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Abstract. It is well known that, given a 2d purely magnetic Landau Hamiltonian with a constant
magnetic field b which generates a magnetic flux ' per unit area, then any spectral island �b con-
sisting of M infinitely degenerate Landau levels carries an integrated density of states Ib DM'.
Wannier later discovered a similar Diophantine relation expressing the integrated density of states
of a gapped group of bands of the Hofstadter Hamiltonian as a linear function of the magnetic field
flux with integer slope. We extend this result to a gap labelling theorem for any 2d Bloch–Landau
operatorHb which also has a bounded Z2-periodic electric potential. Assume thatHb has a spectral
island �b which remains isolated from the rest of the spectrum as long as ' lies in a compact inter-
val Œ'1; '2�. Then Ib D c0 C c1' on such intervals, where the constant c0 2 Q while c1 2 Z. The
integer c1 is the Chern marker of the spectral projection onto the spectral island �b . This result also
implies that the Fermi projection on �b , albeit continuous in b in the strong topology, is nowhere
continuous in the norm topology if either c1 ¤ 0 or c1 D 0 and ' is rational. Our proofs, otherwise
elementary, do not use non-commutative geometry but are based on gauge covariant magnetic per-
turbation theory which we briefly review for the sake of the reader. Moreover, our method allows
us to extend the analysis to certain non-covariant systems having slowly varying magnetic fields.

Keywords. Bloch–Landau Hamiltonian, gap labelling theorem, Středa formula, Chern marker,
magnetic perturbation theory

1. Introduction and main results

It is by now textbook material [22, 29] that each Landau level of an electron moving
freely in two dimensions in the presence of a constant magnetic field b carries a density
of states per unit area equal to the magnetic field flux ' D b

2�
, in a suitable system of

physical units.
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In 1978, Wannier [38] realized by an ingenious counting argument that the integrated
density of states of any isolated group of mini-bands of the Hofstadter Hamiltonian [20],
a discrete analogue of the magnetic Laplacian, is a linear Diophantine function of the
rational magnetic flux. Moreover, its slope is an integer which remains unchanged as
long as the group of mini-bands under consideration remains isolated from the other
ones. More specifically, consider a reference magnetic field b0 such that b0 D 2�p0

q
, with

p0; q 2 Z co-prime integers and q a very large integer. If Ib0 denotes the integrated den-
sity of states associated to M mini-bands of the Hofstadter Hamiltonian at magnetic field
b0, it holds Ib0 D

M
q

. Denoting by Ib the integrated density of states associated to the
same group of mini-bands (which now consists of a different number) but for b D 2�p

q
,

with integers p; q and p � p0 small enough, then

qIb DM C c1.p � p0/; c1 2 Z: (1.1)

Notice that the left-hand side of the above equality counts the number of charge carriers in
a supercell of area q. Without giving a formal proof, Wannier came to the natural conclu-
sion that this relationship should also hold for all irrational values of the flux: this allowed
him to label the gaps in the spectrum of the Hofstadter Hamiltonian by “diagrams” con-
sisting of linear functions of magnetic flux with integer slopes. No wonder that his paper
was rather cryptically entitled A Result Not Dependent on Rationality for Bloch Electrons
in a Magnetic Field.

In 1982, starting from the linear response ansatz, Středa [36] showed that the Hall
conductivity is proportional to the derivative with respect to the magnetic flux of the inte-
grated density of states of the Fermi projection, provided the Fermi energy is in a gap.
Then in [35] he used Wannier’s result from 1978 in order to conclude that the Hall
conductivity is proportional to an integer, namely c1 in the above formula (1.1).

Still in 1982, Thouless, Kohmoto, Nightingale and den Nijs [37] showed that the Hall
conductivity is proportional to the Chern number of the Fermi projection whenever the
number of magnetic flux quanta per unit cell is rational, and thus identified the geomet-
ric origin underlying the integer c1: this relation of the Hall conductivity with topological
numbers was later clarified also by Avron, Seiler and Simon, see [1]. Reasoning in analogy
with the Hofstadter model, and inspired by Wannier’s work, Thouless and his collabora-
tors concluded that the results should persist also at irrational values of the magnetic flux.
This led Avron and Osadchy to produce “colored Hofstadter butterflies”, where the gaps
in the spectrum of the Hofstadter Hamiltonian are labelled according to their associated
Chern number [2, 27].

For discrete and continuum gapped models of Bloch electrons, Wannier’s result and
its connection with the Chern marker (see (1.8) below) for all real flux values were rigor-
ously formulated by Bellissard [3, 4] in the language of non-commutative geometry. The
equality argued by Wannier, generalizing (1.1) to any b, was dubbed “gap labelling con-
jecture” in [3], and translated in a statement about theK-theory of certain crossed product
C �-algebras. Bellissard proved the gap labelling conjecture for aperiodic crystals without
magnetic field in [5], and the proof has been extended to more general quasi-crystals by
Benameur and Oyono-Oyono in [9]; the full proof of the “magnetic” gap labelling con-
jecture was achieved by Benameur and Mathai in [7,8]. In the case of periodic potentials,
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the proof of theK-theoretic reformulation of the magnetic gap labelling conjecture can be
traced back to a theorem by Elliott [19] on theK-theory of the rotation C �-algebra, elab-
orating upon earlier results by Connes [13], Pimsner and Voiculescu [30], and Rieffel [32]
for the two-dimensional case which is also of interest for the present paper. Unfortunately,
Bellissard used the term “Středa formula” to denote the equality between the derivative
of the integrated density of states and the Chern marker, although Středa’s contribution
strictly consisted in relating the derivative with respect to the magnetic field of the inte-
grated density of states with the Hall conductivity, within linear response. We note that
the actual “Středa formula”, in the latter sense, was rigorously proved in the gapped
continuum case by Cornean, Nenciu and Pedersen [18].

Schulz-Baldes and Teufel [33] significantly improved the results of Středa and also
extended the results of [4] to the case when the Fermi energy is situated in a mobility
gap (see also [6] for the proof of integrality of the Chern marker in the latter regime). Of
a similar flavor are certain higher-dimensional generalizations of the “Středa formula”,
presented in the monograph by Prodan and Schulz-Baldes [31]. We note though that their
proofs are formulated for bounded Hamiltonians.

1.1. Goals and structure

In the present paper, we first provide a proof of the Wannier diagrams for unbounded
Bloch–Landau Hamiltonians acting inL2.R2/; we achieve this in Theorem 1.1 (i) and (ii).
As a by-product, we show in Corollary 1.2 that while the Fermi projection is everywhere
continuous in the strong topology as a function of the magnetic flux, there are situations
in which this map is nowhere continuous in the norm topology!

Our second novel result, Theorem 1.4, extends the gap labelling (in a weaker sense)
to more general perturbations; in particular, we are interested in perturbations given by
slowly varying magnetic fields, which generically break covariance.

The main tool we use is the so-called gauge covariant magnetic perturbation theory
developed by Cornean and Nenciu [14,16,17,26]. We do not use non-commutative geom-
etry, and clarify the physical meaning of the “gap labelling” through Wannier diagrams.

The structure of the paper is as follows. In the rest of this section we formulate our two
main results, namely Theorems 1.1 and 1.4. In Section 2 we prove Theorem 1.1, in Sec-
tion 3 we prove Theorem 1.4, while in Appendix A we review the magnetic Bloch–Floquet
transform and the Chern number. Then, in Appendix B we review the gauge covariant
magnetic perturbation theory and we end with Appendix C, in which we prove a localiza-
tion estimate for the integral kernel of a Kato–Nagy unitary operator that will be used in
the proof of Corollary 1.2.

1.2. The covariant setting

We consider a Bloch–Landau Hamiltonian acting on L2.R2/, defined in Hartree atomic
units by

Hb D
1

2
.P � bA/2 C V;
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where P D �ir is the usual momentum operator, b 2 R is the magnetic field strength
divided by the speed of light, A D 1

2
.�x2; x1/ is the magnetic potential in the symmet-

ric gauge, and V is a Z2-periodic electric potential; although we could handle certain
singularities, in order to streamline the proofs we choose to work with bounded poten-
tials V . We note that we could work with any periodicity lattice � � R2 instead of Z2,
but for simplicity we only consider Z2-periodic potentials. Under these conditions, Hb is
essentially selfadjoint on C10 .R

2/.
Suppose that the spectrum of Hb has an isolated spectral island �b; by definition,

isolated means that it is separated by the rest of the spectrum by one or two gaps. The
edges of these gaps vary continuously with b (see [24]), thus via the Riesz formula we
can define the spectral projection

…b D
i
2�

I
C

.Hb � z1/�1 dz;

where C is a positively oriented simple contour encircling �b and staying at a positive
distance from the spectrum as long as the two gaps we started with remain open. We
note that the nature and the structure of �b can dramatically change when b varies, i.e.
internal mini-gaps can open or close, but as a set, �b varies continuously with respect to
the Hausdorff distance. It is possible to prove that…b admits a jointly continuous integral
kernel, see Appendix B. Using Combes–Thomas estimates [12,17] (see also Appendix B)
one can prove the existence of ˛; C > 0 such that

j…b.xI x0/j � Ce�˛kx�x0k for all x; x0 2 R2: (1.2)

These two constants can be chosen uniformly in b as long as b varies in an interval such
that the distance between �b and the rest of the spectrum is bounded from below by
a positive constant.

Let ƒL be the square of side-length L > 1 centered at the origin and let �L be its
characteristic function. Due to (1.2) we have that both �L…be

˛k�k=2 and e�˛k�k=2…b

are Hilbert–Schmidt operators, thus

�L…b D
®
�L…be

˛ k�k2
¯®
e�˛

k�k
2 …b

¯
(1.3)

is trace class with 0 � Tr.�L…b�L/ D Tr.�L…b/ � CL
2.

In the above considerations, the periodicity of V played no role. When V is Z2-peri-
odic, we decompose every point x 2 R2 uniquely as

x D  C x;  2 Z2; x 2
�
�
1
2
; 1
2

�
�
�
�
1
2
; 1
2

�
DW �:

Define the Peierls antisymmetric phase by

�.x; x0/ WD
1

2
.x01x2 � x

0
2x1/ for all x; x0 2 R2: (1.4)

The phase satisfies the composition rule

�.x; y/C �.y; x0/ D �.x; x0/C �.x � y; y � x0/ for all x; y; x0 2 R2: (1.5)
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The Hamiltonian Hb commutes with the magnetic translations �b;� , defined for every
� 2 Z2 by

.�b;� /.x/ WD eib�.x;�/ .x � �/ for all  2 L2.R2/:

Because…b then also commutes with the magnetic translations, for every � 2 Z2 we have

…b.x; x0/ D eib�.x;�/…b.x � �I x0 � �/e�ib�.x0;�/: (1.6)

We can then define the integrated density of states for the projection…b by the formula

I.…b/ WD lim
L!1

1

jƒLj
Tr.�L…b/ D

Z
�

…b.xI x/ dx; (1.7)

where the second equality is a consequence of the Z2-periodicity of …b.xI x/, implied
by (1.6).

Let Xj be the multiplication operator by xj . Due to (1.2) we have that the commu-
tators ŒXj ;…b� have continuous integral kernels given by .xj � x0j /…b.xI x0/ and which
are exponentially localized near the diagonal. Due to (1.6) we see that these commuta-
tors also commute with the magnetic translations. Again by (1.6), the integral kernel of
i…bŒŒX1;…b�; ŒX2;…b�� is such that for all � 2 Z2,

.i…bŒŒX1;…b�; ŒX2;…b��/.xI x0/

D eib�.�;x/.i…bŒŒX1;…b�; ŒX2;…b��/.x � �; x0 � �/e�ib�.�;x0/:

Inspired by the non-commutative Chern character used in [3, 4, 6], by the local Chern
marker defined in [10], and in accordance with the Chern marker recently defined in
a more general setting in [23], we define the Chern marker as

Ch.…b/ WD 2�

Z
�

.i…bŒŒX1;…b�; ŒX2;…b��/.xI x/ dx: (1.8)

We are now prepared to formulate our first main result, a gap labelling theorem for
Bloch–Landau Hamiltonians.

Theorem 1.1. Assume thatHb has an isolated spectral island �b which remains isolated
and varies continuously in the Hausdorff distance as long as b 2 .b1; b2/. Let …b be its
corresponding spectral projection. Then:

(i) The map .b1; b2/ 3 b 7! I.…b/ 2 R is continuously differentiable and

dI.…b/

db
D

1

2�
Ch.…b/ (1.9)

with Ch.…b/ as in (1.8).
(ii) The Chern marker is constant on .b1; b2/ and

Ch.…b/ D c1 2 Z:

Moreover, there exists a rational number c0 2 Q such that

I.…b/ D c0 C c1
b

2�
; b 2 .b1; b2/: (1.10)
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As a by-product of the above gap labelling theorem, we can obtain some additional
information about how singular the magnetic perturbation is. To formulate the statement
more precisely, we will need the notion of a localized Wannier-like basis. These are par-
ticular orthonormal bases for the range of the Fermi projection: the definition we choose
below is motivated by [15], where such localized Wannier-like bases are explicitly con-
structed for Fermi projections corresponding to magnetic Hamiltonians with rational flux,
and certain irrational perturbations thereof. In the present context, we say that the Fermi
projection …b admits a localized Wannier-like basis if

…b.xI x0/ D
MX
jD1

X
2Z2

 j; .x/ j; .x0/;  j; .x/ WD ei�.x/�b0;wj .x/; (1.11)

where M 2 N, � WR2 ! R, b0 2 R, and the functions wj 2 L2.R2/ are such that the
vectors ¹ j;º1�j�M;2Z2 are orthonormal and

sup
j

Z
x2R2
jwj .x/j2e2˛kxk dx < K

for some K; ˛ > 0. It is understood that the parameter b0 and the function � are chosen
so that the magnetic covariance (1.6) holds.

From the previous L2 estimate we can extract an L1 estimate on the Wannier-like
functions. First consider that j;0 D …b j;0; then by using the Cauchy–Schwarz inequal-
ity together with (1.2), we obtain that

jwj .x C /j � Ce
�˛kk (1.12)

for some C > 0 uniform in j 2 ¹1; : : : ;M º and x 2 �. Moreover, notice that (1.12) is
a pointwise estimate since the functions  j; admits a continuous representative. Indeed,
the functions  j; belong to the domain of the Bloch–Landau Hamiltonian, which is
included in the local Sobolev space H 2

loc.R
2/. Therefore, by a standard Sobolev embed-

ding argument, one can show that all the functions in the domain of the Hamiltonian admit
a continuous representative.

Corollary 1.2. Under the assumptions as in Theorem 1.1, the map .b1; b2/ 3 b 7! …b is
continuous in the strong topology.

On the other hand, assume that for b 2 .b1; b2/ either (i) c1 ¤ 0 in (1.10), or (ii)
c1 D 0 and …b admits a localized Wannier-like basis. Then

lim
�!0
k…bC� �…bk D 1: (1.13)

In particular, (1.13) holds true if c1 D 0 and b
2�

is rational.

Remark 1.3. Corollary 1.2 highlights the singularity of the magnetic perturbation: the
map .b1; b2/ 3 b 7! …b is continuous in the strong topology, but dramatically fails to be
continuous in the norm topology.

While the case c1 ¤ 0 is a rather straightforward consequence of Theorem 1.1, the
case c1 D 0 is more involved. A less general situation of this latter case was already
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treated by Nenciu [25, Lemma 5.8]. He only considered b D 0 while �0 was a simple
absolutely continuous band for which he assumed the existence of an orthonormal basis
of exponentially localized Wannier functions. The strategy behind our proof is essentially
the same as Nenciu’s, but we generalize his argument in particular to any rational flux, by
showing in Appendix A that also in this case one can construct an orthonormal basis of
localized Wannier functions for the Fermi projection.

Motivated by magnetic perturbation theory [15], we conjecture that (1.13) and the
existence of a localized Wannier-like basis as in (1.11) should also hold for all irrational
fluxes when c1 D 0.

1.3. Slowly varying magnetic perturbations

Here we discuss the generalization of the above Diophantine formula (1.10) to magnetic
field perturbations that are slowly varying with respect to the lattice Z2, in the sense of
space adiabatic perturbation theory. Let A.x/ D .A1.x1; x2/;A2.x1; x2// be a C 2 mag-
netic potential and define B WD @2A1 � @1A2. Up to a simple gauge transformation, we
may assume that A.0/ D 0. Moreover, we assume that B is at least C 1 with bounded
derivatives in the following way:

sup
x2R2
j@˛B.x/j � C˛; ˛ 2 N2; j˛j � 1: (1.14)

On top of that, we require that in the limit of large scales the magnetic field has a conver-
gent flux per unit area, that is we assume the existence of the limit

hBi WD lim
L!1

1

jƒLj

Z
ƒL

B.x/ dx: (1.15)

Without loss of generality, we assume that hBi � 0.
Let 0 < �� 1 denote the slow variation parameter. Let us introduce A�.x/ WDA.�x/.

Then A� produces a slowly varying magnetic field B�.x/ WD �B.�x/. Let us consider the
perturbed Hamiltonian of the form

Hb;� WD
1

2
.P � bACA�/

2
C V; (1.16)

with b, A and V as before. Up to a gauge transformation, we may assume that A� is given
in the transverse gauge

A�.x/ D
�Z 1

0

sB�.sx/ ds
�
.�x2; x1/: (1.17)

Note that Hb;� remains essentially selfadjoint on C10 .R
2/. Like in the previous sec-

tion, we assume that Hb;0 has an isolated spectral island �b;0. Since the perturbing mag-
netic field is of order �, then for � small enough the perturbation given by A� does not
close the gap between �b;0 and the rest of the spectrum [24, 26] (see also Appendix B).
Thus Hb;� still has a spectral island �b;� “close to” �b;0. Via a Riesz integral we can
define …b;� to be the spectral projection onto the spectral island �b;�.
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The operatorHb;� is not necessarily covariant anymore (i.e., it need not commute with
some magnetic translations) and we can no longer be sure that …b;� admits an integrated
density of states in the sense of (1.7), namely the existence of the limit

lim
L!1

pLb;�; where pLb;� WD
1

jƒLj
Tr.�L…b;�/;

is not always guaranteed. Nevertheless, lim inf and lim sup of pL
b;�

always exist because
the sequence is bounded in L (see also (1.3)).

Now we are ready to state the second main result of our paper.

Theorem 1.4. Let …b;� be the spectral projection defined above. Assume that the limit
defining hBi in (1.15) exists. Denote by I� either lim supL!1 p

L
b;�

or lim infL!1 pLb;�.
Then

I� D I.…b;0/C �
hBi

2�
Ch.…b;0/CO.�2/: (1.18)

Remark 1.5. Theorem 1.4 says that even if the integrated density of states might not
exist, the first order terms in � of lim supL p

L
b;�

and lim infL pLb;� are equal and propor-
tional to the Chern marker of the unperturbed projection, thus the possible failure in the
existence of an integrated density of states is only quadratic in �.

2. Proof of Theorem 1.1 and Corollary 1.2

2.1. Proof of (i)

Let us fix some b 2 .b1; b2/ and assume that � ¤ 0 is such that b C � 2 .b1; b2/. Proving
(1.9) is equivalent to showing

I.…bC�/ D I.…b/C
�

2�
Ch.…b/C o.�/; � ! 0: (2.1)

It is well known in the literature [16,26] that the constant magnetic field induces a singular
perturbation. Fortunately, in order to compute I.…bC�/ we only need a good control
on the diagonal values …bC�.xI x/ of the integral kernel. The gauge covariant magnetic
perturbation theory provides us with a convergent expansion in � of exactly such objects.

First of all, we define the operator e….�/ given by the following integral kernel:e….�/.xI x0/ D ei��.x;x0/…b.xI x0/: (2.2)

Note that the operator e….�/ is selfadjoint due to the antisymmetry of the Peierls phase
defined in (1.4) and to the selfadjointness of …b .

Using the gauge covariant magnetic perturbation theory as in [26] (see Appendix B as
well), one can show that there exist two constants ˛;K > 0 such that

j…bC�.xI x0/ � e….�/.xI x0/j � j�jKe�˛kx�x0k: (2.3)

In fact, we could give an explicit formula for the difference on the left-hand side in all
orders of �, but the expression is complicated and contains contributions coming from all
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spectral subspaces ofHb , not just from the one corresponding to…b . Using such an exact
formula in order to show that the first order contribution in � to I.…bC�/ is proportional
to Ch.…b/ seems to be computationally involved and would surely demand the use of
many rather obscure identities and sum rules.

Instead, to prove (2.1) we will use a quite different strategy which only involves the
integral kernel of …b , the knowledge that …b is a projection, and the a-priori zero-order
estimate (2.3). This strategy consists of two steps:

Step 1. Using the fact that e….�/ is an “almost” projection, we will explicitly construct
an auxiliary “true” projection P .�/ which, for j�j small enough, is unitarily equivalent to
…bC� through a unitary operator that satisfies the hypothesis of Lemma 2.1 (see below).
As a consequence, we will show that P .�/ has the same integrated density of states
as …bC� .

Step 2. We will study the asymptotic behavior in � of the integrated density of states
of P .�/ and show that

I.P .�// D I.P .0//C
�

2�
Ch.…b/C o.�/; � ! 0: (2.4)

2.1.1. Step 1. Define the operator

�.�/ WD
�e….�/

�2
� e….�/:

The operator �.�/ measures how far e….�/ is from being a projection. Using (1.2) and
(1.5), one can prove (see (2.9) below and also [15, Section 9.3]) that if � is small enough,
then

j�.�/.xI x0/j � j�jKe�˛kx�x0k;

where K is a positive constant. Notice that in the following K will denote a generic
positive constant.

Thus, for � small enough, we can construct the following orthogonal projections (see
also [26] for more details):

P .�/
WD e….�/

C
�e….�/

�
1
2

1
�®
.1C 4�.�//�

1
2 � 1

¯
: (2.5)

Since the integral kernel of �.�/ is exponentially localized and of order �, one can prove
(see [15, Lemma 8.5]) thatˇ̌®

.1C 4�.�//�
1
2 � 1C 2�.�/

¯
.xI x0/

ˇ̌
� �2Ke�˛kx�x0k

This estimate, combined with definition (2.5) and with (2.3), yields the following point-
wise estimate:

j.…bC� �P .�//.xI x0/j � Kj�je�˛kx�x0k: (2.6)
Due to (2.6) we have k…bC� �P .�/k � C j�j � 1

2
when j�j is sufficiently small, hence we

can consider the Kato–Nagy unitary operator U� (see [21]) such that …bC� D U�P .�/U�� .
From its explicit expression one can obtain the following estimate (see [15, Lemma 8.5],
cf. also Appendix C):

j.U� � 1/.xI x0/j � Ce�˛kx�x0k; (2.7)
which holds for some positive constants C and ˛, provided j�j is small enough.
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Now we prove that …bC� and P .�/ have the same integrated density of states if j�j is
small enough. In order to do that, we use the following general lemma.

Lemma 2.1. Let P1 and P2 be two orthogonal projections such that their integral kernels
satisfy (1.2). Assume that there exists a unitary operator U such that P1 D UP2U � and
whose integral kernel satisfies (2.7). Then we have

lim
L!1

1

jƒLj
jTr.�LP1/ � Tr.�LP2/j D 0:

In particular, if one projection admits an integrated density of states as in (1.7), then both
of them do and I.P1/ D I.P2/.

Proof. Reasoning as in (1.3), we observe that the operators �LP1, �LP2 and �LUP2 are
trace class. Exploiting the invariance of the trace under unitary conjugation, we obtain the
identity

Tr.�LP1/ � Tr.�LP2/ D Tr.Œ�L; U �P2U �/:

Denoting by W WD U � 1 we see from (2.7) that W.xI x0/ is exponentially localized near
the diagonal and

Tr.Œ�L; U �P2U �/ D Tr.Œ�L; W �P2/C Tr.Œ�L; W �P2W �/:

Both traces can be bounded by a double integral of the typeZ
x2R2

Z
x02R2

e�˛kx�x0k
j�L.x/ � �L.x0/j dx0 dx:

In the above integral, the integrand is non-zero only if one variable belongs toƒL and the
other one lies outside ƒL. Due to the symmetry, it is enough to estimateZ

x2ƒL

Z
x02R2nƒL

e�˛kx�x0k dx0 dx:

For a fixed x 2 ƒL we have the inequality

e�˛kx�x0k
� e�

˛
2 dist.x;@ƒL/e�

˛
2 kx�x0k for all x0 2 R2 nƒL:

By integrating with respect to x0 at fixed x, we can bound the above double integral byZ
x2ƒL

e�
˛
2 dist.x;@ƒL/ dx � CL;

hence when dividing by L2 D jƒLj we obtain the claimed convergence to zero.

Using (1.6), one can prove by direct computation that the operator e….�/ commutes
with the magnetic translations �bC�;� . Since P .�/ is a function of e….�/, it also commutes
with the same magnetic translations, thus e….�/.xI x/ and P .�/.xI x/ are periodic functions
and the integrated densities of states I.e….�//, I.P .�// exist. Due to (2.6) and (2.7) we can
apply Lemma 2.1 to P .�/ and …bC� D U�P .�/U�� and conclude that

I.…bC�/ D I.P .�//:
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2.1.2. Step 2. We now prove (2.4). Let us begin by studying P .�/ in detail. Using the
same method yielding (2.6) but taking into account also the term of order �, we obtain
the estimateˇ̌

P .�/.xI x0/ �
®e….�/

� 2e….�/�.�/ C�.�/
¯
.xI x0/

ˇ̌
� C�2e�˛kx�x0k:

This leads toˇ̌
P .�/.xI x/ �P .0/.xI x/ �

®
� 2e….�/�.�/ C�.�/

¯
.xI x/

ˇ̌
� C�2; (2.8)

where we used that e….�/.xI x/ D …b.xI x/ D P .0/.xI x/, independent of �.
Exploiting the composition rule for the Peierls phase (1.5), the fact that …b is a pro-

jection, and the exponential localization of the integral kernel of …b , we obtain

�.�/.xI x0/

D

Z
R2
dy
�
ei��.x;y/…b.xI y/ei��.y;x0/…b.yI x0/ � ei��.x;x0/…b.xI y/…b.yI x0/

�
D

i
2
ei��.x;x0/�

Z
R2
dy
�
.x � y/2.y � x0/1 � .x � y/1.y � x0/2

�
…b.xI y/…b.yI x0/

CO.�2e�˛kx�x0k/:

(2.9)

By noticing that
�.�/.xI x/ D 0CO.�2/;

it follows that only �2e….�/�.�/.xI x/ contributes to the first order expansion in � of
P .�/.xI x/ in (2.8). More precisely,

�2
�e….�/�.�/

�
.xI x/ D �2

Z
R2
d Qx ei��.x;Qx/…b.xI Qx/�.�/.QxI x/

D i�
Z

R2
d Qx…b.xI Qx/

Z
R2
dy
�
.Qx � y/1.y � x/2 � .Qx � y/2.y � x/1

�
�…b.QxI y/…b.yI x/CO.�2/

D �.i…bŒŒX1;…b�; ŒX2;…b��/.xI x/CO.�2/:

This proves (2.4), see (1.8).
The proof of the continuity of Ch.…b/ as a function of b 2 .b1; b2/ uses the same

strategy and we only sketch it. First, we replace …bC� with e….�/ in the expression of
Ch.…bC�/ and using (2.3), we obtain

jCh.…bC�/ � Ch.e….�//j � C j�j:

Second, using the composition rule (1.5) for the magnetic phases in the explicit expression
of Ch.e….�//, we get

Ch.e….�// D Ch.…b/CO.�/; � ! 0:

By combining these two estimates, the continuity of Ch.…b/ follows.
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2.2. Proof of (ii)

From Theorem 1.1 (i) we know that the derivative of the integrated density of states
is a continuous function and is proportional to the Chern marker Ch.…b/ for every b
restricted to compact intervals in .b1; b2/ where the spectral island �b remains isolated
from the rest of the spectrum.

The main observation, proved for the convenience of the reader in Appendix A, is that
the map

.b1; b2/ 3 b 7! Ch.…b/ 2 R

takes integer values when b
2�
2 Q. Since the map is at the same time uniformly continu-

ous on any compact interval included in .b1; b2/, a straightforward argument shows that
it must be constant and thus everywhere equal to an integer c1 2 Z.

In order to prove (1.10), let us fix some b0 2 .b1; b2/ such that b0
2�
D

p
q
2 Q. Then

for every other b in this interval we have by (1.9) that

I.…b/ D I.…b0/C c1
b

2�
�
c1p

q
:

In Appendix A we prove that …b0 is a fibered operator. In the magnetic Bloch–Floquet
representation, the fiber of …b0 at a fixed quasimomentum k is a rank-M orthogonal
projection. Also, �b0 is the union ofM mini-bands (which might overlap). When we com-
pute I.…b0/ with the help of (A.5), the result is M

q
2 Q. Thus setting c0 WD 1

q
.M � c1p/

concludes the proof.

2.3. Proof of Corollary 1.2

The continuity of the function b 7! …b with respect to the strong topology is known since
at least Kato [21], who used asymptotic perturbation theory. For the sake of the reader we
present here a much shorter proof based on magnetic perturbation theory. By a standard
density argument it is enough to show that

lim
�!0
k.…bC� �…b/ k D 0

for every  with compact support. This limit follows from (1.2), (2.2), (2.3), from the
inequality ˇ̌

ei��.x;x0/
� 1

ˇ̌
� j�jj�.x; x0/j �

1

2
j�jkx � x0kkx0k

and the fact that the map x0 7! kx0kj .x0/j belongs to L2.R2/.
Now let us continue with proving the discontinuity of the function b 7! …b in the

norm topology. We start with a general fact: if P1 and P2 are orthogonal projections, then
kP1 � P2k � 1 (see [21, Chapter I, Problem 6.33]). Hence in order to prove (1.13) it is
enough to show that the lim inf cannot be less than one.

Let c1 ¤ 0. Assume that (1.13) is false. Then there would exist an a 2 Œ0; 1/ and
a sequence �n ¤ 0, depending on a, such that �n ! 0 and limn!1 k…bC�n �…bk D a.
This implies the existence of some n0 such that for every n � n0 we have

k…bC�n �…bk �
.1C a/

2
< 1:
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Then …bC�n and …b would be intertwined by a Kato–Nagy unitary that satisfies the
hypothesis of Lemma 2.1, see Lemma C.1. Thus I.…bC�n/ D I.…b/ if n is large enough,
which contradicts that c1 ¤ 0.

Now let c1 D 0, and assume (1.11). Let us define the unit vector

‰�;�.x/ WD ei��.x;�/ 1;�.x/; � 2 Z2:

Using (2.2), (2.3), and the exponential decay (1.12) of w1, we obtain the existence of
C > 0 such that for all �,

h‰�;�;…bC�‰�;�i � 1 � C j�j:

Also
k…bC� �…bk � h‰�;�; .…bC� �…b/‰�;�i

� 1 � C j�j �

MX
jD1

X
2Z2

jh‰�;�;  j; ij
2:

Since the left-hand side is independent of �, we have the inequality

k…bC� �…bk � 1 � C j�j � inf
�2Z2

MX
jD1

X
2Z2

jh‰�;�;  j; ij
2: (2.10)

We will now show that

lim
j�j!1

MX
jD1

X
2Z2

jh‰�;�;  j; ij
2
D 0;

which inserted in (2.10) would finish the proof. By changing  into �C  , we will
investigate X

2Z2

jh‰�;�;  j;C�ij
2:

Due to the exponential localization of the functions wj and using the triangle inequality,
one can prove the existence of two constants ˛; C > 0 such that

jh‰�;�;  j;C�ij � Ce
�˛kk for all � 2 Z2:

Thus the proof would be over if we can prove that for fixed  we have

lim
j�j!1

h‰�;�;  j;C�i D 0:

Let us compute

h‰�;�;  j;C�i D he
i��. � ;�/ei�. � /�b0;�w1; e

i�. � /�b0;C�wj i

D hei��. � ;�/�b0;�w1; e
ib0�.�;/�b0;��b0;wj i;

where we used the fact that magnetic translations form a projective representation of Z2.
An easy computation, exploiting �.�; �/ D 0, shows that multiplication by the phase fac-
tor ei��. � ;�/ commutes with the magnetic translation �b0;� . Up to a factor of modulus one,
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the above scalar product is then proportional to the integralZ
R2
e�i��.x;�/w1.x/eib0�.Œx�;/wj .x � / dx;

where Œx� 2 Z2 denotes the “integer part” in the decomposition x D x C Œx� with x 2 �.
The above integral is proportional to the Fourier transform of the L1 function

w1.x/eib0�.Œx�;/wj .x � /;

evaluated at the point � D �
2
.��2; �1/. Since  is fixed and � ¤ 0, the Riemann–Lebesgue

lemma implies that the integral goes to zero when j�j ! 1. The proof is over.

3. Proof of Theorem 1.4

The strategy of the proof resembles that of Theorem 1.1. In this section we denote by
…� � …b;� the Fermi projection on the isolated spectral island �b;� of Hb;�. We start by
showing the existence of an auxiliary projection P.�/, unitarily equivalent to …�, which
can be used to explicitly compute the first order expansion in � of I� in Theorem 1.4.

Let us introduce the phase factor given by

��.x; x0/ WD
Z x0

x
A� �

Z 1

0

A�.x0 C s.x � x0// � .x � x0/ ds: (3.1)

Note that when A� (see (1.16)) comes from a constant magnetic field, we obtain the usual
Peierls phase (1.4).

Using results from magnetic perturbation theory [26] (see also Appendix B), we have

j…�.xI x0/ � ei��.x;x0/…0.xI x0/j � C�e�ˇkx�x0k: (3.2)

As before, we define the operator e…� through its integral kernel:e…�.xI x0/ WD ei��.x;x0/…0.xI x0/;

where e…� is selfadjoint due to the antisymmetry of the phase factor defined in (3.1). We
also define the auxiliary projection P.�/ (the analogue of P .�/ from the previous section)
as

P.�/
WD e…� C

�e…� �
1
2

1
�®
.1C 4�.�//�

1
2 � 1

¯
; �.�/ WD e…2

� �
e…�; (3.3)

such that ˇ̌�
…� �P.�/

�
.xI x0/

ˇ̌
� C�e�˛kx�x0k: (3.4)

From this, one can prove (see [15]) that if � is small enough, then one can construct the
Kato–Nagy unitary U.�/ such that

…� D U.�/P.�/U.�/�

and moreover (see [15, Lemma 8.5])ˇ̌
.U.�/ � 1/.xI x0/

ˇ̌
� Ce�˛kx�x0k:
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Now we are ready to prove equation (1.18). We only show the proof for the lim sup
case since the lim inf case is completely analogous.

The operator �LP.�/ is trace class (cf. (1.3)) and we have the trivial identity

1

jƒLj
Tr.�L…�/ D

1

jƒLj

�
Tr.�L…�/ � Tr.�LP.�//

�
C

1

jƒLj
Tr.�LP.�//:

Thanks to Lemma 2.1, the first term on the right-hand side of the above identity
converges to zero as L!1, hence taking the lim sup of both sides yields

I� D lim sup
L!1

1

jƒLj
Tr.�LP.�//:

What we have to prove now is that

lim sup
L!1

1

jƒLj
Tr.�LP.�// D I.…0/C �

hBi

2�
Ch.…0/CO.�2/: (3.5)

As we have done in the case of a constant magnetic field, we need to study the expan-
sion in � of the trace on the left-hand side of (3.5) using (3.3), and control the behavior at
large L. We separately analyze each term of (3.3).

Denote by f�.x; y; x0/ the magnetic flux generated by the slowly varying magnetic
perturbation through the triangle hx; y; x0i with corners situated at x, y and x0:

f�.x; y; x0/ D ��.x; y/C ��.x; y/ � ��.x; x0/ D
Z
hx;y;x0i

�B.�Qx/ d Qx: (3.6)

Since B has uniformly bounded derivatives (see (1.14)), we obtain

jf�.x; y; x0/j � �CBkx � ykky � x0k

with CB a positive constant that only depends on the magnetic field B . Using equations
(3.4), (3.6), and the fact that P� is a projection, we obtain

�.�/.xI x0/ D
Z

R2
ei��.x;y/…�.xI y/ei��.y;x0/…�.yI x0/ dy � ei��.x;x0/…�.xI x0/

D ei��.x;x0/
Z

R2
eif�.x;y;x0/…�.xI y/…�.yI x0/ dy � ei��.x;x0/…�.xI x0/

D ei��.x;x0/i
Z

R2
f�.x; y; x0/…�.xI y/…�.yI x0/ dyCO.�2e�˛kx�x0k/:

Given two vectors x and y, we denote by ¹x ^ yº WD x1y2 � x2y1. From (3.6) we have

f�.x; y; x0/ D
�

2
B.�x0/¹.x � y/ ^ .y � x0/º C

Z
hx;y;x0i

�
�
B.�Qx/ � B.�x0/

�
d Qx: (3.7)

From (1.14) we deduce that B is a Lipschitz function:

jB.x/ � B.x0/j � KBkx � x0k for all x; x0 2 R2: (3.8)

Using the above estimate, the fact that the diameter of a triangle is less than the sum of
the lengths of any two of its sides, and knowing that the area of the triangle is less than
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the product of the same two side-lengths, we getˇ̌̌̌ Z
hx;y;x0i

�
�
B.�Qx/ � B.�x0/

�
d Qx
ˇ̌̌̌

� �2KB
�
kx � yk2ky � x0k C kx � ykky � x0k2

�
:

(3.9)

Therefore, exploiting (3.7), (3.9) and the exponential localization of the integral kernel of
…�, we obtain

�.�/.xI x0/ D i�
Z

R2
dyB.�x0/

1

2
¹.x � y/ ^ .y � x0/º…�.xI y/…�.yI x0/

CO.�2e�˛kx�x0k/:

Putting x D x0 in the above equation, we see that �.�/.xI x/ D O.�2/ thus �.�/ gives
no contributions of order zero or � to jƒLj�1 Tr.�LP.�//, uniformly in L � 1 (cf. the
argument below (2.8)).

For the next term in the expansion (3.3) we have

�2
�
P.�/�.�/

�
.xI x/

D i�B.�x/
Z

R2
d Qx…0.xI Qx/

�

Z
R2
dy
�
.Qx � y/1.y � x/2 � .Qx � y/2.y � x/1

�
…0.QxI y/…0.yI x/CO.�2/

D �B.�x/
�
i…0ŒŒX1;…0�; ŒX2;…0��

�
.xI x/CO.�2/:

Thus we need to understand the behavior of

lim sup
L!1

1

jƒLj

Z
ƒL

B.�x/
�
i…0ŒŒX1;…0�; ŒX2;…0��

�
.xI x/ dx:

Because the integrand is uniformly bounded, it is enough to consider integer values for L,
and in order to simplify the notation we assume that L D 2L0 C 1 with L0 2 N. In this
case we have

ƒL D ¹x D x C  W x 2 �; jj j � L0º:
Let us denote by C.x/ WD .i…0ŒŒX1;…0�; ŒX2;…0��/.xI x/. We have C.x C / D C.x/
for every x 2 � and  2 Z2. Moreover,Z

ƒL

B.�x/C.x/ dx D
X
jj j�L

0

Z
�

B.�x C �/C.x/ dx

D

X
jj j�L

0

Z
�

B.�/C.x/ dx

C

X
jj j�L

0

Z
�

�
B.�x C �/ � B.�/

�
C.x/ dx

D
Ch.…0/

2�

X
jj j�L

0

B.�/C �O.L2/
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by (3.8). Therefore, in view of (1.15), in order to complete the proof it suffices to show
that

lim sup
L!1

ˇ̌̌̌
1

jƒLj

X
jj j�L

0

B.�/ �
1

jƒ�Lj

Z
ƒ�L

B.x/ dx
ˇ̌̌̌
D O.�/: (3.10)

This is a consequence of the formula jƒLj D ��2jƒ�Lj and of (3.8). Indeed, a computa-
tion similar to the above yields

�2B.�/ D

Z
jxj��j j�

�
2

B.x/ dxCO.�3/;

which gives (3.10) upon summing over  2 ƒL \ Z2. In turn, by using formula (1.15),
estimate (3.10) can be rewritten as

lim sup
L!1

1

jƒLj

X
jj j�L

0

B.�/ D hBi CO.�/:

This ends the proof of Theorem 1.4.

Appendix A. Bloch–Floquet(–Zak) transform and the Chern number

In this appendix we discuss the magnetic Bloch–Floquet transform and the Chern marker.
The discussion is adapted to the special class of integral operators we work with.

Let b0 D 2�p
q

for some p; q co-prime integer numbers and define the (modified)
magnetic translation of vector � 2 Z2, O�b0;� , to be the following unitary operator:

. O�b0;�f /.x/ WD e
ib0�1�2

2 eib0�.x;�/f .x � �/ for all f 2 L2.R2/: (A.1)

By direct computation one can prove that the set ¹O�b0;º2Z2 forms a unitary projective
representation of the group Z2, that is

O�b0; O�b0;� D e
�ib02�1 O�b0;C� for all ; � 2 Z2:

Considering the enlarged lattice

Z2.q/ WD ¹� 2 Z2 W � D .1; q2/;  2 Z2º;

we have that ¹O�b0;�º�2Z2
.q/

is a true unitary representation of Z2
.q/

, that is

O�b0;� O�b0;� D O�b0;�C� for all �; � 2 Z2.q/:

Let Z2�.q/ denote the dual lattice of Z2.q/ and denote by B.q/ and �.q/ the unit cells of
Z2�.q/ and Z2.q/, respectively, i.e.

B.q/ WD .��; �� �
�
�
�
q
; �
q

�
; �.q/ WD

�
�
1
2
; 1
2

�
�
�
�
q
2
; q
2

�
I

B.q/ is usually called the (magnetic) Brillouin zone. We introduce the Bloch–Floquet
unitary (denoted by UBF) as the operator which maps L2.R2/ onto

R ˚
B.q/

L2.�.q// dk
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and acts on f 2 C10 .R
2/ as

.UBFf /.k; y/ WD
1

jB.q/j
1
2

X
2Z2

.q/

e�ik� . O�b0;�f /.y/; k 2 B.q/; y 2 �.q/:

Its adjoint acts in the following way:

.U�BF /.y C �/ D
1

jB.q/j
1
2

Z
B.q/

eik��e�
ib0�1�2

2 eib0�.y;�/ .k; y/ dk: (A.2)

Assume that T is a bounded operator on L2.R2/ with a jointly continuous integral kernel
T .xI x0/ for which there exist ˛; C > 0 such that

jT .xI x0/j � C e�˛kx�x0k for all x; x0 2 R2:

We also assume that T commutes with the magnetic translations (A.1) which leads to (see
also (1.6))

T .xI x0/ D eib0�.x;�/T .x � �I x0 � �/e�ib0�.x0;�/ for all � 2 Z2.q/;

or, by replacing x0 with y C � and x by x C  ,

T .x C  Iy C �/ D eib0�.;�/eib0�.x;�/T .x C  � �Iy/e�ib0�.y;�/ for all x; y 2 �.q/:

A straightforward computation shows that UBFTU�BF is a fibered operator
R ˚

B.q/
tk dk,

where tk is bounded on L2.�.q// and has the jointly continuous integral kernel

tk.xIy/ WD
X
�2Z2

.q/

e�ik��e�
ib0�1�2

2 e�ib0�.x;�/T .x C �Iy/ for all x; y 2 �.q/: (A.3)

We observe that the above kernel is Z2�
.q/

-periodic in k and its Fourier coefficients give us
back the original kernel:

T .x C �Iy/ D
1

jB.q/j

Z
B.q/

tk.xIy/e
ik��e

ib0�1�2
2 eib0�.x;�/ dk for all x; y 2 �.q/:

In particular,

1

j�.q/j

Z
�.q/

T .xI x/ dx D
1

4�2

Z
B.q/

�Z
�.q/

tk.xI x/ dx

�
dk: (A.4)

Most importantly, if T is an orthogonal projection like …b in (1.6) with b D b0, then
its corresponding fiber denoted by pk is also an orthogonal projection, real analytic and
periodic in k, with finite (and constant) rank, and (A.4) can be restated as

lim
L!1

1

jƒLj
TrL2.R2/.�L…b0/ D

1

4�2

Z
B.q/

TrL2.�.q//.pk/ dk D
rank.p/
q

2 Q: (A.5)

Next we study the operator

T D i…b0 ŒŒX1;…b0 �; ŒX2;…b0 ��

which appears in formula (1.8) above. The commutators ŒXj ;…b0 � have kernels given by
.xj � x

0
j /…b0.xI x

0/ and thus they are exponentially localized around the diagonal and
commute with the magnetic translations. Let us find the fiber of ŒXj ;…b0 �.
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Denote by UZ the fibered unitary operator acting on
R ˚

B.q/
L2.�.q// dk given by the

fiber
.uZk  /.x/ WD e

�ik�x .x/ for all  2 L2.�.q//:

The Zak modification of the Bloch–Floquet unitary is UBFZ WD U
ZUBF, and it will be

called the Bloch–Floquet–Zak (BFZ) transform. The integral kernel of the BFZ transform
applied to …b0 can be read off from (A.3):

pZk .xIy/ WD
X
�2Z2

.q/

e�ik�.xC��y/e�
ib0�1�2

2 e�ib0�.x;�/…b0.x C �Iy/ for all x; y 2�.q/:

Differentiating with respect to kj and conjugating back with .uZk /
�, we obtain that the

fiber of ŒXj ;…b0 � in the Bloch–Floquet representation is .uZk /
�i.@kjp

Z
k /u

Z
k . Thus the

Bloch–Floquet fiber of T becomes

tk D �ipk.u
Z
k /
�Œ@k1p

Z
k ; @k2p

Z
k �u

Z
k :

Introducing this into (A.4) and using trace cyclicity, we obtainZ
�

T .xI x/dx D
1

j�.q/j

Z
�.q/

T .xI x/ dx

D �
i
4�2

Z
B.q/

TrL2.�.q//.p
Z
k Œ@k1p

Z
k ; @k2p

Z
k �/ dk:

Thus

2� lim
L!1

1

jƒLj
TrL2.R2/.�LT / D

1

2� i

Z
B.q/

TrL2.�.q//.p
Z
k Œ@k1p

Z
k ; @k2p

Z
k �/ dk

DW Ch.pZ/:

After an elementary but long computation one may show that

TrL2.�.q//.p
Z
k dpZk ^ dp

Z
k / � TrL2.�.q//.pk dpk ^ dpk/

D d
®
TrL2.�.q//.pk.u

Z
k /
�
^ duZk /

¯
:

The right-hand side is periodic in k, therefore after integration on the Brillouin zone and
an application of Stokes’ Theorem we obtain that Ch.pZ/ D Ch.p/. The latter is well
known to be an integer from the theory of vector bundles: for a direct proof (showing
that it equals the winding number of the determinant of a certain smooth and 2�-periodic
unitary matrix) see [15, Proposition 5.3]. More about the number Ch.pZ/ can be found,
e.g., in [28].

In particular, when Ch.p/ D 0, we may find (see, e.g., [15]) an orthonormal basis
¹�j .k; y/ºrank.p/

jD1 in the range of pk which consists of real analytic vectors in k and which
are also periodic. Applying the inverse Bloch–Floquet transform as in (A.2), we obtain
exponentially localized Wannier vectors

wj .y C �/ WD
1

jB.q/j
1
2

Z
B.q/

eik��e�
ib0�1�2

2 eib0�.y;�/�j .k; y/ dk; y 2 �.q/; � 2 Z2.q/;
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such that

…b0.xI x
0/ D

rank.p/X
jD1

X
2Z2

.q/

. O�b0;wj /.x/. O�b0;wj /.x0/

D

rank.p/X
jD1

X
2Z2

.q/

.�b0;wj /.x/.�b0;wj /.x0/:

Notice that the above is exactly in the form (1.11) in the statement of Corollary 1.2.

Appendix B. Kernel regularity, exponential localization and gauge covariant
magnetic perturbation theory

In this appendix we sketch the main ideas behind estimates (2.3) and (3.2) and collect
all the regularity results on integral kernels that we have used in the proofs, directly or
indirectly. We only focus on (3.2) because (2.3) is nothing but (3.2) when the magnetic
field perturbation vanishes.

Assume that the total magnetic field is given by b C B�.x/, where

sup
x2R2
j@˛B�.x/j � �j˛jC1C˛; ˛ 2 N2; j˛j � 1:

Define the family of vector potentials depending on the parameter y 2 R2:

A�.x; y/ WD
�Z 1

0

sB�.yC s.x � y// ds
�
.�x2 C y2; x1 � y1/:

We have the estimates

j@˛x A�.x; y/j � �j˛jC1C˛kx � yk; ˛ 2 N2; j˛j � 1: (B.1)

It turns out that they all generate the same magnetic field B�.x/. Let A�.x/ WD A�.x; 0/,
as in (1.17). Then we must have that A�.x/ and A�.x; y/ differ by a gradient, and one
can show that

A�.x/ �A�.x; y/ D rx��.x; y/;
where ��.x; y/ is nothing but the magnetic phase defined in (3.1).

An identity which plays a fundamental role in the gauge covariant magnetic perturba-
tion theory is

.Px �A�.x//ei��.x;y/ D ei��.x;y/.Px �A�.x; y//; Px WD �irx: (B.2)

For the constant magnetic field b we introduce the linear magnetic potential

bA.x/ D
b

2
.�x2; x1/

with magnetic phase b�.x; x0/ (see (1.4)), and we have the identity

.Px � bA.x//eib�.x;y/
D eib�.x;y/.Px � bA.x � y//: (B.3)
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Let us recall a general result about the resolvent of any magnetic Schrödinger operator
H D 1

2
.P � a/2 C V with a bounded magnetic field (the magnetic potential may grow)

and a bounded electric potential, not necessarily periodic. Let K � �.H/ be a compact
subset of the resolvent set of H . Then there exist two constants ˛; C > 0 such that for
every z 2 K the resolvent .H � z1/�1 has an integral kernel .H � z1/�1.xI x0/ which is
continuous outside the diagonal x D x0 and moreover (see [11, 34])

sup
z2K

j.H � z1/�1.xI x0/j � C ln.2C kx � x0k�1/e�˛kx�x0k; x ¤ x0 2 R2: (B.4)

This shows that the resolvent’s kernel behaves like the one of the free Laplace operator
in two dimensions. The constants ˛ and C can be chosen to be independent of the mag-
nitude of the magnetic field due to the diamagnetic inequality. The exponential decay is
a consequence of Combes–Thomas estimates [12, 17].

In the case of a purely magnetic Landau operatorHLandau WD
1
2
.P � bA/2 its resolvent

admits an explicit kernel of the type

.HLandau C 1/�1.xI x0/ D eib�.x;x0/F.kx � x0k/;

where F decays exponentially at infinity (it is in fact a Gaussian if b ¤ 0) and has a local
logarithmic singularity, see [16]. Also, using (B.3), one can show that there exist ˛; C > 0

such that

j.Px � bA.x//.HLandau C 1/�1.xI x0/j � Ckx � x0k�1e�˛kx�x0k; x ¤ x0 2 R2: (B.5)

We are interested in the integral kernel of the resolvents of

H� D
1

2
.P � bA �A�/

2
C V; H0 D

1

2
.P � bA/2 C V:

Without loss of generality we may assume that the spectrum of H0 is non-negative. The
second resolvent identity

.H0 C 1/�1 D .HLandau C 1/�1 � .HLandau C 1/�1V.H0 C 1/�1

together with (B.4), (B.5) and the fact that V is bounded lead to the existence of ˛; C > 0

such that

j.Px � bA.x//.H0 C 1/�1.xI x0/j � Ckx � x0k�1e�˛kx�x0k; x ¤ x0 2 R2: (B.6)

Now if K is some compact set in �.H0/ and z 2 K, then from the first resolvent identity

.H0 � z1/�1 D .H0 C 1/�1 C .z C 1/.H0 C 1/�1.H0 � z1/�1

together with (B.4) and (B.6) we conclude that there exist ˛; C > 0 such that

sup
z2K

j.Px � bA.x//.H0 � z1/�1.xI x0/j � Ckx� x0k�1e�˛kx�x0k; x¤ x0 2 R2: (B.7)

We are now ready to deal with the magnetic perturbation induced by A�. If z 2 �.H0/,
we define the operator S�.z/ given by the integral kernel

S�.z/.xI x0/ WD ei��.x;x0/.H0 � z1/�1.xI x0/: (B.8)



H. D. Cornean, D. Monaco, M. Moscolari 3700

From (B.4) we see that jS�.z/.xI x0/j is pointwise bounded by a function of x � x0 which
is in L1.R2/, thus via Schur’s criterion S�.z/ defines a bounded operator. The main
observation is that the range of S�.z/ lies in the domain of H� � z1 and using (B.2),
we have

.H� � z1/S�.z/ DW 1C T�.z/; (B.9)

where T�.z/ has an integral kernel given by

2T�.z/.xI x0/ WD �2ei��.x;x0/A�.x; x0/ � .Px � bA.x//.H0 � z1/�1.xI x0/

C ei��.x;x0/
®
jA�.x; x0/j2 � i divx A�.x; x0/

¯
.H0 � z1/�1.xI x0/:

From this formula we see, by using (B.1), (B.4) and (B.7), that jT�.z/.xI x0/j is also
bounded by an L1.R2/-function of x � x0, namely

jT�.z/.xI x0/j � C�e�˛kx�x0k: (B.10)

The factor � ensures that kT�.z/k � C� < 1 uniformly in z 2 K if � is small enough.
Hence we have that H� � z1 is invertible and

.H� � z1/�1 D S�.z/¹1C T�.z/º�1:

Multiplying both sides of (B.9) by .H� � z1/�1 then yields a resolvent-like identity:

.H� � z1/�1 D S�.z/ � .H� � z1/�1T�.z/: (B.11)

We have just proved that the gaps in the spectrum of H0 are stable. Thus if �0 is
an isolated spectral island of H0 and C � �.H0/ is a positively oriented simple contour
which encircles �0, then C also belongs to �.H�/ if � is small enough and we can define
two Riesz projections as

…� D
i
2�

I
C

.H� � z1/�1 dz; …0 D
i
2�

I
C

.H0 � z1/�1 dz:

Using (B.4) and the identities …� D …
2
�

and …0 D …
2
0, one can show that the integral

kernels of both projections are no longer singular and, at the same time, they have an expo-
nential localization near the diagonal. Moreover, by applying the Riesz integral to (B.11),
using the explicit expression (B.8) for S�.z/.xI x0/, and noting that

sup
z2C

j¹.H� � z1/�1T�.z/º.xI x0/j � C � e�˛kx�x0k

from (B.10), we finish the proof of (3.2).

Appendix C. Kernel localization of the Kato–Nagy unitary

In this appendix we explicitly prove that the integral kernel of the Kato–Nagy unitary
appearing in the proof of Corollary 1.2 satisfies the localization estimate (2.7). The strat-
egy of the proof, based on results presented in [17], consists in proving that the building
blocks of the Kato–Nagy unitary are the product of two operators which have an expo-
nentially localized integral kernel as in (1.2).



Gap labelling for Bloch–Landau Hamiltonians 3701

Lemma C.1. Consider two projections …bC� and …b , which are spectral projections of
the Hamiltonians HbC� and Hb , respectively. Assume that …bC� and …b have jointly
continuous integral kernels satisfying (1.2) and such that

k…bC� �…bk D c < 1:

Then there exists a unitary operatorU such that…b D U…bC�U
� and the integral kernel

of U satisfies (2.7).

Proof. Define the operatorD WD …bC� �…b . Since the kernel of both operators is expo-
nentially localized, see (1.2), one can find two constants ˛ and C that do not depend on �
such that

jD.xI x0/j � Ce�˛kx�x0k: (C.1)

Then, for all 0 � ı < ı0 < ˛, it holds

jD.xI x0/eıkx�x0k
�D.xI x0/j � Cıe�

˛
2 kx�x0k; (C.2)

which is a simple consequence of jekxk � 1j � kxkekxk. Hence, choosing ı small enough,
using the triangle inequality and (C.2) together with a Schur–Holmgren estimate, we
obtain

sup
x02R2

e˙ık ��x0kDe�ık ��x0k
 < 1: (C.3)

Since c < 1, the unitary U is given by the well-known Kato–Nagy unitary, see [21]. From
the explicit formula of U , we have that

U � 1 D
�
.1 �D2/�

1
2 � 1

��
1C 2…bC�…b �…b �…bC�

�
C 2…bC�…b �…b �…bC�:

The projections …bC� and …b have an exponentially localized integral kernel, see (1.2),
hence we only have to prove that the operator ..1 �D2/�

1
2 � 1/ has an integral kernel that

is exponentially localized, namely that satisfies an estimate analogous to (1.2). Therefore,
consider �

.1 �D2/�
1
2 � 1

�
D D

 
1X
kD0

.2k C 1/ŠŠ

.k C 1/Š2.kC1/
D2k

!
D

DW D

 
1X
kD0

akD
2k

!
D:

From estimate (C.3) we get that

sup
x02R2

e�ık ��x0k

 
1X
kD0

akD
2k

!
eık ��x0k

 � C:
Moreover, from the estimateˇ̌

e�ıkx�x0kD.xI x0/eıkx
0�x0k

ˇ̌
� Ce�

˛
2 kx�x0k
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and the Cauchy–Schwarz inequality, one deduces that

sup
x02R2

e�ık ��x0kDeık ��x0k


B.L2;L1/
� C;

where B.L2; L1/ is the space of bounded operators from L2.R2/ to L1.R2/. The
previous two estimates imply that

sup
x02R2

e�ık ��x0kD

 
1X
kD0

akD
2k

!
eık ��x0k


B.L2;L1/

� C; (C.4)

hence e�ık ��x0k.
P1
kD0 akD

2kC1/eık ��x0k is a Carleman operator and in particular has
an integral kernel. Furthermore, notice that …bC� and …b map the Hilbert space into
the domain of the operator HbC� and Hb respectively. A standard argument involving
the Sobolev embedding shows that the domain of the Hamiltonians HbC� and Hb can
be embedded in the space of continuous functions. This implies that also the operator
e�ık ��x0k.

P1
kD0 akD

2kC1/eık ��x0k maps the Hilbert space into the space of continuous
functions. Hence, mimicking the strategy in [17, Proposition 3.1], for every 2C10 .R

2/,
we define the linear functional

C10 3  7!

Z
R2
dx

 
1X
kD0

akD
2kC1

!
.x0I x/eıkx�x0k .x/:

Using formula (C.4), we can extend the previous linear functional to the whole Hilbert
space L2.R2/. Therefore, Riesz’s Representation Theorem implies that

sup
x02R2

eık ��x0k

 
1X
kD0

akD
2kC1

!
.x0I � /


L2.R2/

D sup
x02R2

eık ��x0k

 
1X
kD0

akD
2kC1

!
. � I x0/


L2.R2/

� C:

(C.5)

Using (C.5), together with (C.1), the Cauchy–Schwarz and the triangle inequality, we
eventually obtain that

sup
x;x02R2

eıkx�x0k ˇ̌�.1 �D2/�
1
2 � 1

�
.xI x0/

ˇ̌
� sup

x;x02R2

Z
R2
d Qx eıkx�QxkjD.xI Qx/jeıkQx�x0k

ˇ̌̌̌
ˇ
 
1X
kD0

akD
2kC1

!
.QxI x0/

ˇ̌̌̌
ˇ

� sup
x2R2

eık ��xk
jD.xI � /j


L2.R2/

sup
x02R2

eık ��x0k

ˇ̌̌̌
ˇ
 
1X
kD0

akD
2kC1

!
. � I x0/

ˇ̌̌̌
ˇ

L2.R2/

� C:

Thus the integral kernel of the unitary operator U satisfies (2.7).
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