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Insights into the expanding phenotypic spectrum of
inherited disorders of biogenic amines
Oya Kuseyri Hübschmann 1, Gabriella Horvath2, Elisenda Cortès-Saladelafont3,4, Yılmaz Yıldız 5,

Mario Mastrangelo6, Roser Pons7, Jennifer Friedman8, Saadet Mercimek-Andrews 9, Suet-Na Wong10,

Toni S. Pearson 11, Dimitrios I. Zafeiriou12, Jan Kulhánek13, Manju A. Kurian14, Eduardo López-Laso15,

Mari Oppebøen16, Sebile Kılavuz17, Tessa Wassenberg18,19, Helly Goez20, Sabine Scholl-Bürgi21,

Francesco Porta22, Tomáš Honzík13, René Santer23, Alberto Burlina24, H. Serap Sivri 5, Vincenzo Leuzzi6,

Georg F. Hoffmann1, Kathrin Jeltsch1, Daniel Hübschmann25,26,27,28, Sven F. Garbade 29, iNTD Registry Study

Group*, Angeles García-Cazorla3 & Thomas Opladen 1✉

Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases

presenting with movement disorders and global developmental delay. This study presents the

results of the first standardized deep phenotyping approach and describes the clinical and

biochemical presentation at disease onset as well as diagnostic approaches of 275 patients

from the registry of the International Working Group on Neurotransmitter related Disorders.

The results reveal an increased rate of prematurity, a high risk for being small for gestational

age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic

delay are influenced by the diagnostic methods applied and by disease-specific symptoms.

The timepoint of investigation was also a significant factor: delay to diagnosis has decreased

in recent years, possibly due to novel diagnostic approaches or raised awareness. Although

each disorder has a specific biochemical pattern, we observed confounding exceptions to the

rule. The data provide comprehensive insights into the phenotypic spectrum of neuro-

transmitter disorders.
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Inherited disorders of neurotransmitter metabolism represent a
group of rare neurometabolic diseases. They are caused by
impaired biosynthesis, breakdown or transport of neuro-

transmitters, or of their essential cofactors, such as tetra-
hydrobiopterin (BH4). According to the chemical structure of the
primarily affected metabolite they can be classified into distinct
groups1 (Table 1):

(A) Disorders of biogenic amines (dopamine, serotonin, nor-
epinephrine, epinephrine): (1) Primary disorders of biogenic
amine metabolism: (i) Primary enzyme defects in biogenic amine
biosynthesis (aromatic L-amino acid decarboxylase deficiency
(AADCD), tyrosine hydroxylase deficiency (THD)); (ii) Disorders
of biogenic amine catabolism (monoamine oxidase A deficiency
(MAOAD), dopamine β-hydroxylase deficiency); (iii) Disorders
of biogenic amine transport (vesicular monoamine transporter 2
deficiency, dopamine transporter deficiency (DATD)), (2)
Disorders of tetrahydrobiopterin biosynthesis and recycling
(autosomal dominant and recessive GTP-cyclohydrolase defi-
ciency (ad/arGTPCHD), 6-pyruvoyl-tetrahydropterin synthase
deficiency (PTPSD), sepiapterin reductase deficiency (SRD),
dihydropteridine reductase deficiency (DHPRD), pterin-4a-
carbinolamine dehydratase deficiency), (3) Co-chaperone asso-
ciated disorders (DNAJC12 deficiency (DNAJC12D)) and (B)
Disorders of amino acid neurotransmitters (glycine, glutamate,
serine, γ-aminobutyric acid (GABA)).

Manifestations of these disorders mainly involve the central
nervous system but other organ systems such as autonomic
nervous, hematological or cardiovascular can also be affected. The
clinical phenotype consists of a broad spectrum of symptoms,
ranging from mild hypotonia and late-onset movement disorders,
to early-onset lethal encephalopathies. Initial symptoms can
appear at any time from the perinatal period to adulthood. Since
many clinical symptoms are unspecific or overlap with features
seen in other neurological conditions, such as cerebral palsy,
epileptic encephalopathies and hypoxic–ischemic encephalo-
pathy, inherited neurotransmitter disorders are often under-
recognized and misdiagnosed2. Within these disorders only a
small group can be detected via newborn screening for phe-
nylketonuria (PKU) while other diseases require selective diag-
nostic tests leading to prolonged diagnostic work-up and delayed
treatment initiation3. The outcome depends on the underlying
disorder, the timing of diagnosis, initiation and type of disease-
specific treatment, as well as long-term compliance to
treatment4–10.

Since inherited neurotransmitter disorders are rare disorders,
the medical literature is comprised mainly of single case reports,
small case series and retrospective cohort descriptions. The
“International Working Group on Neurotransmitter Related

Disorders (iNTD)” was founded in 2013 (www.intd-online.org),
to overcome these limitations in clinical and scientific research11.
Over the last few years it has steadily grown to include experts
from 42 academic and clinical centers from 26 countries. In
December 2014, iNTD set up the first international, longitudinal
patient registry. This registry aims to improve our understanding
of the natural history, epidemiology, genotype/phenotype corre-
lations and clinical outcome, and to evaluate diagnostic and
therapeutic strategies.

In this work, we present the first standardized evaluation of the
iNTD patient registry and report comprehensive insights into
pre-, peri- and postnatal presentations of inherited disorders of
biogenic amines, as well as effects of initial clinical and bio-
chemical patterns on the diagnostic process.

Results
Description of the study population. Between January 1st 2015
and May 15th 2020, 429 patients were enrolled in the iNTD
patient registry. Of these entries, 350 patients had a diagnosis of
biogenic amine disorders. 75 patients who were transferred from
the JAKE database on aromatic L-amino acid decarboxylase
deficiency (http://www.biopku.org/home/jake.asp) were not ana-
lyzed in this study due to the high number of missing variables of
interest. The remaining cohort of patients with disorders of
biogenic amines consisted of 275 patients from 248 families (157
female (57%), from 42 countries: 196 patients born in Europe, 42
in North America, 34 in Asia, three in Central/South America
and one in Africa). 109 patients had primary disorders of bio-
genic amine metabolism, 161 BH4 deficiencies (BH4Ds) and five
patients DNAJC12D (Tables 2 and 3). All diagnoses were con-
firmed either by mutational analysis alone or by a combination of
specific biochemical tests in CSF, urine and blood (Table 4).

There were no patients with dopamine β-hydroxylase defi-
ciency or vesicular monoamine transporter 2 deficiency. For a
reliable explorative analysis, a minimum number of 6 patients
was required. MAOAD, DATD and DNAJC12D were included
only in the descriptive analysis.

Pregnancy, delivery and peri- and postnatal outcome. Maternal
health problems, medications taken during pregnancy and post-
natal outcomes are depicted in Tables 2 and 3 and Supplementary
Table 1. None of the patients were prenatally diagnosed.

There was no difference in the mode of delivery between the
different primary disorders of biogenic amine metabolism
(Table 2). Both in AADCD and THD a high frequency of small
for gestation age (SGA) babies was noted and a remarkably high
number of patients with THD had birth length (BL) < 10th
percentile (Table 2 and Fig. 1).

Table 1 Classification of inherited disorders of biogenic amines.

Inherited disorders of biogenic amines

Primary disorders of biogenic amine metabolism Disorders of tetrahydrobiopterin metabolism Co-chaperone
associated
disordersBiosynthesis Catabolism Transport Biosynthesis Recycling

Aromatic L-amino acid
decarboxylase
deficiency (AADCD)

Monoamine
oxidase A
deficiency
(MAOAD)

Vesicular monoamine
transporter 2 deficiency
(VMAT2D)

Autosomal dominant and
recessive GTP-cyclohydrolase
deficiency (ad/arGTPCHD)

Dihydropteridine
reductase deficiency
(DHPRD)

DNAJC12
deficiency
(DNAJC12D)

Tyrosine hydroxylase
deficiency (THD)

Dopamine β-
hydroxylase
deficiency (DßHD)

Dopamine transporter
deficiency (DATD)

6-pyruvoyl-tetrahydropterin
synthase deficiency (PTPSD)

Pterin-4a-
carbinolamine
dehydratase
deficiency (PCDD)

Sepiapterin reductase
deficiency (SRD)
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In BH4Ds, 27 pregnancies with maternal health issues were
reported. Among four mothers affected with adGTPCHD in this
group, two mothers did not require any drug treatment despite
having intermittent dystonia. There was no difference with regard
to the mode of delivery between arGTPCHD and PTPSD
while spontaneous vaginal delivery (SVD) was the most frequent
mode of delivery in adGTPCHD and DHPRD (Table 3).
Interestingly, newborns with PTPSD showed the highest rate of
symmetrical intrauterine growth restriction (sIUGR) and SGA
(Table 3 and Fig. 1).

Initial clinical presentation. The most common initial symptoms
in AADCD and THD were developmental delay and truncal
hypotonia (Fig. 2a). Thermoregulation disorders and oculogyric
crises were prominent in AADCD and occurred more often than
in THD (Fig. 3a). Dystonia was similarly frequent in both disease

groups. Sleep disturbances were only observed in AADCD. The
following additional symptoms (not listed in Figs. 2a and 3a) were
reported in AADCD: gastrointestinal symptoms (n= 7, 12.5%),
nasal congestion, (n= 6, 11%), tremor (n= 3, 5%) and hypoki-
netic rigid syndrome (n= 3, 5%). In THD, tremor (n= 9, 20.5%),
hypokinetic rigid syndrome (n= 3, 7%), gastrointestinal symp-
toms (n= 3, 7%) and suspected seizures (n= 3, 7%) were
reported. Developmental delay was reported in two out of four
patients with MAOAD, epileptic seizures and encephalopathy in
one and sleep disorders the other patient. Developmental delay,
hypomimia and drooling were reported in one patient with
DATD and dystonia and hypokinesia in another patient.
Microcephaly and irritability each were the initial symptoms in
other two patients with DATD.

The mean age at onset of first symptoms was 4.3 months across
all disorders in this group (range 0–60 months, Table 4). Patients
with AADCD were already symptomatic in the neonatal period
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and in early infancy while the majority of patients with THD
became symptomatic during infancy (between 1 and 15 months,
Fig. 3a). Only three out of 33 patients with THD were
symptomatic neonatally with developmental delay and oculogyric
crises while two patients showed initial symptoms in childhood
(aged 3 and 5 years), one with hypotonia of extremities,
dyskinesia and dystonia, and the other with gait disorder and
speech difficulties.

The most common initial symptoms among BH4Ds were
dystonia, developmental delay and truncal hypotonia (Fig. 2b).
Symptom onset occurred most frequently during the neonatal
period or infancy in all patients with BH4Ds except for those with
adGTPCHD (Table 4 and Fig. 3b). This neonatal/ infantile initial
presentation was typically characterized by developmental delay
and (truncal) hypotonia. In contrast, dystonia (61%) and lower
extremity hypertonia (13%) were the most frequent initial
symptoms in adGTPCHD, together with gait disorders (n= 6,
16%), orthopedic problems (n= 5, 14%), tremor (n= 3, 8%) and
toe walking (n= 3, 8%, not listed in Figs. 2b and 3b). Dystonia
was more frequently seen in arGTPCHD (22%) than in PTPSD
(11%), DHPRD (5%) and SRD (7%) in an age-independent
analysis (Fig. 3b, age-dependent analysis). Seizures were reported
only in PTPSD (5%) and DHPRD (11%) among all BH4Ds. As
additional initial symptoms, hypokinetic rigid syndrome was
reported in PTPSD (n= 3, 5%) and DHPRD (n= 3, 8%) and
failure to thrive in PTPSD (n= 3, 5%). Of note is the higher
frequency of oculogyric crises (21%), and sleep disorders (14%) in
SRD compared to other BH4Ds (0–5% and 0–6% respectively;
age-independent analysis). Developmental delay alone was
reported in one patient with DNAJC12D, together with
oculogyric crises in another patient and behavioral problems in
two patients.

Diagnostic work-up and diagnostic delay. The latency to diag-
nosis was comparably long for AADCD (mean= 41 months,
range 0–386 months) and THD (mean= 45 months, range
−6–361 months) (Fig. 4a). Patients with AADCD born before
2009 had a statistically significant longer latency to diagnosis

(mean 68.1 months) than those born after 2009 (mean
7.3 months, p= 0.00041, WMW-test) (Fig. 4b). In the group of
patients with THD, this pattern was also found for patients born
before and after 2005, respectively (mean diagnostic delay of
89.8 months vs. 14.4 months, p= 0.00041, WMW-test).

Investigating the effect of symptoms on age at diagnosis or on
the diagnostic delay, we found that presentation with hypotonia,
seizures, encephalopathy, microcephaly, sleep disturbances or
thermoregulation disorders was associated with earlier age at
diagnosis (3.2 years) and with less diagnostic delay (30 months),
than presentation with dystonia, dyskinesia, hypoglycemia or
developmental delay (diagnosis age 4.9 years, t (88.14)=−1.68;
p= 0.1; diagnostic delay 45 months, t (175.43)=−1.89; p= 0.06;
Fig. 5a and b).

Since disorders presenting with hyperphenylalaninemia (HPA),
arGTPCHD, PTPSD and DHPRD, can be detected by newborn
screening (NBS) for phenylketonuria, they would be expected to be
diagnosed at a younger age and with less delay than those without
HPA. In our study cohort, diagnostic work-up as well as diagnostic
delay varied strongly depending on the occurrence of HPA (Table 4
and Fig. 4a). In patients with arGTPCHD, PTPSD and DHPRD,
HPA on NBS led to significantly shorter diagnostic delay than in
cases without HPA or without any NBS performed (mean 3.1 vs.
39.6 months, t (24.05)= 2.99; p= 0.006, Fig. 4c). There was no
significant difference in diagnostic delay between the latter group vs.
those BH4Ds without HPA and AADCD and THD (mean 39.6 vs.
76.7 vs. 51 months, t (2)= 1.89; p= 0.15).

Disorders without HPA (adGTPCHD and SRD) were mainly
diagnosed by selective screening after onset of symptoms or by
high-risk family screening (HRFs). In our study, the majority of
patients with adGTPCHD were symptomatic in childhood and
had a mean diagnostic delay of 60 months (range 1–245 months).
Most patients with SRD were symptomatic in the first 6 months
of life, however, this group in particular showed a prominently
prolonged latency to diagnosis with an average duration of
112 months (range 12–316 months, Table 4, Fig. 4a). SRD
patients born after 2009 had a significantly shorter diagnostic
delay than those born before (mean 140 months, vs. 29.9 months,
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p= 0.021, WMW-test). For adGTPCHD no significantly dis-
criminating date was found (Fig. 4b).

Seven patients with arGTPCHD had normal NBS results
without HPA. Eight patients presented with HPA on NBS but in
six of these eight cases the diagnostic work-up was initiated later
(Table 4). In patients with arGTPCHD who were diagnosed via
selective screening, the mean diagnostic delay in the group with
HPA on NBS (7.8 months) differed from the other group with
normal results on NBS (21.5 months) without reaching statistical
significance (t (7.39)=−1.78; p= 0.11, Fig. 4d).

Only in the PTPSD group did all the available NBS results
demonstrate HPA (Table 4). While the vast majority of the
patients with DHPRD (30/37) had HPA on NBS, one patient
surprisingly had a normal NBS and presented normal

phenylalanine levels in plasma but high levels in CSF on
repeated measurements. This patient was homozygous for a
new variant in the QDPR gene (NM_000320.3, c.466 G > A, p.
Ala156Thr). There were 17 DHPRD patients whose diagnosis
was established late despite having HPA on NBS and who had a
longer mean diagnostic delay (6 months) than those who were
diagnosed by specific work-up immediately following the
detection of HPA on NBS (-4.5 months, t (16.44)=−1.87;
p= 0.08, Fig. 4e). Negative values for the diagnostic delay in
PTPSD and DHPRD in Fig. 4a are explained by an early
diagnosis via NBS or HRFs before onset of symptoms. The
lowest values for the mean diagnostic delay (8 months) and for
the maximum diagnostic delay (86 months) were recorded
in DHPRD.
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We identified the birth year 1993 as the most strongly
discriminating and statistically significant time point regarding
changes in the latency to diagnosis for PTPSD (mean
86.6 months, SD 88.6 months vs. mean 3.4 months, SD
17.3 months, p = 0.028, WMW-test, Fig. 4b). In the remaining
BH4Ds, we could detect a trend around the years 1999 for
arGTPCHD and 2012 for DHPRD but these dates did not reach
statistical significance.

Truncal hypotonia, upper limb hyper-/or hypotonia, develop-
mental delay, epilepsy, encephalopathy, microcephaly, thermo-
regulation disorders, oculogyric crises, dyskinesia or hypoglycemia
were associated with earlier age at diagnosis (2.7 years) than lower
limb hypo-/or hypertonia (4.7 years) or dystonia and sleep
disorders (8.8 years; ANOVA; F (2,165)= 14.89; p= 0.16 for 2.7
vs 4.7 years; p= 0.0000005 for 2.7 vs 8.8 years; p= 0.02 for 4.7 vs.

8.8 years). Other than in primary disorders of biogenic amine
metabolism, developmental delay, tone abnormalities in upper
limb and trunk as well as epilepsy were associated with a shorter
diagnostic delay (28 months) than oculogyric crises, dystonia,
lower limb tone abnormalities and sleep problems (47 months, t
(117.73)=−2.15; p= 0.03, Fig. 5c, d) in BH4Ds.

Initial biochemical presentation. Diagnostically relevant and
disease-specific constellations of biochemical parameters are
presented in Fig. 6.

Along with typical changes in biogenic amines (i.e. reduced
homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA),
elevated 3-O-methyl-Dopa (3-OMD), levodopa (L-Dopa) and
5-hydroxytryptophan (5-HTP)), abnormalities of tetrahydrobiopterin
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and neopterin in CSF were observed in some AADCD patients
(Fig. 6) Urinary vanillactic acid was not reported as an initial
diagnostic parameter in our AADCD cohort. In THD, HVA and the
ratio HVA/5-HIAA were decreased in almost all samples, while
5-HTP and 5-HIAA were typically normal. Prolactin in plasma
showed high variability in both diseases (Fig. 6).

Phenylalanine (Phe) was normal or high in CSF and plasma in
arGTPCHD while it was predominantly normal in both blood
and CSF in adGTPCHD (Fig. 6). Phe was high in both CSF and in
plasma in PTPSD and DHPRD. In SRD, Phe was increased in
CSF while being normal in plasma, in line with previous
reports12. Pterin disturbances were reported in CSF and in urine
for adGTPCHD. Results on pterins in dried blood spots (DBS) in
adGTPCHD were not available. 7-8-dihydrobiopterin in CSF was
determined rarely but three measurements in DHPRD and two in
SRD were high while being always normal in other BH4 disorders.
HVA and 5-HIAA were more frequently decreased in PTPSD,
DHPRD and SRD than in ad/arGTPCHD. In PTPSD and
DHPRD prolactin was elevated in 44% and 82% of cases,
respectively, while it was normal in almost all other BH4Ds.
Decreased 5-methyltetrahydrofolate in CSF was reported only in
DHPRD, except in one case with arGTPCHD and three cases
with PTPSD.

Fatal outcomes. Three patients with AADCD and one with THD
died during the study period. Death occurred at 2.4, 2.6 and 19.8
years of life in the AADCD patients. One patient died of pneu-
monia while in the remaining two cases the cause was unknown.
The THD patient died at 13 years of age because of an acute lower
respiratory tract infection.

Discussion
The evaluation of 275 patients with disorders of biogenic amines
(224 new and 51 previously published cases) that were analyzed
using a standardized longitudinal approach revealed new phe-
notypic aspects of the initial clinical and biochemical

presentation, peri- and postnatal courses as well as diagnostic
work-up. We present an increased incidence of prematurity in
AADCD and of SGA in THD and in PTPSD. Patients with
PTPSD were also prone to sIUGR and congenital microcephaly.
We report one patient with DHPRD without HPA on NBS. We
confirm the significant impact of HPA detection on NBS on the
diagnostic work-up in a group of BH4Ds. Furthermore, we pre-
sent the association of specific symptoms, such as oculogyric
crises, dystonia, sleep and thermoregulation disorders, with age at
diagnosis and diagnostic delay.

Pregnancies in both main disease groups were rarely compli-
cated by medical problems. The issues described were most likely
due to the pregnancy itself and not to the fetal disease. Exceptions
were those cases in which mothers were affected by adGTPCHD,
consistent with previous literature13. First symptoms of disorders
of biogenic amines typically occur in the neonatal period or in
infancy. Our data on the anthropometrical values at birth raise
questions about prenatal disease manifestation. AADCD (18%)
and SRD (21%) showed an increased rate of prematurity in our
study compared to the global incidence of prematurity that is
estimated as 9.6% ranging from 6.2% in Europe to 9.1 % in Asia,
10.6 % in North America and 11.9% in Africa14. Various causal
factors such as fetal or maternal health conditions along with
genetic, environmental, behavioral and socioeconomic factors as
well as the differences in availability of preventive interventions
between developed and developing countries influence the esti-
mated rates. Since most of the patients in this study were born in
Europe, North America or Asia, the background preterm birth
rate may be expected to be between 6.2% and 10.6%. While the
rate in SRD should be critically interpreted due the small number
of cases, our data document an increased rate of prematurity
in AADCD.

Additionally, the risk of SGA at birth is higher in PTPSD and
THD (56% and 49%, respectively) compared to the considerable
variation in the prevalence of infants born SGA, ranging from
4.6–15.3 % across Europe and 5.3% in east Asia to 41.5% in south
Asia15,16. AADCD, arGTPCHD, DHPRD and SRD also show
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elevated but not as high SGA rates. While neonates with PTPSD
are also prone to sIUGR and congenital microcephaly (24%), we
could not observe any trend towards microcephaly in DHPRD in
contrast to the reported 25% rate in a historical cohort17. The
observation that PTPSD patients were at high risk for prematurity
could not be confirmed in our cohort but the detection of SGA
and sIUGR are in line with the previously reported tendency to
have very low birth weight (BW < 1500 gram5,18). To date, there
are no previous reports of relevant changes in birth metrics in
newborns with THD.

In previous publications the clinical phenotype of THD was
divided into type A and severe type B19, with higher frequency of
perinatal abnormalities, including prematurity in patients with
type B. In our iNTD study group of THD, we could not find a
clear difference that would justify a differentiation into two types
of severity. Furthermore, THD patients did not show an increased
frequency of prematurity compared to the overall incidence as
mentioned above. Perinatal abnormalities, postnatal problems,
achievement of gross motor milestones including walking without
assistance and medication varied regardless of the age of initial
symptoms. Therefore, we propose to abandon this classification.

These observed peri- and postnatal changes indicate that
impairments of biogenic amine neurotransmitter metabolism and
their effects on the fetus start during pregnancy. Embryonic lethality
was reported in TH, DßH and homozygous GCH1knock-out mice
previously20–22. In mice, a rescue until term is possible with L-
Dopa, BH4 or dihydroxyphenylserine supplementation indicating
that noradrenaline, dopamine and BH4 are essential for fetal
development. Homozygous PTPS and Sprknock-out mice, and
GCH1knock-in mice are born visibly normal, have growth retar-
dation postnatally and die after 48 h to a few weeks of age23–26. The
Qdpr−/− mice are indistinguishable from their wildtype littermates
and show normal growth27. Furthermore, genetically rescued PTPS
knock-out, THknock-in and AADCknock-in murine models are
born without obvious morphological abnormality and survive but
show growth retardation23,28,29. These animal models demonstrate
that BH4 regulates catecholamine synthesis through altering TH
protein levels and that the postnatally expected increase of dopa-
mine and TH protein concentration in the brain is disrupted by
BH4 deficiency23,25. Maternal compensation of BH4 and dopamine
deficiency as well as postnatal rescue has been demonstrated to be
possible but limited20–22,24,25,30. Further studies will be needed to
elucidate the disease-related pre- and postnatal findings of our
study and the effectiveness and limitations of maternal metabolic
compensation.

Nonspecific symptoms, such as feeding problems and hyper-
bilirubinemia were the most common postnatal problems in our
study. A small group of patients with arGTPCHD presented with
tremor, jitteriness, irritability and some patients with AADCD
showed temperature instability and/or hypoglycemia postnatally
that could be interpreted as disease-related. Following the post-
natal period, the clinical presentation varied between diseases,
although the symptoms are caused by a similar pathophysiolo-
gical mechanism with the disruption in dopaminergic and/or
serotoninergic neurotransmission. We showed that while
AADCD presented with a variety of non-motor and motor
symptoms31,32, THD had an initial clinical picture clearly
dominated by motor symptoms in addition to developmental
delay starting on average in early infancy. In the case of BH4Ds
our results are similar to previous reports5,17,33,34. Seizures were
typical in DHPRD and PTPSD among BH4Ds while sleep dis-
orders were especially frequent in SRD. These observations can-
not be explained solely by any evidence but some hypotheses can
be generated based on previous reports on different pathways: (1)
Decreased BH4 concentrations and elevated levels of 7,8-dihy-
drobiopterin (BH2) in DHPRD and SRD, in the latter together

with elevated sepiapterin, lead to disturbances in intracellular
BH4:BH2 ratio that codetermines uncoupling of endothelial NOS,
resulting in generation of oxygen radicals35,36. Although the
impact of these perturbations on the clinical picture remains
unclear, interactions between NO concentration and NOS activity
and epileptic discharges37,38 as well as sleep initiation and
maintenance39 have been postulated. (2) The secondary cerebral
folate deficiency occurring frequently in DHPRD40 may result in
severe epileptic encephalopathy41,42. (3) A disturbed melatonin
homeostasis, documented by low urinary sulphatoxymelatonin
levels in patients with SRD could provide another pathophysio-
logical link43.

Our data demonstrate that if recognized correctly, some
disease-related symptoms could raise clinical suspicion and
facilitate prompt diagnosis. Sleep and thermoregulation dis-
turbances were associated with an earlier age at diagnosis and
shorter latency to diagnosis, especially in AADCD. Oculogyric
crises were associated with a longer diagnostic delay, although
they correlated with an earlier age at diagnosis. This observation
implies that oculogyric crises occur early and that correct
recognition of the symptom could potentially shorten the diag-
nostic delay. Developmental delay was associated with a later age
at diagnosis and a longer diagnostic delay in primary disorders of
biogenic amine metabolism in contrast to BH4Ds. This could be
explained on one hand by the fact that developmental delay is a
rather nonspecific symptom and on the other hand that it could
be recognized more easily and earlier by a physician or parents.
We could furthermore show an association of dystonia with
higher age at diagnosis and a longer latency to diagnosis, probably
due to the broad spectrum of differential diagnoses of dystonia44.

Initial biochemical profiles largely revealed disease-specific
patterns but our data showed occasional atypical biochemical
findings that underline the importance of a careful interpretation
of pterins and biogenic amines together with the clinical picture.
For example, some patients with AADCD had abnormal con-
centrations of tetrahydrobiopterin and neopterin in CSF, in
contrast to previous literature that emphasized the importance of
normal pterin findings in AADCD32. Therefore, one should be
aware of potential secondary disturbances most likely without
clinical significance. Our data confirm that arGTPCHD can
present with or without HPA but we also found some exceptions
to the rule about which disorders present with HPA. Our registry
contains one patient with a new variant in the QDPR gene
showing repeatedly normal phenylalanine levels in plasma but
high levels in CSF. This observation needs to be studied with
further functional analyses.

Furthermore, we observed that ad/arGTPCHD and PTPSD
may also have increased or normal HVA and 5-HIAA in CSF in
contrast to DHPRD and SRD, in which HVA and 5-HIAA were
mainly decreased. Pterin profiles tend to be consistent and
disease-specific in BH4Ds, except in DHPRD. Also, in line with
previous reports, we observe that pterin measurements in urine
and CSF are more sensitive than in DBS or plasma3,17.

Hyperprolactinemia is frequently used as a marker of central
dopaminergic deficiency, but normal prolactin levels do not
exclude a neurotransmitter disorder45. Our data support this
statement, as prolactin levels were scattered from low to high in
disorders where cerebral dopaminergic deficiency with decreased
HVA was documented. When interpreting blood prolactin, other
causes for hyperprolactinemia must also be considered46.

Our results also provide additional insights into the inter-
dependence of disease-specific diagnostic delay and diagnostic
tools. The suspected diagnoses were confirmed most frequently
by mutational analysis alone or in combination with specific
biochemical tests. Those diseases that had abnormal NBS due to
HPA had a significant shorter diagnostic delay. Overall, DHPRD
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could be diagnosed fastest, probably due to easily accessible
DHPR activity measurement in DBS. In arGTPCHD and
DHPRD a tendency to diagnose still asymptomatic children
before disease onset, following a pathological NBS result was
found. This underlines the importance of a complete, systematic
and timely diagnostic work-up of every HPA as recommended in
the recently published guidelines17. It is important to note, since
arGTPCHD and DHPRD rarely may show normal phenylalanine
concentrations on NBS, a diagnostic re-evaluation should be
performed if there is strong clinical suspicion.

As adGTPCHD and SRD are not detectable on NBS for PKU, the
finding of a prolonged diagnostic delay in these disorders is not
unexpected. In our study, SRD had the highest latency to diagnosis
as reported previously5,33. This is presumably caused by the absence
of an easily accessible biochemical marker and the challenging
clinical picture of SRD. In addition, characteristics of SRD such as
oculogyric crises and sleep disorders may remain undetected or be
misinterpreted. Complementary to the literature, our study
demonstrated that patients with adGTPCHD may show symptoms
as early as 6 months of age, and that the mean latency to diagnosis
is approximately 5 years, shorter than the previously reported
latency of 13–16 years34,47. Considering that PTPSD was first
described in the 1980s48, AADCD and THD in the 1990s49,50 and
SRD in 200151, our observation of a tendency to a shortened
diagnostic delay in correlation with more recent birth dates con-
firms that enhanced knowledge and awareness of these diseases,
efforts to establish a standardized algorithm for diagnostic work-up,
and broadened availability of (genetic) diagnostic tools all likely
reduce patients’ diagnostic odyssey. The latter aspect can be sup-
ported by the fact that the implementation of next-generation
sequencing-based diagnostics using approaches such as targeted
resequencing, whole-exome and whole-genome sequencing has
strongly changed clinical genetics52,53. Since the first whole-exome
sequencing proof of concept experiments in 200954,55, the discovery
of disease-causing genes using these technologies has increased
rapidly. The impact of modern genetic diagnostic tools on the
length of the diagnostic process in patients suspected of having rare
genetic conditions has been52,56 and will be an interesting subject
for further studies.

In our study no patient with BH4D was reported as deceased,
in contrast to the mortality rate in PTPSD and DHPRD in a
previous retrospective study5. This can be explained by the size of
our study population and by the fact that only 10 out of 161
patients with BH4Ds were born before the establishment of
newborn screening programs in the 1980s.

Based on the fact that the inclusion criteria and requirements
for patient enrollment into the iNTD registry were strictly
defined and bound to complex ethical standards, the number of
patients enrolled is not comparable with earlier retrospective
registry studies (e.g. JAKE; http://www.biopku.org/home/jake.asp,
BIODEF57; http:// www.biopku.org). Our registry provides data
depending on the participating centers and does not present the
overall incidence of the diseases worldwide. In addition, the
medical history module of the registry analyzed in our study is
the only part, which gathers data summarized by treating phy-
sicians, parents, caregivers as well as patients. Therefore, some
information was retrospective or missing.

Following our observation of a high incidence of prematurity
and SGA in some diseases, a revision of the exclusion criterion
“BW < 1500 gram” will be proposed to the iNTD steering com-
mittee to avoid an underestimation of patients who are born
preterm or with very low birth weight. The results of our study
reinforce that international cooperation and patient registries are
essential for a better understanding of rare diseases as well as for
harmonization of diagnostic algorithms and standards of patient
care in inherited disorders of neurotransmitter metabolism.

In conclusion, we describe comprehensive insights into pre-,
peri- and postnatal presentations of inherited disorders of bio-
genic amines, as well as specific clinical and biochemical patterns
affecting the diagnostic process. Our results emphasize the
importance of recognizing the potential early signs and of careful
and systematic clinical evaluation to improve diagnostic
approaches in these rare neurodevelopmental diseases. These
observations should serve as a basis for further studies on the
evolving phenotypic spectrum in disorders of biogenic amines.

Methods
The International Working Group on Neurotransmitter related Disorders
(iNTD). The iNTD patient registry, which is web-based and password-protected
(https://www.intd-registry.org), was approved by the Institutional Research Ethics
Board (IRB) Heidelberg University Hospital (S-471/2014, registered German
Clinical Trials Register, https://www.drks.de, DRKS00007878) on December 22nd

2014 and subsequently by all contributing centers11. All procedures followed were
in accordance with the Helsinki Declaration of 1975, as revised in 2013. Written
informed consent was obtained from all study participants or their legal guardians.
iNTD was founded without any industry involvement or sponsorship.

Exclusion criteria of the iNTD patient registry: Patients with severe
comorbidities, e.g. Down syndrome, intraventricular hemorrhage (°III-IV) in the
newborn period, very low birth weight (<1500 gram), kernicterus, embryofetal
disease due to maternal alcohol or drug abuse.

Definitions. Gestational age was calculated based on completed weeks of gestation.
Preterm pregnancy was defined according to the International Classification of
Disease as delivery before 37 completed (<37+ 0) weeks of gestation58,59. Small for
gestational age (SGA) was defined as birth weight (BW) below the 10th percentile.
Microcephaly was defined as head circumference at birth (BHC) below the 3rd

percentile60. Symmetrical intrauterine growth restriction (sIUGR) was used as only
referring to parameters available postnatally and was defined as BW, BHC and
birth length (BL) below 10th percentile61. We defined the neonatal period as the
first 30 days of life. Infancy referred to 31 days to 24 months, childhood to 3–12
years, adolescence 13–18 years and adulthood older than 18 years.

Initial symptoms are the first clinical findings that are considered to be disease
related, observed by the physician, parents or the patient and can be both objective
and subjective. The evaluation of the initial symptoms was based on retrospective
data. The following symptoms were available in the medical history form in a
controlled vocabulary: encephalopathy, developmental delay (psychomotor
retardation), microcephaly, seizures, muscular symptoms, dystonia, dyskinesia,
oculogyric crisis, thermoregulation disorders, sleep disorders and hypoglycemic
episodes. Localization and type of muscular symptoms as well as type, frequency
and length of seizures could be specified. Free text boxes were available for
additional symptoms. The frequency of initial symptoms was analyzed in both age-
dependent and age-independent manner. Additional symptoms included only in
free text boxes were described age-independent.

Selective screening stands for a diagnostic process following onset of clinical
symptoms. High-risk family screening describes a targeted diagnostic work-up
initiated due to a confirmed disease case in the family, before or after onset of an
individual’s clinical symptoms.

To describe the initial biochemical presentation (at time of diagnosis), we
analyzed the most frequently measured parameters among 30 biochemical
parameters listed in the registry.

Statistical analysis. Statistical analyses were performed in R (version 4.0.2).
Numeric variables were compared between two independent groups with Wilcox-
Mann-Whitney (WMW) test, or t-test with Welch correction, setting P < 0.05 as
significant. Analysis of variance (ANOVA) was used to compare numeric variables
between more than two groups. The Benjamini-Hochberg adjustment was applied
to correct type 1 error, when applicable. No a-priori hypotheses were tested and
therefore all p-values had descriptive character. Classification and regression trees
(CART) were used to identify constellations of symptoms that might have an
impact on age at diagnosis or diagnostic delay (= age at diagnosis - age at initial
symptom) for different diseases. Standard deviation scores (SDSs) for anthropo-
metric variables at birth were computed according Fenton et al.62

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are not publicly available
due to existing data protection laws but are available from the corresponding author
(T.O.) upon reasonable request and within the limitations of the informed consent. All
requests for raw and analyzed data will be reviewed by the iNTD executive board and
iNTD members within 72 h. Data ownership is maintained by the members of the iNTD
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network. All participating iNTD members approved this study. Source data for all the
figures, tables 2–4andsupplementary table 1 are provided with the paper. Data
transferred from the JAKE database (http://www.biopku.org/home/jake.asp) was not
analyzed in this study. Source data are provided with this paper.
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