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Introduction: Adrenocorticotropic hormone (ACTH) is produced from proopiomelanocortin,
which is predominantly synthetized in the corticotroph and melanotroph cells of the anterior
and intermediate lobes of the pituitary gland and the arcuate nucleus of the hypothalamus.
Although ACTH clearly has an effect on adrenal homeostasis and maintenance of steroid
hormone production, it also has extra-adrenal effects that require further elucidation.

Methods:We comprehensively reviewed English language articles, regardless of whether
they reported the presence or absence of adrenal and extra-adrenal ACTH effects.

Results: In the present review, we provide an overview on the current knowledge on
adrenal and extra-adrenal effects of ACTH. In the section on adrenal ACTH effects, we
focused on corticosteroid rhythmicity and effects on steroidogenesis, mineralocorticoids
and adrenal growth. In the section on extra-adrenal effects, we have analyzed the effects
of ACTH on the osteoarticular and reproductive systems, adipocytes, immune system,
brain and skin. Finally, we focused on adrenal insufficiency.

Conclusions: The role of ACTH in maintaining the function of the hypothalamic–pituitary–
adrenal axis is well known. Conversely, if we broaden our vision and analyze its role as a
potential treatment strategy in other conditions, it will be evident in the literature that
researchers seem to have abandoned this aspect in studies conducted several years ago.
We believe it is worth re-evaluating the role of ACTH considering its noncanonical effects
on the adrenal gland itself and on extra-adrenal organs and tissues; however, this would
not have been possible without the recent advances in the pertinent technologies.

Keywords: adrenal gland, adrenocorticotropic hormone, adrenal insufficiency, proopiomelanocortin, adrenal
diseases, ACTH, POMC, extra-adrenal effects
INTRODUCTION

Adrenocorticotropic hormone (ACTH) was first described in 1933, and after nearly 20 years, it was
demonstrated that this polypeptide hormone stimulates adrenocortical activity (1–3). ACTH is
exclusively produced from prohormone proopiomelanocortin (POMC), which is majorly
synthetized in the corticotroph and melanotroph cells of the anterior and intermediate lobes of
the pituitary gland and the arcuate nucleus of the hypothalamus. ACTH synthesis has also been
described in other organs, such as the skin (4). After synthesis and folding, POMC is transported in
vesicles and processed in secretory granules before ultimately reaching the plasma membrane (5).
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The selective cleavage of POMC by prohormone convertase (PC)
and the timing of secretion are cell-specific and follow the
regulated secretory pathway, along with other hormones (6)
because of a highly conserved sorting signal motif (7). In
immature secretory granules, PC1/3 and PC2 enzymes process
POMC. In the anterior pituitary lobe, PC1/3 is responsible for
the posttranslational cleavage that generates 16-kDa N-POMC,
ACTH, and b-lipotropin. In the intermediate pituitary lobe and
hypothalamus, a more complex processing of POMC, including
PC2 activity along with other enzymes, generates more active
peptides, such as a-melanocyte-stimulating hormone and b-
endorphin (8).

After its cleavage from POMC by PC1/3, ACTH is secreted by
mature granules from the anterior lobe of the pituitary gland into
the circulation, targeting its receptor on peripheral cells, the
melanocortin 2 receptor (MC2R). In addition to MC2R, which is
highly specific for ACTH, other melanocortin receptors (MCRs;
MCR1, MCR3, MCR4, and MCR5) can bind to ACTH and other
POMC-derived peptides. These receptors are expressed in
various tissues (Table 1). MC2R is part of the melanocortin
receptor family, a group of class A G-protein-coupled receptors
(GPCRs) that share binding to melanocyte-stimulating hormone
peptides (9) and are the smallest GPCRs known. In contrast to
other MCRs, MC2R binding requires melanocortin-2 receptor
accessory protein 1 (MRAP) for proper migration to plasma
membrane and receptor-ligand complex formation and
downstream signaling (10). The function of MRAP is crucial to
ACTH function, and mutations in its gene cause ACTH
resistance syndrome and type 2 familial glucocorticoid
deficiency (10).

Similar to other GPCRs, MC2R activation leads to an increase
in intracellular cyclic adenosine monophosphate (cAMP)
stimulating the protein kinase A (PKA) signaling pathway
(11). Other intracellular pathways activated by ACTH are
mitogen-activated protein kinase (12) and cAMP response
element-binding protein (13). A role of calcium influx that
cooperates with ACTH-mediated steroid synthesis has also
been identified, and many other secondary messengers are
involved in ACTH downstream signaling, although their
independence from the PKA pathway is still under discussion
(14). The interaction between MC2R and ACTH in the adrenal
glands leads to transcription of genes responsible for
steroidogenesis, such as the steroidogenic acute regulatory
protein (StAR) (14).

Aim of this review is to provide an overview of the effects of
ACTH, focusing on the impact of extra-adrenal and non-
canonical signaling in health and disease. First, we will briefly
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summarize evidence on the impact of ACTH signaling on
glucocorticoid, mineralocorticoid and androgen secretion, the
role in mediating adrenal growth and development and the
effects on steroidogenesis and gene expression. Then, we will
describe the effects of ACTH on the osteoarticular and
reproductive systems, adipocytes, immune system, brain and
skin (Figure 1). Lastly, we will provide an overview of the role of
ACTH in adrenal disorders, focusing on adrenal insufficiency
and suggesting possible implications of its excess and defect.

We performed a research of published literature with no time
constraints. Only English papers were included. When possible,
results from human studies were preferred over in vitro or
animal studies. Being out of the main scope of this review,
papers focusing on ACTH as a diagnostic marker for adrenal
diseases were excluded.
ADRENAL EFFECTS OF ACTH

Corticosteroid Rhythmicity
It is well established that circadian changes in ACTH and
glucocorticoids are associated with expression of clock-related
genes (15–19). In adrenal tumors, the clock machinery that
mitigates the response to ACTH and stress favors a higher and
more arrhythmic corticosteroid secretion when dysregulated,
suggesting that hypercortisolism exerts effects on circadian
genes, contributing to the worsening of disease-related
comorbidities (16, 20, 21). Circadian gene expression is
dysregulated in patients with adrenal insufficiency and
normalize under more physiological timing of glucocorticoids,
emphasizing the importance of synchronization of clocks to
coordinate the endogenous and exogenous signals to achieve
cellular homeostasis (22, 23).

Effects on Steroidogenesis
ACTH is the key hormone controlling steroidogenesis in the
adrenal gland, inducing responses in both the short and long
terms. Acute and chronic ACTH stimulation lead to the
mobilization of cholesterol, the first substrate for steroidogenic
pathway (24), owing to the increase in StAR gene transcription (25,
26). StAR catalyzes the conversion of cholesterol to pregnenolone,
the first and limiting step of steroidogenesis. Other steroidogenic
enzymes, such as P450scc, the mitochondrial cholesterol side-chain
cleavage enzyme that catalyzes conversion of cholesterol to
pregnenolone, and P450C11 (11beta-hydroxylase), which
catalyzes the transformation of deoxycorticosterone to
TABLE 1 | Melanocortin receptors (MCRs) and main sites of expression.

Receptor Tissues

MC1R Melanocytes and immune cells
MC2R Adrenal cortex, adipocytes, testis, prostate, endometrium, and immune cells
MC3R Hypothalamus, limbic system, immune cells, placenta, gut, and kidney
MC4R Hypothalamus, limbic system, brain, spinal cord, and immune cells
MC5R Muscles, liver, spleen, lungs, brain, and adipocytes
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corticosterone and that of 11-deoxycortisol to cortisol (25), are
responsive to chronic ACTH stimulation. Through CYP17A1,
ACTH promotes the secretion of androgen precursors,
dehydroepiandrosterone (DHEA), its sulphated derivative
DHEAS and androstenedione (27). Furthermore, an increase in
size of the adrenal gland occurs after chronic ACTH
administration, suggesting that this hypertrophy is a consequence
of steroidogenesis enhancement (28). Under physiological
conditions, ACTH mainly controls cortisol and androgen
precursors secretion, even though the concept that aldosterone
production is independent of ACTH is now outdated. As ACTH
binding to MC2R also stimulates aldosterone secretion in addition
to cortisol, even doses of ACTH within the physiological range can
induce aldosterone synthesis (29–32) through a slow, but sustained,
Ca2+ influx (33). In fact, ACTH binding to MC2R results in the
production of second messengers (cAMP together with Ca2+

influx). This pathway, through positive feedback loops, enhances
steroid secretion (14). Different exposures to ACTH might affect
aldosterone production differently; in fact, under continuous
intravenous ACTH infusion aldosterone increases and then
returns to basal levels within 72 hours, but pulsatile
administration of ACTH, which mimics its physiological
release, causes aldosterone to remain at high levels (34).
However, most results on strong aldosterone stimulation by
Frontiers in Endocrinology | www.frontiersin.org 3
ACTH are limited to in vitro studies (14) while evidence from
animal models suggest an inhibitory effect of Angiotensin II
signaling on cAMP and Ca2+ intracellular cascades, that are
activated by ACTH binding to MC2R, thus dampening the
in vivo effects on mineralocorticoid secretion.

Effects Against Reactive Oxygen Species
ACTH-induced steroidogenesis reactions involve lipid
peroxidation and production of reactive aldehyde metabolites
that generate reactive oxygen species (ROS) and thus a
considerable cellular oxidative stress. Consequently, several
enzymes involved in the detoxification are mobilized in
adrenal cells. Aldo–keto reductases participate into this
detoxification process, and their expression is ACTH-
dependent (35). Moreover, in human and rat adrenal cells,
seladin-1 (selective Alzheimer disease indicator 1, also named
24-dehydrocholesterol reductase) expression and redistribution
to the nucleus occur after ACTH treatment (36). Finally,
increased expression of SOD2, (mitochondrial superoxidase
dismutase 2, a metalloenzyme involved in the scavenging of
mitochondrial ROS) is also induced by ACTH (37). Therefore,
ACTH regulates the expression of enzymes responsible for
steroid biosynthesis and nonsteroidogenic enzymes involved in
preventing ROS-induced cell toxicity.
FIGURE 1 | Glucocorticoid independent effects of adrenal and extra-adrenal ACTH. This figure was created using Servier Medical Art templates, which are licensed
under a Creative Commons Attribution 3.0 Unported License; (https://smart.servier.com). 3b- HSD, 3b-Hydroxysteroid dehydrogenase; AKR1B7, Aldo-keto
reductase family 1 member B7; E, epinephrine; NE, norepinephrine; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; P450scc, cholesterol side-
chain cleavage enzyme; PNMT, phenylethanolamine N-methyltransferase; Seledin-1, selective Alzheimer disease indicator 1; SOD2, superoxidase dismutase 2; StAR,
steroidogenic acute regulatory protein; VEGF, vascular endothelial growth factor. H, human study; non-H, non-human study; §, Published post-2010; §§, Published
between 2000 and 2009; §§§, Published prior to 2000.
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Effects on Adrenal Growth and Adrenal
Blood Flow
An in vitro study showed that ACTH leads to increased cell death
through the apoptosis of isolated cells in cultures of the adrenal
cortex; however, the zona fasciculata and zona reticularis are
more resistant to the cytotoxic and antimitogenic effects of
ACTH than zona glomerulosa (38). In contrast with these
results, in animal models, ACTH regulates adrenal gland
trophicity (28, 39) and increases adrenal blood flow (40).
Furthermore, glucocorticoid-induced suppression of ACTH
inhibits cell proliferation, induces apoptosis, decreases adrenal
weight and cellularity of the adrenal cortex, and triggers vascular
changes through loss of vascular endothelial growth factor
protein expression, thereby causing regression of the vascular
network (39). Moreover, knockout of the MC2R gene in mice
leads to marked atrophy of the zona fasciculata (41) and high
levels of MC2R expression in the undifferentiated zone, which
contains stem cells supports the notion that ACTH may play an
important role in adrenal cell differentiation and the importance
of the ACTH–MC2R complex in adrenal development (42).
Differences between in vitro cell cultures and in vivo models
with regard to cell death by apoptosis are attributable to
intraglandular factors, such as autonomic innervation and
vascularization, supporting the importance of structural
integrity and compartmentalization of the adrenal gland and
suggesting that ACTH is primarily a differentiation factor that
controls steroid secretion rather than a proliferative factor (38,
43, 44).

Effects on Gene Expression
Different expression of key steroidogenic enzymes lead to zone-
specific production of steroid hormones responsible for a distinct
steroidogenic phenotype among the three constituent zones of
the adrenal cortex (45–47). The Y1 mouse adrenal-cortical cell
line, a model of normal mouse adrenal cortex cells, has been used
to determine the effects of ACTH on gene expression. After
ACTH stimulation, the levels of various transcripts were
measured after 24 h (48). ACTH increased gene expression
involved in cholesterol synthesis and mobilization and
steroidogenic enzyme synthesis, confirming the importance of
this hormone in the steroidogenic biosynthesis pathway.
Conversely, >50% of studied transcripts were downregulated
and affected DNA replication, mitotic cell cycle, and RNA
processing and nuclear transport, suggesting a possible
modulatory effect of ACTH on adrenal cortex cell growth (48).

Effects on Adrenal Medulla
Although ACTH is known to be most effective on the adrenal
cortex, some studies suggest that it can also influence the adrenal
medulla. Hypophysectomy induces a decrease in both the
adrenal epinephrine content and phenylethanolamine N-
methyltransferase (PNMT)—which converts norepinephrine to
epinephrine—in rats. These alterations were restored
upon ACTH injection (49, 50). The increase in PNMT by
long-term ACTH treatment also occurs in healthy rats,
suggesting that ACTH-induced adrenal stimulation influences
Frontiers in Endocrinology | www.frontiersin.org 4
the enzyme activities of adrenal medulla (51). Moreover, after
ACTH stimulation test, both epinephrine and norepinephrine
increased in adrenal venous blood in humans through ACTH-
induced increase in blood flow and enzyme activities (52). These
mechanisms are possibly mediated by ACTH-induced increase
in adrenal medulla exposure to glucocorticoids, that are active
inductors of PNMT (53).
EXTRA-ADRENAL EFFECTS OF ACTH

Osteoarticular System
Conventionally, ACTH activity through the increase in
glucocorticoid level has a detrimental impact on bone mass,
resulting in bone loss and osteoporosis. This is only true in
endogenous or exogenous glucocorticoid excess (54, 55); at
physiological levels, cortisol does not appear to have a negative
effect on bone differentiation or proliferation (56). The
prevalence of osteoporosis seems higher in patients with
adrenal Cushing’s syndrome, presenting typically with ACTH
suppression, than in those with Cushing’s disease (55, 57–59).
These effects are undoubtedly due to adrenal androgen reduction
derived from low ACTH levels, but a protective role of ACTH on
bone has also been proposed. Osteoblasts express high-affinity
ACTH receptors. Furthermore, high-dose ACTH stimulates
osteoblastic proliferation and significantly increases osteoblast
collagen synthesis (60–62). Conversely, lower ACTH doses seem
to oppose osteoblast differentiation (60). ACTH stimulates
VEGF production from osteoblasts and inhibits osteoclast
differentiation in vitro (63, 64). Notably, murine osteoclasts are
able to synthesize and release ACTH (61), so locally produced
ACTH might also regulate bone metabolism. Finally, ACTH
administration was proposed as a therapy for osteoarticular
inflammatory conditions (65), for example it is included in
guidelines for gout management (66), not only because of
ACTH-induced glucocorticoid production but also because a
direct role of ACTH was speculated (67, 68).

Reproductive System
Males. MC2R receptor is expressed in mouse fetal testis, in both
gonocytes (69) and Leydig cells (70, 71). The testis MC2Rs seem
to be functionally active and stimulate testosterone production in
fetal and neonatal mice in a dose-dependent manner; however,
the effect is lost in postpubertal mice (70), suggesting that ACTH
regulates testosterone production in fetal but not in adult testes.
The importance of ACTH signaling in the development of
testicular adrenal rest tumors (TART) in conditions
characterized by early exposure to increased levels of
adrenocorticotropin will be discussed in the section on adrenal
disorders. Data on the prostate are scarce. Prostate activated
MC2R seems to promote cell proliferation in a concentration-
dependent manner (72). Therefore, targeting MC2R signaling
has been proposed as a novel strategy for prostate carcinoma
treatment (73). Interestingly, local administration of ACTH1–24
into the hypothalamic periventricular region of male rats
induced penile erection via melanocortin-3 receptor (74).
August 2021 | Volume 12 | Article 701263

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hasenmajer et al. Non-Canonical Effects of ACTH
Females. During a clinical trial on female premenopausal
patients with Addison’s disease, menstrual disturbances were
recorded in four of nine patients after administration of high-
dose tetracosactide (ACTH1-24) (75). Robust MC2R expression
was found in the glandular epithelium and lesser degree in
stromal cells of human endometrium, suggesting the direct role
of ACTH in regulating endometrial glandular secretion (76).
Moreover, high ACTH1-24 concentrations promote involution
of vascular structures in cultured decidua (76). MC2R is also
expressed in bovine and rabbit ovaries, and a direct effect of
ACTH on ovarian steroidogenesis was proposed (77, 78).
However, despite in vitro studies have shown promising results
in animal models, human studies are lacking. Most clinical trials
on the role of ACTH in female reproduction have focused on its
effects on androgen production in polycystic ovary syndrome
(PCOS), and results suggested a possible contribution of
dysregulated adrenal steroidogenesis in the pathogenesis of
hyperandrogenism in PCOS (79).

Adipocytes and Insulin Sensitivity
The melanocortin system plays a crucial role in energy
expenditure (80), but the direct role of ACTH is still unclear.
MCR2 mRNA is expressed in murine adipocytes (81, 82). ACTH
can stimulate lipolysis in vitro in rodent adipose tissue through
MC2R-dependent cAMP/PKA activation (80, 83). MRAP seems
to play a critical role in the regulation of ACTH-induced lipolysis
(84), and insulin resistance and glucose intolerance have been
shown inMRAP2 knockout mice (85). However, ACTH does not
seem to have a role in human adipose lipolysis (86, 87).

ACTH also seems to improve brown adipose tissue function
in obese rat and mouse, an effect opposed by corticosterone.
Moreover, ACTH increases glucose uptake in isolated brown
adipocytes in the absence of insulin (88–90). Conversely, in
cultured white mouse adipocytes, ACTH has been shown to
directly induce insulin resistance and increase pro-inflammatory
adipokine expression (82). Moreover, it has been found that
ACTH is also a potent inhibitor of leptin expression (91). Waist
circumference, prevalence of diabetes mellitus, and dyslipidemia
are not significantly different in patients with pituitary or adrenal
Cushing’s syndrome (55, 92). To our knowledge, no clinical
study has evaluated direct metabolic effects of ACTH in humans,
either in physiological or pathological conditions.

Immune System and Inflammation
When analyzing the effects of ACTH on immunity, it is
imperative to identify the distinction between glucocorticoid-
mediated and glucocorticoid-independent effects. In fact,
glucocorticoids are powerful modulators of the immune system
(93), but some effects of ACTH and other POMC-related
peptides are independent from the adrenal response to
corticotropin. MCRs have been described in most immune
lineages (94), including T and B lymphocytes, CD14+

monocytes, natural killer cells, and granulocytes. The
activation of MCRs, and particularly of the MC3R, has anti-
inflammatory effects, including modulation of T lymphocyte
cytotoxicity and tolerance (95, 96) and inhibition of NF-kB
Frontiers in Endocrinology | www.frontiersin.org 5
signaling, which appears to mediate a reduction in
inflammatory cytokine secretion and adhesion molecule
expression (97–99). However, data on the direct impact of
ACTH on inflammation are lacking, mostly due to the
promiscuity of other MCRs. In fact, although MC2R is
selective for ACTH, the possibility of cross-binding of other
MCRs, such as MC3R (100), on immune cells has decreased the
reliability of studies on MC2R−/− mice. Very recently, MC2R
expression was confirmed on T regulatory Lymphocytes, and
ACTH therapy was shown to promote allograft acceptance after
heart transplant in mice (101). This supports a tolerogenic role of
ACTH in inflammation, that would partially explain the efficacy
in inflammatory diseases such as gout.

Brain
MC4R activation displays neuroprotective and neuroregenerative
effects in several models of animal neurodegenerative diseases
(102). ACTH has been found to promote oligodendrocyte
protection (103) and neuron protection from inflammatory,
excitotoxic, and apoptotic damages (104, 105). Dated research
showed that rat embryo neurons respond to ACTH displaying a
denser neuritic network (106) and displayed neuroprotective
effects after hemorrhage insult by activating anti-inflammatory
pathways (107, 108). Melanocortins have been proposed as
therapy for brain injuries and several chronic neurodegenerative
disorders (102). In epilepsy, ACTH is effective against infantile
spasms, and it is administered to children suffering from intractable
seizures and West syndrome (109, 110). Although the specific
mechanisms for this antiepileptic effect remain unknown, beyond
the “conventional” glucocorticoid production, ACTH seems to have
a direct modulation of amygdala neurons leading to decreased
production of the proconvulsant peptide CRH (110). Also, few data
show that patients relapsing forms of multiple sclerosis may benefit
from ACTH gel (111).

Skin
MC1R, expressed in melanocytes, plays a crucial role in the
regulation of cutaneous pigmentation binding a-melanocyte-
stimulating hormone (a–MSH) and ACTH with the same
affinity, with a dose dependent stimulation of melanogenesis
and melanocytes proliferation (112–114). MCR1 extensive
polymorphism is considered the major contributor to the
diversity of human pigmentation (115). Interestingly,
ultraviolet (UV) radiation exposure activates transcription of
both keratinocytes and melanocytes POMC gene, resulting in
increased local production of a -MSH and ACTH, suggesting
that they act as paracrine and autocrine regulators to protect the
skin from UV damage (116, 117).
ADRENAL DISORDERS

Disorders of glucocorticoid secretion involve downstream or
upstream dysregulation of ACTH secretion or activity. Even
though several differences have been described between ACTH-
August 2021 | Volume 12 | Article 701263
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dependent and independent hypercortisolism, chronic adrenal
insufficiency (AI) is characterized by prolonged exposure to
ACTH excess or defect without increased endogenous
glucocorticoids or androgens (118), providing a valuable model
for speculating on the effects of ACTH. Therefore, it will be the
focus of this section.

Primary adrenal insufficiency (PAI) is characterized by
adrenal failure, leading to insufficient cortisol secretion and
increased ACTH levels (118). The increased ACTH and related
peptide levels lead to skin hyperpigmentation, one of the
pathognomonic characteristics of PAI, due to hyperstimulation
of melanocytes. Aside from the effects on the skin, little is known
on the systemic effects of increased ACTH in these patients.
Conversely, patients with secondary adrenal insufficiency (SAI)
have low or inappropriately normal ACTH levels, often due to
pathologic processes or interventions involving pituitary or sellar
or parasellar regions and leading to multiple hormone
deficiencies (118). Another common cause of adrenal
insufficiency (AI) is prolonged exposure to exogenous
glucocorticoids, which is characterized by isolated low ACTH
levels due to the suppression of physiological hypothalamic–
pituitary–adrenal (HPA) function.

Genetic Forms of Adrenal Insufficiency
Most genetic causes of HPA axis impairment are rare, and data
are obtained by case reports or case series. Defects in ACTH
synthesis, receptor, or signaling are among the mechanisms
underlying genetic forms of AI. As previously mentioned,
resistance to ACTH binding at the adrenal glands can be
caused by mutations of the MC2R or MRAP gene and lead to
type 1 and type 2 familial glucocorticoid deficiency, respectively.
Alterations in ACTH synthesis include syndromes associated
with pituitary hypoplasia or aplasia and isolated ACTH
deficiency due to the disruption of POMC, PC1, or TPIT, the
transcription factor responsible of POMC synthesis in the
corticotroph pituitary cells (118).

Generally, the presenting signs and symptoms are
hypoglycemia and jaundice due to AI, usually developing
during the neonatal period or infancy although the age of
onset is variable (119). Failure to thrive, seizures, and frequent
infections are also common features. Patients with defective
ACTH receptor or signaling present with hyperpigmentation
and an unusually tall stature (120) due to the accumulation of
ACTH and other POMC metabolites. Other similar genetic
causes of AI characterized by increased ACTH and other
POMC metabolites include defective steroidogenesis,
peroxisome defects, mitochondrial defects, adrenal dysgenesis,
and impaired redox homeostasis (118).

In contrast, in diseases affecting POMC synthesis ACTH
levels are low or undetectable, and although these syndromes
share AI with those formerly described, they differ under many
other aspects. Interestingly, TPIT disruption only affects POMC
production from the pituitary gland, whereas other sites of
synthesis, such as the skin and hypothalamus, seem preserved
(121); affected patients lack other signs and symptoms that are
present in POMC defects. In fact, patients with monogenic
POMC and PC1 defects show altered pigmentation and
Frontiers in Endocrinology | www.frontiersin.org 6
auburn hair, due to the lack of a-melanocyte-stimulating
hormone, and hyperphagic obesity usually presenting during
infancy, due to defective POMC hypothalamic signaling (119).

Acquired Adrenal Insufficiency
The acquired forms of PAI and SAI are more common and better
studied than their genetic counterparts. However, data on the
contribution of ACTH in establishing the clinical picture and
prognosis, aside from adrenal effects and canonical hyper- or
hypo-pigmentation, are still limited. In male patients affected by
congenital adrenal hyperplasia, prolonged and early exposure to
high ACTH levels can lead to the development of testicular
adrenal rest tumors (122), probably due to the proliferation of
totipotent steroidogenic cells, which can ultimately cause
infertility and altered testicular hormone secretion (122). It has
been suggested that early exposure to high ACTH levels is crucial
for the proliferation of pluripotent cells into TART (122). In
some cases, a similar clinical picture has been described in other
forms of PAI such as adrenoleukodystrophy (123).
DISCUSSION

The pleiotropic effects of ACTH are well known. However, its use
as a therapeutic agent in the clinical practice is currently limited
to selected diseases such as infantile spasms or anti-
inflammatory resistant gout, as previously described. In these
conditions, especially in infantile spasms in which ACTH
treatment is more broadly used, therapeutic effects and
treatment-related adverse events largely rely on increased
glucocorticoid secretion secondary to ACTH stimulation of the
adrenal cortex (124). Furthermore, no conclusive evidence is
available on the effects of its excess and defect in AI.

Even under optimal glucocorticoid replacement, patients
affected by PAI show decreased quality of life (125) and
increased mortality, with infections and cardiovascular and
respiratory diseases as leading causes of death (126–128). In
patients with hypopituitarism, AI has been associated with
increased risk of death (129), and among patients with AI,
those with SAI showed higher mortality (130); however, this
result has not been confirmed by a more recent study (127).
Cardiovascular mortality in patients with AI has been reported to
be higher in female patients (128) and is associated with former
comorbidities (131). Moreover, despite the presence of normal
visceral fat, patients with PAI have an increased number of
cardiovascular risk biomarkers (132). As previously described, in
vitro studies have yielded confounding results on the effects of
ACTH on insulin sensitivity and adipose tissue. Given the lack of
conclusive data, studies on the possible role for ACTH excess in
metabolic complications of PAI could provide useful insights.

Recent studies have shown immune alterations in patients
with PAI and SAI (23, 133), which were partially restored by
replacement therapies more respectful of circadian cortisol
profile (22, 23). Even though subgroup analyses did not show
any differences in outcomes after switch to modified release
hydrocortisone between PAI and SAI (23), the study from Isidori
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hasenmajer et al. Non-Canonical Effects of ACTH
and colleagues was not powered to investigate specific effects of
ACTH on immune function in AI at baseline or after therapy
switch, therefore possible differences could have been
unrecognized. More studies are necessary to investigate
this aspect.
CONCLUSIONS

The role of ACTH in maintaining adrenal homeostasis and
participating in the HPA axis is self-evident. However, after an
initial number of studies on its potential as a therapeutic strategy
in many diseases and conditions, researchers seem to have
abandoned the “corticotropin path” and have focused more on
its downstream hormone pathways (glucocorticoids and
androgens). Owing to the advances in knowledge and
methodologies, it is time to rediscuss the role of ACTH in
affecting general outcomes in adrenal diseases and the possible
use of its noncanonical effects to address unmet needs.
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