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Abstract. The problem of identifying small damages in beam-like structures is studied by defining a
suitable inverse problem with different modal quantities including frequencies, mode shapes and modal
curvatures. With the aim of making a critical analysis of the different approach followed in the literature,
we study a prototype problem of a free-free beam with single and multiple damages. The attention is
mainly devoted to modal curvatures. It is shown that by making use of a perturbative solution of the
equation of motion of a damaged beam, it is possible to obtain a closed form relationship between the
modal curvature differences due to damage and the damage distribution itself. This information is added
to the contributions of other modal quantities, frequencies and mode shapes, to improve the inverse
problem of damage identification and to eliminate possible redundant solutions. On the other side, the
variations of the curvature due to damage is concentrated at damage location and this circumstance can
lead to difficulties in its detection. The results of the proposed approach are validated by using the results
of an experimental campaign carried out by the authors.

1 INTRODUCTION

Vibration-based damage identification techniques have recently been the subject of much research,
with particular emphasis on natural frequencies [1, 2]. As a global structural property, they are easily
and reliably measured and their variation with damage is clearly monotonic. Unfortunately, due to them
being a global characteristic, frequencies offer a modest sensitivity to local damage, mainly when the
damage intensity is limited [3]. As such, variations of temperature or humidity could cause changes in
frequencies sometimes as large as those induced by damage.

With the increasing availability of more affordable experimental techniques, other modal quantities –
modal shapes and modal curvatures – have been the focus of an increasing attention by researchers, with
the aim of detecting low intensity damages.

In particular, modal curvatures are known to considerably change in the neighbourhood of the dam-
age [4, 5]. However, their evaluation is not simple mainly for two reasons: (i) their variations due to
distributed damage could spread over the entire structure [6]; (ii) in the presence of sharp damages, the
evaluation of the modal curvature requires sensors placed in close proximity of the damage. For this

1



F. Vestroni, J. Ciambella and A. Pau

reason, this work starts with a critical review of the different approaches for damage identification, with
a special focus on those using modal curvatures.

Making use of a perturbative solution of the equation of motion of a damaged beam, it is possible to
obtain a closed form relationship between the modal curvature differences due to damage and the damage
distribution itself [7]. Such a result, suggests that a proper filtering of the modal curvature variations must
be carried out for using them in damage localization or in damage assessment techniques when used with
other modal quantities, such as frequencies and mode shapes as shown in [8].

The validation of the procedure that makes use of the modal quantities measured by an experimen-
tal setup, able to record frequencies, modal shapes and modal curvatures, is performed by means of
numerical investigation with pseudo-experimental data and of an experimental laboratory campaign.

The experiments deal with a free-free beam. Several damage cases are considered with different
intensities. The contribution of using the modal curvature differences in the identification of damage
position and intensity is evidenced.

2 MODAL CURVATURES

2.1 Filtering technique

In this section, we briefly review the main results in [6, 7] which concern the localization of damage
through modal curvature. The transverse motion of a cracked beam is studied by exploiting the perturba-
tive solution of the dynamic Euler-Bernoulli equation. The procedure is fully described in [6] and very
shortly recalled here.

The dimensionless equation governing the i-th transverse mode of a damaged beam is:

d4φi(s)
ds4 − ε

d2

ds2

[
η(s)

d2φi(s)
ds2

]
−ω

2
i φ
∗
i (s) = 0 (1)

where s ∈ [0,1] is the dimensionless abscissa, φ(s) is the transverse displacement and η(s) is a smooth
function representing the damage shape, such that ‖η(s)‖= 1. The eigenfunctions φi and eigenvalues ω2

i
can be expanded as a power series in terms of the damage intensity ε ,i.e.,
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where φ̃i and ω̃2
i are respectively the ith eigenfunction and eigenvalue of the undamaged beam, and vi

and ω
2
i are their first order variations. By taking into account only the contributions up to the first order

in ε, the following system of ordinary differential equations is obtained
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2
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1-st order:
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ds2 (4)

where the function ηi(s) is the modal damage shape weighted through the ith modal curvature, i.e.
ηi(s) := η(s) d2φi/ds2. Eq.(3) is simply the governing equation of the undamaged system.

The difference between the modal curvature of the damaged and undamaged beams, ∆ψk, can be
expressed in terms of the modal quantities of the undamaged system and the damage shape function η(s)
as in [6], i.e.,
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Figure 1: Modal displacement difference (left) between the damaged and undamaged system for the damage case
D1 for the first three modes (blue - 1st mode; red - 2nd mode; yellow - 3rd mode). (right) Corresponding modal
curvature differences. The dashed red line shows the actual position of the damage.

where ∆ω2
k = ω̃2

k−ω2
k is the modal frequency variation, between the k-th modal frequency of the undam-

aged and damaged systems. For the sake of brevity, we have indicated the k-th modal curvature, i.e., the
second derivative of the k-th mode shape, as ψk(s) := φ′′k (s).

Equation (5) highlights that the function χk, i.e., the product of the damage shape with the k-th
modal curvature, is, as a matter of fact, the observable quantity of the inverse problem based on modal
curvatures rather than the modal curvatures themselves. As such, if the damage occurs in a region where
the k-th modal curvature vanishes, the damage shape can not be reconstructed from the k-th modal
curvature. In addition, Eq. (5) shows that the damage shape can be evaluated only after the k-th modal
curvature difference is filtered as that equation suggests; interestingly, all quantities that appear on the
right hand side of the equation are indeed easy to measure: ∆ψk is the difference between the normalised
k-th modal curvatures of the damaged and undamaged beam, ∆ω2

k is the difference of the corresponding
modal frequencies, ψ̃l is the l-th undamaged modal curvature divided by its norm ‖ψ̃l‖.

2.2 Numerical evaluation of modal shapes and modal curvatures

In the case of sharp damages, modal curvatures are known to be localized quantities even if not prop-
erly filtered. In this respect Fig. 1a shows the first four mode displacement differences obtained by a
numerical model of the free-free beam experimentally tested by the authors, whose mechanical and ge-
ometric characteristics are shown in Fig. 2 for damage cases D1 in Fig. 3. For the sake of comparison,
Fig. 1b shows the corresponding modal curvature differences. It is seen from the figure that multiple
peaks appear in the difference when considering modal displacements whereas a more localised infor-
mation can be extracted from the modal curvature difference. In the case of mode shapes, these peaks
are located in a region close to but not correspondent with the actual damage position (represented by a
dashed red line). As already pointed out, such a circumstance makes the solely use of eigenmode differ-
ence in the damage localization problematic and potentially leading to false indications. However, their
use in the objective function together with the eigenfrequencies variation can lead to a more accurate
evaluation of the damage parameters with respect to the use of frequencies only.

2.3 Experimental evaluation of modal curvatures

Much care must be devoted when extracting modal curvatures from experimental data. When strain
gauges are used to measure the structural response, the frequency response function measured at the
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abscissa si for a point force applied at the abscissa s j is

Hi j(ω) =
Gi j(ω)

G j j(ω)
(6)

where G j j(ω) is the auto-power spectral density of the input and Gi j(ω) is the cross-power spectral
density between input and output. In particular, when strains are measured, Eq. (6) can be written as:

Hi j(ω) =
∞

∑
k=1

ψk(xi)φk(x j)/ρLω2||φk||2

1− (ω2
k + iηrω

2
k)/ω2 . (7)

Differently from what happens when the response is measured in terms of accelerations, here, only an
approximate normalization is obtainable. According to [9], for the purpose of normalization, it can be
accepted that

ψk =−ωk

(
ρ

EI

)1/2
φk (8)

which means that the hyperbolic terms have been neglected. With this assumption, the mass-normalized
amplitude of the eigenfunctions at x j can be derived from the numerator of the FRF where the forcing
function is applied, that is:

φk(x j)

ω
√

ρL||φk||
=

(
U j jk

ωk

(
EI
ρ

)1/2
)1/2

. (9)

When no strain gauge is available where the force is applied, the modal amplitude at x j is calculated by
taking the mean of the response at the two closest strain gauges, that is U j jk = (U( j−1) jk +U( j+1) jk)/2,
which is used in Equation (9) to obtain the mass-normalized modal curvatures. Equations (7)-(9) are
used to extract the curvature mode shapes from the results of the experimental tests.

The experiments were carried out at the laboratory of the Department of Structural and Geotechnical
Engineering, Sapienza University of Rome, on a steel beam whose geometric and mechanical charac-
teristics are reported in Fig. 2. The beam was dynamically excited by a point force generated by an
electrodynamic shaker, that was driven by a white noise input signal up to a frequency of 2500/3000
Hz. To measure the proper frequency response function, the input force was recorded with a load cell
installed at the base of the shaker stinger, which was realized with a thin steel bar with circular cross
section. The response was measured using seven strain gauges equally spaced along the beam axis, in
the damaged and undamaged cases. The results of the experimental campaign with the modal curvatures
extracted through Eq. 9 are shown in Fig. 3-6.

In particular damage cases are reported in Figure 3. Case D1 includes a notch localized below the
strain gauge #1 with a residual height of the damaged cross-section equal to hD = 3h/4, case D2 has
the same localization, but a residual height equal to hD = h/2, case D3 the same damage as D2, plus a
second notch of residual height hD = 3h/4 located between strain gauges #5 and #6.

A reduction of natural frequencies with increasing damage is observed. This is shown by the shift
of the peaks in Figure 4, which compares the modulus of the frequency response function in terms of
strains in the undamaged and damaged (D2) cases. The frequency response function H1P( f ) is measured
in channel #1 for the forcing function applied at point P. The values of the first four natural frequencies
are reported in Table 1 for the undamaged (U), and the three cases of damage under investigation (D1,
D2, D3, Figure 3).
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Figure 2: Geometry of the undamaged free-free (FF) beam and steel material properties.

Figure 3: Damage cases for the steel free-free beam.

f1 f2 f3 f4

U 293 808 1559 2546
D1 292 794 1539 2548
D2 284 744 1478 2535
D3 281 732 1470 2503

Table 1: Natural frequencies in the undamaged and damaged cases [Hz] - FF beam.

5



F. Vestroni, J. Ciambella and A. Pau

0 500 1000 1500 2000 2500 3000

f [Hz]

0.0001

0.001

0.01

0.1

1

10

100

H
1
P
( 

f 
)

U

D2

Figure 4: Component H1P of the Frequency Response Function in terms of strains in the undamaged (U) and
damaged (D2) cases.
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Figure 5: Experimental modal curvatures for the first (a), second (b), third (c), and fourth (d) modes in the
undamaged and damaged cases.
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Figure 6: Curvature differences for the three damage states of the FF beam. Mode 1 - dashed grey line; Mode 2 -
dashed black line; Mode 3 - grey thick line; Mode 4 - thin grey line.

Figure 5 shows the mass-normalized modal curvatures for the first four identified modes, in the un-
damaged and damaged states. For the sake of brevity we take

ψk =
ψ
′′
kh

2
√

ρL||φk||κ

(
EI
ρ

)1/4

. (10)

Figure 6, which reports the variation of modal curvatures between the undamaged and damaged state,
normalized so that the maximum equals one, shows that the local increase in curvature where damage is
located is very clear when damage is placed just below strain gauge #2 (all cases). On the contrary, when
damage is located between strain gauges #5 and #6 (D3), the presence of damage is less evident from the
increase in curvature.

3 DAMAGE IDENTIFICATION

The analysis in previous paragraphs has shown that, in case of sharp damages, modal curvature can
directly give information on the location of damage. However, the assessment of the damage intensity
requires the definition of an inverse problem based on the comparison between the undamaged and dam-
aged state responses. To do that, a finite element model of the beam in Fig. 2 is implemented in Ansys
with n=520 B21 elements. The damage is schematically represented as a concentrated spring at position
s with dimensionless intensity k = 2`

hU
1−β

β
with β = (EIU −EID)/EIU , and EIU and EID respectively the

flexural rigidities of the undamaged and damaged cross sections [10]. An optimal estimate of the param-
eters k and s is obtained by minimizing an objective function which is built as the sum of differences
between selected response quantities. As a first step, we consider an objective function which depends
on the first m frequency differences, i.e.,

G f (k,s) =
m

∑
i=1

(
∆ωi(k,s)

ωU
i
− ∆ωei

ωU
ei

)2

(11)

which is the sum of the squares of the differences between the numerical ∆ωi(k,s) and experimental
∆ωei frequency variations between the undamaged and the damaged states, normalized with respect to
the frequencies of the undamaged beam, ωU

i and ωU
ei . Since the ∆ωi(k,s) are not observable in closed-

form, they are evaluated at discrete values of k and s, which enables to calculate the function (11) on a
grid.

The G f (k,s) is shown in Fig. 7 by using three (m=3) and four (m=4) frequencies for the damage case
D2. The insets in the figure show the corresponding values of the parameters s and k at the position of the
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Figure 7: Objective function G f (k,s) calculated with three (left) and four (right) frequencies in the case of damage
D2. The plots are the contour plot of the functional whereas the bottom plots are the curve obtained intersecting
the functional with the plane k = kmin.

minimum, to be compared with the real position of the damage s = 0.129 and equivalent stiffness of the
damage k = 10. These results show that already with three frequencies a good estimate of the damage
position can be achieved despite having a 20% error on the damage intensity.

In order to verify the possible improvement of the identification using modal curvature differences,
the following enhanced objective function is considered

G f c(k,s) = G f (k,s)+α Gc(k,s) (12)

where α is a positive scaling constant, assumed equal to 0.3 in the present case, and Gc is the function
based on the modal curvature differences

Gc(k,s) =
n

∑
i=1

(
∆ψi(k,s)
‖ψU

i ‖
− ∆ψei

‖ψU
ei‖

)2

(13)

with ψe the experimental modal curvatures. Since a robust localization of damage was already obtained
with the first modal curvature difference (see Fig. 6), only the first modal curvature is included in the
objective function (n = 1). The results in Fig. 8 show that the minimum of the enhanced G f c is much
sharper and the correct values of the parameter are obtained.

4 CONCLUSIONS

The great part of damage identification techniques used in the literature are based on the differences
of the modal frequencies of the damaged and undamaged system. In this work, to enhance the solution
of the inverse problem and to have a better estimate of damage parameters, we have examined the use of
both modal displacements and modal curvatures. The latter have always been considered strictly related
to the damage region but some drawbacks have been highlighted:

• modal curvature differences are influenced by the damage distribution in a more significant way
than modal shape differences;
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Figure 8: Objective function G f c(k,s) calculated with four frequencies and the first modal curvature difference in
the case of damage D2. Contour plot of the function (top), plot of the curve obtained intersecting the functional
with the plane k = kmin (bottom).

• if the damage is extended compared to the characteristic dimensions of the structure, the use of
modal curvatures in a damage identification technique requires them to be properly filtered;

• for sharp damages, modal curvature differences are also very sharp and this could make their
experimental evaluation difficult.

With reference to an experimental campaign carried out on a free-free beam, we have shown the
feasibility of using modal curvature variations, experimentally measured through strain gauges, together
with modal frequency variations. For a certain damage scenario, we have compared the results of the
identification obtained with an objective function weighing only the modal frequency differences and
an enhanced function with both frequency and curvature variations. In the latter case, a more accurate
estimate of the damage parameter was achieved and, in addition, the symmetric solution, which can not
be distinguished by using only the modal frequency difference, was eliminated.
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