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Excess and loss of entropy production for different levels of coarse graining
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We investigate the effect of coarse graining on the thermodynamic properties of a system, focusing on entropy
production. As a case of study, we consider a one-dimensional colloidal particle in contact with a thermal bath,
moving in a sinusoidal potential and driven out of equilibrium by a small constant force. Different levels of
coarse graining are evaluated: At first, we compare the results in the underdamped dynamics with those in the
overdamped one (first coarse graining). For large values of the friction coefficient, the two dynamics have the
same thermodynamics properties, while, for smaller friction values, the overdamped approximation produces an
excess of entropy production with respect to that of the underdamped dynamics. Moreover, for further smaller
values of the drag coefficient, the excess of entropy production turns into a loss. These regimes are explained by
evaluating the jump statistics, observing that the inertia is able to induce multiple jumps and affect the average
jump rate. The periodic shape of the potential allows us to approximate the continuous dynamics via a Markov
chain after the introduction of a suitable time and space discretization (second level of coarse graining). This
discretization procedure is implemented starting both from the underdamped and the overdamped evolution and
is analyzed for different values of the friction coefficient.
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I. INTRODUCTION

Physical and biological systems often involve a plethora
of different processes, each described by a suitable variable
and characterized by a typical timescale. In a broad range
of interesting cases, the typical times of the different vari-
ables are much different and the system is said to have a
multiscale character, i.e., some variables are faster than the
global timescale of the dynamics, which is much slower. For
instance, this is the case of protein folding where the timescale
of vibration of covalent bonds is O(10−15)s while the folding
time for a protein may be of the order of seconds [1,2].
Therefore, one faces with the problem of understanding the
most relevant features of the system that often corresponds
to treating the “slow part of the dynamics” in terms of ef-
fective equations, performing the so-called coarse graining
[3–5] or model reductions [6]. Such a necessity is practical
(even modern computers sometimes are not able to simulate
all the relevant scales involved in certain problems) as well
as conceptual: Effective equations are able to catch some
general features and to evidence basic ingredients which can
be hidden in the detailed description.

In the practical research activity the use of different levels
of description, or in other words different coarse-graining pro-
cedures, is unavoidable. The case of mesoscopic objects, such
as a colloids immersed in solution, illustrate this point: In prin-
ciple, one can adopt a very detailed microscopic description in
terms of Hamiltonian dynamics, so that the evolution appears
reversible in time but involves a large number of degrees of

*lorenzo.caprini@gssi.it

freedom. To overcome numerical and theoretical difficulty, the
most common approach neglects some “details” of the system
(namely, the dynamics of the solvent molecules) in favor of
a mesoscopic description in terms of random variables: This
corresponds to a temporal and spatial coarse graining. Since
one can introduce different possible mesoscopic descriptions,
usually different levels of coarse graining are allowed [7].
Therefore, evaluating the consequences of the coarse graining
on the physical properties of the system is a general issue
of indisputable importance. For this reason, their effects on
the thermodynamic properties, such as entropy production of
the system, have been the focus of intense research [8–12]
performing both spatial and time discretizations of continu-
ous dynamics and constructing the transition rates of suitable
Markov chains [13–15]. For instance, Busiello et al. evaluate
the difference between the entropy production of a discrete
multibody process and an approximate description based on
a continuous dynamics [16,17], while the authors of Ref. [18]
study the entropy production of a continuous process account-
ing (and not) for the faster degree of freedom and focusing on
the role of cross correlations. While well-separated timescales
allow to calculate the entropy production neglecting the fast
degree of freedom, this is not anymore true when temperature
spatial gradients are included in the dynamics [19].

In this paper, we consider as a reference system a particle
in contact with a thermal bath moving in a tilted potential,
which has been employed to describe the motion of molecular
motors, enzyme turnover reactions [20–22], and the diffusion
of a colloidal particle in a rotating array of laser traps [23]. In
addition, a two-layer colloidal system has been implemented
to study experimentally the diffusion of a colloid over a peri-
odic potential [24,25]. The thermodynamic properties of this
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system, such as heat rate and entropy production, have been
analyzed in some previous studies, for overdamped [26,27]
or underdamped dynamics [28–30] often focusing on criti-
cal regimes of the driving force [31]. Here we evaluate the
effect of coarse graining on the thermodynamic properties
of the system, e.g., entropy production, for increasing levels
of coarse graining by exploring both approximate continuous
and discrete dynamics. Among all the possible observables
which can be estimated in out of equilibrium systems, we
focus on entropy production because of its relevance in the
field of stochastic thermodynamics and nonequilibrium sta-
tistical physics. In addition, the role of entropy production in
thermodynamic uncertainty relations and fluctuation theorems
have been recently shown as well as its role to quantify the
nonequilibrium activity of biological systems [32–34].

The paper is structured as follows: In Sec. II, we introduce
the underdamped dynamics as a reference model and the first
level of coarse graining, namely the overdamped description.
The expressions for the entropy production are reported in
both cases while their derivations are reviewed in the Appen-
dices. The numerical study of the entropy production is shown
in Sec. III for both the dynamics, together with the study of the
jump statistics. In Sec. IV, the second level of coarse graining
based on the space and time-discretization is introduced based
on the master equation and suitable Markov chain dynamics.
In Sec. V, the entropy production resulting from the discrete
coarse graining is numerically evaluated and compared with
the result of the continuous evolution. Finally, we summarize
and discuss the results in the conclusions presenting some
future perspectives.

II. MODEL

We consider the dynamics of a one-dimensional particle in
contact with a thermal bath at temperature, T , moving in a
periodic potential of the form

U (x) = A cos(2πx/L),

where A determines the amplitude of the oscillation and L
the distance between two potential minima. The particle is
driven out-of-equilibrium by a constant force, F > 0, pointing
along with x̂, that produces a net current in that direction.
The asymmetry introduced by the driving force changes the
effective height of the potential barriers (tilted potentials),
from 2A to �±, breaking the left-right spatial symmetry and
introducing a preferential direction of motion, as illustrated
in Fig. 1(b): The jumps in the same direction of the force
(forward jumps) are facilitated, being �+ < 2A, the jumps in
the opposite direction (backward jumps) are hindered because
�− > 2A. The value of �± can be calculated and read as
follows:

�±

F L
=

√
a2 − 1 + sin−1(1/a)

π
± 1

2
,

where a = 2πA/(FL) quantifies the strength of the force due
to the periodic potential with respect to the driving force. If
F approaches the critical value, i.e., F � Fc = 2πA/L, then
the jump mechanism is entirely due to the driving force and
the trajectory is almost deterministic. In what follows, we
restrict our analysis to the regime F � Fc, so that F is a small

FIG. 1. Periodic potential. In panel (a), a three-dimensional rep-
resentation of the periodic potential U (x) is shown while, in panel
(b), the whole potential profile U (x) − Fx is reported, where U (x) =
A cos(2πx/L). Vertical lines in panel (b) draw the heights of the
potential barriers for forward and backward jumps, �+ and �−,
respectively. The parameters of the potential are A = 4, F = 1, and
L = 2π .

perturbation with respect to the force due to U (x) and, thus,
in principle, it is not able to suppress the spatial oscillating
structure of the potential. In other words, the jumps from a
potential minimum to the others should occur only because of
thermal fluctuations.

A. The underdamped dynamics

The reference description that is employed to describe the
particle motion is the underdamped Langevin equation. This
is taken as the lowest level of coarse graining and, thus, as
the reference case for the exact evolution. At this level of
description, the dynamics for the position, x, and the velocity,
v, of a particle with mass, m, is described by the following
stochastic equations:

ẋ = v, (1a)

mv̇ = −γ v +
√

2T γ ξ + U ′(x) + F, (1b)

where γ and T are the friction coefficient and temperature of
the bath, respectively, that satify the Einstein’s relation and ξ

is a white noise with zero average and 〈ξ (t )ξ (0)〉 = δ(t ). The
physical origin of the noise is injection of energy due to the
fast collisions of the solvent molecules with the tagged parti-
cle. As usual, this energy injection is balanced by the Stokes
force, proportional to v via γ , that determines the relaxation
time of the velocity, namely the inertial time τI = m/γ as well
as the diffusion coefficient D = T/γ .

Using path-integral or alternative methods based on the
distinction between reversible and irreversible currents in the
Fokker-Planck equation, it is possible to derive an explicit
expression for the rate of entropy production [35–37], σ̇ ,
associated to the dynamics (1):

σ̇ = F

T
〈v〉 , (2)

where 〈·〉 is the steady-state average to be performed with
the steady-state measure of the dynamics (1). The expression
(2), derived in Appendix A by neglecting boundary terms,
coincides with the average work exerted by the external force
per unit-time divided by the temperature.
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(a) (b) (c.1)

(c.2)

FIG. 2. Single-particle trajectories. Panels (a), (b), and (c) show the time-trajectory of the position x(t ) for three different values of γ =
10, 3 × 10−1, 3 × 10−2, respectively. In each panels, the underdamped [simulating Eq. (1)] and the overdamped cases [simulating Eq. (3)]
are shown, while the two cases are separately plotted in two different graphs, namely (c.1) and (c.2), for γ = 3 × 10−2 because of presentation
reasons. The other parameters of the numerical study are L = 2π , F = 1, A = 4, T = 1, and m = 1.

B. First level of coarse graining: Overdamped dynamics

The first level of approximation for the dynamics (1) con-
sists in neglecting the inertial forces. This procedure is well
justified in the limit of small inertial time, m/γ , where the
velocity relaxation occurs fast and, therefore, this variable
can be adiabatically eliminated. Within this approximation,
we introduce the first level of coarse graining, where the
particle is uniquely described by a stochastic evolution for its
position x:

γ ẋ =
√

2T γ ξ + U ′(x) + F . (3)

The dynamics (3) is much simpler than Eq. (1) and allows
one to derive some analytical results, which are unknown
in the underdamped case. For instance, the jump time, τ±

o ,
from a well to the foward or backward one, respectively, can
be analytically predicted in the limit of small temperature,
such that T/�± � 1, where the well-known Kramers formula
holds:

τ±
o ≈ Lγ

F
√

a2 − 1
exp

(
�±

T

)
, (4)

where a > 1, as occurs in the regime of small driving forces
studied in this paper.

Also in the overdamped case, the expression for the rate of
entropy production, σ̇o, of a system following the dynamics
(3) can be obtained [26] as shown in Appendix A:

σ̇o = F

T
〈ẋ〉o, (5)

where now 〈·〉o is the steady-state average performed using
the steady-state probability distribution associated with the
dynamics (3) and ẋ is the coarse-grained velocity of the
overdamped system. Again, this formula express the entropy
production rate apart from boundary terms, which are negligi-
ble in the steady state.

III. ENTROPY PRODUCTION: COMPARISON BETWEEN
UNDERDAMPED AND OVERDAMPED DYNAMICS

The dynamics (1) and (3) have been numerically studied
using the Heun’s integration scheme. In the numerical simu-
lations, the shape of the potential is fixed by setting L = 2π ,

a = A = 4, and F = 1 and a regime of small temperature is
considered so that jumps from neighboring minima are rare
and Kramers formula can be applied in the overdamped case.
To unveil the effect of the inertial forces, we consider different
inertial times by varying γ and keeping the mass fixed (m =
1). Before delving into the study of entropy production, it is
instructive to evaluate the single-particle trajectories to under-
stand the mechanism behind the jump events. Figure 2 shows
three typical trajectories, x(t ), both for the underdamped and
overdamped dynamics, for three different values of γ = 3 ×
10−2, 3 × 10−1, 10. For γ = 10, the two trajectories show
almost indistinguishable statistical features displaying the
jump mechanism illustrated by the single-particle trajectories
in Fig. 2(a): The particle moves around a potential minimum
and rarely (namely, after a typical time τ+ ≈ τ+

o ) performs a
forward jump (because the probability of jumping backward
is negligible). For γ = 3 × 10−1, 3 × 10−2, the trajectory
obtained by integrating the dynamics (3) (overdamped case)
shows a behavior qualitatively similar to that observed for
γ = 10, while a fairly different scenario occurs evolving the
dynamics (1) (underdamped case): After spending a consid-
erable large time in a minimum of the potential, the particle
usually performs multiple jumps as clearly shown in Fig. 2(b);
instead, for γ = 3 × 10−2, the particle moves almost deter-
ministically without fluctuating around the potential minima
and, in practice, behaves as if F > Fc. As a consequence, we
conclude that the main effect of the inertial forces is to affect
the jump mechanism, at first producing multiple jumps and,
for further large inertial times, even to decrease the effective
critical value of the driving force.

Entropy production

In order to understand the effect of the coarse graining on
the energetics of the system, In Fig. 3, we compare σ̇ and
σ̇o, given by Eq. (2) and Eq. (5), respectively, for different
values of γ (at fixed m = 1), exploring regimes characterized
by large and small inertial times. Even if σ̇o formally coincides
with σ̇ the two expressions are calculated using two different
steady-state averages and, thus, one cannot guarantee that
σ̇o remains a good approximation for σ̇ . In both cases, the
two entropy productions decrease monotonically when γ is
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FIG. 3. Coarse graining (i): underdamped → overdamped. Panel
(a): Entropy productions, σ̇ (red upper triangles) and σ̇o (yellow
lower triangles), as a function of the friction coefficient γ . σ̇ is calcu-
lated numerically by using Eq. (2) while σ̇o by Eq. (5), corresponding
to the underdamped and the overdamped cases, respectively. Solid
colored lines are obtained by plotting 2π/T and 2π/To for the
underdamped and the overdamped cases. Finally, the prediction
(8) is reported as a blue dashed line, while the curve FT/γ as a
dashed-dotted line. Panel (b) plots the average jump time from, τ+
(underdamped) and τ+

o (overdamped) as a function of γ , while panel
(c) plots the average length in units of L run in each jump process,
namely 	 (underdamped) and 	o (overdamped). The other parameters
of the simulations are L = 2π , F = 1, A = 4, T = 1, and m = 1.

increased. Specifically, σ̇o decreases as 1/γ for the whole
range of γ values numerically analyzed. Instead, the entropy
production of the underdamped dynamics σ̇ shows a richer
behavior: (i) for γ > 10, σ̇ decreases as 1/γ and coicides with
σ̇o. This result was expected because, in this regime of param-
eters, the adiabatic elimination of the velocity can be achieved
and, thus, the underdamped steady-state distribution function
of the position is well-reproduced by the overdamped one. (ii)
For intermediate values of γ , namely for 3 × 10−1 < γ < 10,
σ̇o overestimates σ̇ , showing a maximal discrepancy between
the two descriptions for γ ≈ 1. (iii) When γ < 3 × 10−1, we
get the opposite result since σ̇o underestimates σ̇ . In particular,
σ̇ sharply increases until reaching another asymptotic regime
that scales as 1/γ but its value is fairly different from that
of σ̇o. Regime (iii) occurs in correspondence of the γ values
at which the particle starts behaving as if the driving force
overcame its critical value [see Fig. 2(c)], i.e., when the jump
process occurs deterministically. In particular, in this regime,
〈v〉 roughly approaches the limiting value ∼F/γ explaining

the 1/γ scaling and the large value of the entropy production
observed in Fig. 3.

The dependence of the entropy production on γ can be
understood by estimating 〈v〉 (or 〈ẋ〉) by the average time,
T (or To), needed to jump from a minimum of U (x) to the
forward one. We remark that T and To correspond with τ+
and τ+

o , respectively (namely, the average jump times in un-
derdamped and overdamped regimes, respectively) only in the
regime when multiple jumps are negligible. In this way, σ̇ and
σ̇o can be estimated as:

σ̇ ∝ 〈v〉 ≈ L

T , (6)

σ̇o ∝ 〈ẋ〉 ≈ L

To
. (7)

Predictions (6) and (7) are numerically checked in Fig. 3(a)
(solid colored lines) by calculating T and To by simulations
for each value of γ . In the overdamped case, the linear de-
pendence with γ predicted by the Kramers formula (4) is
confirmed and, in particular, the value of σ̇o is also in fair
agreement with its theoretical prediction [see the comparison
between the solid and the dashed lines, again in Fig. 3(a)]:

σ̇o = 2F

γ L
sinh

(FL

2T

)∣∣∣Ii FL
2πT

( A

T

)∣∣∣−2

, (8)

where I is the modified Bessel function of the first kind. The
derivation of the prediction (8) can be found in Ref. [31].

In the underdamped case, the regimes (i), (ii), and (iii) and,
in particular, the nonlinear γ dependence, are observed also
in the behavior of 1/T , showing that the entropy production
is uniquely determined by the numbers of minima explored
by the particle in a given interval of time. To understand
regime (ii), we explore in more detail the jump mechanism:
Figure 3(b) plots the average jump times, τ+ (underdamped)
and τ+

o (overdamped), as a function of γ , while Fig. 3(c)
measures the occurrence of multiple jumps in the system by
plotting, as a function of γ , the average length, 	 (in units
of L), run in each jump process. While for large values of
γ [i.e., regime (i)], we have τ+ ≈ τ+

o ∝ γ and 	 ≈ 1 (i.e.,
absence of multiple jumps), the jump mechanism dramatically
changes for intermediate values of γ [i.e., regime (ii)]. The
first difference between σ̇ and σ̇o is mainly due to the increase
of the average jump time τ+ with respect to τ+

o (when multiple
jumps are still negligible): When γ decreases the correlation
time of the velocity increases and, thus, a larger time is needed
by the particle to explore the tail of the velocity distribution,
i.e., the large values necessary to jump the barrier height.
For further smaller values of γ , this mechanism is balanced
by the occurrence of multiple jumps [in agreement with the
observation of the single-particle trajectory in Fig. 2(b)]. In
particular, σ̇ starts increasing with respect to σ̇o because when
the τ+

o saturates the 	 sharply increases.
In conclusion, inertial effects are able to hinder or facilitate

the forward jumps with respect to the overdamped case by
affecting the average jump time and causing frequent multi-
ple jumps. Consequently, the underdamped → overdamped
coarse-graining procedure produces a loss or an excess of
entropy production depending on the value of the friction
coefficient considered (∼inverse of the inertial time).
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FIG. 4. Coarse graining (ii): continuous → discrete. Entropy production defined by Eq. (10) as a function of the Markov chain time step
�t . Panels (a) and (b) show σ̇ M (underdamped) and σ̇ M

o (overdamped) where each curve is obtained for different values of γ , namely the
friction coefficient. We remark that the larger value of the friction, γ = 10, belongs to regime (i) while the other two values belong to regime
(ii). The Markov chain (or the master equation) transition rate probabilities (to calculate σ̇ M and σ̇ M

o ) are obtained from the underdamped
[Eq. (2)] and overdamped [Eq. (5)] continuous dynamics in panels (a) and (b), respectively. Finally, the dashed-dotted lines mark the value of
σ̇ and σ̇o in each case, maintaining the same color legend. The first �t value of each panel corresponds to the master equation approximation,
so that �t coincides with the time step of the continous-time simulation. The other paramters of the simulations are L = 2π , F = 1, A = 4,
T = 1, and m = 1.

IV. DISCRETE COARSE GRAINING

As a further level of coarse graining, one can take advan-
tage of the periodic structure of the potential to associate a
suitable spatial discretization to the continuous particle po-
sition, x(t ). As already shown in Fig. 2, the particle spends
much of the time in the neighborhood of the wells and, rarely,
jumps forward or backward toward the neighboring minima
except in the case of underdamped dynamics with small val-
ues of γ . For this reason, a natural choice to discretize the
dynamics is to map x(t ) onto a set of states {ωt } = i that
identify the minima of the potential where the particle is
placed at time t . In formulas, the particle is in the state ω = i
when x(t ) ∼ xmin

i , being xmin
i the position of the ith minimum

of the potential. We also introduce a temporal discretization
by mapping the continuous time, t , onto the set tn = n�t with
n = 0, 1, 2, . . . , N , where tN = N�t corresponds to the final
time at which the simulation is stopped. The time step, �t ,
cannot be arbitrarily large for consistency with the continuous
dynamics. In particular, �t needs to be chosen smaller than
the typical forward jump times, τ+ (or τ+

o ), namely �t <

10−1τ+. This condition guarantees that multiple jumps are
rare events in agreement with the continuous time simulations.
Choosing �t → dt corresponds to mapping the stocastic pro-
cess, x(t ), onto a master equation (namely, continuous time
and discrete space), while taking �t > dt is equivalent of
mapping x(t ) onto a Markov chain (namely discrete time and
discrete space). The transition probability associated to the
Markov chain (or to the master equation), so far introduced,
can be directly obtained from the continous simulations by
calculating:

P± = j±

N
, (9)

where j+ and j− are the numbers of forward and backward
jumps occurring in the whole time-interval tN , which are cal-
culated by counting the number of transitions such that ωtn >

ωtn−1 and ωtn < ωtn−1 . To get correct estimates, it is essential
to avoid “recrossings” when the particle moves around the
maxima. To do so the mapping x(t ) → ωtn is achieved using
the core sets method [38–40] whose details are described in
Appendix B. Following this technique, the jump probability
(which is not reported) shows that P±/�t are almost inde-
pendent of �t independently of γ , as one expects.

The entropy production associated to a Markov chain with
transition probability, P±, can be calculated as

σ̇ M = 1

�t
(P+ − P−) log

P+

P− . (10)

This formula neglects the probability of forward and back-
ward multiple jumps that we expect to be exponentially rarer
if �t � τ+ < τ− and, thus, negligible. At variance with
the continuous estimate for σ̇ or σ̇o, Eq. (10) can be man-
aged only if the backward jumps are numerically accessible.
This technical detail restricts the applicability of this discrete
coarse-grained description to the overdamped dynamics (for
any γ ) and to the underdamped dynamics for large or inter-
mediate values of γ .

V. NUMERICAL RESULTS: ENTROPY PRODUCTION
AFTER DISCRETE COARSE GRAINING

In order to understand the effect of the discrete spa-
tiotemporal coarse graining on the entropy production, we
numerically study the definition (10). This formula can be
used after applying the discrete spatiotemporal mapping dis-
cussed in Sec. IV on one of the two continuous dynamics
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discussed so far, namely Eq. (1) and Eq. (3) for the under-
damped (σ̇ M) and overdamped (σ̇ M

o ) cases, respectively.
Figures 4(a) and 4(b) show σ̇ M and σ̇ M

o , respectively, as a
function of the Markov chain time step �t : Its values range
from �t → dt (correponding to the Master equation) to �t
of the order of τ+ (average jump time). In both cases, this
analysis is performed by evaluating three different values of
γ which belong to regime (i) and (ii). Indeed, as we have
already mentioned, the discrete coarse graining introduced
so far cannot be applied to regime (iii) in the underdamped
case because the spatial periodicity induced by the potential
is suppressed by the interplay between inertial effects and
driving force. Each σ̇ M and σ̇ M

o are compared with the con-
tinuous expressions for the entropy production σ̇ and σ̇ M

o ,
respectively (see the dashed lines in both the panels of Fig. 4).
In the regime of large γ , the discrete coarse graining leads
to fairly good results both for overdamped and underdamped
cases, that, in particular, are in fair quantitative agreement
until to �t ∼ τ+/10. When γ is decreased (in particular, for
γ = 0.3), σ̇ M

o provides still a good estimate for σ̇o, while σ̇ M

overshoots σ̇ , because the particle starts spending much less
time in the potential minima. Finally, we observe that for
�t ∼ 10−1τ+ the value of σ M (or equivalenty σ M

o ) sharply
decreases with respect to the continuous time prediction. This
is because, for that value of �t , more than one jump could
occur within the same time interval �t so that Eq. (10) lose
some contributions (i.e., some jump events) with respect to the
continuous entropy production.

VI. CONCLUSIONS

In this work, we have studied how thermodynamic proper-
ties, such as entropy production, change when the dynamics
of a reference system is approximated via different levels of
coarse graining. As a reference case, we have considered a
particle in contact with a thermal bath evolving through an
underdamped stochastic evolution, namely a dynamics for
its position and velocity. The particle moves in a periodic
potential and is subject to a small driving force that is respon-
sible for steady-state entropy production. We have considered
two levels of coarse graining: (i) continuous overdamped dy-
namics which neglects the particle velocity and (ii) discrete
spatiotemporal dynamics (Master equation and Markov chain)
introduced by taking advantage of the periodic structure of the
potential.

The coarse graining (i) reveals that inertial effects are re-
sponsible for a loss of entropy production in a regime of very
small friction coefficients (when the inertial time is larger than
the relaxation time toward the minima of the potential), an ex-
cess in a regime of intermediate frictions (so that the two times
are comparable). Instead, as expected, overdamped and under-
damped descriptions provide the same entropy production for
large friction coefficients. These observations are explained
by comparing entropy production and jump time stastistics:
Inertial forces are able to affect the average forward jump rate
but lead to multiple jumps. Instead, the second level of coarse
graining (ii) is able to reproduce the value of the entropy
production obtained by the corresponding continuous-time
numerical simulations, provided that the time interval of the

Markov chain sampling is sufficiently lower than the forward
jump time and multiple jumps are negligible.

Understanding if these conclusions still hold in systems
intrinsically out of equilibrium, such as those typically stud-
ied to simulate the behavior of active matter systems [41],
could represent an interesting challenging problem. In those
cases, the particles usually are subject to complex mecha-
nisms (often with biological origin) that drive the system far
from equilibrium and, even in the absence of constant forces,
produce entropy by their own [32,42,43]. These additional
degrees of freedom (with respect to passive colloids), some-
times, cannot be experimentally accessible [44] demanding
methods that do not require complete knowledge of the sys-
tem [45–47]. In practice, this means that performing some
coarse graining could be the only reasonable choice to calcu-
late the energetic properties of experimental active systems.
Therefore, understanding what is the effect of the coarse
graining on the estimate of the entropy production in these
cases could be particularly important [48], even if, perhaps,
more involved strategies could be required to perform spa-
tial discretization. In this context, the energetic properties
of a suitable theoretical model have been already studied
in Ref. [31] where overdamped active particle moving in a
sinusoidal potential because of the interplay between driving
and active force have been analyzed. Going beyond the anal-
ysis of near-equilibrium regimes [31] (taking advantage of
equilibrium-like approximations [49,50]), one might wonder
what are the main changes in regimes far-from-equilibrium or
which includes inertial forces [51]. Finally, clarifying whether
it is safe to perform a spatiotemporal discrete coarse graining,
such as the one employed in this paper, could be an interesting
issue.
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APPENDIX A: ENTROPY THROUGH THE PATH
INTEGRAL APPROACH

In this Appendix, we review the derivation of expressions
(2) and (5) of the entropy production rate, employing the path
integral formalism. The path integral approach in stochastic
calculus relies on our complete knowledge of the statistical
properties of the gaussian noise from whom we can assign a
probability to each realization of the noise.

Let us consider the discrete Langevin equation for the
variable x [which is a generalization of the dynamics (3)]:

xn+1 − xn

dt
= fo(x̄n) + ζn, (A1)

where ζn is a δ-correlated Gaussian noise with zero average
and such that 〈ζnζm〉 = 2T/γ δnm. The bar over the variable
xn on the right-hand side hides the choice of discretization,
x̄n = α xn+1 + (1 − α) xn with α ∈ [0, 1]; since, in the station-
ary regime, the different choices lead to the same result (see
Ref. [52]) we follow Ito’s prescription, fixing α = 0. One can
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perform the change of variable ζn �→ xn+1 = X (xn, ζn) and
rewrite the probability of a trajectory:

P [x1, . . . , xN | x0]

=
N−1∏
n=0

√
γ√

4T π dt

× exp

{
−dt

N−1∑
n=0

γ

4T

[xn+1 − xn

dt
− fo(xn)

]2
}

. (A2)

In a similar way, we can assign a probability to the reverse tra-
jectory (x†

0, . . . , x†
N ), which is governed by the same dynamics

(A1) but exchanging t �→ Ndt − t and α �→ 1 − α, such that
x†

n = xN−n.
Following Refs. [35–37], entropy production is defined as

the log ratio of the probability of a trajectory to the probability
of its reverse:

�σo = log
P (x1, . . . , xN | x0)

P (x†
1, . . . , x†

N | xN )
. (A3)

In the case of the system described in Eq. (3), the force is
fo(x) = F/γ [1 − a sin(2πx/L)]; in the stationary state, the
only term contributing to the average entropy production rate
σ̇o  �σo/(Ndt ) is

σ̇o = 1

N

N∑
n=1

F

T

xn − xn−1

dt
dt→0−−−→ F

T
〈ẋ〉o, (A4)

which coincides with Eq. (5).
We can adopt a similar approach to compute the entropy

production for the underdamped dynamics, which can be ex-
press as

xn+1 − xn

dt
= v̄n, (A5)

m
vn+1 − vn

dt
= f (x̄n, v̄n) + ζn(t ), (A6)

where ζn is a δ-correlated Gaussian noise with zero average
and such that 〈ζnζm〉 = 2T γ δnm and, as in the overdamped
case, the bar over the variables hides the choice of the dis-
cretization but in the following we adopt Ito’s convention.

The expression of the probability of a trajectory
P [x1, v1, . . . , xN , vN ] is analogous to the one in Eq. (A2) us-
ing the expression for f (x, v) of the underdamped dynamics:

P [x1, v1, . . . , xN , vN | x0, v0]

=
N−1∏
n=0

1√
4T γπ dt

× exp

{
− dt

4T γ

N−1∑
n=0

[vn+1 − vn

dt
− f (xn, vn)

]2
}

. (A7)

The definition of the entropy production, Eq. (A3), requires
the use of the probability of the reverse path, which can be
obtaied from Eq. (A7) in the same way as for the first-order
equation (in addition, we need also to invert the velocities,
namely v†

n = −vN−n). In the underdamped Eq. (1), the force is
f (x, v) = F [1 − a sin(2πx/L)] − γ v. The only contribution
to the average entropy production rate is given by:

σ̇ = 1

N

N∑
n=1

F

T
vn−1

dt→0−−−→ F

T
〈v〉, (A8)

as stated in Eq. (2).

APPENDIX B: NUMERICAL DETAILS: THE CORE-SETS
METHOD

In this Appendix, we discuss the core sets method em-
ployed to achieve the discretization. To do so, we need to
distinguish the particle fluctuations around the minima of the
potential from the jump events. A simple threshold between
adjacent minima may not be sufficient because the thermal
noise can make the particle sway on the flat profile around
the maxima. In other words, since the region around the
maximum is not stable, a crisp partition results in a large
discretization error. The method consists in the identifica-
tion of regions of space where the particle spends most of
its time, called core sets Ci [38–40], while the remaining
space is ignored. The discrete dynamics is then entirely de-
scribed by the probability of moving from a core set to the
other.

In our one-dimensional periodic system, the core sets are
located in the neighborhoods of the minima. We defined the
first core set as the region below a certain threshold h of the
complete potential,

C0 = {x ∈ (M, M + L) | U (x) − F x < h} ,

where M = − arcsin(F/A) is the position of the closest max-
imum to zero. We then define all the other core sets by
periodicity, Ci = C0 + iL, i ∈ Z. The smaller is the threshold,
the narrower and more stable are the core sets. In our simula-
tions, the core set region is determined by h ≈ 1 + U (xmin

0 ) −
F xmin

0 . The neighborhoods of the maxima M are unstable by
definition but, since the swaying around them is due to the
thermal noise, we expect that our choice of the threshold still
works for temperature lower than the value considered in this
paper, while for larger T one may need to choose a different
value of h.
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