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Simulation model for simple yet robust resilience assessment 
metrics for engineered systems 

 

Abstract 

Modelling system properties is a central step to carry out time-dependent simulations of system

operating conditions. In this paper, we present a simulation model combined with simple metrics 

that focus on system  resilience at a technical level, represented through absorption, adaptation and 

recovery. Following the techno-centric perspective of this research, the components reliability is 

considered as the main performance of interest for the analysis. When a failure occurs, according to 

a certain probability, performance is restored after a certain recovery time. This latter is a stochastic 

variable that relies on recovery functions specific for every component. The model has been applied 

in a case study referred to a hot water generation plant for hospitals. The case study shows how the 

model allows depicting performance levels and its flexibility for multiple management strategies, 

supporting what-if scenarios analyses.  

Keywords: Resilience; Resilience assessment; Resilience indexes; Reliability; Simulation model; 
Industrial plants. 

 

1. Introduction 

Resilience is considered a necessary property of modern industrial systems to ensure certain 

performance levels in response to internal or external disturbances [1], being capable of adapting 

existing resources and skills to new situations and operating conditions [2].  

For the scope of this article, a system is considered more or less resilient depending on how it absorbs 

the downgrading effects of failures, adapts to reach a different equilibrium state, and recovers to 

certain performance levels.  

The assessment of resilience performance is a largely debated topic in recent literature. 

Nevertheless, there is no unique consensus on what the most representative metrics are for such a 

purpose [3]. Starting from the seminal work by Holling for ecological systems [4], several authors 

have specialized resilience metrics (e.g.) stressing technical [5], socio-technical [6], or even societal 

aspects [7]. Regardless of the investigation focus, it is possible to distinguish between two main 
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categories when referring to planning and modelling resilience: qualitative and quantitative [8]. The 

former category includes refers to assessment criteria without numerical descriptors, usually based 

on semi-quantitative judgements from experts, while the latter refers to either domain-agnostic set 

of measures or to domain-specific representations [8]. Considering the purpose of this paper, the 

domain-agnostic frameworks are the more relevant ones.  One of the most common approaches in 

this area relates to the notion of resilience triangle, where robustness, rapidity, resourcefulness, and 

redundancy are used to compare actual and -planned performance levels [2]. Further elaborations 

of this idea have been proposed to trade-off lost functionality and recovery time [9], or to encompass 

partial recovery from multiple sequential events [10]. A similar concept has been used to visualize 

resilience comparing economic worst-case scenarios to experienced situations [11], even in terms of 

time-dependent analyses [12]. Such assessments can be performed in static or probabilistic terms. 

Probabilistic approaches have in general a higher potential to capture the uncertainty linked to a 

system behavior, usually ascribed to the loss of performance, the length of recovery, as well as the 

modality of restoration [13]. A probabilistic modelling also ensures the capacity to include stochastic 

disruptions [14], [15], which are more representative of real scenarios, as well as potential cascading 

effects. Other approaches rely on topological properties of the system, interpreted as a network [16]: 

in these works, resilience has been related to indexes based on network theory (e.g. closeness 

centrality [17], shortest distance [18]), as well as customized component importance measures [14]. 

Following recent literature related to the resilience engineering (i.e. the discipline focused on 

enhancing the ability of a system to adapt or absorb disturbances, disruption and change [19]), it is 

possible to draw a summary of resilience intended as an inherent a capacity of a system: resilience is 

something the system does, not something the system has [20]. On this context, the notion of being 

resilience can be ascribed to the capability of a system to tolerate disruptions and sustain its 

functioning [21], [22], as well as to mitigate loss through adaptive responses [23], and to recover 

against experienced critical effects [24]. 

Summarizing the concepts emerging from literature on resilience to define metrics domain-agnostic 

metrics usable at a system level, this paper models resilience as a combination of the ability to absorb 

disruptions, to continue operation in degraded states and to recovery to a certain performance level 

[25]. 

More specifically, the capacities considered in this study are interpreted as follows: 
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 Absorption: the ability which ensures a system can absorb the impacts of disturbances and 

minimize consequences with minimum effort [26] 

 Adaptation: the ability of a system to adapt to unwanted situations by undergoing some 

modifications in order to better withstand current and future impacts [27] 

 Recovery: the ability of a system to return to a desired service level, from a disrupted system 

state [28]. Such service level can be an improved state if compared to disrupted state, the 

original performance level, or a level beyond original ones. 

On such premises, this paper relies on a recently published contribution about the definition of 

resilience metrics [25], which explicitly encompasses the above-mentioned dimensions of analysis. 

The aim of this work consists of supporting the generalizability of resilience assessment via 

absorption, adaptation, and recovery for techno-centric analyses, including a stochastic perspective. 

In pragmatical terms, this manuscript aims to propose a conceptual simulation model and the 

respective pseudo-code to be used for simulating the properties of engineered systems in light of a 

technical resilience research perspective [25]. 

The remainder of the paper is organized as follows: Section 2 presents the proposed methodology, 

Section 3 details the logic of the simulation model, Section 4 presents the case study, while Section 

4 summarizes the outcome of the study, its strengths, weaknesses and the potential for future 

research. 

 

2. Methodology 

While the methodology may remain applicable for a wide range of systems, including socio-technical 

systems, once ensured the definition of specific functional mechanisms and performance metrics, 

this paper in-depth explores a techno-centric research dimension for engineered systems. Therefore, 

the developed simulation model is quantitative and it relies on reliability probabilistic assessments, 

as well as the analytical formulation proposed in [25]. 

Besides component-specific functions for reliability, a generic distribution for 

repairability has been adopted for maintainability. These latter are intended to support the 

quantification of resilience through the definition of metrics aligned with the system capacities at the 

core of this article. The metric framework presented in [25] has been selected because of its user-
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friendly nature aligned with the decision-maker perspective, along with its customizability for 

different systems and scenarios. 

2.1 Techno-centric metrics 

The techno-centric resilience metrics are defined in a case with no degradation due to aging: 

maximum level of performance is reached every time performance is restored to the original state. 

Figure 1 sketches the performance over time in case of failure and its effect on the 

system. F0 and Ff are respectively the initial and the final performance levels at time T0 and Tf. At T0, 

a failure occurs, the performance decreases and a stable level is reached, keeping it l1 (at time 

Tl1 l2 (at time Tl2). From this point, the system starts restoring its lost performance up to the level 

Ff, where a new steady state is reached. Fl1 and Fl2 are the performance levels, respectively, at time 

Tl1 and Tl2, in case the disruptive event would have not occurred [25]. 

Two important hypotheses have been considered in this work: (i) the linearity of performance, (ii) 

and the possibility to recover post-recovery performance after a certain transient period following a 

failure, as sketched in Figure 1. 

 

Figure 1. Performance over time and variable of interest (adapted from [25]). 

Considering the description of resilience capacities previously, the absorption metric can be obtained 

as the ratio of the residual performance to the original performance at the time of the disruptive 

event occurs (1): 

  (1) 
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Where  is the ageing factor (2): 

 

     (2) 

 

 is equal to 1 under the assumptions about no ageing effect . 

The adaptation metric is defined by the time interval in which the system achieves a new stable post-

failure state and maintains it until the recovery actions take place (3): 

  (3) 

The longer the time for recovery operations (i.e. the greater the difference ), the lower the 

adaptive capacity of the system. 

 

The recovery capacity metric is defined as the slope of the recovery curve in comparison with the 

ideal linear recovery slope of 90 degrees (4): 

 

 

(4) 

Where   is the recovery duration factor (5): 

  (5) 

The final resilience metric is then obtained by the following Boolean relation among absorptive, 

restorative, and adaptive capacities of the system (6): 

  (6) 

The absorption capacity is assumed an independent attribute: unlike adaption and recovery, it is not 

reactive but it is rather an inherent systemic property of the system [25]. 

Greater absorption capacities translate into a less significant impact on other capacities and 

consequently minor requested efforts and resources following the disruption. Greater adaptive 
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capabilities indicate higher performance levels for post-destructive event. The obtained score for 

Resilience (Re) is thus a metric ranging between 0 and 1, which remains significative especially for 

relative comparisons among different configurations. 

         2.2 Conceptual representation of the simulation model 

Figure 2 sketches the logic of the simulation model for the engineered systems being considered, 

which is hereafter described in conceptual terms. R(t) is the array of reliability functions of each 

component/subsystem. These functions allow defining the array of States(t), i.e. the failure states 

that could occur in a specific time instant. Following a Recovery time (modelled as a stochastic 

variable), the system performance is restored at its original state, i.e. as it was before the degradation 

event occurs, depending on the respective Recovery function(s). Time interval varies based on the 

observation period under examination. The core of the simulation model (described in detail in §2.3) 

offers the results of the simulation which allows to track for each time interval the performance of 

the system for each time instant.  

As such, it remains possible to assess overall resilience levels and compare the response to specific 

events in terms of absorption, adaptation and recovery [25].   

 

Figure 2. Model scheme of the proposed approach to facilitate the calculation of resilience metrics. 

 

2.3 Detailed logic of the simulation approach 

The simulation model scheme depicted in Figure 2 represents the core of the approach. For every 

time instant, it starts from the reliability functions R(t) in order to define the failure probability of 

every component/subsystem and associate the occurred system state and system performance in a 

range 0-100%. 

be the percentage of critical services still having power, or at a plant level, the power that the grid 

itself can provide. A different scale can be adopted in case other types of metrics should be 
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considered (e.g. number of customers not experiencing an outage) without compromising the validity 

of the proposed approach [29]. 

A simplifying assumption considers every subsystem to be independent from the others: the failure 

of a single component does not influence the reliability of the remaining ones. A pseudo-code is 

reported to synthetize the logic of the simulation model, which is the basis to run the proposed 

analytic framework. 

 

This pseudo-code has been used as a basis for the development of scripts subsequently implemented 

in MATLAB. 

 

3. Case study 

for t = 1 to K (K is the final instant of the observation period) 
 
for i = 1 to N (N is the number of system components) 

Probability_failure_Componenti (t) = 1  Reliability_Function_Componenti(t) 
end i 
 

P_failure_Matrix (t) = [PfailureComponenti N] 
 
Safe_State(t) = 1 - product [P_failure_Matrix(t)] (for each t, it  
 
P_state_Matrix (t) = [P_failure_Matrix(t,:), Safe_State(t)T] (for each t, a probability matrix for all failure states and 
safe state) 
 
Active_state(t) developed as the most likely state in t: A Monte Carlo simulation is performed based on a discrete 
probability distribution function suggested in P_state_Matrix (t) for m iterations. The most probable state is 
selected. 
 
for i = 1 to N (N is the number of system components) 

Functionalityi (t) = Functionality_Componenti (t) 
end i 

 
i  

If t = time instant of fault of componenti 

Functionalityi (t)= Percentage_Performancei_loss (vulnerability activated) 
else if t = time_instant_fault_Componenti + Recovery_time_Component i(t) 

Functionalityi (t) goes back to the original state before the fault occurs (recovery completed) 
else 

Functionalityi (t) = Functionalityi (t -1) (steady state) 
end if 

 
Functionality_Matrix (t) = [Functionalityi N (t)] 
 
System_Functionality (t) = product [Functionality_Matrix(t)]  

 
end t 

Select a relevant time interval [t1, t2] 
 
Calculate Ab, Ad, Rec, and Re in [t1, t2] (through indexes described in §2.1). 
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The proposed simulation approach has been validated in an industrial service plant of hot water 

generation for hospitals. The plant presented in [30] served as a relevant use case for the analysis, 

considering its criticality in terms of number of served users, components reliability, and expected 

high service levels. As for traditional approaches rooted in industrial systems engineering [31], Figure 

3 presents a reliability block diagram of the system: five principal subsystems can be identified, and 

where relevant, their sub-components (ratios represent the redundancy level, i.e. contemporarily 

required/total number of items). 

At a functional level, the natural gas mains carry the gas inside two co-generators (set in parallel), in 

which the combustion takes place, enabling at the same time electric energy production and heat 

generation. The exhausted high temperature gases are directed towards a heat exchanger, where 

water in the pipes absorbs the heat. Successively five pumps placed in parallel active redundancy 

(four pumps have to work  carry the hot water towards three 

tanks (set in active redundancy parallel, i.e. two tanks have to work to avoid the service interruption). 

The tanks have the aim to provide the hot water to the users of the hospital. 

Such sub-systems (i.e. Natural gas mains, Cogenerators, Heat Exchange, Pumps, Thermal Storages) 

are placed in series: it is thus important to guarantee the functioning of every element or subsystem 

otherwise in case of serious failures the whole system is forced to stop. 

 
Figure 3. Reliability Block Diagram of the hot water generation system under examination. 
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Since the hospital structure has to be active constantly, a simulation time span of 365 days has been 

considered (K=365). The information on the plant have been complemented with data available in 

previous literature or similar plants to define the reliability function of each component, i.e.  

Reliability_Function_Componenti(t). In particular, the reliability function of natural gas mains is 

modelled as a function of a normal distribution ( ) [32] (7):  

 
 
(7) 

  

where  is the distribution mean,  is the variance and t is simulation time. 

The two co-generators an exponential 

distribution [33] (8):  

 

 

(8) 

where  is the scale parameter, assumed 1/MTBF (mean time between failure), t is the simulation 

time. Considering the co-generators layout (set in parallel, n_cog=2), the reliability function of the 

subsystem is (9): 

 

 

(9) 

The heat exchanger a Weibull probability distribution (10): 

 
 
(10) 

where  is the scale parameter,  is the shape parameter. 

The pumps a Weibull distribution, and the corresponding sub-

systems is represented through an active redundancy function [34] (11):  

 

 
 
(11) 
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where v=5 is the number of pumps in the subsystem; y=4 is the number of pumps which have to be 

contemporarily active to guarantee the performance of the whole system;  is the reliability 

function of the single pump, obtained through (10).  

The three tanks are set in parallel with partial active redundancy and their reliability function is given 

by an exponential distribution probability of failure [35] individual reliability as for (8), 

sub-system reliability as for (11) where v=3 and y=2).  

The system reliability is the series of the sub-  (12): 

 

 

(12) 

where Ri is the reliability of the single component/subsystem in a specific instant of time. Figure 4 

sketches the values of reliability over time for exemplary components subsystem, and for the entire 

system. 

 

Figure 4. -  (t=365 days; Gas = Natural Gas Mains, Co-generator = Co-
generator sub-system, Exchanger =  Exchanger sub-system, Pump = Pump sub-system, Tank = Tank sub-system). 

 

4. Results 
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Starting from the analysis of the functional properties of the plant, it has been possible to identify 51 

relevant states: 50 failure cases and a safe state (no failure). The gas mains and the heat exchanger 

are single elements that corresponds to minimal cut sets for the system: if one of them breaks, the 

system reaches zero performance. For co-generators, pumps and tanks, different performance losses 

can be defined, depending on the health state of the component, i.e. full functioning, degraded, not 

functioning. For structural reasons (as expressed earlier) redundancies for subsystems 2, 4, 5 allow 

maintaining system performance at 100%, if a single component breaks. Nevertheless, if a second 

component breaks before the conclusion of the maintenance intervention, the system performance 

downgrades to 0%. On the contrary, if one or more components of the subsystem are in a degraded 

state, different performance loss are assessed depending on the component type, following these 

functional rules: (i) 50% performance loss if a co-generator breaks, (ii) 20% performance loss if a 

pump breaks, (iii) 30% performance loss if a tank breaks. Combined system states have been 

identified as well, (e.g.) if two co-generators, two pumps or two tanks break at the same time, the 

system performance goes to 0% both in the degradation state and the efficient one.  

Reconsidering the reliability block diagram of the system in light of these rules, a set of 50 system 

states has been considered to be representative of the most representative conditions in which the 

system may be when exposed to failures. The states have been obtained combining different types 

of failure and degradation states for each component. An additional state (state #51) has been added 

to consider the condition in which no failures occur. It is worthy noticing how the list of states could 

be expanded through the adoption of combinatorial modelling [36], beyond the scope of this article. 

The list of the 51 system states has been included in Appendix 1, while Figure 5 presents a summary 

of frequencies of states for the simulation interval (t=365). 
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Figure 5. Frequency of the different 51 system states. 

It appears clearly that state #51 (no failure occurs, fully functioning system) has the higher frequency: 

in the first days of observation (for approximately 45 days, cf. Figure 4) all components are considered 

as good as new, and then, progressively decrease their individual reliability implying a minor 

frequency of the no-failure state itself. Recovery_time_Componenti(t) has been modelled as an 

exponential distribution with different average values for each component . 

For the calculation of the Active_state(t) to be selected among the 51 states, a Monte Carlo 

simulation is developed through m iterations for each state. The number m is calculated as (13): 

 

 

(13) 

where ( ) is the max variance value of states probabilities collected in the P_state_Matrix(t);  is its 

corresponding mean, E is the percentage error equal to 5% , which implies a confidence interval of 

. As such, m=600 iterations are run for every time instant t.  

The described approach has been coded in MATLAB resulting in an efficient script list, i.e. the average 

running time of the simulation an Intel Core 5 processor 

with 8 GB RAM is about 8 seconds. 

Multiple settings can then be considered. For the analysis, it is imagined to be capable of acting only 

the repairing time through the parameter Recovery_time_Componenti(t). This is expected to 
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understand the effects on system performance of different type of maintenance. This is for example 

the case where the decision maker may need to consider different performance-based contracts 

from one or more MRO (Maintenance, Repair Overhaul) companies. In this case, the MRO company 

takes in charge all the  following a failure state.  

We assume here some possible cases (e.g.) respectively =1, 2, 3 for every i, and  

specifically assigned to each component ( , 

), as respectively depicted in Figure 6 A, B, C, D. It is worth mentioning how the Figure represents 

system performance, which then allow calculating each metric Ab, Ad, Rec, and Re. 

The green color defines the functioning zones: the greater their extension, the more resilient is the 

system, i.e. a larger functioning time is guaranteed even in case of failures. With reference to the 

fourth simulation which presents a more realistic case (Figure 6D), it is proposed the computation of 

the resilience metrics proposed in §2.1.  

Besides the overall calculation of resilience performance which could be ascribed to the area under 

the performance curve as for resilience metrics [1], it is possible to decompose and specialize such 

distinction in terms of the three capabilities of the system. With respect to the values selected in the 

simulation presented for Figure 6D, Figure 7 details the proposed metrics for an exemplar time 

interval [t1, t2] with three potential system states activated (i.e. Scenario 1: failure of the Natural Gas 

Mains, performance level set to 0; Scenario 6: Co-generator-2 in degraded state, performance set to 

0.5; Scenario 45: Thermal Storage-1 in degraded mode, performance set to 0.7; cf. Appendix). 
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Figure 6. Simulation results for different recovery parameters. Green areas represent functioning intervals. 

 

In addition to the baseline calculations, the simulation model can be set to define additional what-if 

scenarios. For example, it could be possible to use the presented simulation logic to calculate the 

proposed metrics for different - actual or potential - Figure 8 shows the 

performance obtained in Scenario 45 used as a baseline (degradation level = 0.7, ) in 

comparison to two what-if scenarios related to alternative system architectures with different 

 



Printed and proofed version available here: 
http://www.sciencedirect.com/science/article/pii/S0951832021000351  

 

 



Printed and proofed version available here: 
http://www.sciencedirect.com/science/article/pii/S0951832021000351  

 
Figure 7. Exemplar calculation of resilience abilities for different scenarios. 

For the sake of simplicity, it has been considered just and the degradation level and the 

corresponding metric values, i.e. Case 1, degradation level = 0.8, ; Case 2, degradation 

level = 0.9, . Case 2 appears to be more advantageous, even if ascribed to a sensibly higher 

repairability time, if compared to Case 1.  

Even though the values presented here are used just for demonstration purposes, they constitute an 

example of how - at decision-making level - it could be possible to assess different system 

configurations and choose the alternative that is more aligned to service level targets. Additional 

implications for management should be derived linking such techno-centric analyses to economic 

assessments for each setting being evaluated, running dedicated cost-benefit analyses.  

 

Figure 8. Exemplar what-if analyses applied to a selected scenario. 

 

5. Conclusions  

The proposed model is able to reproduce the behavior of an engineered system through a time-

dependent simulation. The case study refers to a simulation for resilience analysis of industrial plants, 

but it can be adapted to other types of systems. The pseudo-code proposal ensures some flexibility 

and reproducibility in other contexts, while the bond between reliability and performance is the 

fulcrum of the simulation. The robustness of the approach is intended to gather evidence suitable for 

other types of systems, extending the modelling towards dimensions referred to social aspects, as 

well as natural hazards, once the proper dimensions for performance investigations have been 
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defined. For example, the probability of failure defining the techno-centric dimension of this 

research, should be substituted by the functional variability of performance, or the frequency linked 

to certain events (e.g. natural hazards), and the associated expected loss of performance. 

Enlarging the scope in this direction, it would be possible to extend the study of plant resilience in a 

way that allows understanding where to invest corporate profits in order to continuously improve 

processes and avoid production stops. In particular, developing what-if scenarios, the simulation 

model allows to change any of the parameters and check the respective effects. Such actions are 

tightly linked with the decision-maker perspective, supporting systematic explorative analysis for 

return of investments. In practical terms, the simulation model might be updated, adding or 

removing system states, as well as modifying recovery options and parameters in order to deal with 

the needs of the system at hand.  

Nevertheless, the proposed approach has some limitations. Firstly, the linearity of the proposed 

properties. However, it might be not fully representative of a complex large-

those cases, it could be assumed as a first approximation, referring to more detailed approach for 

non-linear behaviors. Furthermore, no degradation for ageing is considered, as well as component 

inter-dependence. The former limitation could be ascribed in future work making explicit usage of 

the coefficient , while the latter requires more advanced system modelling. Again, it is worth 

mentioning that the techno-centric perspective adopted in this study does not necessarily require 

human and organizational aspects to be explicitly modelled. However, this could be a relevant added 

value when considering restorative capacities that require a human intervention (e.g. maintenance 

operations), or in general, socio-technical operations. On the other hand, when considering large-

scale technical system, it could be of interest to include as well a societal dimension of analysis [37], 

to understand the criticality of some failures or external disruption, which could include both natural 

hazards [38], [39], as well as cyber threats [40]. This way the proposed approach could be used as a 

basis to ensure its applicability towards socio-technical systems, as prescribed by resilience 

engineering [41]. Emphasizing the benefits of simulated approaches for modern and future socio-

technical systems, the implementation of such aspects is left to future research.  
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Appendix  List of system states 

 

1 0.0
2 1.0
3 1.0
4 0.0
5 0.5
6 0.5
7 0.0
8 0.0
9 1.0
10 1.0
11 1.0
12 1.0
13 1.0
14 0.0
15 0.0
16 0.0
17 0.0
18 0.0
19 0.0
20 0.0
21 0.0
22 0.0
23 0.0
24 0.8
25 0.8
26 0.8
27 0.8
28 0.8
29 0.0
30 0.0
31 0.0
32 0.0
33 0.0
34 0.0
35 0.0
36 0.0
37 0.0
38 0.0
39 1.0
40 1.0
41 1.0
42 0.0
43 0.0
44 0.0
45 0.7
46 0.7
47 0.7
48 0.0
49 0.0
50 0.0
51 1.0
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Figure 9. List of system states being considered in the analysis and respective system performance levels: each component may be in 

a functioning state (green icon), degraded state (yellow icon), or failed state (red icon). 
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