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Abstract We study kinetic models for traffic flow characterized by the property of
producing backward propagating waves. These waves may be identified with the
phenomenon of stop-and-go waves typically observed on highways. In particular, a
refined modeling of the space of the microscopic speeds and of the interaction rate
in the kinetic model allows to obtain weakly unstable backward propagating waves
in dense traffic, without relying on non-local terms or multi–valued fundamental
diagrams. A stability analysis of these waves is carried out using the Chapman-
Enskog expansion. This leads to a BGK-type model derived as the mesoscopic limit
of a Follow-The-Leader or Bando model, and its macroscopic limit belongs to the
class of second-order Aw-Rascle and Zhang models.

1 Introduction

There are mainly three modeling scales in the mathematical description of vehicular
traffic flow. The microscopic scale is based on the prediction of trajectories of
individual vehicles by systems of ordinary differential equations. The macroscopic
scale is based on the assumption that traffic flow behaves like a fluid where
individual vehicles cannot be identified, but a macroscopic conservation law for the
number of vehicles rules the dynamics. Here, the flow is represented by a density
function and evolves in space and time by transport equations. The intermediate
scale is the mesoscopic scale. Here, kinetic equations govern the dynamics. Those
equations are characterized by a statistical description of the microscopic states of
vehicles but, at the same time, still provide the macroscopic aggregate representation
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of traffic flow, linking collective dynamics to interactions among vehicles at a
smaller microscopic scale.

In the present chapter we study non-homogeneous kinetic models for vehicular
traffic flow. In particular, we investigate the common and well-established idea that
non-local terms are necessary to observe backward propagation of waves in dense
traffic [13]. We show that the model in [17] naturally encloses backward propagating
waves, although these waves may be unstable. We include a first stabilization term
including the effect of uncertainty in the braking rate [19]. We propose a more
refined choice of the interaction rate which allows us to obtain weakly unstable
waves propagating back in congested traffic situations without considering non-
local terms. More precisely, drawing inspiration from the Knudsen number in
kinetic gas-dynamics, we prescribe the interaction rate as a suitable function of
the density and its space derivative. The backward propagating waves may still be
unstable in the sense that they may exhibit unbounded growth in time. We study the
appearance of these instabilities by considering BGK-type (Bhatnagar, Gross and
Krook [4]) models in the limit of constant but sufficiently small interaction rates. In
this regime it has been shown in [5] that Enskog-like terms provide a stabilization
effect. However, in that work the stabilization is unfortunately too strong and it
implies that, for example, stop-and-go waves will not occur. Following the approach
introduced in [11], we derive a weakly unstable BGK model modifying the design
of the space of microscopic speeds. Further, we obtain by suitable limits from this
mesoscopic representation a microscopic follow-the-leader [9] or Bando [3] model,
and a macroscopic Aw-Rascle [2] and Zhang [21] type model.

The results of this work show that multivalued fundamental diagrams and non-
local effects are already naturally included in a kinetic traffic model, provided the
relaxation rate depends on the space derivative of the density, and one considers
non-equilibrium effects. Therefore, there is no need to add non-local effects and
multivalued desired velocities to a kinetic model in order to explain observed
phenomena in traffic flow. These features in fact are already present in standard
kinetic models as non-equilibrium effects.

The chapter is organized as follows. In Sect. 2 we introduce Boltzmann-like
kinetic models for traffic flow characterized by binary interactions with over-
braking, and we provide an experimental evidence of the backward propagation
of waves in dense traffic. In Sect. 3 we analyze the stability of these waves by a
Chapman-Enskog expansion of the BGK approximation of the full kinetic model,
and we compare the results with the Chapman-Enskog expansion of the BGK model
in [5] and of the Aw-Rascle and Zhang model. Finally, in Sect. 4 we derive a
modified version of the BGK model, as in [11], and analyze the stability in the
case of interactions with over-braking. In Sect. 5 we discuss results and future
perspectives.
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2 Backward Propagation of Waves in a Kinetic Traffic Model

A kinetic traffic model for the mesoscopic scale reads as follows

∂tf (x, v, t) + v∂xf (x, v, t) = 1

ε
Q[f, f ](x, v, t), (1)

where f (x, v, t) : R×[0, VM ]×R
+ → R

+ is the mass distribution function of the
flow and the local traffic density ρ(t, x) is given by

ρ(x, t) =
∫ VM

0
f (x, v, t)dv. (2)

We suppose that the space of possible microscopic speeds of the vehicles is bounded
by zero and a maximum speed VM . Further, we assume that f (x, v, t = 0) is
such that density is limited by a maximum density ρM = ∫

f (x, v, 0)dv < ∞.
Throughout this work, we consider dimensionless quantities and normalize for
simplicity VM = 1 and ρM = 1. The source term in (1) is commonly called
collision kernel, in analogy to kinetic models for gas-dynamics, and it models the
change of f due to the microscopic interactions among vehicles. Q[f, f ] can be
modeled as a non-linear integral operator, typical of Boltzmann-type kernels, or as
a linear operator, typical of BGK-type kernels. The quantity ε is positive, and yields
a relaxation rate weighting the relative strength between the convective term and the
source term. It is related to the Knudsen number in fluid dynamics. Generally, ε can
be a function of density ρ, and possibly of its spatial derivative. Here, we consider
both the case ε = ε(ρ, ∂xρ) and the case of a constant rate ε.

2.1 A Boltzmann-Type Kinetic Model for Traffic Flow

In the collision operator we model the adaptation of vehicles’ speeds by binary
car-to-car interaction. This behavior is typical for real-world traffic where usually a
driver reacts to the actions of the vehicle in front. To describe the interactions we
split the operator Q[f, f ] in the difference between a gain term and a loss term.
The former accounts for the increase of f (x, v, t) when a vehicle with velocity v∗
interacts with a leading vehicle with speed v∗, emerging with speed v as a result of
the interaction. The latter accounts for the decrease of f (x, v, t) if a vehicle with
velocity v interacts with a vehicle with speed v∗, emerging with speed different from
v as a result of the interaction. We assume that the velocity of the leading vehicle
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remains always unchanged. More specifically,

Q[f, f ](x, v, t) =
∫ 1

0

∫ 1

0
P(v∗ → v|v∗; ρ)f (x, v∗, t)f (x, v∗, t)dv∗dv∗

− f (x, v, t)

∫ 1

0
f (x, v∗, t)dv∗.

(3)

The core of a kinetic model is the definition of the operator P(v∗ → v|v∗; ρ) that
prescribes, in a probabilistic way, the resulting speed of a vehicle after interacting
with a leading vehicle. The kinetic model for traffic flow studied here is based on
the following interaction rules:

P(v∗ → v|v∗; ρ)=
⎧⎨
⎩P(ρ) δmin{v∗+�a,VM }(v) + (1 − P(ρ)) δmax{v∗−�b,0}(v) v∗ ≤ v∗

P(ρ) δmin{v∗+�a,VM }(v) + (1 − P(ρ)) δmax{v∗−�b,0}(v) v∗ > v∗,

(4)

where P(ρ) ∈ [0, 1] is a decreasing function of the density modeling the probability
of accelerating. The parameters �a and �b are the acceleration and the braking
parameters, respectively, where �a is the instantaneous physical acceleration of a
vehicle. The parameter �b instead corresponds to an uncertainty in the estimate of
the other vehicle’s speed. Indeed, �b = 0 corresponds to no uncertainty: the vehicle
has an exact perception of velocities, and therefore is able to maintain its own speed
v = v∗ when it interacts with a faster vehicle (i.e., when v∗ < v∗), while it can brake
exactly to the speed v = v∗ in case a slower vehicle is ahead (i.e., when v∗ > v∗).
For �b = 0 the model [17] is recovered. More details on the case �b > 0 can be
found in [19]. Note that the model is continuous across the line v∗ = v∗, ensuring
well-posedness, see [16], and that mass conservation holds:

P(v∗ → v|v∗; ρ) ≥ 0,

∫ 1

0
P(v∗ → v|v∗; ρ)dv = 1.

In the space homogeneous case f = f (v, t), the model (1) reduces to a
relaxation to equilibrium which is characterized by a function Mf (v; ρ) such that
Q[Mf ,Mf ] = 0. In analogy to kinetic models for rarefied gas-dynamics, the
function Mf will be called Maxwellian and it allows us to define the flux and the
mean speed of vehicles at equilibrium as

Feq(ρ) = (
ρUeq(ρ)

) =
∫ 1

0
vMf (v; ρ)dv, Ueq(ρ) = 1

ρ

∫ 1

0
vMf (v; ρ)dv.

(5)

For �b = 0 it is proven, cf. [17], that stable equilibria are uniquely defined by
the local density. Moreover, the Maxwellian is a known function of v, it can be
explicitly computed, and depends on x and t only through the local density ρ(x, t).
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Fig. 1 Fundamental diagrams (left) and characteristic speed (right) with 48 discrete microscopic
speeds, �a = 1

4 and �b = �a

r
, r = 1, 2, 3, 4

Further, in the space homogeneous case, the density is a scalar parameter fixed at the
initial time. However, unstable equilibria may also occur, for which the Maxwellian
depends not only on ρ but also on the initial distribution f (x, v, t = 0). These
equilibria are unstable under perturbation of the initial datum. The Maxwellian
corresponding to the stable equilibria is a finite weighted sum of Dirac’s functions
for any initial distribution. If the braking uncertainty �b �= 0, it has been shown
in [19] that the equilibria corresponding to a given density are unique, and all
equilibria are stable.

In Fig. 1 we show the equilibrium flux Feq(ρ), also known as fundamental
diagram, and the characteristic speed F ′

eq(ρ) obtained numerically by using 48
discrete equidistant discretization points in the velocity phase space, a fixed value of
the acceleration parameter �a = VM

4 = 1
4 and different values of the uncertainty �b

such that r = �a

�b
= 1, 2, 3, 4. In all cases, the fundamental diagram is characterized

by two phases. For low values of ρ the flux is linear in ρ. This is the phase of
free flow. For larger values of ρ, the role of the interactions increases, and the flux
decreases. This corresponds to the congested phase of traffic flow. The value of
the density for which the change between congested and free flow occurs is called
critical density. Note that the road capacity, i.e., the maximum of the flux, decreases
as the uncertainty �b increases.

2.2 Propagation of Waves

Integrating equation (1) in velocity space, the right-hand side vanishes because of
mass conservation, and one obtains the evolution equation for the density

∂tρ(x, t) + ∂xF (x, t; f ) = 0, F (x, t; f ) =
∫ 1

0
vf (x, v, t)dv, (6)
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where F is the macroscopic flux obtained through the kinetic model. If the system
approaches equilibrium, f → Mf , and the macroscopic equation reduces to the
equilibrium equation

∂tρ(x, t) + ∂xFeq(ρ(x, t)) = 0, Feq(ρ(x, t)) =
∫ 1

0
vMf (v; ρ)dv. (7)

Since the Maxwellian is defined by ρ, the equilibrium equation (7) is closed, and
it is a well-defined scalar conservation law where the flux function Feq(ρ) is the
fundamental diagram. On the other hand, when the system is not at equilibrium, the
macroscopic equation (6) is still coupled to the kinetic equation (1).

At the mesoscopic scale, the relaxation speed defined by ε plays a crucial role
since, balancing the weight between the convection and the source term, it allows us
to define the regimes of the kinetic model. If we allow for ε = 0, i.e., we suppose that
the interactions are so frequent to instantaneously relax f to the local equilibrium
distribution Mf , we are in the so-called equilibrium flow regime where (1) reduces
to the conservation law for the density (7). Instead, we expect that if ε is small,
but not vanishing, then we are either in a regime where the kinetic equation (1)
reduces to a perturbed continuity equation (7) or where the kinetic equation can be
approximated by an extended continuum hydrodynamic system of equations as, for
example, the Aw-Rascle and Zhang model. For ε � 1, but not too large, we are in
the kinetic regime and finally for ε � 1 we obtain the regime of the collision-less
kinetic equation where the convective term dominates.

In regimes characterized by a small value of ε, we expect that the conservation
law (7) should provide a good approximation to the behavior of the solution; in
particular smooth waves should travel along the characteristics given by ∂ρFeq(ρ).
Thus, looking at the right panel of Fig. 1, we expect that signals move towards the
right in the free flow phase and towards the left in the congested flow phase.

However, in the kinetic regime where ε >> 1 signals should always propagate
towards the right since the microscopic velocities in traffic are non-negative.
This happens also for congested traffic regimes, because the characteristics in the
transport term coincide with the microscopic speeds. As observed in [13] this can
be seen by computing the implicit solution to (1)

f (x, v, t) = f (x − vt, v, t = 0) +
∫ t

0
Q[f, f ](x + v(s − t), v, s)ds.

The distribution function f at x and t depends only on the distribution function at
the values y ≤ x and s ≤ t , since v is non–negative. Thus, apparently, traffic jams
in dense flow are not allowed to travel backwards. Several models were introduced
in the mathematical literature [8, 13] trying to overcome this drawback.

Numerical evidence suggests strongly that this picture is naive, and that the
interaction of the source term, given by the collision operator, and the transport
term, is more subtle. We observe instead a smooth transition between the solutions
of the equilibrium equation, where signals move backward in congested flow, and
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solutions of the kinetic equation. Here too in fact the propagation speed of smooth
waves can be negative.

To illustrate this point, we show the evolution of the solution of the kinetic
model (1) in a few typical cases. In particular, we consider propagating a smooth
perturbation in the density

ρ0(x) = a + be−8x2

and periodic boundary conditions. The initial distribution is Maxwellian. The
solution is computed with a first-order numerical method, using the local Lax
Friedrich’s flux. The choice of the numerical flux is crucial: a standard upwind
flux, computed following the characteristics of the transport term, would in fact be
unstable, in the congested phase, because the direction of the flow does not coincide
with the direction of the characteristics. Since the collision term becomes stiff for
small ε, we penalize the collision term with a BGK operator, as in [7].

We use 4 discrete speeds with �a = �b = 1
4 ; space is discretized by 200 cells

and the final time is tf = 1, while ε = 0.01. The solution is shown at different
times, starting from the blue curve at t = 0, and ending with the magenta thick
profile, at t = 1. In the left panel of Fig. 2, we take a = 0.2 and b = 0.2. The
perturbation in the density is below the critical density. Thus, the density profile
moves towards the right, as it would occur also in the equilibrium equation. The
shape of the initial data is deformed mainly by numerical diffusion, because the flux
is almost linear. In the right panel of Fig. 2, we choose a = 0.7 and b = 0.2, so
that the initial perturbation has the same amplitude as before, but it occurs on the
dense traffic regime. Now, we observe propagation of the wave towards the left,
although the characteristics point towards the right. This means that the propagation
speed is governed by the interaction between the collision kernel and the transport
term, which reproduces the behavior of the fundamental diagram of the equilibrium
equation, where indeed we observe negative characteristics. Note that the height of
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Fig. 3 Space-time evolution of the distribution function for each fixed value of the microscopic
speed v, superposed to the corresponding characteristic speed (black dashed lines), during the time
evolution of the density bump in free flow

the density peak now increases with time: the solution has the correct propagation
speed, but it is unstable.

These considerations are further investigated by looking into the distribution
function of the kinetic model. We draw contour plots of the space-time behavior
of f , for each fixed value of the microscopic speed v. Since we are considering
4 microscopic velocities, we obtain 4 different plots. In the plots, we compare the
time development of the solution f with the corresponding characteristic speed of
the transport term, drawn with parallel dashed black lines. In the case of the density
profile in the free flow phase, we see that the signal propagates towards the right
and along characteristics, Fig. 3. Instead, in the case of the density profile in the
congested phase, it is clear that the signal propagates towards the left and across
characteristics, see Fig. 4. Thus the information on the propagation is contained
in the interaction of the collision kernel and the transport term, rather than in the
convective term alone.

A constant choice of ε, however, is not satisfactory. In fact, in analogy with the
Knudsen number in gas models, ε should be a decreasing function of the density.
In this way, ε becomes large in the free flow phase since the interactions are less
frequent and the convective term rules the dynamics. On the contrary, ε should
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Fig. 4 Space-time evolution of the distribution function for each fixed value of the microscopic
speed v, superposed to the corresponding characteristic speed (black dashed lines), during the time
evolution of the density bump in congested flow

become small when the density increases, since the relaxation towards equilibrium
should be fast when ρ is high and interactions among vehicles are dominant. Further,
we also expect that ε should decrease when the traffic thickens, i.e., when ρx is large
and positive. A choice respecting this argument is

ε(ρ, ρx) = 1

max

{
1

1−min{ρ,ε0}2 , 1 +
(

max {ρx, 0}
)2
} , (8)

where ε0 is a threshold to prevent division by zero. The dependence on max(ρx, 0) is
crucial to prevent overshoots above the maximum density ρM = 1, when the density
profile is very steep. This might happen if the density increases sharply, as when a
fast, low density traffic impinges against a slow congested region. In this case, the
presence of ∂xρ accounts for the need to look ahead. It replaces the non-locality of
the collision term introduced in [13].

A comparison between a fixed ε and the variable collision time of (8) is shown
in Fig. 5. The top part of the figure contains the evolution of the high density profile
with a = 0.7 and b = 0.2 up to time t = 10. We see that with the variable
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collision time, the profile propagates to the left, developing waves which resemble
stop-and-go waves. The fixed value of ε = 0.01 prevents the developing of these
waves, because the relaxation rate is very strong even when the interaction should
be weak. As a comparison, we also show the solution obtained with the equilibrium
equation (7).

The bottom part of the figure shows the solution obtained for a Riemann
problem mimicking a stream of low density traffic impinging against a queue. Here,
the kinetic solution with variable ε develops correctly a shock wave, while the
equilibrium solution yields a smooth wave, because, in the congested regime, the
fundamental diagram of (7) is convex.

3 Analysis of Instabilities via Chapman-Enskog Expansion

The presence of instabilities is investigated using a formal Chapman-Enskog
expansion. For the sake of simplicity, the analysis is performed using the BGK
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approximation of the Boltzmann-type collision kernel (3), for constant but small
values of ε. Unstable waves are present also in this linearized setting [11].

3.1 BGK Approximations with and Without Non-local Terms

The BGK approximation to the kinetic model (1) reads

∂tf (x, v, t) + v∂xf (x, v, t) = 1

ε

(
Mf (v; ρ) − f (x, v, t)

)
. (9)

The BGK model is an approximation of the full kinetic equation, which holds for
small values of ε. In fact, (1) and (9) have, by construction, the same equilibrium
solution. This further motivates the use of the BGK approximation to investigate the
appearance of instabilities in dense traffic, i.e., in the regime of large densities and
small ε.

The Chapman-Enskog expansion allows us to study the behavior of (9) when f

is a first-order perturbation in ε around the equilibrium distribution Mf (v; ρ). In
particular, we consider fixed and small values of ε. Then, plugging the expansion

f (x, v, t) = Mf (v; ρ) + εf1(x, v, t), with
∫ 1

0
f1(x, v, t)dv = 0,

into (9) and integrating with respect to the velocity leads to the advection-diffusion
equation

∂tρ(x, t) + ∂xFeq(ρ(x, t)) = ε∂x(μ(ρ)ρx(x, t)), (10)

where the diffusion coefficient μ(ρ) is given by

μBGK(ρ) =
∫ 1

0
v2∂ρMf (v; ρ)dv −

(∫ 1

0
v∂ρMf (v; ρ)dv

)2

=
∫ 1

0
v2∂ρMf (v; ρ)dv − F ′

eq(ρ)2.

(11)

If μ(ρ) < 0, then the advection-diffusion equation is ill-posed and therefore may
exhibit solutions with unbounded growth. In the case of the kinetic model (9), the
sign of the diffusion coefficient depends on the equilibrium distribution Mf . The
request μBGK(ρ) > 0 is

∂ρ

(∫ 1

0
v2Mf (v; ρ)dv

)
> F ′

eq(ρ)2 (12)
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Fig. 6 The right panel shows the sign of the diffusion coefficient (11) for the BGK model (9) with
the corresponding equilibrium distribution in the left panel

and, since Feq(ρ) is the fundamental diagram at equilibrium, this condition requires
that the square of the characteristic velocities is bounded by the variation of the
kinetic energy in each regime.

Below we recall the result in [11], which proves that the instability of the solution
does not depend on the choice of the equilibrium distribution and in fact occurs for
any suitable equilibrium of kinetic traffic models.

Proposition 1 Assume that ∃ ρ̃ ∈ (0, 1) such that

F ′
eq(ρ) =

∫ 1

0
v∂ρMf (v; ρ)dv < 0, ∂ρVar(v) = ∂ρ

∫ 1

0
(v − Ueq(ρ))2Mf (v; ρ)dv < 0

(13)

for all ρ ∈ (ρ̃, 1). Then the quantity μ(ρ) given in (11) is negative ∀ ρ ∈ (ρ̃, 1).

We analyze the validity of this result for the model in [19]. In Fig. 6 we
investigate the sign of the diffusion coefficient (11) in the case of the equilibrium
distribution. Those distributions are computed numerically for the spatially homo-
geneous kinetic model (1)–(3). Again, we use 48 discrete speeds, a fixed value of the
acceleration parameter �a = VM

4 = 1
4 and several values of the uncertainty �b such

that r = �a

�b
= 1, 2, 3, 4. We observe that μ(ρ)BGK ≥ 0 in the regime where the

flux is increasing, while μ(ρ)BGK < 0 in the regime where the flux is decreasing.
Increasing the uncertainty on the over-braking, the model becomes “less” unstable.
In fact, the diffusion becomes larger but still negative. This may serve as explanation
of the growth of perturbations in the density, numerically observed in the top of
Fig. 5.

In view of the results provided by the Chapman-Enskog analysis, we state the
following definition.
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Definition 1 A mathematical model for traffic flow is said to be stable if its
Chapman-Enskog expansion provides μ(ρ) ≥ 0, ∀ ρ ∈ [0, ρM ], weakly unstable
if μ(ρ) < 0 on an interval (ρ1, ρ2) properly contained in [0, ρM ] and unstable if
μ(ρ) < 0 on an interval (ρ1, ρ2) in which either ρ1 = 0 or ρ2 = ρM .

The definition of a weakly unstable model is a consequence of the experimental
observation in [11, 20] that if μ(ρ) < 0 on an interval (ρ1, ρ2) properly contained
in [0, ρM ], then the backward propagating waves in dense traffic remain bounded,
because, when the oscillations reach ρ = ρ1 and ρ = ρ2, they fall in the diffusive
region and they are damped. This leads to weak instabilities that in turn can be
regarded as models for stop-and-go waves.

Concerning the concept of stability of Definition 1, the discrete BGK model for
traffic introduced in [5] can be either stable or unstable. The model is characterized
by non-local terms and with a suitable choice of the headway parameter the diffusion
coefficient in the Chapman-Enskog expansion is positive on [0, ρM ]. As observed
in [20], this is not desirable in a model for traffic flow since it would not allow to
reproduce non-equilibrium phenomena, such as stop-and-go waves.

3.2 The Aw-Rascle and Zhang Model

The Aw-Rascle and Zhang (ARZ) model will be considered in view of the stability
analysis following [11]. We will show that it is weakly unstable. This justifies the
derivation of a new BGK-type model in Sect. 4. The following result was already
mentioned and analyzed in [20].

The ARZ model reads in primitive variables as

∂tρ(x, t) + ∂x(ρ(x, t)u(x, t)) = 0

∂t

(
u(x, t) + h(ρ)

)+ u(x, t)∂x

(
u(x, t) + h(ρ)

) = 1

ε
(Ueq(ρ) − u(x, t)),

(14)

where u is the macroscopic speed of the flow and the function h = h(ρ) is a
strictly increasing function of the density and it is called hesitation function or traffic
pressure. The quantity ε is a time which rules the relaxation speed of the velocity u

to the equilibrium speed Ueq(ρ) which is a given function of the density. Here Ueq
is not necessarily given by (5).

System (14) can be understood as a relaxation system [12] converging towards
the conservation law given by the Lighthill-Whitham [14] and Richards [18] model
in the limit ε → 0. If ε is small, but not vanishing, (14) approaches the advection-
diffusion equation (10) where the diffusion coefficient μ(ρ) is given by

μARZ(ρ) = −ρ(x, t)2U ′
eq(ρ)

(
U ′

eq(ρ) + h′(ρ)
)
. (15)
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This result is again obtained via Chapman-Enskog expansion, by considering a first-
order expansion of the speed u = Ueq(ρ) + εu1 around the equilibrium velocity
function Ueq(ρ). The condition μ(ρ) > 0 provides the so-called sub-characteristic
condition [6, 12]. For the ARZ model μ(ρ) > 0 is satisfied if

0 > U ′
eq(ρ) > −h′(ρ). (16)

We stress the fact that condition (16) strongly restricts the possible choice of Ueq
and h, which can be chosen in order to make the model weakly unstable.

4 The Modified Formulation of the BGK Approximation
in Traffic Flow

The derivation of the modified BGK-type equation for traffic flow is shortly
summarized and we refer to [11] for a thorough discussion. The model is derived
via mesoscopic limit of the microscopic follow-the-leader (FTL) and Bando model.
We recall that the FTL-Bando model is proved to converge to the ARZ model in the
macroscopic limit, both in one-dimension [1] and two-dimensions [10]. Therefore,
the second-order system of moments of the new BGK model has also the property
of representing a mesoscopic formulation of the class of second-order ARZ-type
macroscopic models. As a consequence the feature of an ARZ-type model of having
a negative diffusion coefficient in a small density regime is automatically obtained
also for the new BGK-type equation.

4.1 BGK-Type Model Derived from the FTL-Bando Model

Let (xi, vi) be the microscopic states, position and velocity, of vehicle i. The follow-
the-leader and Bando model is

ẋi = vi = wi − p(ρi)

ẇi = 1

ε
(Ueq(ρi) + p(ρi) − wi),

(17)

where wi := vi +p(ρi), and the function p = p(ρi) is the so-called traffic pressure.
We assume that p satisfies p(ρ) ≥ 0, p′(ρ) > 0 and

d

dt
p(ρi) = −K(xi, xi+1, vi, vi+1),
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where K is a term describing the interactions among vehicles. In the classical FTL
model

K(xi, xi+1, vi, vi+1) = Cγ

vi+1 − vi

(xi+1 − xi)γ+1 ,

where the constants Cγ > 0 and γ > 0 are given parameters. However, we consider
the case of a general function K . The introduction of the quantity wi allows us to
rewrite the classical Bando model as a relaxation step (17).

Let now g = g(x,w, t) : R×W ×R
+ → R

+ be the kinetic distribution function
with respect to the desired speed w, which is assumed to be the speed that drivers
want to keep in “optimal” situations. We define W := [wmin,+∞) the space of the
microscopic desired speeds where wmin > 0 may be interpreted as the minimum
speed limit in free flow conditions. The macroscopic density, i.e., the number of
vehicles per unit length, at time t and position x is defined by

ρ(x, t) :=
∫

W

g(x,w, t)dw, (18)

and we define the macroscopic quantity

q(x, t) :=
∫

W

wg(x,w, t)dw. (19)

The derivation of the evolution equation for the kinetic distribution g =
g(x,w, t) is performed by reformulating the microscopic particle model (17) in a
probabilistic interpretation and allowing a relaxation towards a desired distribution
Mg = Mg(w; ρ), as in [15, Section 4.2.2]. The distribution Mg has to fulfill the
requirement

∫
W

Mg(w; ρ)dw = ρ(x, t),

and additionally

1

ρ(x, t)

∫
W

wMg(w; ρ)dw = Ueq(ρ) + p(ρ). (20)

According to [15, Section 4.2.2] and [11], it is possible to show that g solves

∂tg(x,w, t) + ∂x

[
(w − p(ρ))g(x,w, t)

] = 1

ε

(
Mg(w; ρ) − g(x,w, t)

)
. (21)

This equation is still a BGK-type equation since the collision kernel is linear and
describes the relaxation of g towards a given distribution Mg parameterized by the
density ρ. For a detailed derivation of (21) we refer to [11].
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It is important to point out that, compared to classic kinetic theory, this approach
is different in the sense that Mg is an “equilibrium distribution” with a modified
microscopic velocity. Thanks to (20), Mg is imposed a-priori but it is still based on
the knowledge of the classical Maxwellian Mf , which is related to the classical
concept of microscopic velocity, by means of Ueq(ρ) := 1

ρ

∫
vMf dv. In other

words, Mf is not imposed a-priori (and so Ueq(ρ) and consequently Mg), but the
equilibrium distribution Mf is the one obtained by the modeling of microscopic
interactions of the spatially homogeneous kinetic model. Any Maxwellian Mf of a
kinetic model for traffic can be used to define Mg and the BGK model (21). Here,
we study the Maxwellian Mf provided by [19].

4.2 Chapman-Enskog Expansion of the Modified BGK Model

We perform a Chapman-Enskog expansion for the model (21). We consider a first-
order perturbation of g as

g(x,w, t) = Mg(w; ρ) + εg1(x,w, t), with
∫

W

g1(x,w, t)dw = 0

and define Feq(ρ) = ρUeq(ρ). Then, it is possible to show, cf. [11], that the BGK-
type equation (21) solves the advection-diffusion equation (10) with

μ(ρ) = −F ′
eq(ρ)2 +

∫
V

v2∂ρMf (v; ρ)dv −ρp′(ρ)F ′
eq(ρ)+Feq(ρ)p′(ρ). (22)

Observe that, compared to (11), the diffusion coefficient (22) contains two additional
terms which depend on the function p(ρ). Therefore, it is possible, for a given
distribution Mf , to find a suitable p(ρ) such that μ(ρ) > 0 also in the congested
regime. In particular, it is possible to find p(ρ) in order to guarantee that the model
is weakly unstable. Recall that μBGK(ρ) given in (11) was unconditionally negative
in the congested phase of traffic for the classical BGK model (9).

Setting Feq(ρ) = ρUeq(ρ) the second two terms of the diffusion coefficient (22)
can be written in terms of the equilibrium speed function as

μ(ρ) = −F ′
eq(ρ)2 +

∫
V

v2∂ρMf (v; ρ)dv − ρ2p′(ρ)U ′
eq(ρ). (23)

Therefore, μ(ρ) = μBGK(ρ) + C(ρ) where C(ρ) = −ρ2p′(ρ)U ′
eq(ρ) ≥ 0 since p

and Ueq are an increasing and a non-increasing function of the density, respectively.
This means that, for C(ρ) sufficiently large, the additional term yields a negative
diffusion coefficient (11) in a bounded domain contained in [0, ρM ]. In Fig. 7 we
numerically show this result for the case of the homogeneous kinetic model in [19].
We consider the Maxwellian computed numerically with 48 discrete speeds, �a =
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Fig. 7 Diffusion coefficient (23) for p(ρ) = 3
2 ρ2 (left) and p(ρ) = ρ3 (right)

1
4 and �b = �a

r
, r = 1, 2, 3, 4. The pressure function is chosen as p(ρ) = 3

2ρ2 (left
panel) and p(ρ) = ρ3 (right panel).

5 Conclusions and Future Perspectives

In this work we have focused on the formulation of kinetic models for vehicular
traffic flow which reproduce backward propagating waves in dense traffic. The
underlying kinetic model is the one introduced in [19]. Backward traveling waves
have been observed by defining an interaction rate that is a function of the density
and its derivative.

A stability analysis of the waves in dense traffic regimes has been performed on
the BGK-type approximation, in the limit of small interaction rates. We have shown
that the model leads to an advection-diffusion equation with a negative diffusion
coefficient in the whole congested regime, therefore producing an unbounded
growth of dense waves in time. This justified to reconsider the results of [19] in
the framework of a novel BGK formulation [11]. Finally, the formulation allows to
have a weakly unstable model with results that show the existence of stop-and-go
waves.
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