�
2
NY`

L;N;�
if fu; bg 2 EL n EL,

(4.17)

�L;N;�;H
�
Aw

�
.x; q/; .y; r/

��
D8�<

�:
�2NYL;N;�.x; y/ if x; y 2 TL and .x; q/ ¤ .y; r/,
�2

2
NYL;N;�.x; x/ if x; y 2 TL and .x; q/ D .y; r/,

0 if fx; yg \ T .2/
L ¤ ¿.

(4.18)

The proof of the lemma is postponed to Section 8 and is crucial. We will now
present the proof of Proposition 4.9 given Lemma 4.10 .

PROOF OF PROPOSITION 4.9 GIVEN LEMMA 4.10. Fix L 2 2N, N 2 N>0,
� > 0, and a vector of real numbers h D .hx/x2TL . We have that

(4.19) ZL;N;�;H .'h/ D
1X
iD0

'iC.i/
L;N;�;H

.h/;
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where

C.i/
L;N;�;H

.h/ WD �L;N;�;H

�
1fMDig

� Y
´2TL

h
u´
´

��

and M WD
P

´2TL u´ is the number of endpoints of links that are unpaired in the
whole graph.

First of all, note that

(4.20) 8i 2 2NC 1 C.i/
L;N;�;H

.h/ D 0:

since any path has either no link with unpaired endpoints or two links with precisely
one unpaired endpoint each, or one link with two unpaired endpoints. Thus, M.w/

is even for any w 2W1. Moreover, note that

(4.21) C.0/
L;N;�;H

.h/ D �L;N;�;H .A`/ D Y`
L;N;�;

where the first identity holds true since w 2 fM D 0g if and only if each path of
w is an `-loop or a double link and the second identity follows from Lemma 4.10.
Furthermore, note that w 2 fM D 2g \W1 if and only if precisely one path of w
is a segment or an `-walk and all the remaining paths of w are `-loops or double
links. In the next expression, the first term in the right-hand side corresponds to
a sum over all possible edges on which the segment might be located, and the
second term in the right-hand side corresponds to a sum over all (directed) edges
on which the extremal links might be located (recall the definitions provided before
the statement of Lemma 4.10),

C.2/
L;N;�;H

.h/

D
X

fx;yg2EL

�L;N;�;H
�
As.fx; yg/

�
hxhy

C
X

f.x;q/;.y;r/g�EL

�L;N;�;H
�
Aw

�
.x; q/; .y; r/

��
hqhr :

(4.22)

Note that the second sum in the right-hand side is over all unordered pairs of (not
necessarily distinct) directed edges. Now we apply Lemma 4.10, and we rewrite
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the second term in the right-hand side of the previous expression as follows:

1

2

X
x;y2TLW
x¤y

X
q;r2TLW

fx;qg;fy;rg2EL

hqhr�L;N;�;H
�
Aw

�
.x; q/; .y; r/

��

C
1

2

X
x2TL

X
q;r2TLW

fx;qg;fx;rg2EL;q¤r

hqhr�L;N;�;H
�
Aw

�
.x; q/; .x; r/

��

C
X
x2TL

X
q2TLW

fx;qg2EL

h2q�L;N;�;H
�
Aw

�
.x; q/; .x; q/

��

D
1

2
N�2

X
x;y2TL

YL;N;�.x; y/

� X
q2TLW

fx;qg2EL

hq

�� X
r2TLW

fy;rg2EL

hr

�

(4.23)

By replacing (4.23) with the second term in the right-hand side of (4.22), applying
Lemma 4.10 for the first term in the right-hand side of (4.22), and using (4.20) and
(4.21), we conclude the proof. �

4.5 Proof of Theorem 3.1 given Lemma 4.10
All the ingredients have been introduced and we can now combine them to

present the proof of Theorem 3.1 given Lemma 4.10, whose proof is postponed
to the end of the paper.

PROOF OF THEOREM 3.1. Fix arbitrary finite integers L 2 2N>0 and N 2

N>0, and fix an edge-parameter � 2 .0;1/. Recall that x � y denotes that x
and y are nearest neighbours in .TL;EL/, and recall that

P
.x;y/2EL is the sum

over directed edges while
P

fx;yg2EL is the sum over undirected edges. Recall also
that .TL;EL/ corresponds to the torus Zd=LZd , while .TL; EL/ is the extended
torus. For any real-valued vector v D .vx/x2TL , let hv D .hvx/x2TL be obtained
from v as follows:

(4.24) 8x 2 TL hvx WD

(
vx if x 2 TL,

�2dvg�1.x/ if x 2 T .2/
L .

Using the fact that for any real-valued vector v D .vx/x2TL ,

(4.25) 2d
X
x2TL

v2x D
X

fx;yg2EL

�
v2x C v2y

�
;
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we deduce thatX
fx;yg2EL

hvxh
v
y C

1

2

X
x2TL

hvxh
v

g.x/ D
X

fx;yg2EL

vxvy � d
X
x2TL

v2x

D
1

2

X
fx;yg2EL

�
2vxvy � v2x � v2y

�

D �
1

2

X
fx;yg2EL

.vx � vy/
2:

(4.26)

Moreover,

(4.27)
X

q2TLW.x;q/2EL

hvq D .4v/x :

From (4.26), (4.27), and the definition in Proposition 4.9, we deduce that for any
v D .vx/x2TL ,

Z.2/

L;N;�;H
.hv/ D �

�N

2
Y
`
L;N;�

X
fx;yg2EL

.vy � vx/
2

C
�2N

2

X
x;y2TL

YL;N;�.x; y/.4v/x .4v/y :

(4.28)

Moreover, recall that, as defined in Section 4.3, for any original vertex x 2 TL,
.hv/x is defined as the vector that is obtained from h

v by copying the value hvx D
vx at any original vertex and the value hv

g.x/
D �2dvx at any virtual vertex and

deduce from this and from (4.28) that

(4.29) 8v D .v´/´2TL ; 8x 2 TL; Z.2/

L;N;�;H

�
.hv/x

�
D 0:

We have that, in the limit as ' ! 0,

ZL;N;�;H .'hv/ D Y`
L;N;� C '2Z.2/

L;N;�;H
.hv/C o.'2/

�
� Y
x2TL

ZL;N;�;H
�
.'hv/x

�� 1
jTLj

D
� Y
x2TL

�
Y
`
L;N;� C o.'2/

�� 1
jTLj

D Y`
L;N;� C o.'2/;

For the first step above we used Proposition 4.9, for the second step we used Propo-
sition 4.7, for the third step Proposition 4.9 and (4.29), and for the last step we
performed the Taylor expansion around x D 0 of the function .1 C x/1=jTLj D
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1C x=jTLj CO.x2/, where in our case x D o.'2/. Thus we proved that, for any
v 2 RTL , in the limit as ' ! 0,

Y
`
L;N;� C '2Z.2/

L;N;�;H
.hv/C o.'2/ � Y`

L;N;� C o.'2/;

where hv was defined in (4.24) as a function of v, and this can only hold true if

(4.30) Z.2/

L;N;�;H
.hv/ � 0:

By replacing (4.28) on the left-hand side of (4.30), dividing the whole expression
by �N

2
Y
`
L;N;�

, and plugging in (4.2), we deduce that, for any finite strictly posi-
tive �, X

x;y2TL

GL;N; 1
�
.x; y/.4v/x.4v/y �

X
fx;yg2EL

.vy � vx/
2:

Since the previous relation holds for any strictly positive � and since for any fi-
nite L, lim�!1 GL;N;1=�.x; y/ D GL;N;0.x; y/, we deduce that the same in-
equality holds true also with 1

�
replaced by 0, and thus the proof is concluded. �

5 A Version of the Infrared Bound
The main goal of this section is to state and prove Theorem 5.1 below, which

provides a uniform lower bound for the Cesàro sum of the two-point function.
Recall the definition of the odd and even sublattices and (2.2), and define the odd
and even two-point functions,

G
o
L;N;�.x; y/ WD GL;N;�.x; y/ 1fy2To

L
g;(5.1)

G
e
L;N;�.x; y/ WD GL;N;�.x; y/ 1fy2Te

L
g:(5.2)

We will use the notation

GL;N;�.x/ W D GL;N;�.o; x/;

G
o
L;N;�.x/ W D G

o
L;N;�.o; x/;

G
e
L;N;�.x/ W D G

e
L;N;�.o; x/;

for any x 2 TL, and we will omit the subscripts when possible. Recall that rd is
the expected number of returns of a simple random walk in Zd .

THEOREM 5.1 (Infrared-ultraviolet bound). For any d;N 2 N>0, L 2 2N>0, and
� 2 �0;1/, we have that

X
x2To

L

G
o
L;N;�.x/

jTo
Lj

� GL;N;�.e1/ � IL.d/ �
X
x2TL

G
e
L;N;�.x/

jT e
Lj

C
X
x2TLW

x2D���DxdD0

�L.x/G
e
L;N;�.x/

(5.3)
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where
�
IL.d/

�
L2N

is a sequence of real numbers, which is defined in (5.9) below,
whose limit L!1 exists and satisfies

(5.4) lim
L!1

IL.d/ D
rd

4d
;

and .�L/L2N is a sequence of real-valued functions, which are defined in (5.12)
below and converges pointwise with L to a finite function � .

This theorem will be applied under the assumption that � D 0, in which case the
last two terms on the right-hand side of (5.3) equal 0, as we will prove in Lemma
5.4 below. Although we will apply the theorem under the assumption � D 0, in
this section we will allow � to take positive values for the sake of generality.

Remark 5.2. A similar lower bound for the Cesàro sum of two-point functions was
obtained in the framework of spin systems with continuous symmetry [27, 28, 30].
Our analysis differs from the spin systems case in some important aspects. In the
spin systems case one obtains the Key Inequality with GL;N;�.x; y/ replaced by
the correlation between the spins, which is typically denoted by hSo � SxiL;N;� ,
where N there represents the number of components of the spins and � is the in-
verse temperature. There, the Key Inequality leads to a uniformly positive lower
bound for the Cesàro sum of two-point functions, similarly to our case. This bound
is usually referred to as an infrared bound, since the quantity that one bounds from
below corresponds to the zero (i.e., low-frequency) Fourier mode of the two-point
function. The same approach as in the classical case of spin systems with continu-
ous symmetry would work in our case if the term GL;N;�.o/ was strictly positive
(and large enough) uniformly in L and in the limit of small �. Unfortunately, this
is not the case, since it is shown in Lemma 5.4 below that GL;N;0.o/ D 0 (more
precisely, when � D 0, the two-point function equals 0 at any even site). For this
reason, we proceed differently than in [27,28,30]: The termGL;N;�.o/ is replaced
by the term GL;N;�.e1/, and we use the symmetry properties of the Fourier odd
two-point function to deal with the presence of the factor eik�e1 on the right-hand
side of (3.8), which is not present in [27,28,30]. We refer to the resulting bound as
the infrared-ultraviolet bound, since the quantity that we bound from below, which
is on the left-hand side of (3.8), involves not only the lowest-, but also the highest-
frequency Fourier mode (more precisely, it equals the difference of the two).

We now start to introduce the arguments that lead to the proof of Theorem 5.1.
To begin, we define the central quantity,

(5.5) 8k 2 T�
L ".k/ WD 2

dX
jD1

�
1 � cos.kj /

�
:

Recall also the definitions of the Fourier transform and inverse Fourier transform,
which were provided in Section 3.2.
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PROPOSITION 5.3 (High-frequency upper bound). Under the same assumptions as
in Theorem 5.1, for any L 2 2N>0,

(5.6) 8k 2 T�
L n fog

yGL;N;�.k/ D yGo
L;N;�.k/ C

yGe
L;N;�.k/ �

1

".k/
:

PROOF. To begin, we fix an arbitrary k 2 T
�
L n fog and choose the vector

v D .vx/x2TL such that, for any x 2 TL, vx WD cos.k � x/: We note that under
this choice the following facts hold true:

(i) For any x 2 TL, .4v/x D �".k/vx .
(ii)

P
fx;yg2EL

.vy � vx/
2 D ".k/

P
x2TL

v2x .
(iii)

P
x;y2TL

vxvyG.x; y/ D yG.k/
P

x2TL
v2x :

These computations are classical, and we present their proof in the appendix. The
proof of Proposition 5.3 follows from Theorem 3.1 and from these computations.
We first apply (i) to the left-hand side of (3.2), and then we apply (ii) to the right-
hand side of (3.2), thus obtaining that

"2.k/
X

x;y2TL

vxvyG.x; y/ � ".k/
X
x2TL

v2x :

Now we apply (iii) to the left-hand side and divide everything by "2.k/
P

x2TL
v2x .

This concludes the proof. �

The next lemma states some properties of the two-point functions and of their
Fourier transforms.

LEMMA 5.4. We have the following:

(i) For any k 2 T�
L , yGL;N;�.k/; yG

e
L;N;�.k/;

yGo
L;N;�.k/ 2 R.

(ii) For any u 2 f�1; 1gd , if k; k C �u 2 T�
L , then

yGo
L;N;�.k C �u/ D �yGo

L;N;�.k/;

(iii) For any u 2 f�1; 1gd , if k; k C �u 2 T�
L , then

yGe
L;N;�.k C �u/ D yGe

L;N;�.k/:

(iv) For any L 2 2N and x 2 TL, we have thatGe
L;N;0.o; x/ D 0:

PROOF. The first property follows from the definition of Fourier transform and
the symmetries of Zd=LZd . Properties (ii) and (iii) follow from the definition of
Fourier transform and the fact that, if x 2 To

L, then
Pd

iD1 xi 2 2ZC 1; if x 2 T e
L,

then
Pd

iD1 xi 2 2Z. The fourth property holds true since, if the walk in � 2 �

ends at an even site, then it contains an odd number of sites, and since the total
number of sites in TL is even and since each loop or double edge contains an even
number of sites, this implies that at least one monomer is present in � and thus that
the weight of � is zero since � D 0. �
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We now have all the ingredients we need for proving Theorem 5.1.

PROOF OF THEOREM 5.1. Note that, since yGL;N;0.k/ is real, it follows from
(3.8) that the term on the left-hand side of the next expression is real; hence we
deduce that

(5.7)

X
k2T�

L
nfo;pg

eik�e1 yGL;N;�.k/ D
X

k2T�
L
nfo;pg

Re
�
eik�e1 yGL;N;�.k/

�

D
X

k2T�
L
nfo;pg

cos.k � e1/ yGL;N;�.k/:

Our goal is to provide an upper bound for this expression, which by Lemma 5.4
gives a lower bound to the Cesáro sum of the odd two-point function. For this we
use the symmetry properties of the odd and even Fourier two-point functions to
transform the previous sum into a sum over sites where the cosine in (5.7) takes
nonnegative values. This makes possible the application of Proposition 5.3 to
bound yGL;N;�.k/ from above. More precisely, we define the subset of T�

L ,

H WD
�
k 2 T�

L W k1 2 .��
2
; �
2
�
	
;

and we note that there exists a bijection � W H n fog 7! T
�
L n .H [ fpg/ which is

such that, for any k 2 H, the following properties hold true:
cos.k � e1/ D � cos.�.k/ � e1/;

yGo
L;N;�.k/ D �yGo

L;N;�

�
�.k/

�
;

yGe
L;N;�.k/ D

yGe
L;N;�

�
�.k/

�
:

(5.8)

The bijection � consists in translating a vertex x 2 H by an appropriate vector
�u, where u is an element of f�1; 1gd that depends on x. See also Figure 5.1 for
a representation of � in the (simpler) case of d D 2. Thus, (5.8) follows from
Lemma 3.3.

More precisely, the bijection � is defined as follows. To begin, we split T�
L into

2dC1 disjoint subregions, by first defining the set of indices

B WD f�1;�1
2
; 1
2
; 1g � f0; 1g � � � � � f0; 1g �

1

2
Z
d

and then, for any b D .b1; : : : ; bd / 2 B, we define

H
b WD

�
k 2 T�

L W k1 2
�
�
�
b1 �

1
2

�
; �b1

�
;

ki 2
�
�.bi � 1/; �bi

�
for i D 2; : : : ; d

	
:

Note thatHb � H only if b1 2 f�1
2
; 1
2
g. For any x 2 H n fog, let b be the unique

element of B such that x 2 Hb . Then,

�.x/ WD x C �u;

where u 2 U depends on b and is defined as follows: If b1 D �1
2

, then u1 WD �1.
This guarantees that �.x/ 2 TL nH. Moreover, for any i 2 f2; : : : ; dg, if bi D 0,
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o

p

H-π/2 0-π π/2 π

1

1

2

2 34

43

FIGURE 5.1. A representation of the dual torusT�L and the 2dC1 regions
Hb , b 2 B, which are delimited by the torus boundary or by the dotted
lines, where d D 2. The bijection � maps the sites where the dotted
arrows start at the sites where the dotted arrows end and, for each i 2
f1; : : : ; 4g, it maps the darker region with label i to the lighter region
with the same label.

then ui WD 1, while if bi D 1, then ui WD �1. This defines the bijection �. Note
that it follows from this definition that p 62 �.H n fog/ as required. We continue
using the properties (5.8) and apply Proposition 5.3, using the fact that cos.k � e1/
is nonnegative for k 2 H, obtainingX

k2T�
L
nfo;pg

cos.k � e1/ yGL;N;�.k/

D
X

k2Hnfog

�
cos.k � e1/ yGL;N;�.k/C cos.�.k/ � e1/ yGL;N;�

�
�.k/

�

D 2
X

k2Hnfog

cos.k � e1/ yGo
L;N;�.k/

�
1

2d

X
k2Hnfog

2 cos.k � e1/

1 � 1
d

Pd
iD1 cos.k � e1/

� 2
X

k2Hnfog

cos.k � e1/ yGe
L;N;�.k/:

Since the previous quantity corresponds to the right-hand side of (3.8), Theorem
5.1 now follows from (3.8) and from the fact that

(5.9) IL.d/ WD
1

2d

1

jTLj

X
k2Hnfog

2 cos.k � e1/

1 � 1
d

Pd
iD1 cos.k � ei /

satisfies

(5.10) lim
L!1

IL.d/ D
rd

4d
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and that

�
2

jTLj

X
k2Hnfog

cos.k � e1/ yGe
L;N;�.k/

D
2

jTLj

X
x2TL

G
e
L;N;�.x/ �

X
x2TL

�L.x/G
e
L;N;�.x/;

(5.11)

where

8x 2 Zd �L.x/ WD
2

jTLj

X
k2H

e�ik�.x�e1/:(5.12)

Thus, to conclude the proof of Theorem 5.1, it remains to prove (5.10) and (5.11).

PROOF OF (5.10). To begin, we define the set of vectors N WD f�e1
2
;�e2;

: : : ;�ed g, and the function

J.k/ WD
1

d

�
cos

�
k1

2

�
C

dX
iD2

cos.ki /
�
D

1

2d

X
e2N

eie�k :

Below, we first use the fact that the sum is Riemann, and after that we perform the
change of variable k01 D 2k1 (and call again k1 the new variable):

lim
L!1

1

jT�
Lj

X
k2Hnfog

2 cos.k1/

1 � 1
d

Pd
iD1 cos.ki /

D
1

2

1

.2�/d

Z �
2

��
2

dk1

Z �

��

dk2 � � �

Z �

��

dkd
2 cos.k1/

1 � 1
d

Pd
iD1 cos.ki /

D
1

4

1

.2�/d

Z �

��

dk01

Z �

��

dk2 � � �

Z �

��

dkd
2 cos.k1

2
/

1 � 1
d

cos.k1
2
/ � 1

d

Pd
iD2 cos.ki /

D
1

2

1

.2�/d

Z
���;��d

dk
cos.k1

2
/

1 � J.k/
:

We will now relate the previous quantity to the Green’s function of the simple
random walk. For this, let zSn be a random walk with i.i.d. increments on 1

2
Zd

with jump distribution zP satisfying

8x 2
1

2
Z
d zP . zS1 D x/ D

1

2d
1fx2N g;

and denote by zE its expectation. In other words, the simple random walk zSn per-
forms half-unit jumps in the �e1 directions and unit jumps in all the other direc-
tions. By independence of the simple random walk increments we deduce that

(5.13) zE.eik�
zSn/ D zE.eik�

zS1/n D J.k/n:
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Using the fact that

1

.2�/d

Z
���;��d

dkeik�x D 1fxDog;

and using (5.13), we deduce that

zP

�
zSn D �

e1

2

�
D

1

.2�/d

Z
���;��d

dk zE
�
eik�.

zSnC
e1
2
/
�

D
1

.2�/d

Z
���;��d

dkeik�
e1
2 J.k/n:

Recalling that P is the distribution of a simple random walk Sn on Zd , we deduce
by an obvious coupling of the random walks Sn and zSn that

8n 2 N P.Sn D e1/ D zP

�
zSn D �

e1

2

�
:

From the previous two expressions we deduce that, for any arbitrary finite m 2 N,

mX
nD0

P.Sn D e1/ D
1

.2�/d

Z
���;��d

dk
cos.k1

2
/.1 � J.k/mC1/

1 � J.k/
:(5.14)

Define for any x 2 Zd , Nx WD
P1

nD0 1fSn D xg, and recall that NC DP
n>0 1fSn D og. We have that the following limit exists and satisfies

(5.15) lim
m!1

mX
nD0

P.Sn D e1

�
D E�Ne1 � D E�NC�:

For the second identity we used the fact that, every time the simple random walk
jumps from a nearest neighbour of the origin, it has a chance 1

2d
to hit the origin at

the next step. Thus we deduce that 1
2d
E�
P

y�oNy � D E�NC� and the claim thus
follows from rotational symmetry. To conclude the proof, we need to show that we
can exchange the limit m ! 1 with the integral on the right-hand side of (5.14).
For this, note first that for any 0 < � < �=2, we have that the integrand is positive
for any m 2 N and any k 2 ���; ��d , and thus by the monotone convergence
theorem the limit can be taken inside the integral. To deal with the integral in
���; ��d n ���; ��d , note that the integrand is uniformly bounded and converges
pointwise as m ! 1 in ���; ��d n ���; ��d , thus by the dominated convergence
theorem the limit can be taken inside the integral. This concludes the proof. �
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6 Proof of Equation 5.11
For the first identity we use the facts that the term on the left-hand side is real

and the function yGe.k/ is real, and the definition of Fourier transform, (3.7),

� 2
X

k2Hnfog

cos.k � e1/ yGe
L;N;�.k/

D �2Re
h X
x2TL

G
e
L;N;�.x/

X
k2Hnfog

e�ik�.x�e1/
i

D �2Re
h X
x2TL

G
e
L;N;�.x/

�
� 1C

X
k2H

e�ik�.x�e1/
�i

D 2
X
x2TL

G
e
L;N;�.x/ � jTLj

X
x2TL

G
e
L;N;�.x/�L.x/:

An exact and standard computation shows that the function �L.x/, which was
defined in (5.12), takes nonzero (negative or positive) values only at even sites
along the e1-axis, and that it converges pointwise to a function�.x/, which decays
like j�.x/j � 1

jx1j
. This concludes the proof of Theorem 5.1. �

7 Proof of Theorems 2.2 and 2.3
In this section we present the proofs of Theorems 2.2 and 2.3.

PROOF OF (2.13) IN THEOREM 2.3. To begin, we claim that, for any L 2 2N,

(7.1) GL;N;0.o; e1/ D
1

dN
:

To see why this is true, define the map � W �o;e1 7! f� 2 �` W .o; e1/ 2 E�g,
which associates to any � 2 �o;e1 an element �.�/ that is obtained from � by
adding to � an edge directed from e1 to o. Note that, by definition of �o;e1 , such
a directed edge cannot be already present in � 2 �o;e1 (but an edge directed from
o to e1 might be present!), and that this map is one-to-one. Thus, we deduce that

ZL;N;�.o; e1/ D
X

�2�o;e1

�M.�/

�
N

2

�L.�/
D

2

N

X
�2�`W

.o;e1/2E�

�M.�/

�
N

2

�L.�/

D
2

N

1

2d

X
�2�`W

9i2�1;d�W.o;ei /2E�

�M.�/

�
N

2

�L.�/
;
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where L.�.�// D L.�/C1, and the last step follows from reflection and rotational
symmetry. From this and (4.2) we deduce that

GL;N;�

�
o; e1

�
D

1

dN

P
�2�`W

9i2�1;d�W.o;ei /2E�

�M.�/
�
N
2

�L.�/
P

�2�`

�M.�/
�
N
2

�L.�/ :

Since for any finite L 2 2N, the second factor equals 1 when � D 0 (the origin
is not a monomer almost surely), the proof of (7.1) is concluded. From a direct
application of our infrared-ultraviolet bound, Theorem 5.1 above, from point (iv)
of Lemma 5.4 and from (7.1), we deduce that

1

jTo
Lj

X
x2To

L

GL;N;0.x/ � GL;N;0.e1/ � IL.d/ D
1

dN
� IL.d/:

Since by Theorem 5.1 we have that limL!1 IL.d/ D 1
2d

rd
2

, we obtain (2.13) and
conclude the proof. �

PROOF OF (2.14) IN THEOREM 2.3. To begin, note that the monotonicity prop-
erties in [43, theorem 2.4] imply that, for any L 2 2N, any N 2 N>0, any Carte-
sian vector ei , and any ´ 2 TL such that ei � ´ 2 .2NC 1/ \ .0; L

2
/, for any odd

integer n 2 .3; ´ � ei /

G
o
L;N;0.o; ´/ � G

o
L;N;0.o; nei / � G

o
L;N;0.o; .n � 2/ei /

� Go
L;N;0.o; ei / D

1

dN
;

(7.2)

where the identity follows from (7.1). By the torus symmetry and the fact that for
any ´ 2 To

L there exists ei such that ´ � ei 2 2ZC 1; this implies that

(7.3) 8´ 2 TL G
o
L;N;0.o; ´/ �

1

dN
:

We now deduce the pointwise lower bound (2.14) from (2.13) and (7.3). To
begin, for any k 2 N, we define the set

Sk;L WD
�
´ 2 To

L W 9i 2 f1; : : : ; dg s.t. j´ � ei j < k
	
:

Note that, for any L 2 2N and k 2 .0; L=2/ \N,��To
L n S

o
k;L

�� D 1

2
.L � 2k/d :

We now choose an arbitrary ' 2 .0; 1
2d
. 2
N
� rd

2
//. We claim that

9c D c.d; ';N / 2 .0; 1
2
/ W 8L 2 2N large enough

9 ´L 2 T
o
L n ScL;L s.t.GL;N;0.´L/ � ':

(7.4)

We first conclude the proof using (7.4) and then prove (7.4). Choose c as in
(7.4) and deduce that, for any large enough L 2 2N, since ´L 2 To

L, there exists
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a Cartesian vector ei such that mL WD ´L � ei 2 2Z C 1. Moreover, since ´L 2
T
o
L n ScL;L, we deduce that jmLj � c L. Thus, from the monotonicity properties

(7.3) and symmetry, we deduce that, for any odd integer n 2 .�jmLj; jmLj/ and
any Cartesian vector ei ,

GL;N;0.o; ein/ � GL;N;0.o; eimL/ > ':

This concludes the proof of (2.4) given (7.4).
Now we prove (7.4) by contradiction. Assume that (7.4) is false, namely, that

for any c 2 .0; 1
2
/ there exists a infinite sequence of even integers .Ln/n2N such

that GLn;N;0.´/ < ' for any ´ 2 To
Ln

n ScLn;Ln
. From this, (2.3), and (7.3), we

deduce that, for any c 2 .0; 1
2
/ (define q WD .1 � 2c/d ), there exists an infinite

sequence .Ln/n2N such that

X
´2To

L

G
o
Ln;N;0

.´/ < '
��To

L n ScLn;Ln

��C 1

dN

���To
Ln

�� � ��To
L n ScLn;Ln

j
�

D
1

2
Ldn

�
1

dN
� .1 � 2c/d

�
1

dN
� '

��

D
1

2
Ldn

�
1

dN
.1 � q/C q'

�
D jTo

Ln
j

�
1

dN
.1 � q/C q'

�
:

Since we chose ' 2 .0; 1
2d
. 2
N
� rd

2
//, we see that the previous inequality cannot

hold for any constant c and for an infinite sequence .Ln/n2N unless violating (2.13)
(by choosing c small enough, namely q close enough to 1, we bound the quantity
inside the square bracket away from 1

2d
. 2
N
� rd

2
/, uniformly in Ln), which was

proved to hold true. Thus, we obtained the desired contradiction and conclude the
proof. �

PROOF OF THEOREM 2.2. Theorem 2.2 is an immediate consequence of Theo-
rem 2.3. For any A � TL, we have that

PL;N;0.X 2 A/ D
X
x2A

PL;N;0.X D x/ D

P
x2A

ZL;N;0.o; x/P
x2TL

ZL;N;0.o; x/

D

P
x2A

GL;N;0.o; x/P
x2TL

GL;N;0.o; x/
;

where the last identity follows after dividing the numerator and the denominator
by Z`L;N;0. Now the claim follows from (2.13), which provides a lower bound for
the denominator on the right-most term, and from (7.1), which provides an upper
bound for the numerator on the rightmost term. Using both bounds we obtain
(2.13). �
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8 Proof of Lemma 4.10
In this section we prove Lemma 4.10, which is a fundamental step in the proof

of the polynomial expansion. The proof of (4.16) is the easiest. Indeed, our choice
of the weight function H imposes that any configuration in the set A` consists of
mutually vertex-disjoint `-loops and double links that lie entirely in the original
torus; these can be identified with loops and double edges of the configurations in
�` taking the same positions. The proofs of (4.17) and (4.18) are more elaborate.
The proof requires defining a map that maps sets of configurations in As.fx; yg/

to sets of configurations in �` and sets of configurations in Aw.f.x; q/; .y; r/g/ to
sets of configurations in �x;y and consists of a comparison of the weights taken
by such sets.

Informally the map works as follows: For the proof of (4.17), we take any con-
figuration in As.fx; yg/ and ‘remove’ the link that is unpaired at both its endpoints.
Such a removal has a cost � (whose corresponding factor appears on the right-hand
side of (4.17)) and leads to a configuration in A`. After that, we compare the sets
of configurations A` obtained after such a removal with sets of configurations in
�` similarly to the previous case.

For the proof of (4.18) we remove from any configuration in Aw.f.x; q/; .y; r/g/
the two extremal links (which, by definition, are on fx; qg and on fy; rg, respec-
tively, and are unpaired at q and r , respectively), paying a cost �2 (which ap-
pears on the right-hand side of (4.18)) and obtain a configuration with an `-walk
having endpoints x and y and possibly double links and `-loops, with all these
objects being vertex self-avoiding, mutually vertex self-avoiding, and lying en-
tirely in the original torus by our choice U D H . Such objects (`-walk, double
links, and `-loops) can be identified with the corresponding objects of the con-
figurations in �x;y (walk, double edges, and loops, respectively) taking the same
positions. Such an identification allows the comparison of the weights of the set
Aw.f.x; q/; .y; r/g/ under � and the weights taken by the configurations in �x;y

in the partition functionYL;N;�.x; y/.
It is important for the comparison to ensure that the removal of the links does

not leave a ‘hole’: For this reason the definition of the weight function H implies
that the `-walk is not entirely vertex self-avoiding, namely at the vertices where its
two extremal links are unpaired, q and r , it might touch itself or other paths. Here
by ‘no hole’ we mean that, when the two extremal links are removed, one obtains
configurations whose paths are ’free’ to use the vertices that are touched by the
links which get removed.

Other technical aspects in the proofs of (4.17) and (4.18) are that such a removal
is a many-to-one map, since the links that get removed might occupy different
positions on the same edge, and the removal maps several input configurations
with different positions of such links to the same output. For this reason we need to
compute the factor corresponding to the number of such possible positions, which
also depends on the pairing of the other links on that edge. Fortunately for us, the
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factor 1
me�

in the definition of the measure �L;N;�;U assigns a higher weight to
the configuration obtained after the removal and such an energy gain matches the
corresponding entropy loss perfectly, giving a total factor that equals precisely 1.

PROOF OF LEMMA 4.10. For the formal proof it will be convenient to deal with
undirected subgraphs of the torus. For this reason we introduce the set �, which
can be viewed as an ‘intermediate object’ between the sets W1 and �[�`, whose
respective subsets must be compared.

Definition of the set �. Let � be the set of spanning subgraphs of .TL;EL/
such that every vertex has degree 0, 1 or 2. Any connected component of � 2 � is
called a monomer if it consists of a single vertex, an isolated edge if it consists of
two vertices connected by one edge, a loop if the set of its edges is isomorphic to
a simple closed curve in Rd , and a walk if the set of its edges is isomorphic to an
open simple curve inRd . Thus, an isolated edge is also a walk.

For x ¤ y, let �x;y be defined as the set of graphs � 2 � such that there exists
a walk with endpoints x and y and any other connected component is a monomer,
an isolated edge, or a loop. Let �` be defined as the set of graphs � 2 � such that
any connected component is a monomer, a isolated edge, or a loop. Let �x;x be
the set of graphs � 2 �` such that x is monomer. For any � 2 �, let L.�/ be the
number of connected components in � that are not monomers (by a slight abuse of
notation, since we already defined the related quantity L.�/ in the introduction),
let D.�/ be the number of isolated edges in � , let D0.�/ be the number of isolated
edges in � that do not contain the origin, and let j� j be the number of edges in � .

Recall the definitions of the partition functions (4.1) parametrised by �. We have
that, for any y 2 TL n fog,

Y
`
L;N;� D

X
�2�`

�j� jNL.�/
�
�

2

�D.�/
;(8.1)

NYL;N;�.o; y/ D
X

�2�o;y

�j� jNL.�/
�
�

2

�D0.�/

;(8.2)

YL;N;�.o; o/ D
X

�2�o;y

�j� jNL.�/
�
�

2

�D0.�/

:(8.3)

To see why the previous relations hold true, note that there is an obvious corre-
spondence between the elements � 2 �` and the elements � 2 �` and between
the elements � 2 �o;x and the elements � 2 �o;x . Indeed, for each � , we obtain
a unique element � that is associated to � by replacing any double edge, directed
loop, or directed walk by an isolated edge, undirected loop, or undirected walk,
respectively, which is composed of the same edges and sites. We deduce (8.1) and
(8.2) from the definitions (4.1), considering that directed loops have two possible
orientations and that double edges in � consist of two (directed) edges while the
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isolated edges in � just of one edge. Note that the factor N on the left-hand side
of (8.2) is due to the fact that L.�/, which was defined in Section 2, does not
count the walk, while L.�/ counts the number of connected components that are
not monomers and thus also the walk.

Finally, note that in (8.2) and (8.3) we have D0 in place of D since, if the walk
consists of just one edge, we don’t want to assign to it a factor �

2
. Now that the

partition functions have been defined in terms of sums over elements of �, we can
proceed with the comparison between the elements of W1 and the elements of �.
This comparison will require introducing a map between such sets and studying its
multiplicity properties.

Below we will keep adopting the following terminology: double links, `-loops,
`-walks, and segments for the paths of the realisations w 2 W1; and isolated
edges, loops, walks, and monomers for the connected components of the realisation
� 2 �. Moreover, we write that fx; yg 2 � if fx; yg belongs to the edge set of
� 2 �.

Definition and properties of the map Q WW1 7! �. For any w 2W1, let Q.w/
be the set of edges fx; yg 2 EL such that there exists a link on fx; yg in w that
is paired both at x and y. We define a map Q that associates to each realisation
w 2W1 the realisation Q.w/ WD .TL;Q.w//.

To begin note that

(8.4) 8w 2W1 Q.w/ 2 �:

This holds true since, by definition of W1, for each realisation w 2 W1, each
vertex of Q.w/ has degree 0, 1, or 2. For any � 2 �, define the set Q�1.�/ WD
fw 2W1 W Q.w/ D �g. From the definition of the map Q we deduce that, for any
pair of graphs �1; �2 2 �,

(8.5) �1 ¤ �2 H) Q�1.�1/ \Q�1.�2/ D ¿:

Note that for any w 2 W1, a loop is present in Q.w/ if and only if an `-loop with
precisely one link located on each edge of the loop is present in w. Moreover, note
that an isolated edge is present in Q.w/ if and only if a double link whose two
links are on that edge is present in w. Moreover, suppose that x ¤ y. Note that for
any w 2 W1, a walk with endpoints x and y is present in Q.w/ if and only if an
`-walk with extremal links .x; q/ and .y; r/ for some q; r 2 TL and with precisely
a nonextremal link on each edge of that walk is present in w.

Finally, suppose that x D y. Note that, by definition of H , for any w 2 W1, a
`-walk with extremal links .x; q/ and .x; r/ can only consist of two links that are
paired to each other at x and are both extremal in w. Thus, Q.w/ has a monomer
at x D y if and only if either an `-walk composed of just two links paired at x and
on the edges fx; qg and fx; rg for some q; r 2 TL (with possibly q D r) is present
in w or if no link of w is paired at x D y. See also Figures 8.1, 8.2, and 8.3 for
examples.
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From all these considerations we deduce that

8w 2 A` Q.w/ 2 �`;(8.6)

8fx; yg 2 EL; 8w 2 As.fx; yg/ Q.w/ 2 �`;(8.7)

8.x; q/; .y; r/ 2 EL W x; y 2 TL;
8w 2 Aw..x; q/; .y; r// Q.w/ 2 �x;y :

(8.8)

Moreover, by definition of W1 we also have that

(8.9) 8.x; q/; .y; r/ 2 EL W fx; yg \ T .2/
L ¤ ¿; Aw..x; q/; .y; r/

�
D ¿:

We will now prove all the claims in the statement of Lemma 4.10 one by one using
such properties.

Proof of (4.16). From (8.6) and from the considerations made in the paragraph
before (8.6), we deduce that

(8.10) 8� 2 �` �L;N;�;H .A` \ fQ.w/ D �g/ D

�
1

2

�D.�/
�j� jCD.�/NL.�/:

The factor NL.�/ above takes into account the fact that if w0 is obtained from w

by changing the colour of all the links belonging to the same path, then Q.w/ D
Q.w0/, the term j� j C D.�/ corresponds to the number of links in each configu-
ration w 2 A` such that Q.w/ D � , and the factor .1

2
/D.�/ comes from the term

1
me�

in the definition (4.4). Now note that

�L;N;�;H .A`/ D
X
�2�`

�L;N;�;H .A` \ fQ.w/ D �g/

D
X
�2�`

�
�

2

�D.�/
�j� jNL.�/ D Y`

L;N;�:

For the first identity we used (8.5) and (8.6); for the second identity we used (8.1).
This concludes the proof of (4.16). �

Proof of (4.17) Recall that, if fx; yg belongs to the edge set of � 2 �, we write
fx; yg 2 � . In the whole proof we fix an arbitrary undirected edge fx; yg 2 EL. To
begin, we claim that for any � 2 �`,��fw 2 As.fx; yg/ W Q.w/ D �g

��

D

8���<
���:
3NL.�/C1 if � has a isolated edge at fx; yg and fx; yg 2 EL;
2NL.�/C1 if fx; yg belongs to a loop of � and fx; yg 2 EL;
1NL.�/C1 if fx; yg � � ,
0 otherwise.

(8.11)

We now prove (8.11), starting from the fourth case of (8.11) (‘otherwise’), which
is when fx; yg 2 EL nEL and fx; yg belongs to a loop or an isolated edge of � . In
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FIGURE 8.1. Two copies of the vertex set of the graph .TL; EL/ when
d D 1, with TL D f�2; : : : ; 3g � f1; 2g. On each copy a realisation
w 2 W1 is represented, each link has two possible colours, red or blue,
and a dotted line connects endpoints of paired links. Left: A realisation
in w 2 As

�
fx; yg

�
such that Q.w/ 2 � consists of three isolated edges

and six monomers. Right: A realisation w 2 Aw
�
.o; q/; .y; r/

�
such

that Q.w/ 2 � consists of one walk composed of two edges and eight
monomers.

this case Aw.fx; yg/ \ fQ.w/ D �g D ¿, since for any w 2 W1, no double link
or `-loop is allowed to touch a virtual vertex. This explains why we get 0 in the
fourth case of (8.11).

We now consider the first three cases. To begin, note that the factor NL.�/C1

in the first three cases takes into account the fact that if w0 is obtained from w

by changing the colour of all the links belonging to the same path, then Q.w/ D
Q.w0/.

The factors 3, 2, or 1 in the first three cases above take into account the number
of possible labels of the link belonging to the segment and which is on fx; yg. We
explain this starting from the first case. In the first case, when � has an isolated
edge at fx; yg, each configuration w 2 Q�1.�/ \ As.fx; yg/ has three links on
fx; yg, where two of these three links are paired to each other and compose a
double link, while the third link is unpaired at both its endpoints. Such an unpaired
link might be the first, the second, or the third link on fx; yg. This situation is
represented, for example, on the left of Figure 8.1. Thus, the factor 3 takes into
account the fact that the unpaired link might have three distinct possible labels (in
other words, it might occupy three distinct possible positions on fx; yg), with each
label corresponding to a distinct configuration w such that Q.w/ D � .

In the second case, when fx; yg belongs to a loop of � , each w 2 Q�1.�/ \
As.fx; yg/ has two links on fx; yg, with one link belonging to the segment and
thus being unpaired at both its endpoints and the other link being paired both at x
and y. Thus, the factor 2 takes into account the fact that there are two choices for
which link on fx; yg belongs to the segment and which link on fx; yg is paired at
both its endpoints.

Finally, in the third case we have no entropy factor. From these considerations
and from the definition of �, which is given in Definition 4.1 and the definition
of H , which is given in Definition 4.8, we also deduce that, for any � 2 �`, for
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any w 2 As.fx; yg/ such that Q.w/ D � ,

(8.12)

�L;N;�;H .w/

D

8���<
���:

1
3�

1
2D.�/�1

�j� jCD.�/C1 if � has a isolated edge at fx; yg and fx; yg 2 EL,
1
2

1
2D.�/

�j� jCD.�/C1 if fx; yg belongs to a loop of � and fx; yg 2 EL,
1
2

1
2D.�/

�j� jCD.�/C1 if fx; yg 62 � and fx; yg 2 EL n EL,
1

2D.�/
�j� jCD.�/C1 if fx; yg 62 � and fx; yg 2 EL.

In all the cases above, the last factor corresponds to the weight of the links, whose
number is j� j C D.�/C 1. The first two factors in the first two cases, the second
factor in the third case, and the first factor in the last case follows from the term
1
me�

in the definition of �, the first factor 1
2

in the third case comes from the fact
that the weight function Hx , x 2 TL, assigns a factor 1

2
whenever there is a link

on fx; g.x/g that is unpaired at x, and this can only happen when such a link is
unpaired at x and at fx; g.x/g, and thus is a segment.

From (8.11) and (8.12) we deduce that, for anyw 2 As.fx; yg/, for any � 2 �`,

�L;N;�;H
�
As.fx; yg/ \ fQ.w/ D �g

�
D

(
�N�j� jCD.�/.1

2
/D.�/NL.�/ if fx; yg 2 EL;

�
2
N�j� jCD.�/.1

2
/D.�/NL.�/ if fx; yg 2 EL n EL.

(8.13)

From (8.5), (8.7), (8.12), and (8.13) we deduce that, when fx; yg 2 EL,

�L;N;�;H
�
As.fx; yg/

�
D

X
�2�`

�L;N;�;H
�
As.fx; yg/ \ fQ.w/ D �g

�

D �N
X
�2�`

�
�

2

�D.�/
�j� jNL.�/ D �NY`

L;N;�;

and that the same holds true with a factor of 1
2

in front of the two last terms when
fx; yg 2 EL n EL. �

Proof of (4.18) when fx; yg \ T .2/
L ¤ ¿. In this case, the proof follows imme-

diately from (8.9). �

Proof of (4.18) when fx; yg � TL. Suppose that fx; yg � TL (possibly x D y).
Without loss of generality (by translation invariance) fix x D o. From (8.8) and
from the properties of the map Q we claim that, under these assumptions, for any
y 2 TL and � 2 �o;y , we have that

(8.14)

���w 2 Aw..o; q/; .y; r// W Q.w/ D �
	��

D

8���<
���:
21ffo;qg2�g21ffy;rg2�gNL.�/ if y ¤ o and .y; r/ ¤ .q; o/ ;

6NL.�/ if y ¤ o, .y; r/ D .q; o/ and fo; yg 2 �;

2NL.�/ if y ¤ o, .y; r/ D .q; o/ and fo; yg 62 � ,
NL.�/C1 if y D o.
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FIGURE 8.2. Same setting as in Figure 8.1. Right: A realisation w 2
Aw..o; q/; .q; o// such that fo; qg 62 Q.w/ and Q.w/ consists of one
walk composed of five edges and six monomers. Left: A realisation w 2
Aw..o; q/; .q; o// such that fo; qg 2 Q.w/ and such that Q.w/ 2 �o;q

consists of three isolated edges.

We now explain (8.14). The factors NL.�/ and NL.�/C1 in all the cases above
take into account the fact that if w0 is obtained from w by changing the colour of
all the links belonging to the same path, then Q.w/ D Q.w0/. We now explain the
remaining factors considering case by case.

� Let us explain the first case: y ¤ o, and .y; r/ ¤ .q; o/. Note that, from
the properties of the map Q, it follows that for any w 2 Aw..o; q/; .y; r//

such that Q.w/ D � , fo; qg 2 � if and only if two links of the unique
`-walk in w are on fo; qg, one of which is extremal. Note also that the
same claim holds true if we replace fo; qg by fy; rg. Thus, the factors
21ffo;qg2�g and 21ffy;rg2�g account for the fact that there are two possi-
bilities for choosing which of the two links is the extremal one (the other
link belongs to the `-walk, but it is not extremal). For example, if w1 is
the configuration on the right of Figure 8.1, � is such that Q.w1/ D � ,
and w2 is the configuration that is obtained from w1 by exchanging the
pairing at the vertex q in such a way that the link .fq; og; 1/ is paired at
q to the link .fq � e1; qg; 1/, and .fq; og; 2/ is unpaired at q, then also
Q.w2/ D � . From these considerations we also deduce that, if y ¤ o

and .y; r/ ¤ .q; o/ for any � 2 �o;y and w 2 A..o; q/; .y; r// such that
Q.w/ D � ,

(8.15) �L;N;�;H .w/ D
1

21ffo;qg2�gC1ffy;rg2�g

1

2D
0.�/

�2�j� jCD0.�/

where the first and the second factor follows from the term 1
me�

in the
definition of �, the factor �2 corresponds to the weight of the two extremal
links, and the last factor corresponds to the weight of all the remaining
links.

� Let us explain the second case: y ¤ o, .y; r/ D .q; o/, and fo; qg 2 � .
In this case, any w 2 Aw..o; q/; .q; o// is such that the `-walk consists of
three links that are on fo; qg, and there are precisely three links on fo; qg.
Thus, one link of the `-walk must be paired at both its endpoints to the two
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other links of the `-walk, while the two remaining links are paired at one
endpoint and unpaired at the other endpoint. An example of such a config-
uration is represented on the right of Figure 8.2. The factor 6 on the right-
hand side of (8.14) accounts for the fact that there are three distinct possi-
bilities for choosing which of these three links is paired at both endpoints.
Once this has been chosen, there are two possibilities for choosing which
of the two remaining links is paired at o and unpaired at q. From these
considerations we also deduce that for any � 2 �o;q such that fo; qg 2 EL
and fo; qg 2 � for any w 2 Aw..o; q/; .q; o// such that Q.w/ D � ,

(8.16) �L;N;�;H .w/ D
1

3�

1

2D
0.�/

�2�j� jCD0.�/;

where the first and the second factor follow from the term 1
me�

in the def-
inition of �; the factor �2 corresponds to the weight of the two extremal
links of the `-walk, and the last factor corresponds to the weight of all the
remaining links.

� Let us explain the third case: y ¤ o, .y; r/ D .q; o/, and fo; qg � � . In
this case, any w 2 Aw..o; q/; .q; o// is such that two links are on fo; qg,
where one of them is unpaired at o and is paired to another link of the
walk at q, while the second one is unpaired at q and is paired to another
link of the walk at o. An example of such a configuration is represented in
Figure 8.2-left. The factor 2 on the right-hand side of (8.14) accounts for
the fact that there are two possibilities for choosing which of the two links
is paired at o and which at q. From these considerations we also deduce
that, for any � 2 �o;q such that fo; qg 2 EL and fo; qg 2 � , for any
w 2 Aw..o; q/; .q; o// such that Q.w/ D � ,

(8.17) �L;N;�;H .w/ D
1

2�

1

2D
0.�/

�2�j� jCD0.�/;

where the first and the second factor follows from the term 1
me�

in the
definition of �, the factor �2 corresponds to the weight of the two extremal
links of the `-walk, and the last factor corresponds to the weight of all the
remaining links.

� Let us explain the last case: y D o. An example of a configuration w 2
Aw..o; q/; .o; r// is represented on the left of Figure 8.3 when q ¤ r

and on the right of Figure 8.3 when q D r . In this case, for any w 2
Aw..o; q/; .o; r// the unique `-walk in w consists of just two links that are
paired to each other at o. When q D r , these links are the only two links on
fo; qg D fo; rg, while when q ¤ r , each link of the two is the unique link
on fo; qg and fo; rg. Since all the other paths are double links or `-loops,
we deduce (8.14). From these considerations we also deduce that, for any
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FIGURE 8.3. Same setting as in Figure 8.1. Left: A realisation
w 2 Aw.f.o; q/; .o; r/g/, r ¤ q, such that Q.w/ consists of two
isolated edges and eight monomers. Right: A realisation w 2
Aw.f.o; q/; .o; q/g/ such that Q.w/ 2 �o;o consists of two isolated
edges and eight monomers.

� 2 �o;o, for any w 2 A..o; q/; .o; r//, we have that

(8.18) �L;N;�;H .w/ D

(
1

2D0.�/
�2�j� jCD0.�/ if q ¤ r ,

1
2�

1

2D0.�/
�2�j� jCD0.�/ if q D r .

where the first factor in the first case and the first two factors in the second
case follows from the term 1

me�
in the definition of �, the factor �2 corre-

sponds to the weight of the two unique links the `-walk is composed of,
and the last factor corresponds to the weight of all the remaining links.

Now that the multiplicity properties of the map and that the weights assigned by
� to the configurations w in each of the four cases above have been considered,
we can put all the cases together to conclude the proof of (4.18). Below, we use
the general properties of the map Q, (8.5), and (8.9) for the first identity, (8.14),
(8.15), (8.16), (8.17), and (8.18) for the three cases of the second identity, and (8.2)
and (8.3) for the three cases of the third and last identity, obtaining that, for any
pair of directed edges .o; q/; .y; r/ 2 EL,

�L;N;�;H
�
Aw

�
.o; q/; .y; r/

��
D

X
�2�o;y

�L;N;�;H
�
Aw

�
.o; q/; .y; r/

�
\ fQ.w/ D �g

�

D

8������<
������:

�2
P

�2�o;y

�
�
2

�D0.�/
�j� jNL.�/ D �2NYL;N;�.o; y/ if y ¤ o,

N�2
P

�2�o;y

�
�
2

�D0.�/
�j� jNL.�/ D �2NYL;N;�.o; y/ if y D o, .o; q/ ¤ .y; r/,

N
2
�2

P
�2�o;y

�
�
2

�D0.�/
�j� jNL.�/ D �2

2
NYL;N;�.o; y/ if y D o, .o; q/ D .y; r/.

This concludes the proof of Lemma 4.10. �
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Appendix
PROOFS OF LEMMA 3.3. We omit the subscripts for convenience. To begin,

note that it follows from (3.7) that

(A.1) G.e1/ D
1

jTLj
yG.o/ �

1

jTLj
yG.p/C

1

jTLj

X
k2T�

L
nfo;pg

eik�e1 yG.k/;

and it follows from (3.6) that 1
jTLj

yG.o/ D 1
jTLj

P
x2TL

G.x/ and that

1

jTLj
yG.p/ D �

1

jTLj

X
x2TL

G
o.x/C

1

jTLj

X
x2TL

G
e.x/:

Combining the equations above, we conclude the proof. �

PROOF OF (i), (ii), AND (iii) IN THE PROOF OF PROPOSITION 5.3. These com-
putations are classical and can be extracted, for example, from the computations
in [50]. We present them for the reader’s convenience. The proof of (i) consists of
the following computation:

.4v/x D
X
y�o

�
cos

�
.x C y/ � k

�
� vx

�
D
X
y�o

�
cos.x � k/ cos.y � k/ � sin.x � k/ sin.y � k/ � vx

�
D
X
y�o

�
vx cos.y � k/ � vx

�
D �".k/vx :

The proof of (ii) follows from the first Green identity, which states that, for any
pair of real-valued vectors, a D .ax/x2TL , b D .bx/x2TL , when .TL;EL/ is the
torus, X

fx;yg2EL

.by � bx/.ay � ax/ D �
X
x2TL

ax.4b/x :

The proof of such an identity can be found in [26][lemma 8.7]. Applying such an
identity with a D b D v and using (i), we obtain (ii).

It remains to prove (iii). For this, we use the fact that, by lattice symmetries,
yG.k/ is real, and we obtain:X

x;y2TL

cos.k � x/ cos.k � y/G.x; y/

D
X
x2TL

�
cos.k � x/Re

h X
y2TL

cos.k � y/G.y � x/
i�

D
X
x2TL

�
cos.k � x/Re

h
eik�x

X
y2TL

eik�.y�x/G.y � x/
i�

D
X
x2TL

�
cos.k � x/Re�eik�x yGk�

�
D

X
x2TL

cos2.k � x/ yG.k/:

This concludes the proof. �
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