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Abstract The EOQ mathematical models usually deal with the problem of a
wholesaler who has to manage a goods restocking policy, settling his best amount
of goods to be procured. Best means capable of minimizing all the costs con-
cerning the trade of the stored goods. The relevant seminal contributions are due to
Harris, and Wilson, who analyzed an easy scenario with a certain demand uniform
all over the time so that its instantaneous change rate is fixed, with stocking
charges not dependent on time. In such a field, our own contribution consists of
establishing sufficient conditions on the well posedness to the minimum cost
problem and relationships providing either closed form solutions or, alternatively,
quadrature formulae—without ex ante approximations. All this allows a numerical
solution to the transcendental (or algebraical of high degree) equation solving to
the most economical batch. In short, such our paper is concerning the special
family of EOQ mathematical models with different deterministic time-dependent
demands.

1 Introduction

The EOQ mathematical models usually deal with the problem of a wholesaler who
has to manage a goods restocking policy, settling his best amount of goods to be
procured. Best means capable of minimizing all the costs concerning the trade of
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the stored goods. The relevant seminal contributions are due to Harris (1913, 1915)
and Wilson (1934), where an easy scenario is analyzed with a certain demand
uniform all over the time so that its instantaneous change rate is fixed, with
stocking charges not dependent on time. In subsequent years, the subject attracted
the authors’ continuous efforts to improve the assumptions of the ingenuous early
models about the stored goods’ demand, the charges due to goods stocking and to
their perishability, if any.

The model main features considered by us concern the store blow-down which
will depend on the products demand and on perishability, as for food or medicines
or vaporizing liquids. The theoretical models presented hereinafter provide single
mathematical representations of the blow-down and of charges. For example
Benkherouf (1997) and Sarma (1987) considering the case of a perishable good
stored in two different warehouses, get blow-down dynamics ruled by two different
time laws. In Balki and Benkherouf (1996) and Raafat and Wolfe (1991) time
changes of production/demand rates not due to perishability are taken into account,
while Bhunia and Maiti (1998) analyzes a frame where the store level decrement is
a function of its own level. Anyway the effort of providing a full overview on the
main contributions is out of our purpose for being giant the relevant literature.
Very often some Journals publish review articles on the subject like Goyal and Giri
(2001), Nahamias (1982), Pentico and Drake (2011) and Raafat (1991); alterna-
tively monographs are available as Zipkin (2000). The theoretical treatments
reviewed throughout this article are concerning a stocks blowdown dynamics
depending on their level itself. For an extended overview see Urban (2005).

In such a field, our own contribution consists of establishing sufficient condi-
tions ensuring the well posedness to the problem of minimum cost and relation-
ships providing either closed form solutions or, alternatively, quadrature
formulae—without ex ante approximations—allowing a numerical solution to the
transcendental (or algebraical of high degree) equation providing the most eco-
nomical batch. Let us introduce the unified notation used throughout all the paper:

qðtÞ store level at time t
f ðt; qÞ demand level ruled by time t and store level q

ĥðtÞ[ 0 holding cost, assumed as a positive function of t

k̂ðqÞ a factor affecting the holding cost as a increasing function of q such that

k̂ðqÞ ! 1 as q!1
A [ 0 costs for delivery

Let the stored goods blow-down according to:

_qðtÞ ¼ �f ðt; qðtÞÞ
qð0Þ ¼ Q [ 0

�
ð1Þ

where the function f : ½0;1½�½0;1½! R is assumed positive, so that the solution
to (1) fulfills qðtÞ�Q for each t� 0: We call reordering time generated by the
batch Q the real positive value TðQÞ solution of qðtÞ ¼ 0 where qðtÞ solves (1). If
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A [ 0 is the delivery cost, ĥðtÞ[ 0 models the holding cost at time t as a con-

tinuous function, so that ĥð0Þ[ 0, if k̂ðqÞ denotes a continuous and positive

function of q so that k̂ðqÞ ! 1 for q!1 and that k̂ð0Þ ¼ 0, then the total cost
for reordering an amount Q [ 0 of goods is:

CðQÞ ¼ A

TðQÞ þ
1

TðQÞ

ZTðQÞ

0

ĥðtÞ k̂ðqðtÞÞ dt: ð2Þ

The Wilson originary treatment, Wilson (1934) follows putting f ðt; qÞ ¼
d[ 0; ĥðtÞ ¼ h; k̂ðqÞ ¼ q: Several literature models: Ferguson et al. (2007), Giri
and Chaudhuri (1998), Goh (1994) and Weiss (1982) are all particular cases of

what above, being there f ðt; qÞ ¼ aqþ bqb; ĥðtÞ ¼ hta: For some models, the
function f ðt; qÞ is piecewise defined, e.g., Balki and Benkherouf (1996), Chang
et al. (2006), Dye and Ouyang (2005), Hou (2006) and Roy (2007). In Bernardi
et al. (2009) is treated the case f ðt; qÞ ¼ dðtÞ where dðtÞ is a given positive and

continuous function of time, ĥðtÞ ¼ h; k̂ðqÞ ¼ q:
The statement of the problem is quite clear: find Q� such that

CðQ�Þ ¼ inf
Q [ 0

CðQÞ ð3Þ

The general problem (3) can be solved explicitly when:

(a) one succeeds in solving the differential equation (1) finding qðtÞ
(b) one succeeds in solving explicitly the equation qðTÞ ¼ 0
(c) one succeeds in solving explicitly the critical point equation

C0ðQÞ ¼ T 0ðQÞ
T2ðQÞ TðQÞĥðTðQÞÞk̂ðqðTðQÞÞÞ � A�

ZTðQÞ

0

ĥðtÞk̂ðqðtÞÞ dt

8><
>:

9>=
>; ð4Þ

In the Wilson model, the blow-down law will be: qðtÞ ¼ Q� d t and TðQÞ ¼ Q=d
and the cost

CðQÞ ¼ A

TðQÞ þ
h

TðQÞ

ZTðQÞ

0

qðtÞdt ¼ d A

Q
þ h

2
Q:

In more elaborate models one shall solve, either exactly or numerically, the
Eq. (4), but a previous knowledge is needed whether problem (3) is well posed—
existence of solution—or not; so that a numerical treatment for solving Eq. (4) has
a meaning. When possible, some uniqueness conditions for the solution will be
provided. Let us notice that in Bernardi et al. (2009), an example is provided of a
not-unique solution taking
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f ðt; qÞ ¼ t2 � 9
2

t þ 13
2
; ĥ ¼ 1; A ¼ 1; k̂ðqÞ ¼ q:

We will provide existence-uniqueness conditions following different demand good
dynamics. We will follow Bernardi et al. (2009), Gambini et al. (2013), Mingari
Scarpello and Ritelli (2008 and 2010), as far as it concerns the store costs given by

functions ĥðtÞ e k̂ðqÞ: For each theoretical case, we will provide applications
leading—even if not always—either to closed form solutions by means of Special
Functions (e.g., Gauss hypergeometric function, Lambert W function) or to
quadrature formulae allowing a direct settlement of the best batch Q�. Further-
more, the problem of backordering will be embodied: it has been recently tackled
by several authors, but always under a constant rate of store level change,
(Cárdenas-Barrón et al. 2010; Cárdenas-Barrón 2010a, b; Teng 2009). They try to
detect the optimal batch backordering levels without calculus, but founding upon
classic inequalities such that they are between the arithmetic and geometric means
powered by the methods in Garver (1935) and Niven (1981). Anyway in our very
general frame where the stock inventory level is ruled by a nonlinear dynamics, the
classic approach through the infinitesimal calculus is compulsory.

2 Demand Depending on the Stock Level Only

Let us start with (1) when f ðt; qÞ ¼ f ðqÞ and let the stored goods blow-down
behaves according to law:

_qðtÞ ¼ �f ðqðtÞÞ
qð0Þ ¼ Q [ 0

�
ð5Þ

The autonomous structure of (5) allows a closed form solution: defining

FðqÞ :¼
ZQ

q

1
f ðuÞ du ¼ t ð6Þ

then, inverting FðqÞ we find that qðtÞ ¼ F�1ðtÞ solves (5).
The reordering time generated by the batch Q is the positive value TðQÞ

solution of qðtÞ ¼ 0:

TðQÞ ¼ Fð0Þ ¼
ZQ

0

1
f ðuÞ du:

The total cost for reordering an amount Q [ 0 of goods is here:

CðQÞ ¼ A

TðQÞ þ
1

TðQÞ

ZTðQÞ

0

ĥðtÞ k̂ðqðtÞÞ dt: ð7Þ
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The Wilson early treatment, Wilson (1934) follows putting f ðuÞ ¼ d;

ĥðtÞ ¼ h; and k̂ðqÞ ¼ q. Notice that the several literature models: Giri and
Chaudhuri (1998), Goh (1994) and Weiss (1982) are nothing else but particular

cases of what above, being there f ðuÞ ¼ auþ bhb; k̂ðqÞ ¼ q; and ĥðtÞ ¼ hta: In
Giri et al. (1996) f ðqÞ is defined as f ðqÞ ¼ �hq� aqb for 0� t� t1 and f ðqÞ ¼
�hq� D for � t1� t� T : In Mingari Scarpello and Ritelli (2008) is treated as the
case for arbitrary f ðuÞ:

Theorem 2.1 Suppose that function f in (1) is such that

lim
v!1

Zv

0

du

f ðuÞ ¼ 1 ð8Þ

Moreover, we assume that if f ð0Þ ¼ 0; the integrability in u ¼ 0 of both functions:

1
f ðuÞ ;

k̂ðuÞ
f ðuÞ :

ð9Þ

Then the cost function of (7) attains its absolute minimum at Q�[ 0; which is
unique.

Proof In the integral at the right hand side of (7), we do the change t ¼ FðuÞ:
Minding that t ¼ 0) u ¼ Q; t ¼ TðQÞ ) u ¼ 0; and that dt ¼ �ð1=f ðuÞÞdu; and
qðtÞ ¼ F�1ðtÞ, we get:

CðQÞ ¼ A

TðQÞ þ
1

TðQÞ

ZQ

0

ĥðFðuÞÞ k̂ðF�1ðFðuÞÞÞ du

f ðuÞ

¼ A

TðQÞ þ
1

TðQÞ

ZQ

0

ĥðFðuÞÞ k̂ðuÞ
f ðuÞ du

ð10Þ

The good position of (10) follows from (9). The structure of (10) implies that
Q 7!CðQÞ; Q [ 0 has exactly one minimizer. First we observe that:

lim
Q!0þ

CðQÞ ¼ 1:

Then from (8) we see that the cost function (10) diverges when Q!1, as
immediately checked through De l’Hospital rule:

lim
Q!1

CðQÞ ¼ lim
Q!1

ĥðFðQÞÞ k̂ðQÞ
f ðQÞ

1
f ðQÞ

¼ lim
Q!1

ĥð0Þ k̂ðQÞ ¼ 1
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Thus CðQÞ is bounded from below: so it has at least one stationary value. The
extremum will be attained at only one value since the first derivative of CðQÞ
vanishes if and only if the batch Q solves the equation:

ĥð0Þ k̂ðQÞ
ZQ

0

du

f ðuÞ � Aþ
ZQ

0

ĥðFðuÞÞ k̂ðuÞ
f ðuÞ du

8<
:

9=
; ¼ 0: ð11Þ

But the function

NðQÞ :¼ ĥð0Þ k̂ðQÞ
ZQ

0

du

f ðuÞ � Aþ
ZQ

0

ĥðFðuÞÞ k̂ðuÞ
f ðuÞ du

8<
:

9=
;

is the difference of two increasing functions; thus this minimizing batch is unique.

Through a similar way it is possible to prove that thesis of Theorem 2.1 holds
with slightly different assumptions on f .

Corollary 2.2 The same conclusion of Theorem 2.1 holds if:

Z1

0

du

f ðuÞ 2 R;

Z1

0

ĥðFðuÞÞ k̂ðuÞ
f ðuÞ du ¼ 1

and
Z1

0

du

f ðuÞ 2 R;

Z1

0

ĥðFðuÞÞ k̂ðuÞ
f ðuÞ du 2 R

2.1 Applications to Known Models

For the model (Goh 1994), where f ðqÞ ¼ dqb; ĥðtÞ ¼ h; and k̂ðqÞ ¼ q the opti-
mum condition (11) gives:

hQ2�b � A b2 � 3bþ 2
� �

d ¼ 0:

Finally, in the model (Giri and Chaudhuri 1998), being there f ðqÞ ¼ hqþ
dqb; ĥðtÞ ¼ h; and k̂ðqÞ ¼ q; the detection of the optimum batch, first order con-
dition (4) leads at the Q-equation:

hQ

ð1� bÞ# ln 1þ #
d

Q1�b

� �
� A� hQ

#
1� 2 F1 1;

1
1� b

;
2� b
1� b

;�#
d

Q1�b

� �� �
¼ 0:
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Anyway the above formula involving the Gauss hypergeometric function 2F1 is
not present in the article (Giri and Chaudhuri 1998); it is found upon the integral
identities: ZQ

0

du

# uþ d ub
¼ 1
#ð1� bÞ ln 1þ #

b
Q1�b

� �
;

ZQ

0

u du

# uþ d ub
¼ 1
#

Q� Q 2F1 1;
1

1� b
;
2� b
1� b

;�#
d

Q1�b

� �� �
:

We limit here to recall that 2F1 is the Gauss hypergeometric function defined as a
jxj\1 power series:

2F1ða; b; c; xÞ ¼
X1
n¼0

að Þn bð Þn
cð Þn

xn

n!
;

where ðaÞk is a Pochhammer symbol: ðaÞk ¼ aðaþ 1Þ � � � ðaþ k � 1Þ: 2F1 is
analytically continued by the integral representation theorem:

2F1 a; b; c; xð Þ ¼ CðcÞ
Cðc� aÞCðaÞ

Z1

0

ta�1ð1� tÞc�a�1

ð1� xtÞb
dt;

whose validity ranges are: Re c [ Re a [ 0; jxj\1: It provides the way for
extending the region where the (complex) hypergeometric function is defined,
namely for its analytical continuation to the (almost) whole complex plane
excluding the half-line �1;1½:

Let us now introduce some f ðqÞ not considered up to this time. Notice that f ðqÞ
could be known as experimental data set to be fitted in some reliable analytical
expression: this explains the theoretical laws we are going to study.

2.2 More Applications

2.2.1 Affine Demand

The demand function which provides the most immediate generalization to the old
one (Wilson and Harris), consists of modeling the inventory blow-down through
an affine function of the stock level q, namely f ðqÞ ¼ dþ e q with d; e [ 0: The
optimum condition (11) in such a case will lead to the transcendental Q-equation

h

e2
ðdþ eQÞ ln dþ eQ

d

� �
� eQ

� �
� A ¼ 0: ð12Þ

Equation (12) was treated by Warburton, see Warburton (2009).
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2.2.2 Rational Demand

By rational demand functions, we find algebraic first order conditions, in fact, if
the inventory blow-down is rational,

f ðqÞ ¼ a

bþ q
;

a; b [ 0; then the optimum condition leads (11) to a cubic Q-equation:

hQ3 þ 3bhQ2 � 6aA ¼ 0:

If:

f ðqÞ ¼ a

b2 þ q2

from (11) we get:

hQ4 þ 6b2hQ2 � 12aA ¼ 0:

2.2.3 Quadratic Demand

Let the instantaneous inventory stock level be ruled by (1) with
0\f ðuÞ ¼ ðu� aÞðu� bÞ; a; b\0. In such a way the optimum condition (11)
specializes in:

h Q

a� b
ln

bðQ� aÞ
aðQ� bÞ

� �
� h

a� b
a ln

a� Q

a

� �
� b ln

b� Q

b

� �� �
� A ¼ 0; ð13Þ

being (13) to be solved to Q; the only possible approach is numerical. For example,
the left hand side of (13) as a function of Q is plotted below, showing the unique
optimal solution Q ’ 11:6987:

2.2.4 Exponential

The inventory manager is faced with aperiodic demand which either is always
increasing or decreasing: for instance f ðqÞ ¼ a eq; or, f ðqÞ ¼ a e�q. Even if the
integrals in (11) are all elementary for the exponential situation, the relevant
Q-equations:

hQeQ � aAþ hð ÞeQ þ h ¼ 0; ð14Þ

� hQe�Q � aAþ hð Þe�Q þ h ¼ 0; ð15Þ
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are transcendental yet. Nevertheless they can be solved through a special function,
not being compulsory a numerical solution any more.

The Lambert function(s) WðyÞ can be achieved starting from ‘ðxÞ ¼ xex and
after taking its inverse. Of course ‘ðxÞ ¼ xex is a not monotonic function of x 2 R,
and then its inverse is multivalued. So that, we do not have one Lambert W-
function but two Lambert functions on the real line, both coming from the rela-
tionship WðyÞeWðyÞ ¼ y where the discriminating point, in order to decide the
branch, is x ¼ �e�1; W ¼ �1: Some special values are Wð0Þ ¼ 0; Wð�1Þ ¼
�e�1; WðeÞ ¼ 1; and Wð1Þ ¼ X ¼ 0:67143. . .: In such a way, looking at the
Fig. 2, four behaviors are possible:

• if y� 0; we move on the principal branch, say W0ðyÞ, or simply WðyÞ, when no
ambiguity can occur;

• if �e�1� y� 0; we move on the principal branch again if WðuÞ� � 1;
• if �e�1� y� 0; but WðyÞ\� 1; we move on the secondary branch, say

W�1ðyÞ;
• if y\� e�1; we do not have at all real values of W any more.

Anyway, there is no possibility of expressing WðyÞ in terms of elementary
functions. A method for computing WðyÞ for each y could be: to develop ‘ðxÞ ¼
xex in a power series, what we know has a sum equal to y; and to revert such a
series by the Lagrange inversion theorem. In such a way, one obtains W expanded
in ascending powers of y:

WðyÞ ¼
X1
n¼1

ð�nÞn�1

n!
yn

whose convergence radius is e�1. As far as we are concerned, the first appearance
of W function in an economics context was in Mingari Scarpello and Ritelli

2 4 6 8 10 12 14
Q

−3

−2

−1

1

2

C’(Q)

Fig. 1 The solution to quadratic demand with a ¼ �3; b ¼ �2; h ¼ 1; A ¼ 3
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(2007), a paper where we generalized a Goodwin microeconomic model, while the
first use of this function in the EOQ contest is due to Warburton (2009). An almost
exhaustive survey on Lambert functions can be read at Corless et al. (1996).

After this short synopsis, let us go back to our Eqs. (14) and (15) and solve
them by means of W : Let us begin writing (14) as: eQ Q� bð Þ ¼ �1 with the
obvious meaning of b [ 1: We change variable putting Q� b ¼ R obtaining:

R eR ¼ �e�b: ð16Þ

It is worth noting that (16) is well posed, i.e., has two real roots because b [ 1:
they are W�1ð�e�bÞ and W0ð�e�bÞ: Only W0ð�e�bÞ has economic meaning, in
fact recalling that, �1\W0ð�e�bÞ\0 and going back to the original Q we find:

Q�þ ¼ bþW0ð�e�bÞ;

where the index þ reminds we started from a positive exponential. In order to
solve (15), we observe that it can be written as:

0.5 1.0 1.5
y

−4

−3

−2

−1

WFig. 2 The couple of real
branches of the Lambert W-
function: W0ðyÞ and W�1ðyÞ
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e�Q�b �Q� bð Þ ¼ �e�b; ð17Þ

where the meaning of b does not change. The solution, of economic interest, i.e.,
positive, is then:

Q�� ¼ �b�W�1ð�e�bÞ;

since �1\W�1ð�e�bÞ\� 1:
The W Lambert function is available by several computer algebra packages like

Mathematica�, for automatic computing. In addition, the f ðqÞ exponential nature
is not an analytical oddness, but has a deep market meaning.

3 Backordering

In order to take the backordering into account, we present our recent contribution

(Gambini et al. 2013). Assume f ðt; qÞ ¼ f ðqÞ; ĥ ¼ const: and k̂ðqÞ ¼ q. The
quantity Q ordered at each cycle undergoes two different uses: a first share Q� R
covers the demand of the previous cycle, and then does not enter the inventory;
while R is the residual share which enters the store so that the outstanding amount
is again Q� R, and so on. As a consequence, the reordering time becomes:

TðQÞ ¼ FðR� QÞ ¼
ZR

R�Q

1
f ðuÞ du;

where the function f : ½R� Q;1½! R is assumed positive, and the total cost is:

CðR;QÞ ¼ A

TðQÞ þ
h

TðQÞ

ZTðRÞ

0

qðtÞ dt � b

TðQÞ

ZTðQÞ

TðRÞ

qðtÞ dt: ð18Þ

It is possible to get easier (18), by the following Lemma.

Lemma 3.1 Let f ðqÞ be the law describing the q-blowdown dynamics: then the
total cost is given by:

CðR;QÞ ¼
Aþ h

Z R

0

u

f ðuÞ du� b

Z 0

R�Q

u

f ðuÞ du

Z R

R�Q

du

f ðuÞ

; ð19Þ

where, if f ð0Þ ¼ 0 we assume the integrability of both functions:

1
f ðuÞ ;

u

f ðuÞ :
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Proof Putting in (18) t ¼ FðuÞ, notice that t ¼ 0) u ¼ R; t ¼ TðRÞ ) u ¼ 0;
t ¼ TðQÞ ) u ¼ R� Q; and dt ¼ �ð1=f ðuÞÞdu; so that, minding that qðtÞ ¼
F�1ðtÞ one finds:

CðR;QÞ ¼ A

TðQÞ þ
h

TðQÞ

ZFð0Þ

FðRÞ

F�1ðtÞ dt � b

TðQÞ

ZFðR�QÞ

Fð0Þ

F�1ðtÞ dt

¼ A

TðQÞ þ
h

TðQÞ

ZR

0

FðqÞ dt � b

TðQÞ ðR� QÞFðR� QÞ þ
Z0

R�Q

FðqÞ dt

0
B@

1
CA

writing F in terms of f we find out:

CðR;QÞ ¼ 1
TðQÞ Aþ h

ZR

0

ZR

q

du

f ðuÞ

0
B@

1
CAdq

0
B@

� b ðR� QÞ
ZR

R�Q

du

f ðuÞ þ
Z0

R�Q

ZR

q

du

f ðuÞ

0
B@

1
CAdq

0
B@

1
CA
1
CA

exchanging the integrations order and computing the inner one

CðR;QÞ ¼ 1
TðQÞ Aþ h

ZR

0

u

f ðuÞ du

2
4

�b ðR� QÞ
ZR

R�Q

du

f ðuÞ þ
Z0

R�Q

u� ðR� QÞ
f ðuÞ duþ

ZR

0

Q� R

f ðuÞ du

0
B@

1
CA
3
75

¼
Aþ h

Z R

0

u

f ðuÞ duþ b ðQ� RÞ
Z R

R�Q

du

f ðuÞ �
Z 0

R�Q

u� ðR� QÞ
f ðuÞ du�

Z R

0

Q� R

f ðuÞ du

� �
Z R

R�Q

du

f ðuÞ

A numerator straightforward reduction completes the proof.

Theorem 3.1 The cost function introduced in (19) attains its absolute minimum
at proper positive values Q�;R�ð Þ: Such a minimizing batch is unique.

Proof Recall that

lim
ðR;QÞ!ð0;0Þ

CðR;QÞ ¼ 1

and that if R! Q, we go back to the originary model, furthermore, by De
l’Hospital rule one finds that:
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lim
Q!þ1

CðR;QÞ ¼ þ1

Let us change variables passing from CðR;QÞ to CðR;Q� RÞ: accordingly, the
total cost CðR;Q� RÞ is:

Aþ h

Z R

0

u

f ðuÞ du� b

Z 0

R�Q

u

f ðuÞ du

Z R

R�Q

du

f ðuÞ

ð20Þ

Partial derivatives of the total cost with respect to R and Q provide:

oC

oQ
¼
�Aþ b ðQ� RÞ

Z R

R�Q

1
f ðuÞ du� h

Z R

0

u

f ðuÞ duþ b

Z 0

R�Q

u

f ðuÞ du

f ðR� QÞ
Z R

R�Q

1
f ðuÞ du

� �2

oC

oR
¼
�Aþ h R

Z R

R�Q

1
f ðuÞ du� h

Z R

0

u

f ðuÞ duþ b

Z 0

R�Q

u

f ðuÞ du

f ðRÞ
Z R

R�Q

1
f ðuÞ du

� �2 � oC

oQ

Imposing partial derivatives to vanish:

oC

oQ
¼
�Aþ b ðQ� RÞ

Z R

R�Q

1
f ðuÞ du� h

Z R

0

u

f ðuÞ duþ b

Z 0

R�Q

u

f ðuÞ du

f ðR� QÞ
Z R

R�Q

1
f ðuÞ du

� �2 ¼ 0

oC

oR
¼
�Aþ h R

Z R

R�Q

1
f ðuÞ du� h

Z R

0

u

f ðuÞ duþ b

Z 0

R�Q

u

f ðuÞ du

f ðRÞ
Z R

R�Q

1
f ðuÞ du

� �2 ¼ 0

We assume f [ 0 for each u, then both the denominators are strictly positive;
setting the numerators to be zero, first order conditions will provide the critical
point system:
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gðR;Q� RÞ ¼ �Aþ h R

ZR

R�Q

1
f ðuÞ du� h

ZR

0

u

f ðuÞ duþ b

Z0

R�Q

u

f ðuÞ du ¼ 0

mðR;Q� RÞ ¼ �Aþ b ðQ� RÞ
ZR

R�Q

1
f ðuÞ du� h

ZR

0

u

f ðuÞ duþ b

Z0

R�Q

u

f ðuÞ du ¼ 0:

ð21Þ

To solve (21), subtracting side by side, one finds:

Q ¼ hR

b
þ R

m R;
hR

b

� �
¼ �Aþ hR

ZR

�hR
b

1
f ðuÞ du� h

ZR

0

u

f ðuÞ duþ b

Z0

�hR
b

u

f ðuÞ du ¼ 0

mðR; hR=bÞ is an increasing function being:

d

dR
mðR; hR=bÞ ¼ h

ZR

�hR
b

1
f ðuÞ du [ 0;

so observing that mð0; 0Þ\0, then mðR; hR=bÞ has a unique real root, and we have
one and only one critical point for the cost function (19). Let us show it is a
minimum. The Hessian determinant at the critical point is:

H ¼ bh

f ðRÞf � hR

b

� � Z R

�hR
b

1
f ðuÞ du

 !2
ð22Þ

In fact being:

H ¼ o2

oR2
CðR;QÞ o2

oQ2
CðR;QÞ � o2

oRoQ
CðR;QÞ

� �2

minding that gðR;Q� RÞ ¼ mðR;Q� RÞ ¼ 0, we have

o2C

oQ2
¼

om

oQ
Z2f ðR� QÞ ;

o2C

oR2
¼

og

oR
Z2f ðRÞ �

om

oR
Z2f ðR� QÞ ;

o2C

oQoR
¼

om

oR
Z2f ðR� QÞ

where we put:

Z ¼
ZR

R�Q

1
f ðuÞ du:
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Eventually, recalling that

Q ¼ hR

b
þ R;

om

oR
¼ �bZ;

om

oQ
¼ bZ;

og

oR
¼ hZ

we find (22) proving the stationary point to be a minimum.

4 Sample Problems

We provide now some applications of above to known models of the literature
extended to backorders, getting in any case a transcendental (or algebraic) R-
resolvent equation. The following conditions are assumed to be true in any case:

h [ 0; Q [ 0; A [ 0 R [ 0; 0\p\1; b [ 0; d[ 0

Wilson model

f ðuÞ ¼ d) CðR;QÞ ¼ d
Q

Aþ b Q� Rð Þ2

2 d
þ h R2

2 d

 !

Such a case has a theoretical interest due to its final (not transcendental and)
exactly solvable resolvent: the minimizing batch is found to be:

Q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Adðbþ hÞ

bh

r
; R� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Abd

hðbþ hÞ

s

In such a way, the minimized cost will be:

C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Abdh

bþ h

r

Goh’s model, p ¼ 1=2

f ðuÞ ¼
ffiffiffiffiffiffi
juj

p
) CðR;QÞ ¼ 3 Aþ 2 h R

3
2 þ 2 b ðQ� RÞ

3
2

6
ffiffiffi
R
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� R
p� �
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By Q� R ¼ hR
b and gðR;Q� RÞ ¼ 0 we get:

�3 Aþ 4 h 1þ
ffiffiffi
h

b

r !
R

3
2 ¼ 0

Goh’s model, p general

If f ðuÞ ¼ jujp then

CðR;QÞ ¼
1� pð Þ b Rp ðQ� RÞ2 þ h R2 ðQ� RÞp þ A 2� pð Þ R ðQ� RÞð Þp


 �
2� pð Þ RpðQ� RÞ þ RðQ� RÞpð Þ

By Q� R ¼ hR
b and gðR;Q� RÞ ¼ 0 we get:

h1�pR2�p hbp þ bhpð Þ � Abðp� 2Þðp� 1Þ ¼ 0

solving to R2�p we get:

R2�p ¼ A
ðp� 1Þðp� 2Þ
h 1þ bhð Þp�1

 �

Exponentials

f ðuÞ ¼ e�u ) CðR;QÞ ¼ eQ�R Aþ h 1þ eR R� 1ð Þ½ �f g þ b eQ�R � Qþ R� 1ð Þ
eQ � 1

If Q� R ¼ hR
b e gðR;Q� RÞ ¼ 0, we get the transcendental R-equation:

b� e
h R
b Aþ bþ h� eR h
� �

¼ 0

It is then provided a simulation for A ¼ 1; b ¼ 1=3; and h ¼ 1=4. Figure 3 shows
the iso-cost curves, highlighting the minimizer Q�;R�ð Þ numerically detected.

Figure 4 shows where is the intersection of lines obtained putting to zero the
single first partial derivatives.

And finally in Fig. 5, a 3-D plot of the global cost function. We have a similar
behavior for f ðuÞ ¼ eu.
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Fig. 3 Level curves relevant
to the cost function

Fig. 4 Crossing of the loci of
roots of the single partial
derivatives
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Rational (First)

f ðuÞ ¼ k

nþ u
) CðR;QÞ ¼ 6 A k þ h R2 3 nþ 2 Rð Þ þ b 3 n� 2 Qþ 2Rð Þ ðQ� RÞ2

3Q 2 nþ 2R� Qð Þ

By Q� R ¼ hR
b and gðR;Q� RÞ ¼ 0 one obtains:

�6 A b2 k þ h bþ hð ÞR2 b 3 nþ Rð Þh R½ � ¼ 0

which is providing promptly the batch.

Rational (Second)

f ðuÞ ¼ k

nþ u2
) CðR;QÞ ¼

3 4 A k þ h 2 n R2 þ R4ð Þ þ b ðQ� RÞ2 2 nþ ðQ� RÞ2

 �
 �

4 R3 þ ðQ� RÞ3 þ 3 n Q

 �

By Q� R ¼ hR
b and gðR;Q� RÞ ¼ 0 one finds:

�12 A k þ 6 h bþ hð Þ n R2

b
þ h b3 þ h3ð ÞR4

b3
¼ 0

biquadratic equation.

Fig. 5 a 3-D plot of CðQ;RÞ
for f ðuÞ ¼ e�u
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5 Conclusions

We proved two existence-uniqueness Theorems 2.1 and 3.1 about a minimum cost
batch for a class of EOQ models with perishable inventory and nonlinear cost and
with sole backordering, leading to a set of sufficient conditions which require to
check the convergence of some improper integrals, and form the article’s main
theoretical effort. As application, several cases have been treated of demand f ðqÞ
as a continuous function of the stock level q. Being one of the sufficient conditions
met in any case, the economic order quantity is unique, and the relevant compu-
tations lead to transcendental equations. In some cases, the plot of the global cost
function is provided, and, even if the optimality condition can be written in closed
(but transcendental) form, its solution shall mostly be faced numerically. Mind that
the reordering time, the global cost function and the minimum cost (optimum)
condition are here detected without any previous approximation, being a numerical
treatment required—if any—only at the end, in order to solve the (often) tran-
scendental equation for the economic batch.
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